
Recap

• Neural network model terms:

• Neuron

• Weight

• Learning rule

• Dynamic rule

Learning rule

• Tells us how to encode memories in the
network

184 CHAPTER 5. MODELS OF ASSOCIATION

deblur, the retrieved information so that we could recall the actual stored
target memory. This can be accomplished using a non-linear activation
function, as described in the next section.

5.2.4 The Hopfield Network

The Hopfield model (1982) is perhaps the simplest and most popular net-
work model of associative memory. This network stores a memory vector
in such a way that we can use part of the vector, or a noisy version of the
vector, to retrieve the most similar vector stored in the network. This type
of operation, in which a vector is associated with itself, is called autoassoci-
ation. Heteroassociation refers to the storage of an association between two
different vectors.

A Hopfield network is designed to store, or autoassociate, individual
vectors. To store a heteroassociation—an association between two different
vectors—all we need to do is create a vector that combines the attributes of
the to-be-associated items. We will consider heteroassociation in the next
section. For now, let us examine the behavior of the Hopfield network in
storing and retrieving individual vectors.

As with Anderson’s linear neural-network model, we can describe the
Hopfield model by specifying the representation of the items and the equa-
tions used to modify the weights and to change the activations of the nodes.
Hopfield found it convenient to use vectors of binary-valued attributes to
represent items. These attributes take on values of either +1 or −1, with
equal probability. A value of +1 would correspond to a neuron whose fir-
ing rate, or activity level, is above its average value; a value of −1 would
correspond to a neuron whose activity level was below its average value.
The learning rule used in the Hopfield model is the same as the Hebb learn-
ing rule given in Equation 5.3 on page 182. If we have stored L vectors,
{a1, ...,aL} in the network, we will have weights given by:

w(i, j) =
L

∑

k=1

ak(i)ak(j). (5.6)

Strictly speaking, the equations we have used for the Hebb rule imply that
the weight between a neuron and itself is also modified (i.e., w(i, i) = a(i)2).
For reasons that are beyond the scope of our treatment, it is advantageous
to set the self strengths, w(i, i), to zero. We have done so in the following
example.

Learning multiple
memories (example)

Hopfield Network Combines...

Dynamical Rule (McCulloch & Pitts, 1943)

a(i) = sgn

N
∑

j=1

w(i , j)a(j)

where a is the vector of attribute values, or activation values

Learning Rule (Hebb, 1949)

w(i , j) =
L

∑

k=1

a(i)a(j)

BINARY VALUED UNITS: +1, -1

Network Models II

5.2. NEURAL NETWORK MODELS 181

Suppose that we want to store three vectors, a1, a2, and a3 in a Hopfield
network with five nodes.

a1 =

+1
−1
−1
+1
+1

a2 =

−1
+1
−1
−1
+1

a3 =

+1
+1
+1
−1
−1

Storing these three patterns in the Hopfield network yields the weight ma-
trix:

W =

0 −1 +1 +1 −1
−1 0 +1 −3 −1
+1 +1 0 −1 −3
+1 −3 −1 0 +1
−1 −1 −3 +1 0

where the value given in the i-th row and j-th column of the matrix corre-
sponds to the weight, w(i, j), between neuron i and neuron j. One can see
that w(2, 4) = −3 because the second and fourth attributes have opposite
signs (one is −1 and the other is +1) in each of the three vectors, a1, a2,
and a3 . One can also see that the weight matrix is symmetric; in every
case, w(i, j) = w(j, i).

Retrieval in the Hopfield model is accomplished by applying the McCullough-
Pitts dynamical rule (see Equation 5.1 on page 176) in an iterative fash-
ion. Whereas Anderson used the activation function g(x) = x in his linear-
network model, Hopfield used a nonlinear activation function, g(x) = sgn(x),
where

sgn(x) =

{

+1 if x > 0,
−1 if x < 0.

If x = 0 then the sgn operation would return either a value of -1 or +1 with
equal probability.

Hopfield’s dynamical rule is therefore given by:

s(i) = sgn

N
∑

j=1

w(i, j)s(j)

 (5.7)

where s = s(1), s(2), . . . , s(N) represents the current state of the network
(this is sometimes called the state vector). Hopfield was able to prove that,
with the sgn activation function, the dynamical rule will always modify the

Dynamic rule

• Tells us how to recover memories given
a partial cue (pattern complete)

Hopfield Network Combines...

Dynamical Rule (McCulloch & Pitts, 1943)

a(i) = sgn

N
∑

j=1

w(i , j)a(j)

where a is the vector of attribute values, or activation values

Learning Rule (Hebb, 1949)

w(i , j) =
L

∑

k=1

a(i)a(j)

BINARY VALUED UNITS: +1, -1

Network Models II

Dynamic rule

• Asynchronous: update 1 neuron at a
time and then use that new value in
future updates

• Synchronous: update all neurons
simultaneously by using the original
(not updated) values in the calculations

Hopfield Network Combines...

Dynamical Rule (McCulloch & Pitts, 1943)

a(i) = sgn

N
∑

j=1

w(i , j)a(j)

where a is the vector of attribute values, or activation values

Learning Rule (Hebb, 1949)

w(i , j) =
L

∑

k=1

a(i)a(j)

BINARY VALUED UNITS: +1, -1

Network Models II

An intuitive walkthrough

An intuitive walkthrough

The “learn” operation

An intuitive walkthrough

An intuitive walkthrough

The “retrieve” operation...
AKA pattern completion!

POW!

An intuitive walkthrough

Further intuitions

Further intuitions

