
Davos: a Python package “smuggler” for constructing

lightweight reproducible notebooks

Paxton C. Fitzpatrick, Jeremy R. Manning∗

Department of Psychological and Brain Sciences
Dartmouth College, Hanover, NH 03755

Abstract

Reproducibility is a core requirement of modern scientific research. For computational
research, reproducibility means that code should produce the same results, even when
run on different systems. A standard approach to ensuring reproducibility entails pack-
aging a project’s dependencies along with its primary code base. Existing solutions vary
in how deeply these dependencies are specified, ranging from virtual environments, to
containers, to virtual machines. Each of these existing solutions requires installing or set-
ting up a system for running the desired code, increasing the complexity and time cost of
both sharing and engaging with reproducible science. Here, we propose a lighter-weight
solution: the Davos package. When used in combination with a notebook-based Python
project, Davos provides a mechanism for specifying the correct versions of the project’s
dependencies directly within the code that requires them, and automatically installing
them in an isolated environment when the code is run. The Davos package further en-
sures that these packages and specific versions are used every time the notebook’s code
is executed. This enables researchers to share a complete reproducible copy of their code
within a single Jupyter notebook file.

Keywords: Reproducibility, Open science, Python, Jupyter Notebook, Google
Colaboratory, Package management

∗Corresponding author
Email address: Jeremy.R.Manning@Dartmouth.edu (Jeremy R. Manning)

Preprint submitted to SoftwareX October 1, 2023

Metadata

Current code version

Nr. Code metadata description Metadata value
C1 Current code version v0.2.3
C2 Permanent link to code/repository used

for this code version
https://doi.org/10.5281/zenodo.8233890

C3 Code Ocean compute capsule N/A
C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and ser-

vices used
Python, JavaScript, PyPI/pip, IPython, Jupyter,
ipykernel, PyZMQ.
Additional tools used for tests: pytest, Selenium, Re-
quests, mypy, GitHub Actions

C7 Compilation requirements, operating
environments, and dependencies

Dependencies: Python ≥ 3.6, packaging, setuptools.
Supported OSes: MacOS, Linux, Unix-like.
Supported IPython environments: Jupyter Note-
books, JupyterLab, Google Colaboratory, Binder,
Kaggle, IDE-based notebook editors, IPython shell.

C8 Link to developer documenta-
tion/manual

https://github.com/ContextLab/davos#readme

C9 Support email for questions contextualdynamics@gmail.com

Table 1: Code metadata

1. Motivation and significance1

The same computer code may not behave identically under different circumstances.2

For example, when code depends on external packages, different versions of those packages3

may function differently. Or when CPU or GPU instruction sets differ across machines,4

the same high-level code may be compiled into different machine instructions. Because5

executing identical code does not guarantee identical outcomes, code sharing alone is often6

insufficient for enabling researchers to reproduce each other’s work, or to collaborate on7

projects involving data collection or analysis.8

Within the Python [1] community, external packages that are published in the most9

popular repositories [2, 3] are associated with version numbers and tags that allow users10

to guarantee they are installing exactly the same code across different computing en-11

vironments [4]. While it is possible to manually install the intended version of every12

dependency of a Python script or package, manually tracking down those dependencies13

can impose a substantial burden on the user and create room for mistakes and inconsis-14

tencies. Further, when dependency versions are left unspecified, replicating the original15

computing environment becomes difficult or impossible [5].16

Computational researchers and other programmers have developed a broad set of17

approaches and tools to facilitate code sharing and reproducible outcomes (Fig. 1). At18

one extreme, simply distributing a set of Python scripts (.py files) may enable others19

to use or gain insights into the relevant work. Because Python is installed by default20

on most modern operating systems, for some projects, this may be sufficient. Another21

popular approach entails creating Jupyter notebooks [11] that comprise a mix of text,22

executable code, and embedded media. Notebooks may call or import external scripts23

or packages—or even intersperse snippets of other programming or markup languages—24

in order to provide a more compact and readable experience for users. Both of these25

2

https://doi.org/10.5281/zenodo.8233890
https://github.com/ContextLab/davos#readme
mailto:contextualdynamics@gmail.com

.py

Python
scripts

.ipynb

Jupyter
notebook

requirements.txt

Virtual
environment

Virtual
machine

Notebook
+ davos

.ipynb

%pip install davos
import davos

Python
environment

Python
.yml

Container

Docker�le Operating
system

%pip install davos
import davos

Δ1

Δ2

Setup cost

Re
pr

od
uc

ib
ili

ty

Figure 1: Systems for sharing code within the Python ecosystem. The x-axis denotes
the “burden” placed on users to install and configure the given system (systems placed further
to the right, that fall within the redder shading, impose a higher setup cost on the user). The
y-axis denotes the degree to which the system guarantees that the code will run similarly for
different users (systems placed higher up, that fall within the bluer shading, offer stronger guar-
antees). From left to right, bottom to top: plain-text Python scripts (.py files) provide the
most basic “system” for sharing raw code. Scripts may reference external packages, but those
packages must be manually installed on other users’ systems. Further, any checking needed to
verify that the correct versions of those packages were installed must also be performed manu-
ally. Jupyter notebooks (.ipynb files) comprise embedded text, executable code, and media
(including rendered figures, code output, etc.). When the Davos package is imported into a
Jupyter notebook, the notebook’s functionality is extended to automatically install any required
external packages (at their correct versions, when specified) into an isolated directory kept sep-
arate from the user’s existing set of packages. Virtual environments similarly allow users
to install required packages into an isolated directory, and shareable Python environments
extend this to include a specific version of Python itself. However, both of these systems require
users to create, populate, and manage environments manually. This typically entails distribut-
ing a configuration file (e.g., a requirements.txt, pyproject.toml [6], or environment.yml
file) that specifies all project dependencies (including version numbers) alongside the primary
code base. Users can then install a third-party tool [e.g., 7, 8, 9] to read the file and build
the environment. Containers provide a means of defining an isolated environment that in-
cludes a complete operating system (independent of the user’s operating system), in addition to
(optionally) specifying a virtual environment or other configurations needed to provide the nec-
essary computing environment. Containers are typically defined using specification files (e.g., a
plain-text Dockerfile [10]) that instruct the virtualization engine regarding how to build the
containerized environment. Virtual machines provide a complete hardware-level simulation
of the computing environment. In addition to simulating specific hardware, virtual machines
(typically specified using binary image files) must also define operating system-level properties
of the computing environment. ∆1 represents the increased reproducibility Davos provides over
standard Jupyter notebooks for no greater setup cost. ∆2 represents Davos’s lower setup cost
compared to standard virtual environments despite more stringently ensuring reproducibility.

3

systems (Python scripts and notebooks) provide a convenient means of sharing code,26

with the caveat that they do not specify the computing environment in which the code27

is executed. Therefore the functionality of code shared using these systems cannot be28

guaranteed across different users or setups.29

At another extreme, virtual machines [12, 13, 14] provide a hardware-level simulation30

of the desired system. Virtual machines are typically isolated, such that installing or run-31

ning software on a virtual machine does not impact the user’s primary operating system or32

computing environment. Containers [e.g., 10, 15] provide a similar “isolated” experience.33

Although containerized environments do not specify hardware-level operations, they are34

typically packaged with a complete operating system, in addition to a complete copy of35

Python and any relevant package dependencies. Shareable Python environments [e.g.,36

9] also provide a computing environment that is largely separated from the user’s main37

environment. They incorporate a copy of Python and the target software’s dependencies,38

but do not specify or reproduce an operating system for the runtime environment. Vir-39

tual environments [e.g., 7, 8] work similarly, but reuse an existing copy of Python rather40

than bundling their own. Each of these systems (virtual machines, containers, Python41

environments, and virtual environments) guarantees (to differing degrees—at the hard-42

ware level, operating system level, Python environment level, and package environment43

level, respectively) that the relevant code will run similarly for different users. However,44

each of these systems also relies on additional software that can be complex or resource-45

intensive to install and use, creating potential barriers to both contributing to and taking46

advantage of open science resources.47

We designed Davos to occupy a “sweet spot” within this space. Davos is a notebook-48

installable package that adds functionality to the default notebook experience. Like49

standard Jupyter notebooks, Davos-enhanced notebooks allow researchers to include text,50

executable code, and media within a single file. No further setup or installation is required51

from the user, beyond what is needed to run a standard Jupyter notebook. And like52

virtual environments, Davos provides a convenient mechanism for fully specifying (and53

installing, as needed) a complete set of Python dependencies, including specific package54

versions, which are contained and isolated from the rest of the user’s system.55

2. Software description56

The Davos package is named after Davos Seaworth, a smuggler referred to as “the57

Onion Knight” from the series A Song of Ice and Fire by George R. R. Martin [16]. The58

smuggle keyword provided by Davos is a play on Python’s import keyword: whereas59

importing can load a package into the Python workspace within the existing rules and60

frameworks provided by the Python language, “smuggling” provides an alternative that61

expands the scope and reach of “importing.” Like the character Davos Seaworth (who62

became famous for smuggling onions through a blockade on his homeland), the Davos63

package uses “onion comments” to precisely control how packages are smuggled into the64

Python workspace.65

2.1. Software architecture66

The Davos package consists of two interdependent subpackages (see Fig. 2). The first,67

davos.core, comprises a set of modules that implement the bulk of the package’s core68

functionality, including pipelines for installing and validating packages, custom parsers69

for the smuggle statement (see Sec. 2.2.1) and onion comment (see Sec. 2.2.2), a system70

