Recap

- Sternberg paradigm
- Serial search models:
- Self-terminating
- Exhaustive

Attribute models!

PSYC 51.09: Human Memory Spring 2022

Jeremy Manning jeremy@dartmouth.edu

Laying the groundwork...

- How can we (formally) represent complex thoughts?
- Extensions of strength theory

Laying the groundwork...

- How can we (formally) represent complex thoughts?
- Extensions of strength theory

Attribute theory

- Mathematics is the language of nature
- Everything around us can be represented and understood through numbers
- We create a model of our world inside our brain
- What can we do with this idea?

Rectangle space

Rectangle space

Rectangle space

Rectangle space

Rectangle space

Rectangle space

- Any point in rectangle space is a rectangle
- You can go from points to rectangles: $x=$ width, $y=$ height
- You can go from rectangles to points: width $=x$, height $=y$
- We can represent any rectangle (or point) as a vector

Vectors

$$
\mathbf{m}=\vec{m}=\left(\begin{array}{c}
m(1) \\
m(2) \\
m(3) \\
\vdots \\
m(N)
\end{array}\right)=\left(\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
\vdots \\
m_{N}
\end{array}\right)
$$

Rectangle space

- We can also ask how different rectangles compare to each other

Euclidean distance

Distance vs. similarity

$$
\left\|\mathbf{m}_{3}\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Another measure of similarity: $\cos \boldsymbol{\theta}$

$$
\begin{array}{r}
\left\|\mathbf{m}_{3}\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
\cos \theta\left(\mathbf{m}_{1}, \mathbf{m}_{2}\right)=\frac{\mathbf{m}_{1} \cdot \mathbf{m}_{2}}{\left\|\mathbf{m}_{1}\right\|\left\|\mathbf{m}_{2}\right\|} \\
\mathbf{m}_{1} \cdot \mathbf{m}_{2}=m_{1}(1) m_{2}(1)+m_{1}(2) m_{2}(2)
\end{array}
$$

House space

House space

Dimension	House 1	House 2	House 3	House 4	House 5
size (sq. feet)	3000	2200	1800	4700	8500
floors	2	2	1	3	2.5
windows	6	5	4	12	10
age (in years)	25	15	70	97	3
wood	0	1	0	0	1
brick	1	0	0	0	0
stone	0	0	0	1	0
colonial	1	0	1	0	0
Victorian	0	0	0	1	0
contemporary	0	1	0	0	1

House space

- We can represent each house as a vector of features or attributes (sometimes called feature vectors)
- Houses live in a more complicated space than rectangles:
- More dimensions
- We can go from houses to vectors, but not always from vectors to houses (some features are missing)
- We can compare which houses are similar

Generalized Euclidean distance

Sums

Solve the sum...

$$
\sum_{i=1}^{3} i^{2}+3
$$

Solve the sum
 (2) $(1 / 3) i^{3}+3 i$ (3) 15
 (4) 23
 (5) 9

(1) $2 i$

3

Solve the sum...

$$
\begin{aligned}
\sum_{i=1}^{3} i^{2}+3 & =\left(1^{2}+3\right)+\left(2^{2}+3\right)+\left(3^{2}+3\right) \\
& =4+7+12 \\
& =23
\end{aligned}
$$

Generalized Euclidean distance

Thinking about lots of dimensions

- Geometric interpretation (tricky to visualize!)
- Abstract interpretation:
- Think of things in 3 dimensions and (mentally) pretend they're roughly the same
- Problem set 3: work with many-dimensional versions of the similarity formulae

