Dartmouth College

Department of Psychological & Brain Sciences
HB 6207 Moore Hall

Hanover, NH 03755

November 18, 2022

To the editors of SoftwareX:

We have enclosed our manuscript entitled davos: a Python package “smuggler” for constructing
lightweight reproducible notebooks to be considered for publication as an Original Software Publication.

Our manuscript describes a new Python package, davos. When used in combination with a
notebook-based Python project, the davos library provides tools for specifying and automatically
installing the correct versions of the project’s dependencies. Our library also ensures that the
correct versions of those dependencies are in use any time the notebook’s code is executed. This
enables researchers to share a complete reproducible copy of their code within a single Jupyter
notebook (.ipynb) file.

Broadly, we designed the davos library to target a “sweet spot” along a continuum of exist-
ing approaches to facilitating reproducible code-based research. At one end of this continuum,
“lightweight” approaches entail simply sharing raw code (i.e., plain-text Python scripts) or Jupyter
notebooks (which can contain a mix of text, code, and embedded media). These lightweight so-
lutions benefit from very low setup costs (which increase accessibility), but they typically do not
make any attempt to manage or constrain the computing environment in which the shared code
is executed. At best, when dependencies are missing on the end user’s system, shared code may
fail to run entirely. And when the versions of a project’s dependencies differ between the original
author’s system and the end user’s system, shared code may (at worst) behave in unexpected ways
or even cause damage.

At the other end of this continuum, “heavyweight” approaches entail simulating or replicating,
to varying depths, the original computing environment in which the shared code was developed.
For example, virtual environments, containerized systems, and virtual machines reproduce (re-
spectively) a complete Python environment, operating system, and/or full hardware simulation
of the original environment. Each of these systems guarantees, to varying degrees, that shared
code will behave as expected for the end user. A downside to these approaches is that they are
often effort- and/or resource-intensive, since they require installing and mastering additional tools
(e.g., Anaconda, Docker, machine emulators, etc.), as well as writing and distributing additional
configuration files (e.g., environment configuration files, Dockerfiles, system images, etc.), in order
to share and run reproducible code.

The davos library is lightweight in the sense that it does not require any setup beyond that required



to run standard Jupyter notebooks. But davos also provides infrastructure for precisely controlling
project dependencies in a way that can easily be embedded into standard notebooks. This provides
a complete system for sharing reproducible code inside of a standard notebook file.

Beyond its intended primary role in facilitating reproducible research, davos is also useful in
pedagogical settings (e.g., courses that involve programming in notebook-based environments),
or when putting together lightweight notebook-based demonstrations.

Thank you for considering our manuscript, and we hope you will find it suitable for publication
in SoftwareX.

Sincerely,

Jeremy R. Manning



