Recap

• Proactive interference

Retroactive interference

- Newer memories get in the way of older memories
- Memory for Thursday and Friday's breakfasts get in the way of memory for Wednesday's breakfast

Retroactive interference

Data from Barnes and Underwood (1959)

Retroactive interference

- Why does learning new stuff degrade memory for old stuff?
- New memories might overwrite or damage old memories (i.e. damage during **encoding**)
- But even if old and new memories co-exist peacefully, you could still get competition at **retrieval**
- These alternatives are tricky to tell apart! We'll return to this idea later...

AB-AC Interference Paradigm

- Briggs (1954): "Modified free recall"
- Study a list of A_i-B_i pairs to a criterion of 100% (anticipation trials)
- Study a list of A_i-C_i pairs (again using the anticipation method):
 - Show A_i and ask participant to say the first item they can think of in response (either B_i or C_i)
- Re-test at varying retention intervals

AB-AC Interference Paradigm

Mechanisms of interference

- New memories might overwrite/damage old memories
- But even if new and old memories could co-exist peacefully, they could compete at **retrieval**
- In Briggs's study, participants could only report one thing in response to the A cue
- Barnes & Underwood (1959): if competition is responsible for the decrease in B responses, what if we allowed the participant to make *two* responses? That should minimize competition! ("Modified modified free recall"– MMFR)

Slower forgetting of B_i in the MMFR procedure

Slower forgetting of B_i in the MMFR procedure

Mechanisms of interference

- Barnes & Underwood (1959): if competition is responsible for the decrease in B responses, what if we allowed the participant to make *two* responses? That should minimize competition! ("Modified modified free recall"– MMFR)
- In MMFR, B responses still decrease, just not as much
- Tentative conclusion (at the time): forgetting involves both competition and unlearning

Interference and context

- Context gives us a mechanism for things becoming less accessible as time passes; it provides a nice alternative to trace decay
- If your retrieval cue contains context in it, memories with similar contexts will be more accessible than those with less similar contexts...

Concatenate Item Vectors

Attribute similarity model of recall

test probe

Attribute similarity model of recall

- Predicts competition between B_2 and C_2
- Predicts recency
- Predicts competition from semantically related pairs
- Let's explore these ideas further...

The Retrieval Induced Forgetting Procedure (RIF)

- Can competition between memories have a lasting effect on the memories themselves?
- Hypothesis: when memory traces compete at retrieval, the winning trace gets strengthened by the losing ones get weakened
- Let's try a demo...

Anderson, Bjork, and Bjork (1994)

STUDY PERIOD

RED – BLOOD

FOOD – STRAWBERRY

RED – TOMATO

TOOL – PLIERS

TOOL – DRILL

FOOD – CRACKER

RETRIEVAL PRACTICE

TOOL – DR____

RED – BL____

CUED RECALL

FOOD

RED

TOOL

The Retrieval Induced Forgetting Procedure (RIF)

- Study phase: A-B and A-C pairs are inter-mixed
- Retrieval practice phase: only some pairs are practiced
- Cued recall phase: look at the effects of practice on the un-practiced pairs

Unrelated Condition

Related Condition

Destructive practice

- Practicing red-blood hurts red-tomato
 - This is similar to Briggs's response competition result (A-B/A-C pairs)
- Practicing red-blood doesn't affect unrelated pairs
- Practicing red-blood also hurts food-strawberry: strawberry is similar to tomato! Inhibition seems to spread through a semantic network

Destructive practice

- Practicing red-blood hurts red-tomato
- Is it the association between red and tomato that gets damaged, or is it the memory for "tomato" itself?
- We can use an independent probe: salad-to____
- "Tomato" becomes less accessible even when we use an independent probe
- It looks like "tomato" itself is damaged

The mechanisms underlying RIF

Impairing "apple" generalizes to other cues besides fruit

The mechanisms underlying RIF Practicing fruit-pear impairs red-apple

The mechanisms underlying RIF Possible explanation 1: associative weakening

- Predicts impaired recall of apple given "fruit-a___"
- Does not predict impaired recall of apple given "red-a___"

The mechanisms underlying RIF Possible explanation 2: inhibition

 Correctly predicts impaired recall of apple given both "fruit-a___" and "red-a__"

What does it mean to inhibit a memory?

What does it mean to inhibit a memory?

Kiwi competes less strongly, so it receives less punishment

Partial vs. full practice

With a more precise cue, apple doesn't have a chance to pop up, so it isn't punished

Summary and sneak peak

- Associations are how we "link" memories
- When many memories are associated they can interact and/or interfere, causing memory encoding and/or retrieval failures
- Chapter 5: models of associations