
Midterm check-in

• How’d the exam go?


• When will it be graded?



Recap

• Retrieval induced forgetting


• Attribute similarity models of recall
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Multitrace Similarity 
Attribute Theory



From file cabinets to 
neural networks 

• Our multiple-trace memory model helps 
us understand human behavior in a 
number of different situations/
experiments


• But there are some important things that 
are left out by this model 



• We say that a given item has a particular 
representation (a set of attributes)…


• …but how does that representation form?


• …and what holds it together?

Limitations



• Each new experience causes a new memory 
trace to be formed…is this reasonable? 


• Can an old memory trace be altered, 
adjusted, damaged?


• Can storing a new memory damage an old 
memory?


• Do we ever run out of storage space?

Limitations



• Search Problem


• The probe is compared to every 
memory in the system, but we haven’t 
said how this happens


• In cued recall, we reactivate the memory 
that best matches the cue, but we 
haven’t said how this happens, either!

Limitations



Neural network models



• A representation is an activity pattern across 
a network of neurons


• These neurons are all connected to one 
another by synapses, which specify how 
strongly one neuron influences the activity of 
any other neuron


• Learning involves adjusting the connection 
strengths between neurons

Neural network models



• representation = (feature) vector = pattern = state


• element = feature = neuron = node


• synapse = weight = connection

Neural network models



• With just a handful of rules, we can create a 
memory system that can:


• explain what it means for a representation to 
be stable


• explain how storing a new memory can 
damage other memories


• estimate storage capacity and reaction time


• …and more!

Neural network models



Road map

• The basics of neural network models


• Hopfield model and pattern completion


• Neural dynamics in the human brain



Biophysical models
• Hodgkin & Huxley (1952) developed a 

mathematical model describing how shifts in 
ionic currents alter the electrical potential of 
the cell, giving rise to an action potential.


• Nobel prize for this work (1963)


• It is possible to make very detailed models of 
the biophysics of individual neurons



Neuro-cognitive models
• It is also possible to work with very abstract versions of neurons, which 

lets us focus on the computational properties of the broader system 
(how lots of neurons interact)


• Linear associators: Leon Cooper (1973, Nobel Lecture). Major 
development by Jim Anderson, in Estes Lab.



Neuro-cognitive models
• Other pioneers: Grossberg, Rumelhart, McClelland, Hinton, 

Sejnowski, and Kohonen


• These researchers have created a computational foundation for 
cognitive neuroscientific theory, establishing the possible 
mechanisms used by the brain to perceive, attend, learn, and act!


• We will return to these models in Chapter 7…



Link to statistical physics
• Hopfield networks: In 1982, John Hopfield 

developed the link between physical models 
of magnetic systems and biophysical models 
of neural networks.

This framework was very 
attractive to mathematicians, 
because it was possible to 
develop formal proofs 
regarding network dynamics



Link to statistical physics
• Hopfield networks: In 1982, John Hopfield 

developed the link between physical models 
of magnetic systems and biophysical models 
of neural networks.

Also, it is a super-simplified 
version of a neural network, 
which allows us to work with it 
without a computer, and gain 
some intuitions about how these 
models work!



Boiling neurons down 
to the basics
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How do neurons talk?
• In real neural networks, there are many 

different kinds of neurons


• Some are excitatory (they activate other 
neurons) and some are inhibitory (they turn 
off or suppress other neurons)


• In the Hopfield model, there is only one kind 
of neuron, but it can send out both excitatory 
and inhibitory signals
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How do neurons 
learn?



Creating a stable 
representation

Learning



(retrieve)

Probing memory



(retrieve)

Pattern completion



(retrieve)

Pattern completion

To create a neural network that can do pattern completion, we 
need to come up with rules that determine (1) whether a given 
neuron should be active, and (2) how the connections change 
strength during learning.



Some terminology



• We can think of the neural network as being 
represented by a vector of attribute values 

Some terminology



• We can think of the neural network as being 
represented by a vector of attribute values 

• If there are 5 elements in the vector, there are 5 
neurons in our network
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• We can think of the neural network as being 
represented by a vector of attribute values 

• If there are 5 elements in the vector, there are 5 
neurons in our network

• At a given moment (time t), only one pattern can be 
active

Some terminology



• We can think of the neural network as being 
represented by a vector of attribute values 

• If there are 5 elements in the vector, there are 5 
neurons in our network

• At a given moment (time t), only one pattern can be 
active

• The currently active pattern is the active state of the 
network

Some terminology



Some terminology



• We can specify the connection strength between all 
pairs of neurons; these connections are meant to 
represent synapses

Some terminology



• We can specify the connection strength between all 
pairs of neurons; these connections are meant to 
represent synapses

• Multiple memories can be stored in these connections
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• We can specify the connection strength between all 
pairs of neurons; these connections are meant to 
represent synapses

• Multiple memories can be stored in these connections

• Learning = modification of connection weights

Some terminology



• We can specify the connection strength between all 
pairs of neurons; these connections are meant to 
represent synapses

• Multiple memories can be stored in these connections

• Learning = modification of connection weights

• Nodes (neurons) interact with each other to recall 
memories (carrying out pattern completion)

Some terminology



j

i

a(j)

w(i,j)

a(j) * w(i,j)

The current activity of unit i 
is a function of the activity 
of j, and the weight from j 
to i.



