
Midterm results

• Scores posted to canvas are out of 20 points 
(and include the 0.5 point bonus if you 
answered the bonus question) 

• Average: 80.9% 

• Median: 85.6% 

• Detailed feedback forthcoming 

• Questions? Comments? Concerns? Reach out!



PSYC 51.09: Problem Set 5

Introduction

This problem set is intended to solidify the concepts you learned about in this week’s lectures and readings. After
attempting each problem on your own, you are encouraged to work together with your classmates in small
groups, and/or to post and answer questions on the course’s Canvas site.

You must upload your answers before the due date in order to receive credit. No late submissions will be
accepted.

Readings

1. Read Chapter 5 of Foundations of Human Memory (if you have not already done so). What were your thoughts
on the reading? (Ungraded)

2. Optional. If you’d like to learn about deep neural networks (an extension of the Hopfield networks we learned
about in class and in Chapter 5) watch this YouTube video: https://tinyurl.com/kvbw872. What’d you
think? (Ungraded)

3. Optional. If you’d like to learn about how network patterns in our brains reflect our ongoing thoughts, read
Owen et al. (2021). Thoughts? (Ungraded)

4. Optional. If you’d like to learn more about how we can intentionally forget, read Manning et al. (2016). You
can also listen to a radio segment on the study here: https://tinyurl.com/y25fwklm. (Ungraded)

5. Optional. Sievers and Momennejad (2019) propose an approach for “deleting” specific targeted memories by
presenting tailored sequences of stimuli. Can you think of any interesting applications and/or implications
of this work? (Ungraded)

Graded questions

For this problem set, your job is to create your own neural network model of memory (a Hopfield network).
Below are two memories, m1 and m2 that you will store in your network. Use the techniques we discussed in
class (and in the book), along with the provided equations, to answer the following questions. Show your work!
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11. Create a weight matrix, using Hebbian learning, that contains both m1 and m2 as stable memories.

2. For each of the partial cues, x1 and x2, the activity of the first two neurons is known. Use asynchronous
updating to calculate the activities of the remaining four neurons (in whatever order you want). Can the
network retrieve both memories? Hint: update neurons 3, 4, 5, and 6 (in any order). Then continue updating
those 4 neurons until none of the values change to show that the network has stabilized.
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Recap

• Hopfield network intuitions: 

• Energy landscape 

• Modeling paired associates learning 

• Modeling reaction time 

• Modeling interference



Contextual drift

• Represent context as a vector (initially 
random) 

• With each time step, perturb a fraction of 
the neurons



Hopfield Net: Recency and Contextual Drift

! Use context to implement recency
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Hopfield Net w/Contextual Drift

Network Models II

Make part of the memory vector 
represent the item, and make the 
other part represent time... 

Contextual driftModeling Associations
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• A Hopfield net with N nodes can store 
approximately 0.12 N random vectors with 
~99% accuracy 

• If the ~300,000 neurons in region CA3 of the 
Hippocampus were wired as a Hopfield net... 

• CA3 could house ~36,000 unique memories!

Network Capacity
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Google DeepMind



Tensorflow 
http://playground.tensorflow.org/



Topographic Factor 
Analysis

• Collaboration with Dave Blei, Ken 
Norman, DeepMind, and Intel Labs 

• Model “full brain” neural networks



Topographic Factor 
Analysis

https://github.com/IntelPNI/brainiak/ 
Manning et al. (2014, 2018)

https://github.com/IntelPNI/brainiak/


Connectionist models12 Modeling Hippocampal and Neocortical Contributions to Recognition

To index representational sharpness in our model —
and through this, stimulus familiarity — we measure the
average activity of the MTLC units that win the compe-
tition to represent the stimulus. That is, we take the av-
erage activation of the top (192 or 10% of the MTLC)
units computed according to the kWTA inhibitory com-
petition function. This “activation of winners” (act win)
measure increases monotonically as a function of how
many times a stimulus was presented at study. In con-
trast, the simpler alternative measure of using the aver-
age activity of all units in the layer is not guaranteed to
increase as a function of stimulus repetition — as a stim-
ulus becomes more familiar, the winning units become
more active, but losing units become less active (due to
inhibition from the winning units); the net effect is there-
fore a function of the exact balance between these in-
creases and decreases (for an example of another model
that bases recognition decisions on an activity readout
from a neural network doing competitive learning, see
Grossberg & Stone, 1986).