4

__init__.py project.py parsers.py exceptions.pycore.py config.py regexps.py

__init__.py ipython_post7.pyipython_common.py colab.pyipython_pre7.py jupyter.py js_functions.py

__init__.py

davos.core

davos.implementations

davos

Figure 2: Package structure. The Davos package comprises two interdependent subpack-
ages. The davos.core subpackage includes modules for parsing smuggle statements and onion
comments, installing and validating packages, isolating and managing installed packages, and
configuring Davos’s behavior. The davos.implementations subpackage includes environment-
specific modifications and features that are needed to support the core functionality across
different notebook-based environments. Individual modules (i.e., .py files) are represented by
lime rounded rectangles, and arrows denote dependencies (each arrow points to a module that
imports objects defined in the module at the arrow’s source).

for isolating dependencies of different projects (see Sec. 2.2.3), and a runtime interface71

for configuring Davos’s behavior (see Sec. 2.2.4). However, certain critical aspects of72

this functionality require (often substantially) different implementations depending on73

properties of the notebook environment in which Davos is used (e.g., whether the fron-74

tend is provided by Jupyter or Google Colaboratory, or which version of IPython [17]75

is used by the notebook kernel). To deal with this, environment-dependent compo-76

nents of core features and behaviors are isolated and abstracted to “helper functions”77

in the davos.implementations subpackage. This second subpackage defines multiple,78

interchangeable versions of each helper function, organized into modules by the condi-79

tions that trigger their use. At runtime, Davos detects various features in the notebook80

environment and selectively imports a single version of each helper function into the81

top-level davos.implementations namespace, allowing davos.core modules to access82

the proper implementations for the current notebook environment in a single, consistent83

location. An additional benefit of this design is that it allows maintainers and users84

to extend Davos to support new, updated, or custom notebook variants by adding new85

davos.implementations modules that define their own versions of each helper function,86

modified from existing implementations as needed.87

2.2. Software functionalities88

2.2.1. The smuggle statement89

Functionally, importing Davos in an IPython notebook enables an additional Python90

keyword: “smuggle” (see Sec. 2.3 for details on how this works). The smuggle keyword91

can be used as a drop-in replacement for Python’s built-in import keyword to load92

packages, modules, and other objects into the notebook’s namespace. However, whereas93

import will fail if the requested package is not installed locally, smuggle statements can94

handle missing packages on the fly. If a smuggled package does not exist in the user’s95

Python environment, Davos will download and install it automatically, expose its contents96

to Python’s import machinery, and load it into the notebook for immediate use.97

5

Importantly, packages installed by Davos are made available for use in the note-98

book without affecting the user’s Python environment or existing packages. By default,99

smuggle statements will install missing packages (and any missing dependencies of those100

packages) into a notebook-specific, virtual environment-like directory called a “project”101

(see Sec. 2.2.3). In turn, smuggle statements executed in a particular notebook will102

preferentially load packages from that notebook’s project directory whenever they are103

available, rather than searching for them in the user’s main Python environment. In104

this way, smuggle statements can be substituted for import statements to automatically105

ensure that all packages needed to run a notebook are installed and available at runtime106

each time the notebook is run, without risking interfering with dependencies of the user’s107

other Python programs, or other Davos-enhanced notebooks.108

2.2.2. The onion comment109

For greater control over the behavior of smuggle statements, Davos defines an ad-110

ditional construct called the “onion comment.” An onion comment is a special type of111

inline comment that may be placed on a line containing a smuggle statement to cus-112

tomize how Davos searches for the smuggled package locally and, if necessary, downloads113

and installs it. Onion comments follow a simple format based on the “type comment”114

syntax introduced in PEP 484 [18], and are designed to make managing packages with115

Davos intuitive and familiar. To construct an onion comment, users provide the name116

of the installer program (e.g., pip) and the same arguments one would use to manually117

install the package as desired via the command line:118

enable smuggle statements
import davos

if numpy is not installed locally, pip-install it and display verbose output
smuggle numpy as np # pip: numpy --verbose

pip-install pandas (if necessary) without using or writing to the package cache
smuggle pandas as pd # pip: pandas --no-cache-dir

pip-install scipy from a relative local path, in editable mode
from scipy.stats smuggle ttest_ind # pip: -e ../../pkgs/scipy

119

Occasionally, a package’s distribution name (i.e., the name used when installing it) may120

differ from its top-level module name (i.e., the name used when importing it). In such121

cases, an onion comment can be used to ensure that Davos installs the proper package if122

it cannot be found locally:123

package is named "python-dateutil" on PyPI, but imported as "dateutil"
smuggle dateutil # pip: python-dateutil

package is named "scikit-learn" on PyPI, but imported as "sklearn"
from sklearn.decomposition smuggle PCA # pip: scikit-learn

124

Because onion comments may be constructed to specify any aspect of the installer pro-125

gram’s behavior, they provide a mechanism for precisely controlling how, where, and126

when smuggled packages are installed. Critically, if an onion comment includes a version127

specifier [4], Davos will ensure that the version of the package loaded into the notebook128

6

matches the specific version requested (or satisfies the given version constraints). If the129

smuggled package exists locally, Davos will extract its version information from its meta-130

data and compare it to the specifier provided. If the two are incompatible (or no local131

installation is found), Davos will download, install, and load a suitable version of the132

package instead:133

specifically use matplotlib v3.4.2, pip-installing it if needed
smuggle matplotlib.pyplot as plt # pip: matplotlib==3.4.2

use a version of seaborn no older than v0.9.1, but prior to v0.11
smuggle seaborn as sns # pip: seaborn>=0.9.1,<0.11

134

Onion comments can also be used to smuggle specific VCS references (e.g., Git [19]135

branches, commits, tags, etc.):136

use quail as the package existed on GitHub at commit 6c847a4
smuggle quail # pip: git+https://github.com/ContextLab/quail.git@6c847a4

137

Davos processes onion comments internally before forwarding arguments to the installer138

program. In addition to preventing shared notebooks from executing arbitrary code in a139

user’s shell, this enables Davos to adjust its behavior based on how particular flags will140

affect the behavior of the installer program. For example, including pip’s --no-input141

flag will also temporarily enable Davos’s non-interactive mode (see Sec. 2.2.4). Simi-142

larly, if an onion comment contains either -I/--ignore-installed, -U/--upgrade, or143

--force-reinstall, Davos will install and load a new copy of the smuggled package144

without first checking for it locally:145

install and load hypertools v0.7 even if it already exists locally
smuggle hypertools as hyp # pip: hypertools==0.7 --ignore-installed

always install and load the latest version of requests, including pre-releases
from requests smuggle Session # pip: requests --upgrade --pre

146

Since the purpose of an onion comment is to describe how a smuggled package should be147

installed (if necessary) so that it can be loaded and used immediately, options that would148

normally cause the package not to be installed (such as -h/--help or --dry-run) are149

disallowed. Additionally, when using a Davos “project” to isolate smuggled packages (the150

default behavior; see Sec. 2.2.3), onion comments may not contain options that would151

change the package’s installation location (such as -t/--target, --root, or --prefix).152

However, if the user disables project-based isolation and specifies --target <dir>, Davos153

will ensure that <dir> is included in the module search path (i.e., sys.path), prepending154

it if necessary, so the package can be loaded.155

2.2.3. Projects156

Standard approaches to installing packages from within a notebook can alter the157

local Python environment in potentially unexpected and undesired ways. For example,158

running a notebook that installs its dependencies via system shell commands (prefixed159

with “!”) or IPython magic commands (prefixed with “%”) may cause other existing160

packages in the user’s environment to be replaced with alternate versions. This can lead161

7

to incompatibilities between installed packages, affect the behavior of the user’s other162

scripts or notebooks, or even interfere with system applications.163

To prevent Davos-enhanced notebooks from having unwanted side effects on the user’s164

environment, any packages installed via smuggle statements are automatically isolated165

using a custom, virtual environment-like system called “projects.” Davos projects are166

similar to standard Python virtual environments (e.g., created with the standard library’s167

venv module or a third-party tool like virtualenv [7]) but with a few noteworthy dif-168

ferences that make them generally lighter-weight and simpler to use. Like a standard169

virtual environment, a Davos project consists of a directory (within a hidden .davos170

folder in the user’s home directory) that houses third-party packages needed for a partic-171

ular Python project, workflow, or task. However, unlike standard virtual environments,172

Davos projects do not need to be manually created, activated, or deactivated, and they173

function to extend the user’s existing Python environment rather than replace it.174

When Davos is imported into a notebook, a project directory for that notebook is175

automatically created (if it does not exist already). When smuggle statements within176

that notebook are executed, any packages (or specific versions of packages) that are177

not already available in the user’s Python environment are installed into the notebook’s178

project directory (along with any missing dependencies of those packages). During each179

smuggle statement’s execution, Davos also temporarily prepends the notebook’s project180

directory to the module search path so that these project-installed packages are visible181

when searching for smuggled packages locally, and prioritized over those in the user’s182

main environment.183

Thus, rather than constructing fully separate Python environments from scratch,184

Davos projects work by supplementing the user’s runtime environment with any addi-185

tional packages (or specific package versions) needed to satisfy the dependencies of their186

corresponding notebooks. In some cases, this might include every package smuggled into187

a notebook (e.g., if the notebook is run inside a freshly created, empty virtual environ-188

ment). In other cases, the user’s environment may already provide all required packages,189

and the notebook’s project directory will go unused (in which case it will be deleted au-190

tomatically when the notebook kernel is shut down). Regardless of the extent to which191

the existing environment is augmented, Davos’s project system ensures that all smuggled192

packages are installed locally and loaded successfully at runtime, while the contents of193

the user’s Python environment are never altered.194

Because smuggle statements in a given notebook are evaluated every time the note-195

book is run, this ensures that the notebook’s requirements will remain satisfied even if the196

user’s Python environment changes. For example, suppose a user has NumPy [20] v1.24.3197

installed in their current Python environment and runs a Davos-enhanced notebook that198

smuggles NumPy with “numpy==1.24.3” specified in an onion comment (see Sec. 2.2.2).199

