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• Sternberg paradigm 

• Serial search models: 
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Laying the groundwork…

• How can we (formally) represent complex 
thoughts? 

• Extensions of strength theory
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Attribute theory

• Mathematics is the language of nature 

• Everything around us can be represented and 
understood through numbers 

• We create a model of our world inside our brain 

• What can we do with this idea?
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Rectangle space

• Any point in rectangle space is a rectangle 

• You can go from points to rectangles: x = width, y = height 

• You can go from rectangles to points: width = x, height = y 

• We can represent any rectangle (or point) as a vector



Vectors



Rectangle space

• We can also ask how different rectangles compare 
to each other



Euclidean distance

3.1. ATTRIBUTES 73

Distance The distance between two vectors will turn out to be quite im-
portant in thinking about the role of similarity in memory. The distance

between m1 =

(

x1

y1

)

and m2 =

(

x2

y2

)

equals the length of the dif-

ference vector, m3 = m2 − m1. The length, or norm, of a vector, mi,
is denoted as ||mi||. Using the Pythagorean theorem we can show that
||m3|| =

√

(x1 − x2)2 + (y1 − y2)2. As shown in Figure 3.1, m3 starts at
coordinates x2, y2 and ends at coordinates x1, y1.

Vectors with more than two dimensions Vectors are mathematical
objects that can represent more than two dimensions; indeed, they can rep-
resent any number of dimensions. Thus, an object with three attributes
can be represented by a three dimensional vector, an object with four at-
tributes can be represented by a four-dimensional vector, and an object
with N attributes can be represented by an N -dimensional vector. A three-
dimensional vector can be represented geometrically by a point in three-
dimensional space as in the case of a block which is described by its height,
width and depth. Although one could think of N -dimensional vectors as
points in N -dimensional space, we are not able to visualize such mathemat-
ical objects in a geometric way. Mathematically, we can denote a vector m

with N dimensions as:

m =

















m(1)
m(2)
m(3)

...
m(N)

















,

where m(1), m(2), etc., are the values for each dimension. In indexing the
dimensions, or elements, of a vector we will usually use a number or variable
in parentheses, but we may also use a number or variable as a subscript.
That is, we could write m(N), or mN to refer to the N−th element of vector
m. If we want to use indexes to refer to different vectors, we will typically
use a subscript after a bold variable name, as in mi.

3.1.2 Distributed Representation

The theories we will consider in this chapter assume that an item is repre-
sented in memory as a list of attribute values, i.e., as a vector. We will call
this the Distributed Memory Hypothesis, because it assumes that the infor-
mation representing a single memory is distributed over multiple attributes,
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Another measure of similarity: cos!
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House spaceAn Example: Pictures of Houses

Dimension House 1 House 2 House 3 House 4 House 5
size (sq. feet) 3000 2200 1800 4700 8500

floors 2 2 1 3 2.5
windows 6 5 4 12 10

age (in years) 25 15 70 97 3
wood 0 1 0 0 1
brick 1 0 0 0 0
stone 0 0 0 1 0

colonial 1 0 1 0 0
Victorian 0 0 0 1 0

contemporary 0 1 0 0 1



House space
• We can represent each house as a vector of features or 
attributes (sometimes called feature vectors) 

• Houses live in a more complicated space than rectangles: 

• More dimensions 

• We can go from houses to vectors, but not always from 
vectors to houses (some features are missing) 

• We can compare which houses are similar



Generalized Euclidean distance



Sums



Solve the sum…



Solve the sum…
(1)  2i 
(2) (1/3)i3 + 3i 
(3)  15 
(4)  23 
(5)  9



Solve the sum…



Generalized Euclidean distance



Thinking about lots of 
dimensions

• Geometric interpretation (tricky to visualize!) 

• Abstract interpretation: 

• Think of things in 3 dimensions and (mentally) 
pretend they’re roughly the same 

• Problem set 3: work with many-dimensional 
versions of the similarity formulae


