# Recap

- Targets vs. lures
- Probability distribution
- Random variable
- Mean
- Standard deviation

# Gaussian distribution



#### What's the probability that $x > \mu$ ?



#### What's the probability that $x > \mu$ ?



# What's the area under the curve for all values greater than $\mu$ ?



### Let's build a model: **Strength theory**

















VACUUM (STRENGTH = 10)





















# How will this work?

#### • Targets vs. lures

- If strength of an item is high, say you've seen it before (and vice versa). Need a criterion threshold (C)!
- Assumption 1: you can read out memory strengths
- Assumption 2: reading out an item's memory strength doesn't change anything else
- Our model has 4 parameters:  $\mu$ ,  $\sigma$ , a, C



# Bias: which threshold?

Suppose I offer you \$10 for every **hit** and take away nothing for **false alarms**, where should you put your decision threshold?

- 1. All the way to the left
- 2. Between the two distributions
- 3. All the way to the right



# Sensitivity: d' ("d prime")

•  $d' = ((\mu + a) - \mu)/\sigma$ 

 $= a/\sigma$ 

- d' is the difference between the means of the target and lure distributions, expressed in standard deviation units
- Measures how separable the target and lure distributions are
- Perfect sensitivity vs. zero sensitivity
- d' does NOT depend on the threshold!



# How can we test strength theory?

- In a real experiment, we don't get to see d' or C
- How can we map between this model and the results in an experiment?
- Another logic game: consider the consequences of changing C

# The recognition test



# The recognition test



| crit. value (C) | called old            | called new                |
|-----------------|-----------------------|---------------------------|
| 8               | robot                 | window, bird,<br>fountain |
| 7               | bird, robot           | window, fountain          |
| 5               | fountain, bird, robot | window                    |

# Did you see this?

# DOG

# Did you see this?

# CATS

# Did you see this?



# How sure are you?



#### The Receiver Operating Characteristic (ROC)



#### The Receiver Operating Characteristic (ROC)



#### The Receiver Operating Characteristic (ROC)



### Confidence and criterion



### Confidence and criterion



### Confidence and criterion





# False alarms (black)



#### Hit rate and false alarm rate

• Hit rate: number of hits / number of possible hits

= number of hits / number of targets

• False alarm rate: number of false alarms/number of possible false alarms

= number of false alarms / number of lures

# The ROC curve



For a given C, we can calculate the **hit rate** and the **false alarm rate** 

# The ROC curve





"You'll never false alarm with Hi-C!"

# The ROC curve



We can sweep C from high to low values to fill in the ROC curve

Thought question: What would the ROC curve look like if you fell asleep during the study period, and you didn't study anything?

# Reasoning with ROCs