Since the user’s existing version of the package satisfies this requirement, Davos will load200

it into the notebook’s runtime environment. But if the user later upgrades their envi-201

ronment’s NumPy version to v1.25.0 (perhaps as a result of installing a different package202

that depends on it) and subsequently re-runs this notebook, the local version will longer203

satisfy this requirement, so Davos will install NumPy v1.24.3 into the notebook’s project204

directory and load that version instead. From then on, any further changes to the user’s205

Numpy installation would have no effect on Davos’s behavior in this particular notebook,206

as a satisfactory version now exists in its project directory. (If the version specified in the207

onion comment were changed, Davos would update the version installed in the project208

directory accordingly.) For efficiency, Davos projects will generally not duplicate depen-209

8

dencies already satisfied by the user’s Python environment. However, if desired, adding210

pip’s --ignore-installed flag to an onion comment in the notebook will cause Davos211

to install the smuggled package into the project directory whether or not it already exists212

locally.213

By default, each Davos-enhanced notebook will create and use its own notebook-214

specific project named for the absolute path to the notebook file. However, before smug-215

gling its required packages, a notebook may be set to instead use an arbitrarily named,216

notebook-agnostic project by assigning any (non-empty) string to davos.project (see217

Sec. 2.2.4). This provides a convenient way for multiple related notebooks that share a218

common set of requirements to use the same Davos project, by setting davos.project219

to the same string in each one. It is also possible (though typically not recommended)220

to disable Davos’s project system and instead install smuggled packages directly into the221

user’s Python environment by setting davos.project to None.222

When accessed (unless its value has been set to None), davos.project will evaluate223

to a Project object that represents the project used by the current notebook (strings224

assigned to davos.project are converted to Projects internally). This object supports225

methods for interacting with the current project, including locating its directory within226

the file system, listing all installed packages’ names and versions, changing the project’s227

name, and deleting its contents. Project instances can also be created and managed228

programmatically, and Davos provides additional utilities for viewing and working with229

all existing projects (see Secs. 2.2.4 and 2.2.5).230

2.2.4. Configuring and querying Davos231

After importing Davos into a notebook, the top-level davos module exposes a set of232

attributes whose values determine various aspects of Davos’s behavior. The majority of233

these are writeable options that can be modified to customize how, where, and when234

Davos installs smuggled packages (see Sec. 3 for an illustrative example). These include:235

• .active: This attribute controls whether support for smuggle statements and236

onion comments is enabled (True) or disabled (False). When Davos is first im-237

ported, davos.active is set to True (see Sec. 2.3 for implementation details and238

additional information).239

• .auto rerun: This attribute controls how Davos behaves when attempting to240

smuggle a new version of a package that was previously loaded (via an import241

or smuggle statement) and cannot be reloaded. This can happen if the package242

includes extension modules that dynamically link C or C++ objects to the Python243

interpreter, and the code that generates those objects was changed between the pre-244

viously loaded and to-be-smuggled versions. If this attribute is set to True, Davos245

will automatically restart the notebook kernel and re-run all code up to (and includ-246

ing) the current smuggle statement. If set to False (the default), Davos will instead247

issue a warning, pause execution, and prompt the user to either restart and re-run248

the notebook, or continue running with the previously loaded package version until249

the next time the kernel is restarted manually. Note that, as of this writing, setting250

davos.auto rerun to True is not supported in Google Colaboratory notebooks.251

• .confirm install: If set to True (default: False), Davos will require user con-252

firmation before installing a smuggled package that is not already available locally.253

9

This is primarily useful if the user has disabled Davos’s “project” system for iso-254

lating smuggled packages (see Sec. 2.2.3) but still wants to carefully control what255

packages are installed into their main Python environment.256

• .noninteractive: Setting this attribute to True (default: False) enables non-in-257

teractive mode, in which all user interactions (prompts and dialogues) are disabled.258

Note that in non-interactive mode, the confirm install option is set to False.259

If auto rerun is set to False while in non-interactive mode, Davos will raise an260

exception if a smuggled package cannot be reloaded, rather than prompting the261

user.262

• .pip executable: This attribute’s value specifies the path to the pip executable263

used to install smuggled packages. The default is programmatically determined264

from the user’s Python environment and falls back to <sys.executable> -m pip265

if no executable can be found.266

• .project: This attribute’s value is a Project instance representing the Davos267

project associated with the current notebook. As described in Section 2.2.3, Davos268

projects serve to isolate packages installed by smuggle statements from the user’s269

main Python environment, and the Project class provides an interface for inspect-270

ing and managing projects at runtime. This attribute’s default value is a notebook-271

specific project named for the absolute path to the notebook file. To change the272

project used in the current notebook (e.g., in order to use the same project in multi-273

ple related notebooks), this attribute may be assigned a different Project instance274

or, for simplicity, the name of the desired project as a string or pathlib.Path275

(either of which will be converted to a Project on assignment). Alternatively,276

setting davos.project to None will disable project-based isolation for the current277

notebook and cause Davos to install any missing packages directly into the main278

Python environment. This attribute can be reset to its default value using the279

top-level use default project() function (see Sec. 2.2.5). For more information280

about Davos projects, see Section 2.2.3.281

• .suppress stdout: If this attribute is set to True (default: False), Davos sup-282

presses printed (console) outputs from both itself and the installer program. This283

can be useful when smuggling packages that require installing many dependencies284

and/or generate extensive output when built from source distributions. Note that285

if this option is enabled and the installer program throws an error, both its stdout286

and stderr streams will still be displayed alongside the Python traceback to allow287

for debugging.288

The attributes above can be modified directly or via the davos.configure() function,289

which allows setting multiple options simultaneously (see Sec. 2.2.5 for more information290

or Sec. 3 for example usage). In addition to these writeable options, the top-level davos291

module also provides several read-only attributes that can be displayed in the notebook or292

checked programmatically at runtime, and contain potentially useful information about293

the notebook environment or Davos’s internal state:294

• .all projects: This attribute contains a list of all Davos projects that exist on295

the user’s local system (see Sec. 2.2.3 for more information about Davos projects).296

10

Each item in this list is either a Project or AbstractProject instance. Abstract-297

Projects represent notebook-specific projects whose associated notebooks no longer298

exist. They support the same functionality as Project objects (including methods299

for inspecting, renaming, and deleting them) and serve primarily to help users300

identify and clean up extraneous projects left behind after deleting Davos-enhanced301

notebooks (e.g., see Sec. 2.2.5).302

• .environment: This attribute’s value is a string denoting the set of environment-303

dependent “helper functions” used by Davos in the current notebook. As described304

in Section 2.1, Davos internally chooses between interchangeable implementations305

of certain core features based on various properties of the notebook’s frontend and306

IPython kernel. As of this writing, three unique combinations of helper functions are307

required to support existing notebook environments, ergo this attribute has three308

possible values: "IPython<7.0", "IPython>=7.0", or "Colaboratory". However,309

this attribute could take on additional values in the future as new notebook inter-310

faces are created and IPython’s internals are updated, and as additional versions311

of helper functions are added to Davos to support them.312

• .ipython shell: This attribute contains the global IPython InteractiveShell313

instance underlying the notebook kernel session.314

• .smuggled: This attribute’s value is a Python dictionary that functions as a cache315

of smuggle statements executed during the current notebook kernel session. The316

dictionary’s keys are names of smuggled packages, and its values are arguments317

passed to the installer program via onion comments. Entries appear in order of the318

smuggle statements’ execution.319

The current values of all davos attributes may be viewed at once within a notebook by320

printing the davos.config object.321

2.2.5. Other top-level Davos functions322

The Davos package also provides a handful of functions available in the top-level323

davos namespace. Some of these functions serve primarily as conveniences, while others324

provide additional functionality:325

• configure(**kwargs): This function provides an alternate way of assigning values326

to the writeable attributes listed in Section 2.2.4 and can be used to configure327

multiple options at once (see Sec. 3 for example usage). The function accepts328

attribute names as keyword-only arguments to which their desired values are passed.329

If any of the options passed are incompatible (e.g., both confirm install=True and330

noninteractive=True are passed) or assignment to any of the specified attributes331

fails for any reason, none of the given options will be modified.332

• get project(project name, create=False): This function can be passed the333

name of a Davos project (project name) to get the Project or AbstractProject334

instance representing it. The optional create argument determines the function’s335

behavior when no project with the given name exists: if create=False (the de-336

fault), the function will return None; if create=True, a project with the given name337

will be created and returned.338

11

• prune projects(yes=False): This function allows users to quickly “clean up”339

their local Davos projects by deleting notebook-specific projects whose correspond-340

ing notebooks no longer exist (i.e., AbstractProjects). As with standard virtual341

environments, periodically removing unused project directories can be useful for re-342

claiming disk space from dependencies of code that is no longer in use. By default,343

this function will interactively display a list of all unused projects and allow the user344

to choose whether or not to delete each one. Alternatively, passing yes=True will345

immediately remove all unused projects without prompting for confirmation. Note346

that if Davos’s non-interactive mode is enabled (see Sec. 2.2.4), yes=True must347

be explicitly passed, otherwise the function will raise an exception. This serves as348

a safeguard against accidentally deleting projects, since non-interactive mode dis-349

ables all user input and confirmation. Also note that this function will not delete350

notebook-agnostic projects (i.e., manually created projects whose names are not351

notebook file paths), as they are not linked to specific notebooks whose existence352

determines whether or not they are still needed. These (and any) projects may be353

deleted individually by calling their Project objects’ .remove() method.354

• require python(version spec, warn=False, extra msg=None, prereleases=355

None): Through smuggle statements and onion comments, Davos can automati-356

cally ensure that all Python packages needed to run a notebook are installed, and357

that the same versions of those packages are used no matter when or by whom the358

notebook is run. However, because Davos operates at runtime, one thing it cannot359

do automatically is install and switch to a specific version of Python itself. Dis-360

tributing shared code along with a precise Python version for running it requires361

a heavier-weight solution, such as a Conda environment or Docker container (see362

