Recap

- Strength theory
- μ, σ, a, C
- ROC curve

What does $(0,0)$ mean?

How does the ROC change when d' increases?

Signal Detection Theory (SDT)
 AKA Statistical Decision Theory

- Strength theory is an example
- Real world SDT applications:
- College admissions
- Doctors evaluating test results
- "If you SEE something, SAY something"
- Investing in the stock market (buying vs. shorting shares)
- Given two noisy alternatives, how do you pick between them (and how difficult is it)?

Is strength theory too simple?

- We've assumed constant strength increments
- We've assumed constant thresholds
- We've assumed decisions are based on single strength values
- Another possibility: several sources of information could contribute to decisions about whether we've seen something; we could combine them to make our response

The Yonelinas FamiliarityRecollection Model

- Idea: when people make recognition judgements, they can respond using two distinct sources of evidence:
- A feeling of general "familiarity" with an item (or event/situation) without remembering specific details of studying it
- "Recollection" the experience of studying the item, including specific details, contextual cues, etc.
- Familiarity judgements are analogous to memory strength judgements from strength theory.
- There's an additional "all or none" recollection process: either you remember the details or you don't.

The Yonelinas FamiliarityRecollection Model

- You recollect details with probability R. You don't recollect the details with probability 1 - R.
- If you recollect an item, you say "yes" to whether you've seen it before. (Effectively the item has infinite strength.)
- If you don't recollect an item, you now rely on familiarity. If the item's strength is above a threshold, you respond "yes" (with probability $F_{\text {target }}$) and otherwise you respond "no" (with probability 1 - Flure)

