PSYC 51.09: Problem Set 2

Overview

This problem set is intended to solidify the concepts you learned about in this week's lectures and readings. After attempting each question on your own, you are encouraged to work together with your classmates in small groups, consult with ChatGPT or other tools, and/or to post and answer questions on the course's Canvas site.

Please upload your problem set to Canvas (as a Word or PDF file) before the due date. No late submissions will be accepted.

Readings and ungraded questions

1. Read Chapter 2 of Foundations of Human Memory. What were your thoughts on the reading? (Ungraded)
2. Optional: submit a multiple-choice question based on the materials covered in this week's lectures, readings, and this problem set. You should calibrate the difficulty so that $60-70 \%$ of your classmates answer it correctly on an exam. If your question is chosen and you hit your target, you will receive and extra credit point on that exam. (Ungraded)

Graded questions

1. Suppose the table below contains data you've collected from one participant in a recognition memory experiment. They were tested with 20 items (TRIAL) which included a mix of targets and lures (STATUS). For each item, they made a 7 -point CONFIDENCE judgement: $1=$ sure it was not on the list; $7=$ sure it was on the list.
(a) Plot (by hand) the ROC curve for this participant. Be sure to label axes and put numbers on the axes. Show your work!
(b) Draw (and label) a dotted line on the ROC curve to indicate what it would look like for a participant who mixed up the instructions and reversed the ratings scale in their responses (i.e., they responded 1 if they were sure the item was old and 7 if they were sure the item was new).
(c) Draw another (labeled) dotted line on the ROC curve to indicate what it would look like for a participant who responded normally, except that they rounded all of their responses to 7 if they internally judged their confidence at 5 or higher (in other words, draw the ROC curve when responses of 5,6 , or 7 below are all replaced with 7)

TRIAL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
STATUS	L	T	L	L	T	T	L	L	L	T	T	T	L	T	T	T	L	T	T	L
CONFIDENCE	1	4	3	4	4	2	2	5	7	6	6	7	3	7	7	1	6	4	7	6

2. Consider some aspect of recognition memory that neither strength-based models (e.g., strength theory, the Yonelinas familiarity-recollection model, and the variable-recollection model) nor scanning models (e.g., serial self-terminating scan, serial exhaustive scan, parallel search models) can explain. Outline some ideas for extending (or combining) one or more of these models in a way that could help to account for that phenomenon. (3 paragraphs)