Fig. 1). Yet a Davos-enhanced notebook may still smuggle certain packages that363

depend on users having a particular Python version or range of versions (e.g., even364

just within the standard library, the dataclass module was first added in Python365

3.7 [21] and at least 19 modules are slated for removal in Python 3.13 [22]). The366

davos.require python() function can be added to the top of a Davos-enhanced367

notebook to communicate to users that the notebook’s code should be run with a368

specific or constrained Python version (see Sec. 3 for example usage). The function369

may be passed a version identifier (e.g., "3.10.5") or any valid version specifier [4]370

(e.g., "~=3.11", ">=3.9;<3.12", etc.) and will raise an exception if the user’s371

Python version is incompatible. Alternatively, a “soft” or suggested constraint can372

be imposed by passing warn=True to issue a warning rather than raise an error.373

Additional information can be added to the default error/warning message (e.g.,374

the specific reason for this requirement) via the extra msg argument, and the op-375

tional prereleases argument can be used to explicitly allow (True) or disallow376

(False) pre-release versions (by default, the policy is determined by the value of377

version spec).378

• use default project(): By default, each Davos-enhanced notebook will create379

and use a notebook-specific project named based on its absolute path. If a user380

manually changes the project used by the current notebook (i.e., by setting the381

value of the davos.project attribute; see Sec. 2.2.4), this function can be called382

to switch back to using the notebook’s default project and reset davos.project to383

its default value. See Section 2.2.3 for more information about Davos projects and384

Section 3 for an illustrative example.385

12

2.3. Implementation details386

Although Davos is designed to appear to add a new keyword to Python’s vocabulary,387

this illusion is actually created through several “hacks” that make use of the notebook’s388

IPython backend for processing and executing users’ code. Specifically, when Davos is first389

imported, or when it is activated after having been set to an inactive state, two actions390

are triggered. First, the smuggle() function is injected into the IPython user namespace.391

Second, the Davos parser is registered as a custom IPython input transformer.392

IPython preprocesses all executed code as plain text before it is sent to the Python393

compiler, in order to handle special constructs like !-prefixed shell commands and %-pre-394

fixed “magic” commands. Davos uses this same process to invisibly transform smuggle395

statements into syntactically valid Python code. The Davos parser uses a regular ex-396

pression to match lines of code containing smuggle statements (and, optionally, onion397

comments), extract relevant information from their text, and replace them with equivalent398

calls to the smuggle() function. For example, if a user runs a notebook cell containing399

smuggle numpy as np # pip: numpy>1.16,<=1.20 -vv
400

the code that is actually executed by the Python interpreter would be401

smuggle(name="numpy", as_="np", installer="pip",
 args_str="""numpy>1.16,<=1.20 -vv""",
 installer_kwargs={'editable': False,
 'spec': 'numpy>1.16,<=1.20',
 'verbosity': 2})

402

The call to the smuggle() function carries out Davos’s central logic by determining403

whether the smuggled package must be installed, carrying out the installation if necessary,404

and subsequently loading it into the namespace. This process is outlined in Figure 3.405

Because the smuggle() function is defined in the notebook namespace, it is also possible406

(though never necessary) to call it directly. Deactivating Davos will delete the name407

“smuggle” from the namespace, unless its value has been overwritten and no longer408

refers to the smuggle() function. It will also deregister the Davos parser from the set of409

input transformers run when each notebook cell is executed.410

3. Illustrative Example411

The example code throughout Section 2.2.2 illustrates a typical use case that we412

envision for Davos: a series of smuggle statements and onion comments with version413

specifiers or other options collectively describes and automatically constructs a repro-414

ducible environment for running the code that follows it. When added to the top of a415

Jupyter notebook, this allows researchers to bundle their code and its dependencies into416

a single file that can be easily shared and run without any additional tools or setup, au-417

tomatically installs its required packages at runtime, isolates them from the user’s main418

Python environment, and ensures their versions do not change unexpectedly over time.419

In this section, we have contrived a more complex scenario to highlight some of Davos’s420

more advanced features, and illustrate how they may be used to handle certain challenges421

that can arise when writing, running, and sharing reproducible scientific code.422

Across different versions of a given package, various modules, functions, and other423

objects may be updated, removed, renamed, or otherwise altered. In addition to changing424

13

Ensure package is installed Import package and update runtime

no

no

no

no no

yes

yes yes

yes

yes

yes

no no

yes

yes

no continue

restart

no

no

yes

yessmuggle function
executed

is the
package part of

the standard
library?

force reinstall,
ignore installed,

or upgrade?

package
smuggled

before in this
session?

previous
smuggle had
same onion
comment?

is auto
re-run

enabled?

is non-
interactive

mode
enabled?

restart
or continue?

is the
package
installed
locally?

is the
correct version
of the package

installed?

install
package

prompt user
to restart/re-run

or continue

raise
SmugglerError

restart kernel and
re-run code up

through current cell

package
has been
installed

success?

has
the package
already been

imported?

load
package

reload
package

kernel
restart

required

done

Figure 3: smuggle() function algorithm. At a high level, the smuggle() function may be
conceptualized as following two basic steps. First (left), Davos ensures that the correct version
of the desired package is available locally, installing it automatically (into the notebook’s project
directory) if needed. Second (right), Davos loads the package into the notebook and updates
the current runtime environment.

the behaviors of active computations, these changes can render saved objects created425

using one version of a package incompatible with other versions of the same package. For426

example, the popular pandas [23] library originally included the Panel data structure for427

storing 3-dimensional arrays. In version 0.20.0, however, the Panel class was deprecated,428

and in version 0.25.0, it was removed entirely. Suppose a user had a dataset stored in a429

Panel object (created using an older version of pandas) and had saved it to their disk430

(e.g., for later reuse or to share with other users) by serializing the Panel with Python’s431

pickle protocol. The pickle protocol is a popular built-in method of persisting data in432

Python that allows users to save, share, and load arbitrary objects. However, in order to433

successfully “unpickle” (i.e., load and restore) a “pickled” (i.e., previously saved) object,434

that object’s class must be defined in and importable from the same module as it was435

when the object was originally saved. Thus, because of the Panel class’s removal, the436

user’s dataset could not be read by any version of pandas from 0.25.0 onward. These437

incompatibilities are also not limited solely to traditional forms of data. For example,438

saved model states and other objects may reference modules, functions, attributes, classes,439

or other objects that may not be identical (or even present) across all versions of their440

associated packages.441

The example provided in Figure 4 demonstrates how Davos can be used to circumvent442

these incompatibilities by temporarily switching between different versions of the same443

package within a single runtime. The example shows how a dataset and model that444

require now-incompatible components of the pandas and scikit-learn [24] libraries445

can be loaded in (using older versions of each package) and used alongside more recent446

versions of each package that provide new and improved functionality. When included447

at the top of a Jupyter notebook, the code in Figure 4 ensures that these objects will be448

loaded successfully and analyzed using the same set of package versions no matter when449

14

%pip install davos
import davos

extra_msg = ("pandas<0.25.0 is needed to load the dataset and requires Python<3.8. "
 "pandas==1.3.5 is used to run the analyses and requires Python>=3.7.1.")
davos.require_python(">=3.7.1,<3.8", extra_msg=extra_msg)

from os.path smuggle is_file
smuggle joblib # pip: joblib<=1.2.0

davos.auto_rerun = True
smuggle numpy as np # pip: numpy==1.21.6

if not is_file("~/datasets/data-new.csv"):
 smuggle pandas as pd # pip: pandas<0.25.0
 tmp_data = pd.read_pickle("~/datasets/data-old.pkl")
 tmp_data.to_frame().to_csv("~/datasets/data-new.csv")

smuggle pandas as pd # pip: pandas==1.3.5

davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
smuggle tensorflow as tf # pip: tensorflow==2.9.2
from umap smuggle UMAP # pip: umap-learn[plot,parametric_umap]==0.5.3
davos.configure(suppress_stdout=False, noninteractive=False)

smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3
smuggle seaborn as sns # pip: seaborn==0.12.1
smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4

davos.project = None
kernel_env_pip = davos.pip_executable
server_env_pip = !command -v pip
davos.pip_executable = server_env_pip[0]
smuggle widgetsnbextension as _
davos.use_default_project()
davos.pip_executable = kernel_env_pip
smuggle ipywidgets # pip: ipywidgets==7.6.5

from tqdm.notebook smuggle tqdm # pip: tqdm==4.62.3

data = pd.read_csv("~/datasets/data-new.csv", index_col=[0, 1])
smuggle sklearn # pip: scikit-learn<0.22.0
transformer = joblib.load("~/models/text-transformer.joblib")
smuggle sklearn # pip: scikit-learn==1.1.3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Figure 4: Example use case for Davos. Snippets from this example are also excerpted in the
main text of Section 3.