Learning rule

• Tells us how to encode memories in the 
network
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deblur, the retrieved information so that we could recall the actual stored
target memory. This can be accomplished using a non-linear activation
function, as described in the next section.

5.2.4 The Hopfield Network

The Hopfield model (1982) is perhaps the simplest and most popular net-
work model of associative memory. This network stores a memory vector
in such a way that we can use part of the vector, or a noisy version of the
vector, to retrieve the most similar vector stored in the network. This type
of operation, in which a vector is associated with itself, is called autoassoci-
ation. Heteroassociation refers to the storage of an association between two
different vectors.

A Hopfield network is designed to store, or autoassociate, individual
vectors. To store a heteroassociation—an association between two different
vectors—all we need to do is create a vector that combines the attributes of
the to-be-associated items. We will consider heteroassociation in the next
section. For now, let us examine the behavior of the Hopfield network in
storing and retrieving individual vectors.

As with Anderson’s linear neural-network model, we can describe the
Hopfield model by specifying the representation of the items and the equa-
tions used to modify the weights and to change the activations of the nodes.
Hopfield found it convenient to use vectors of binary-valued attributes to
represent items. These attributes take on values of either +1 or −1, with
equal probability. A value of +1 would correspond to a neuron whose fir-
ing rate, or activity level, is above its average value; a value of −1 would
correspond to a neuron whose activity level was below its average value.
The learning rule used in the Hopfield model is the same as the Hebb learn-
ing rule given in Equation 5.3 on page 182. If we have stored L vectors,
{a1, ...,aL} in the network, we will have weights given by:

w(i, j) =
L

∑

k=1

ak(i)ak(j). (5.6)

Strictly speaking, the equations we have used for the Hebb rule imply that
the weight between a neuron and itself is also modified (i.e., w(i, i) = a(i)2).
For reasons that are beyond the scope of our treatment, it is advantageous
to set the self strengths, w(i, i), to zero. We have done so in the following
example.



Learning multiple 
memories (example)

Hopfield Network Combines...

Dynamical Rule (McCulloch & Pitts, 1943)

a(i) = sgn





N
∑

j=1

w(i , j)a(j)





where a is the vector of attribute values, or activation values

Learning Rule (Hebb, 1949)

w(i , j) =
L

∑

k=1

a(i)a(j)

BINARY VALUED UNITS: +1, -1

Network Models II
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Suppose that we want to store three vectors, a1, a2, and a3 in a Hopfield
network with five nodes.

a1 =













+1
−1
−1
+1
+1













a2 =













−1
+1
−1
−1
+1










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a3 =













+1
+1
+1
−1
−1













Storing these three patterns in the Hopfield network yields the weight ma-
trix:

W =













0 −1 +1 +1 −1
−1 0 +1 −3 −1
+1 +1 0 −1 −3
+1 −3 −1 0 +1
−1 −1 −3 +1 0













where the value given in the i-th row and j-th column of the matrix corre-
sponds to the weight, w(i, j), between neuron i and neuron j. One can see
that w(2, 4) = −3 because the second and fourth attributes have opposite
signs (one is −1 and the other is +1) in each of the three vectors, a1, a2,
and a3 . One can also see that the weight matrix is symmetric; in every
case, w(i, j) = w(j, i).

Retrieval in the Hopfield model is accomplished by applying the McCullough-
Pitts dynamical rule (see Equation 5.1 on page 176) in an iterative fash-
ion. Whereas Anderson used the activation function g(x) = x in his linear-
network model, Hopfield used a nonlinear activation function, g(x) = sgn(x),
where

sgn(x) =

{

+1 if x > 0,
−1 if x < 0.

If x = 0 then the sgn operation would return either a value of -1 or +1 with
equal probability.

Hopfield’s dynamical rule is therefore given by:

s(i) = sgn





N
∑

j=1

w(i, j)s(j)



 (5.7)

where s = s(1), s(2), . . . , s(N) represents the current state of the network
(this is sometimes called the state vector). Hopfield was able to prove that,
with the sgn activation function, the dynamical rule will always modify the