Although we use in the simulations re-
ported below, we do not want to make a strong claim
that is the way that familiarity is read out
from MTLC. It is the most convenient and analytically
tractable way to do this in our model, but it is far from the
only way of operationalizing familiarity, and it is unclear
how other brain structures might “read out”
from MTLC. We briefly describe another, more neurally
plausible familiarity measure (the time it takes for ac-
tivation to spread through the network) in the General
Discussion section.

Finally, we should point out that the idea (espoused
above) that the same network is involved in feature ex-
traction and familiarity discrimination is controversial; in
particular, Malcolm Brown, Rafal Bogacz, and their col-
leagues (e.g., Brown & Xiang, 1998; Bogacz & Brown,
in press) have argued that specialized populations of neu-
rons in MTLC are involved in feature extraction versus
familiarity discrimination. At this point, it suffices to say
that our focus in this paper is on the familiarity discrimi-
nation capabilities of the cortical network, rather that its
ability to extract features. We address Brown and Bo-
gacz’s claims in more detail in the General Discussion.

The Hippocampal Model
We have developed a “standard model” of the hip-

pocampus (O’Reilly et al., 1998; O’Reilly & Munakata,
2000; O’Reilly & Rudy, 2001; Rudy & O’Reilly, 2001)
that implements widely-accepted ideas of hippocampal
function (Hebb, 1949; Marr, 1971; McNaughton & Mor-
ris, 1987; Rolls, 1989; O’Reilly & McClelland, 1994;
McClelland et al., 1995; Hasselmo, 1995). Our goal in
this section is to describe the model in just enough de-
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Figure 4: Diagram of the hippocampal network. The hip-
pocampal network links input patterns in entorhinal cortex
(EC) to relatively non-overlapping (pattern-separated) sets of
units in region CA3; recurrent connections in CA3 bind to-
gether all of the units involved in representing a particular EC
pattern; the CA3 representation is linked back to EC via region
CA1. Learning in the CA3 recurrent connections, and in pro-
jections linking EC to CA3 and CA3 to CA1, makes it possible
to recall entire stored EC patterns based on partial cues. The
dentate gyrus (DG) serves to facilitate pattern separation in re-
gion CA3.

tail to motivate the model’s predictions about recognition
memory. Additional details regarding the architecture of
the hippocampal model (e.g., the percentage activity in
each layer of the model) are provided in Appendix B.

In the brain, entorhinal cortex (EC) is the interface
between hippocampus and neocortex; superficial lay-
ers of entorhinal cortex send input to the hippocampus,
and deep layers of entorhinal cortex receive output from
the hippocampus (see Figure 1). Correspondingly, our
model subdivides EC into an EC in layer that sends in-
put to the hippocampus and an EC out layer that receives
output from the hippocampus. Like the input layer of
the cortical model, both EC in and EC out have a slotted
structure (24 10-unit slots, with 1 unit per slot active).

Figure 4 shows the structure of the model. The job of
the hippocampal model, stated succinctly, is to store pat-
terns of EC in activity, in a manner that supports subse-
quent recall of these patterns on EC out. The hippocam-
pal model achieves this goal in the following stages:

Input patterns are presented to the model by clamp-
ing those patterns onto the input layer, which serves to

Norman and O’Reilly (2003)



Connectionist models



Additional practice
Suppose you have a 5-neuron Hopfield 
network.  Can you create: 

• A set of 3 memories that can be reliably 
retrieved? 

• A set of 3 memories that interfere with 
each other? 

• A bi-stable network (you can pick the 
number of memories and the cue)