15

or by whom the notebook is run.450

After installing and importing Davos (lines 1–2), we first use the davos.require py-451

thon() function to constrain the Python version used to run the notebook (see Sec. 2.2.5).452

As described above, the example code in Figure 4 loads two different versions of the453

pandas library: first, an older version needed to access a dataset saved in an outmoded454

format, then a newer one to use throughout the remainder of the notebook. We therefore455

want to make sure upfront (in line 6) that the notebook’s Python version falls within the456

range of versions that both of these two versions of pandas support. If it does not, the457

function in line 6 will raise an error that includes a message to this effect (lines 4–5).458

%pip install davos
import davos

extra_msg = ("pandas<0.25.0 is needed to load the dataset and requires Python<3.8. "
 "pandas==1.3.5 is used to run the analyses and requires Python>=3.7.1.")
davos.require_python(">=3.7.1,<3.8", extra_msg=extra_msg)

1
2
3
4
5
6

459

Next, in lines 8–9, we smuggle two utilities for interacting with local files in the460

code below. The smuggle statement in line 8 loads the is file() function from the461

Python standard library’s os.path module. Standard library modules are included with462

all Python distributions, so this line is functionally equivalent to an import statement463

and does not need or benefit from an onion comment (since there is no chance the module464

will need to be installed). Line 9 then loads the joblib package [25], installing it into the465

notebook’s project directory if necessary. Since joblib’s I/O interface has historically466

remained stable and backwards-compatible across releases, requiring a particular exact467

version would likely be unnecessarily restrictive. However, it is possible a future release468

could introduce some breaking change. The onion comment in line 9 helps ensure that469

the analysis notebook will continue to run properly in the future by limiting allowable470

versions to those already released when the code was written:471

from os.path smuggle is_file
smuggle joblib # pip: joblib<=1.2.0

8
9

472

It is worth noting, however, that beyond illustrative purposes, the benefit of specifying473

only a maximum version for joblib rather than an exact version is relatively minor.474

The main advantage to relaxing a version constraint in an onion comment (when a pack-475

age’s behavior does not differ meaningfully between versions) is that doing so increases476

the likelihood that a satisfactory version will already be available in the user’s Python477

environment, and therefore Davos will not need to install a new copy in the notebook’s478

project directory. For large packages, this can be a worthwhile consideration; however479

joblib is very lightweight—less than 0.5 MB pre-built, with no required dependencies.480

Thus a more conservative approach that guarantees an exact version is used would also481

be reasonable in this case.482

Line 11 then enables Davos’s auto rerun option (see Sec. 2.2.4) before smuggling483

the next two packages: NumPy and pandas. Because these packages rely heavily on484

custom C data types, loading the particular versions specified in their onion comments485

may require restarting the notebook kernel if different versions were previously imported486

during the same interpreter session—including internally by other packages. Enabling487

auto rerun allows Davos to handle kernel restarts automatically and continue running488

the code seamlessly without user intervention.489

16

davos.auto_rerun = True
smuggle numpy as np # pip: numpy==1.21.6

11
12

490

In the case of NumPy, whether or not a kernel restart is necessary will depend on the user’s491

existing Python environment. The joblib package has an optional dependency on NumPy492

for memoizing and parallelizing array operations, and will import numpy internally to493

enable these features if the package is available. If the user already has NumPy installed494

in their Python environment when joblib is smuggled in line 9, their installed version is495

different from the one specified in the onion comment on line 12, and there were changes496

made to NumPy’s C extensions between those two versions, then Davos will automatically497

restart the kernel and re-run the lines above. The newly smuggled version would then be498

used both in the notebook itself and by joblib internally.499

The primary reason for enabling the auto rerun option, however, is to manage the500

installation of pandas in the next lines:501

if not is_file("~/datasets/data-new.csv"):
 smuggle pandas as pd # pip: pandas<0.25.0
 tmp_data = pd.read_pickle("~/datasets/data-old.pkl")
 tmp_data.to_frame().to_csv("~/datasets/data-new.csv")

smuggle pandas as pd # pip: pandas==1.3.5

14
15
16
17
18
19

502

If we suppose that the “data-old.pkl” file contains a dataset stored in a pickled Panel503

object, then we must use a version of pandas prior to v0.25.0 (i.e., the version in which504

the Panel class was removed) to be able to read it. Line 15 ensures that a sufficiently old505

version of pandas will be imported, enabling the data to be successfully loaded in line 16506

and (in line 17) written to a CSV file, which can be read by any pandas version.507

Newer versions of pandas have brought substantial improvements including perfor-508

mance enhancements, bug fixes, and additional functionality. Although the original509

dataset had to be read in using an older version of the package, we can take advan-510

tage of these more recent updates by smuggling pandas a second time in line 19 (whose511

onion comment specifies that version 1.3.5 should be installed and loaded). Since a differ-512

ent pandas version has already been loaded by the Python interpreter (line 15) and there513

have been substantial changes to the library (including its extension modules) between514

that version and v1.3.5, the notebook kernel must be restarted in order to fully unload515

the old version in favor of the new one. When Davos automatically does so and re-runs516

the code above, having now converted the dataset to a CSV file means the old version517

does not need to be reinstalled (line 14).518

Next, line 21 uses the davos.configure() function to disable the auto rerun option519

and simultaneously enable two other options: suppress stdout and noninteractive.520

With these options enabled, lines 22–23 smuggle TensorFlow [26], a powerful end-to-end521

platform for building and working with machine learning models, and UMAP [27], a package522

that implements a family of related manifold learning techniques. The onion comment in523

line 23 also specifies that UMAP should be installed with the optional requirements needed524

for its “plot” and “parametric umap” features. Together, these two packages depend on525

36 other unique packages, most of which have dependencies of their own. If many of these526

are not already installed in the user’s environment, lines 22–23 could take several minutes527

to run. Enabling the noninteractive option ensures that the installation will continue528

automatically without user input during that time. Enabling suppress stdout also529

17

suppresses console outputs while installing these packages and their many dependencies530

to prevent other potentially important outputs from being buried.531

davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
smuggle tensorflow as tf # pip: tensorflow==2.9.2
from umap smuggle UMAP # pip: umap-learn[plot,parametric_umap]==0.5.3

21
22
23

532

After reverting these two options (line 24) to their default values, we next smuggle533

specific versions of three plotting packages: Matplotlib [28], seaborn [29], and Quail [30]534

(lines 26–28). Because the first two are requirements of UMAP’s optional “plot” feature,535

they will have already been installed (if necessary) by line 23, though possibly as different536

versions than those specified in the onion comments on lines 26 and 28. If the installed537

and specified versions are the same, these smuggle statements will function like standard538

import statements to load the packages into the notebook’s namespace. If they differ,539

Davos will download the requested versions in place of the installed versions, ensuring540

that they are used both in the notebook itself and by UMAP internally.541

davos.configure(suppress_stdout=False, noninteractive=False)

smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3
smuggle seaborn as sns # pip: seaborn==0.12.1
smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4

24
25
26
27
28

542

The onion comment in line 28 specifies that Quail should be installed from a fork of its543

GitHub repository (myfork), in its state as of a specific commit (6c847a4). This ability544

to load packages directly from remote (or local) Git repositories can enable developers545

to more easily use forked or customized versions of other packages in their code, even if546

those versions have not been officially released. Targeting specific VCS references (e.g.,547

commits, tags, etc.) can also provide even finer-grained control over smuggled package548

versions than is possible with traditional version specifiers.549

In lines 30–37, we demonstrate another aspect of Davos’s functionality that sup-550

ports more advanced installation scenarios. The ipywidgets [31] package (also known551

as Jupyter Widgets) provides a Python API for creating interactive JavaScript widgets552

within a notebook. It depends on the widgetsnbextension package, which provides553

the JavaScript machinery needed by the notebook frontend to display these widgets.554

A complication is that ipywidgets must be installed in a location that is accessible555

from the IPython kernel (i.e., the Python runtime within the notebook itself), while556

widgetsnbextension must be installed in the environment that houses the Jupyter note-557

book server (a separate Python runtime that serves and manages the notebook frontend558

client). In many basic setups, the IPython kernel and notebook server exist in the same559

environment. However, a common “advanced” approach entails running the notebook560

server from a base environment, with additional environments each providing their own561

separate, interchangeable IPython kernels.562

Lines 30–37 account for both of these possibilities programmatically:563

18

davos.project = None
kernel_env_pip = davos.pip_executable
server_env_pip = !command -v pip
davos.pip_executable = server_env_pip[0]
smuggle widgetsnbextension as _
davos.use_default_project()
davos.pip_executable = kernel_env_pip
smuggle ipywidgets # pip: ipywidgets==7.6.5

from tqdm.notebook smuggle tqdm # pip: tqdm==4.62.3

30
31
32
33
34
35
36
37
38
39

564

First, in line 30, we set the davos.project attribute to None to temporarily allow in-565

stalling smuggled packages outside of the notebook’s project directory. As noted in566

Section 2.2.3, this is typically discouraged, as doing so can risk interfering with the567

user’s Python environment if existing package versions are overwritten. In this partic-568

ular case, however, a combination of factors make this relatively safe and inconsequen-569

tial. First, the package we need to install directly into the notebook server environment570

(widgetsnbextension) is smuggled without an accompanying onion comment (line 34),571

meaning that Davos will not replace any version the user may already have installed.572

Second, the package has no dependencies of its own, so if Davos does install it, no other573

packages will be installed or updated as a side effect. Third, the package itself provides574

no functionality outside of rendering Jupyter widgets, so its presence would not alter any575

other code’s expected behavior.576

Next, in lines 31–33, we change the pip executable Davos uses to install smuggled577

packages (see Sec. 2.2.4), storing the default executable’s path in a variable before doing578

so. When Davos’s project system is disabled, using a pip executable from a particu-579

lar Python environment will cause smuggled packages to be installed into (and subse-580

quently loaded from) that environment. The default pip executable will install pack-581

ages into the environment used to run the IPython kernel. Here, the new value assigned582

to davos.pip executable in line 33 is the output of running “command -v pip” as a583

