
Recap

• Dynamic rule 

• Asynchronous updates 

• Synchronous updates



Practice: Asynchronous 
updating using the dynamic rule

Hopfield Network Combines...

Dynamical Rule (McCulloch & Pitts, 1943)

a(i) = sgn





N
∑

j=1

w(i , j)a(j)





where a is the vector of attribute values, or activation values

Learning Rule (Hebb, 1949)

w(i , j) =
L

∑

k=1

a(i)a(j)

BINARY VALUED UNITS: +1, -1

Network Models II
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Practice: Synchronous updating 
using the dynamic rule
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Further intuitions



Further intuitions



• Reaction Time: Number of updates before activations 
stabilize 

• Adding noise (ε) to the threshold value of zero improves 
the network’s performance

Temporal dynamics (asynchronous)
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Figure 5.6. “Reaction Time” in a Hopfield Net. This histogram shows the
distribution of the number of network updates required for pattern convergence.
The number of updates for convergence can be thought of as a measure of the
“reaction time” of the network.

which is given by:

mk =

(

ak

bk

)

,

where ak and bk are binary (±1), N -dimensional vectors representing the
items to be associated.

The learning rule for a list of L pairs can then be written as:

w(i, j) =
L

∑

k=1

mk(i)mk(j), (5.8)

where W = w(i, j) is a 2N × 2N weight matrix with four quadrants, as
illustrated in Figure 5.7 on the facing page. Quadrants 1 and 3 of the
matrix contain autoassociative information, while quadrants 2 and 4 contain
heteroassociative information.

Rizzuto and Kahana (2001) showed that a probabilistic-learning algo-
rithm enabled their network model to account for the effect of repetition on
recall accuracy. In their formulation, each weight, w(i, j), has some proba-
bility of being updated on a given trial. Thus, for a given pair k, the rule
for storing each weight would be:

∆w(i, j) =

{

mk(i)mk(j) with probability γ
0 with probability 1 − γ

(5.9)



Associations and context
Concatenate Item Vectors
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Attribute Models of Association
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Associations and context



• Reaction Time:  Number of updates to complete a pattern 

• Failure to recall:  No pattern completed within a given interval 

• Similarity based interference arises from adding weights 

• Learning can be gradual

Hopfield Net Properties