!-prefixed IPython system shell command in line 32 (“command -v” outputs the path to584

an executable, similar to “which” but more portable). IPython system shell command585

are always executed in the notebook server’s environment—which may or may not be586

different from the kernel’s environment—so this command’s output will be the path to587

the server environment’s pip executable.588

After smuggling the widgetsnbextension package in line 34, we use the davos.use -589

default project() function in line 35 to revert to installing package into the notebook’s590

project directory, restore the default value of davos.pip executable in line 36, and591

smuggle the specified version of ipywidgets in line 37. With these two packages now592

installed and imported, line 39 smuggles tqdm [32], which displays progress bars to pro-593

vide status updates for running code. In Jupyter notebooks, the tqdm.notebook module594

can be imported to enable more aesthetically pleasing progress bars that are displayed595

via ipywidgets, if that package is installed and importable. Therefore, to take advan-596

tage of this feature, it was important to first ensure ensure that both ipywidgets and597

widgetsnbextension were available.598

Next, we load in the reformatted dataset (line 41) and pre-trained model (line 43)599

that we wish to use in our analysis. In our hypothetical example, we can suppose that the600

model was provided as a scikit-learn Pipeline object that passes data through two601

pre-trained models in succession. First, a trained CountVectorizer instance converts602

text data to an array of word counts. The word counts are then passed to a topic603

19

model [33] using a pre-trained LatentDirichletAllocation instance.604

data = pd.read_csv("~/datasets/data-new.csv", index_col=[0, 1])
smuggle sklearn # pip: scikit-learn<0.22.0
transformer = joblib.load("~/models/text-transformer.joblib")
smuggle sklearn # pip: scikit-learn==1.1.3

41
42
43
44

605

Let us suppose that the Pipeline object had been saved by its original creator using the606

joblib package, as scikit-learn’s documentation recommends [34]. Because joblib607

uses the pickle protocol internally, the ability to save and load pre-trained models is608

not guaranteed across different scikit-learn versions. For example, suppose that the609

Pipeline object was created using scikit-learn v0.21.3. In that version (and previous610

versions) of scikit-learn, the LatentDirichletAllocation class was defined in the611

sklearn.decomposition.online lda module. However, in version 0.22.0, that module612

was renamed to “ online lda” and in version 0.22.1, it was again renamed to “ lda.”613

In order to successfully load the model that includes the pre-trained LatentDirich-614

letAllocation instance, in line 42, we first smuggle a version of scikit-learn prior to615

v0.22.0 (i.e., before the first time the relevant module’s name was changed). Once the616

model is loaded and reconstructed in memory from a compatible package version (line617

43), we upgrade to a newer version of scikit-learn in line 44. Taken together, the618

code in Figure 4 shows how Davos can enable users to load in data and models that are619

incompatible with newer versions of pandas and scikit-learn, but still analyze and620

manipulate the data and model output using the latest approaches and implementations.621

4. Impact622

We designed Davos for use in research settings, where code for numerous different623

tasks—from processing data, to running statistical analyses, to generating figures and624

tables for publication—is frequently shared between collaborators while working on a625

project, and eventually with the broader scientific community and general public upon its626

completion. In these contexts, ensuring that shared code yields consistent, reproducible627

outputs across users and over time is critical, yet the tools available to researchers for628

doing so can be complex to set up and challenging to properly use. This has the dual629

effect of discouraging scientists from sharing their code in a reproducible way (or at all),630

and making it significantly harder (or impossible) for others to successfully reproduce631

their results, adopt or extend their methods, and contribute to or build upon their work.632

Ultimately, the need to install and master additional tools in order to share and run633

reproducible code can impede progress both on the individual level and on the broader634

scientific level.635

While the Davos package by no means offers a universal solution to this problem, it636

can, in many cases, provide an effective yet more accessible alternative to existing sys-637

tems for sharing reproducible Python code, such as virtual environments, containers, and638

virtual machines (Fig. 1). For researchers, this can lower barriers to collaborating with639

peers and contributing to publicly available open science resources. And by eliminating640

most of the setup costs of reconstructing the original researchers’ computing environ-641

ment(s), Davos also lowers barriers to entry for members of the scientific community and642

the public who seek to run shared code.643

Among common systems for sharing reproducible Python code (see Fig. 1), Davos is644

most comparable to virtual environments in that it provides a lightweight mechanism for645

20

specifying and sharing a complete set of packages (and specific package versions) required646

by a particular project, and installing those packages into an isolated directory on the647

user’s file system. However, when used in conjunction with Jupyter notebooks, Davos648

offers a number of advantages over standard virtual environments that make it both easier649

to use and more effective at ensuring reproducibility of shared code.650

First, smuggle statements and onion comments enable researchers to specify their651

notebooks’ dependencies directly within the code that requires them (see Secs. 2.2.1652

and 2.2.2). This eliminates the need to either manually create and maintain separate653

configuration files or use an additional tool to generate them, and to then distribute654

these files alongside their primary code base for users to download.655

Second, Davos automatically checks for, installs, isolates, and imports any required656

packages at runtime. This allows users to download and immediately run a Davos-657

enhanced notebook without any prerequisite setup (beyond that needed to run a stan-658

dard Jupyter notebook). By contrast, before running a notebook whose dependencies659

are managed via a virtual environment, the user would first need to run a series of shell660

commands to manually create a new environment, populate it with packages from the661

researcher’s configuration file (which the user must also have obtained), and then either662

use the ipykernel package to register the environment as a Jupyter kernel, or activate663

and deactivate the environment before and after (respectively) each time the notebook664

was launched. Beyond reducing this initial setup cost, Davos’s runtime-based approach665

to dependency management affords a second important benefit. While creating and con-666

figuring a virtual environment ensures that a specific set of packages is initially installed,667

it does not guarantee that they will remain installed after that point. For example, a668

researcher who creates a virtual environment in which to run a set of data analyses—or669

a different user who later recreates that environment to reproduce them—might at some670

point install an additional package into the environment after its initial setup (e.g., to671

implement a new analysis idea). Depending on the requirements of this new package,672

this could cause one or more initially installed packages to be upgraded or downgraded673

to a different version. If the individual does not happen to notice this change when it674

occurs, differences between those packages’ expected and installed versions may intro-675

duce bugs into previously written code or subtly alter its output when it is next run.676

Because smuggle statements and onion comments are evaluated every time a Davos-677

enhanced notebook is run, they function to ensure that the notebook’s dependencies are678

always satisfied and that any such inadvertent changes would be automatically caught679

and corrected.680

Third, running a shared notebook that uses Davos to manage its dependencies often681

requires less (but never more) space on the user’s system than running an identical682

notebook inside a virtual environment. While typical virtual environment directories683

will contain all requirements listed in their configuration files, Davos’s isolated project684

directories (by default; see Sec. 2.2.3) contain only those not already available in the685

user’s existing Python environment. This is another feature made possible by Davos’s686

runtime-based dependency management system. Davos can safely draw from packages in687

the user’s main environment to satisfy a notebook’s dependencies, when possible, because688

if those packages were to be updated or removed at any point such that they no longer689

met the notebook’s requirements, appropriate versions would be installed into the project690

directory the next time the notebook was executed.691

Finally, neither virtual environments nor Davos-enhanced notebooks can bundle spe-692

cific versions of Python with which to run shared code. However, Davos’s require -693

21

python() function provides a simple mechanism for indicating a required or constrained694

Python version and alerting the user at runtime (by raising an exception) if their Python695

version is incompatible. In terms of Davos’s ability to ensure that shared code can be696

executed reproducibly by other users, this falls short of the capabilities of more complex697

tools that can provide complete copies of Python (Fig. 1). However, the functionality698

Davos provides over what is possible with a standard virtual environment is to remove699

the expectation that running a particular notebook will reproduce an expected outcome700

in situations where this is either impossible or not guaranteed. With this understanding,701

a user may choose to install a compatible Python version through some other means or702

elect to still run the code, but will not be surprised by a potential failure to execute703

successfully or output an expected result.704

Beyond research applications, Davos is also useful in pedagogical settings. For ex-705

ample, in programming courses, instructors and students may use the Davos package706

to ensure their notebooks will run correctly on others’ machines. When combined with707

online notebook-based platforms like Google Colaboratory, Davos provides a convenient708

way to manage dependencies within a notebook without requiring any software (beyond709

a web browser) to be installed on the students’ or instructors’ systems. For the same710

reasons, Davos also provides an elegant means of sharing ready-to-run notebook-based711

demonstrations or tutorials that install their dependencies automatically.712

Since its initial release, Davos has found use in a variety of applications. In addition to713

managing computing environments for multiple prior and ongoing research studies [35, 36,714

37], Davos is being used by both students and instructors in programming and research715

methods courses such as Storytelling with Data [38] (an open course on data science,716

visualization, and communication), Laboratory in Psychological Science [39] (an open717

course on experimental and statistical methods for psychology research), and the Methods718

in Neuroscience at Dartmouth (MIND) Computational Summer School [40] (a week-long719

intensive course on computational neuroscience methods) to simplify distributing lessons720

and submitting assignments, as well as in online demos such as abstract2paper [41]721

(an example application of GPT-Neo [42, 43]) to share ready-to-run code that installs722

dependencies automatically. The 2023 offering of Neuromatch Academy [44] also included723

an “experimental” module that uses Davos to manage dependencies related to a large724

language model-based tutor [45].725

Our work also has several more subtle “advanced” use cases and potential impacts.726

Whereas Python’s built-in import statement is agnostic to packages’ version information,727

smuggle statements (when combined with onion comments) are version-sensitive. And728

because onion comments are parsed at runtime, required packages and their specified729

versions are installed in a just-in-time manner. Thus, it is possible in most cases to730

smuggle a specific package version or revision even if a different version has already731

been loaded. This enables more complex uses that take advantage of multiple versions732

of a package within a single interpreter session (e.g., see Sec. 3 and Fig. 4). This could733

be useful in cases where specific features are added or removed from a package across734

different versions, or in comparing the performance or functionality of particular features735

across different versions of the same package.736

A second more subtle impact of our work is in providing a proof-of-concept of how the737

ability to add new “keyword-like” operators to the Python language could be specifically738

useful to researchers. With Davos, we accomplish this by leveraging IPython notebooks’739

internal code parsing and execution machinery. We note that, while other popular pack-740

ages similarly use these mechanisms to providing notebook-specific functionality (e.g.,741

22

[28, 46]), this approach also has the potential to be exploited for more nefarious pur-742

poses. For example, a malicious user could design a Python package that, when imported,743

substantially changes the notebook’s functionality by adding new unexpected keyword-744

like objects (e.g., based around common typos). We also note that this implementation745

approach means Davos’s functionality is currently restricted to IPython notebook en-746

vironments. However, there have been early-stage discussions of providing this sort of747

syntactic customizability as a core feature of the Python language itself, including a draft748

proposal [47]. In addition to enabling Davos to be extended for use outside of notebooks,749

this could lead to exciting new tools that, like Davos, extend the Python language in750

useful and more secure ways.751

4.1. Pitfalls and limitations752

While Davos enables developers to conveniently specify all project dependencies, there753

are some edge cases and limitations that are worth considering. First, prior studies on754

reproducibility of Jupyter notebooks [e.g., 5] identified a key challenge in the fact that,755

unlike Python scripts, notebook cells may be manually executed in an arbitrary order,756

and therefore potentially in a different order than they were executed by the notebook’s757

original author. This can result in situations where, for example, a cell’s execution fails758

because its code calls a function that has not yet been defined, or accesses a variable that759

refers to a different object than is expected at that point in the notebook. In theory,760

using Davos to smuggle multiple versions of the same package in different cells of a761

notebook could exacerbate this issue if a user executed those cells out of their intended762

order, such that their currently imported version of a core dependency was different from763

what a particular cell expected or required. Therefore, an important consideration when764

using Davos to facilitate complex, multi-package-version runtimes in this way is that765

executing notebook cells in order is perhaps even more important than it would be in766

a standard (i.e., non-Davos-enhanced) notebook. While (as noted in Sections 3 and 4)767

we consider this an “advanced feature” of Davos rather than typical usage, we propose768

a relatively simple set of “best practices” that substantially mitigate the risk of creating769

ambiguous states within a notebook. First, any Davos-enhanced notebook (or simply any770

notebook) that is intended to be run by more than one individual should be organized771

with its code cells in their intended execution order from top to bottom. If an edge case772

arises in which this is not possible, the intended order should be clearly indicated in code773

comments and/or markdown cells. Second, when smuggling multiple different versions of774

a package within a notebook, one version of the package may be designated the “main”775

version, and any others designated as “alternate” versions. The main version should be776

the primary version used throughout the notebook, while alternates are those temporarily777

required for a specific task or functionality. For example, in Figure 4, pandas v1.3.5 and778

scikit-learn v1.1.3 are the main versions of their respective packages as they are used779

throughout the remainder of the code once they are loaded. Meanwhile pandas<0.25.0780

and scikit-learn<0.22.0 are alternate versions because they are temporarily smuggled781

for the specific purpose of loading an outmoded dataset and model and then immediately782

replaced with main versions after their use is complete. Any time an alternate package783

version is needed, the smuggle statement used to install and load it, the operations it784

is required to perform, and a second smuggle to (re-)install and load the main package785

version should all be contained within a single notebook cell. This ensures that (barring786

other unrelated errors in the cell’s execution) the main version will always be installed787

and imported when any given notebook cell is run. In other words, in Figure 4, lines788

23

14–19 should be run within a single cell, and lines 42–44 should also be run in a single789

cell.790

A second limitation of Davos relates to how packages are installed and managed. As of791

this writing, Davos can install packages using pip, but not other standard Python package792

management systems such as conda [9]. Therefore packages that are not installable via793

pip are currently unsupported by Davos. We anticipate adding support for other package794

management systems, including conda, in a future release. Because Davos relies on pip795

to install packages, it is also subject to the same limitations as pip itself. For example,796

pip-installing a package that depends on a previously smuggled package may result in797

the previously smuggled package being upgraded or downgraded to a different version.798

Whereas lockfiles, or lockfile-based systems like Poetry [8], place stronger guarantees799

that each package will have a stable version, we have opted for a more flexible (but,800

consequently, less deterministic) implementation for Davos. This enables us to support801

more advanced use cases, such as those described in Section 3, but at the cost of managing802

potential conflicts between smuggled packages.803

A third limitation of Davos is that it cannot be used to manage projects that depend804

on non-Python software. For example, system software or libraries from other languages805

(e.g., in a mixed Python and R notebook), cannot be smuggled by Davos. A notebook806

that utilizes or depends on non-Python software would therefore need to use existing807

non-Davos approaches to managing those requirements.808

Davos’s “projects” system (Sec. 2.2.3) provides a safe way of managing project de-809

pendencies without interfering with the user’s Python environment. By default, each810

Davos-enhanced notebook creates and uses its own notebook-specific project directory,811

which is named based on the notebook’s absolute path. However, programmatically812

determining the path to the currently running notebook may not be possible in some813

environments. For example, Davos queries the Jupyter Server API to determine the814

notebook’s name, but some non-browser applications may implement mechanisms for815

communicating with the IPython kernel without starting a Jupyter server. As of this816

writing, Davos fully supports most common notebook environments, including classic817

Jupyter Notebooks, JupyterLab, Google Colaboratory, Binder, Kaggle Notebooks, Jet-818

Brains IDEs (PyCharm, DataSpell, etc.), and Visual Studio Code, among others. How-819

ever, in cases where Davos fails to determine the current notebook’s path, it will issue820

a warning and fall back to using a generic project named “davos-fallback.” This project821

is shared across all such occurrences and exists to ensure that even if some component822

of Davos’s project system fails, smuggling packages will still not affect the user’s main823

Python environment. If this occurs, the user can also manually set Davos to use the824

“normal” default project for the current by setting davos.project to its absolute or825

relative path.826

5. Conclusions827

The Davos package supports reproducible research by providing a novel, lightweight828

system for sharing notebook-based code. It expands on Python’s “batteries included”829

philosophy to enable running shared notebooks with no setup required, and defines a830

simple, self-documenting format for specifying dependencies in keeping with the “literate831

programming” paradigm that Jupyter notebooks support. We designed Davos to fill a832

niche we believe will help facilitate contributing to and engaging with open science re-833

sources. But perhaps the most exciting uses of the Davos package are those that we have834

24

not yet considered or imagined. We hope that the research and scientific Python commu-835

nities will find Davos to provide a convenient means of managing project dependencies to836

facilitate code sharing and collaboration. We also hope that some of the more advanced837

applications of our package might lead to new insights or discoveries.838

Author Contributions839

Paxton C. Fitzpatrick: Conceptualization, Methodology, Software, Validation,840

Writing - Original Draft, Visualization. Jeremy R. Manning: Conceptualization, Re-841

sources, Validation, Writing - Review & Editing, Visualization, Supervision, Funding842

acquisition.843

Funding844

Our work was supported in part by NSF grant number 2145172 to JRM. The content845

is solely the responsibility of the authors and does not necessarily represent the official846

views of our supporting organizations.847

Declaration of Competing Interest848

We wish to confirm that there are no known conflicts of interest associated with this849

publication and there has been no significant financial support for this work that could850

have influenced its outcome.851

Acknowledgements852

We acknowledge useful feedback and discussion from the students of JRM’s Story-853

telling with Data course (Winter, 2022 offering) who used preliminary versions of our854

package in several assignments, and the students of the Methods in Neuroscience at855

Dartmouth (MIND) Computational Summer School (2023 offering) who used our pack-856

age during several workshops and tutorials.857

References858

[1] G. van Rossum, Python reference manual, Vol. 111, Centrum voor Wiskunde en859

Informatica Amsterdam, 1995.860

[2] Python Software Foundation, The Python Package Index (PyPI), https://pypi.861

org (2003).862

[3] conda-forge community, The conda-forge Project: Community-based Software Dis-863

tribution Built on the conda Package Format and Ecosystem (July 2015). doi:864

10.5281/zenodo.4774217.865

[4] N. Coghlan, D. Stufft, Version Identification and Dependency Specification, PEP866

440, Python Software Foundation (March 2013).867

[5] J. F. Pimentel, L. Murta, V. Braganholo, J. Freire, A large-scale study about quality868

and reproducibility of Jupyter notebooks, in: 2019 IEEE/ACM 16th International869

Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 507–517. doi:870

10.1109/MSR.2019.00077.871

25

https://pypi.org
https://pypi.org
https://pypi.org
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077

[6] B. Cannon, N. Smith, D. Stufft, Specifying Minimum Build System Requirements872

for Python Projects, PEP 518, Python Software Foundation (May 2016).873

[7] I. Bicking, B. Gábor, Python Packaging Authority, virtualenv: Virtual Python En-874

vironment builder, https://github.com/pypa/virtualenv (September 2007).875

[8] S. Eustace, Poetry: Python packaging and dependency management made easy,876

https://github.com/python-poetry/poetry (December 2019).877

[9] Anaconda, Inc., conda, https://docs.conda.io (2012).878

[10] D. Merkel, Docker: Lightweight Linux containers for consistent development and879

deployment, Linux Journal 239 (2) (2014) 2.880

[11] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,881

K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Will-882

ing, Jupyter Notebooks – a publishing format for reproducible computational work-883

flows, in: F. Loizides, B. Scmidt (Eds.), Positioning and Power in Academic Pub-884

lishing: Players, Agents and Agendas, IOS Press, Netherlands, 2016, pp. 87–90.885

doi:10.3233/978-1-61499-649-1-87.886

[12] R. P. Goldberg, Survey of virtual machine research, Computer 7 (6) (1974) 34–45.887

[13] Y. Altintas, C. Brecher, M. Weck, S. Witt, Virtual Machine Tool, CIRP Annals888

54 (2) (2005) 115–138. doi:10.1016/S0007-8506(07)60022-5.889

[14] M. Rosenblum, VMware’s Virtual Platform: A virtual machine monitor for com-890

modity PCs, in: IEEE Hot Chips Symposium, IEEE, 1999, pp. 185–196.891

[15] G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers for mobil-892

ity of compute, PLoS ONE 12 (5) (2017) e0177459. doi:10.1371/journal.pone.893

0177459.894

[16] G. R. R. Martin, A Clash of Kings, A Song of Ice and Fire, Voyager Books, 1998.895

[17] F. Pérez, B. E. Granger, IPython: a system for interactive scientific computing,896

Computing in science and engineering 9 (3) (2007) 21–29. doi:10.1109/MCSE.2007.897

53.898

[18] G. van Rossum, J. Lehtosalo, L. Langa, Type Hints, PEP 484, Python Software899

Foundation (September 2014).900

[19] L. Torvalds, J. Hamano, Git: Fast version control system, https://git.kernel.901

org/pub/scm/git/git.git (April 2005).902

[20] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-903

napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,904

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson,905

P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,906

T. E. Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357–362.907

doi:10.1038/s41586-020-2649-2.908

[21] E. V. Smith, Data classes, PEP 557, Python Software Foundation (June 2017).909

26

https://github.com/pypa/virtualenv
https://github.com/python-poetry/poetry
https://docs.conda.io
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1016/S0007-8506(07)60022-5
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/git/git.git
https://doi.org/10.1038/s41586-020-2649-2

[22] C. Heimes, B. Cannon, Removing dead batteries from the standard library, PEP910

594, Python Software Foundation (May 2019).911

[23] W. McKinney, Data Structures for Statistical Computing in Python, in: S. van der912

Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science Conference, 2010,913

pp. 56–61. doi:10.25080/Majora-92bf1922-00a.914

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-915

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-916

napeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in917

Python, Journal of Machine Learning Research 12 (2011) 2825–2830.918

[25] G. Varoquaux, Joblib: Computing with Python functions, https://github.com/919

joblib/joblib (July 2010).920

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,921

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-922

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,923

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,924

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-925

den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine926

Learning on Heterogeneous Systems (2015).927

URL https://www.tensorflow.org/928

[27] L. McInnes, J. Healy, N. Saul, L. Großberger, UMAP: Uniform Manifold Ap-929

proximation and Projection, Journal of Open Source Software 3 (29) (2018) 861.930

doi:10.21105/joss.00861.931

[28] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and932

Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.933

[29] M. L. Waskom, seaborn: statistical data visualization, Journal of Open Source Soft-934

ware 6 (60) (2021) 3021. doi:10.21105/joss.03021.935

[30] A. C. Heusser, P. C. Fitzpatrick, C. E. Field, K. Ziman, J. R. Manning, Quail: A936

Python toolbox for analyzing and plotting free recall data, Journal of Open Source937

Software 2 (18) (2017). doi:10.21105/joss.00424.938

[31] J. Frederic, J. Grout, Jupyter Widgets Contributors, ipywidgets: Interactive Widgets939

for the Jupyter Notebook, https://github.com/jupyter-widgets/ipywidgets940

(August 2015).941

[32] C. da Costa-Luis, S. K. Larroque, K. Altendorf, H. Mary, richardsheridan, M. Ko-942

robov, N. Raphael, I. Ivanov, M. Bargull, N. Rodrigues, G. Chen, A. Lee, C. Newey,943

CrazyPython, JC, M. Zugnoni, M. D. Pagel, mjstevens777, M. Dektyarev, A. Roth-944

berg, A. Plavin, D. Panteleit, F. Dill, FichteFoll, G. Sturm, HeoHeo, H. van945

Kemenade, J. McCracken, MapleCCC, M. Nordlund, tqdm: A Fast, Extensible946

Progress Bar for Python and CLI, https://github.com/tqdm/tqdm (September947

2022). doi:10.5281/zenodo.595120.948

[33] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of Machine949

Learning Research 3 (2003) 993–1022.950

27

https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/joblib/joblib
https://github.com/joblib/joblib
https://github.com/joblib/joblib
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.00424
https://github.com/jupyter-widgets/ipywidgets
https://github.com/tqdm/tqdm
https://doi.org/10.5281/zenodo.595120

[34] scikit-learn developers, scikit-learn User Guide: 9. Model persistence, https://951

scikit-learn.org/1.1/model_persistence.html (May 2022).952

[35] J. R. Manning, E. C. Whitaker, P. C. Fitzpatrick, M. R. Lee, A. M. Frantz, B. J.953

Bollinger, D. Romanova, C. E. Field, A. C. Heusser, Feature and order manipulations954

in a free recall task affect memory for current and future lists, PsyArXiv (January955

2023). doi:10.31234/osf.io/erzfp.956

[36] L. L. W. Owen, J. R. Manning, High-level cognition is supported by information-957

rich but compressible brain activity patterns, bioRxiv (March 2023). doi:10.1101/958

2023.03.17.533152.959

[37] K. Ziman, M. R. Lee, A. R. Martinez, E. D. Adner, J. R. Manning, Category-based960

and location-based volitional covert attention affect memory at different timescales,961

PsyArXiv (2023). doi:10.31234/osf.io/2ps6e.962

[38] J. R. Manning, Storytelling with Data, https://github.com/ContextLab/963

storytelling-with-data (June 2021). doi:10.5281/zenodo.5182775.964

[39] J. R. Manning, ContextLab/experimental-psychology: v1.0 (Spring, 2022), https:965

//github.com/ContextLab/experimental-psychology/tree/v1.0 (May 2022).966

doi:10.5281/zenodo.6596762.967

[40] MIND Team, Methods in Neuroscience at Dartmouth (MIND) Computational Sum-968

mer School, https://mindsummerschool.org (August 2023).969

[41] J. R. Manning, abstract2paper, https://github.com/ContextLab/970

abstract2paper (June 2021). doi:10.5281/zenodo.7261831.971

[42] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,972

A. Thite, N. Nabeshima, S. Presser, C. Leahy, The Pile: An 800GB Dataset of973

Diverse Text for Language Modeling, arXiv preprint (2020). doi:10.48550/arXiv.974

2101.00027.975

[43] S. Black, L. Gao, P. Wang, C. Leahy, S. Biderman, GPT-Neo: Large Scale976

Autoregressive Language Modeling with Mesh-Tensorflow, http://github.com/977

eleutherai/gpt-neo (March 2021). doi:10.5281/zenodo.5297715.978

[44] T. van Veigen, A. Akrami, K. Bonnen, E. DeWitt, A. Hyafil, H. Ledmyr, G. W. Lind-979

say, P. Mineault, J. D. Murray, X. Pitkow, A. Puce, M. Sedigh-Savestani, C. Stringer,980

T. Achakulvisut, E. Alikarami, M. S. Atay, E. Batty, J. C. Erlich, B. V. Galbraith,981

Y. Guo, A. L. Juavinett, M. R. Krause, S. Li, M. Pachitariu, E. Straley, D. Vale-982

riani, E. Vaughan, M. Vaziri-Pashkam, M. L. Waskom, G. Blohm, K. P. Körding,983

P. Schrater, B. Wyble, S. Escola, M. A. K. Peters, Neuromatch Academy: Teaching984

computational neuroscience with global accessibility, Trends in Cognitive Sciences985

25 (7) (2021) 535–538. doi:10.1016/j.tics.2021.03.018.986

[45] J. R. Manning, H. Manjunatha, K. P. Körding, Chatify: A Jupyter extension987

for adding LLM-driven chatbots to interactive notebooks, https://github.com/988

ContextLab/chatify (July 2023). doi:10.5281/zenodo.8152315.989

28

https://scikit-learn.org/1.1/model_persistence.html
https://scikit-learn.org/1.1/model_persistence.html
https://scikit-learn.org/1.1/model_persistence.html
https://doi.org/10.31234/osf.io/erzfp
https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.31234/osf.io/2ps6e
https://github.com/ContextLab/storytelling-with-data
https://github.com/ContextLab/storytelling-with-data
https://github.com/ContextLab/storytelling-with-data
https://doi.org/10.5281/zenodo.5182775
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://doi.org/10.5281/zenodo.6596762
https://mindsummerschool.org
https://github.com/ContextLab/abstract2paper
https://github.com/ContextLab/abstract2paper
https://github.com/ContextLab/abstract2paper
https://doi.org/10.5281/zenodo.7261831
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.48550/arXiv.2101.00027
http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1016/j.tics.2021.03.018
https://github.com/ContextLab/chatify
https://github.com/ContextLab/chatify
https://github.com/ContextLab/chatify
https://doi.org/10.5281/zenodo.8152315

[46] A. C. Heusser, K. Ziman, L. L. W. Owen, J. R. Manning, HyperTools: a Python tool-990

box for gaining geometric insights into high-dimensional data, Journal of Machine991

Learning Research 18 (152) (2018) 1–6.992

[47] M. Shannon, Syntactic Macros, Draft PEP 638, Python Software Foundation993

(September 2020).994

29

	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	The smuggle statement
	The onion comment
	Projects
	Configuring and querying Davos
	Other top-level Davos functions

	Implementation details

	Illustrative Example
	Impact
	Pitfalls and limitations

	Conclusions

