
Davos: a Python package “smuggler” for constructing lightweight

reproducible notebooks

Paxton C. Fitzpatrick, Jeremy R. Manning∗

Department of Psychological and Brain Sciences
Dartmouth College, Hanover, NH 03755

Abstract

Reproducibility is a core requirement of modern scientific research. For computational
research, reproducibility means that code should produce the same results, even when run
on different systems. A standard approach to ensuring reproducibility entails packaging
a project’s dependencies along with its primary code base. Existing solutions vary in how
deeply these dependencies are specified, ranging from virtual environments, to containers,
to virtual machines. Each of these existing solutions requires installing or setting up a
system for running the desired code, increasing the complexity and time cost of sharing
or engaging with reproducible science. Here, we propose a lighter-weight solution: the
Davos package. When used in combination with a notebook-based Python project, Davos
provides a mechanism for specifying the correct versions of the project’s dependencies
directly within the code that requires them, and automatically installing them in an
isolated environment when the code is run. The Davos package further ensures that
these packages and specific versions are used every time the notebook’s code is executed.
This enables researchers to share a complete reproducible copy of their code within a
single Jupyter notebook file.

Keywords: Reproducibility, Open science, Python, Jupyter Notebook, Google
Colaboratory, Package management

∗Corresponding author
Email address: Jeremy.R.Manning@Dartmouth.edu (Jeremy R. Manning)

Preprint submitted to SoftwareX August 4, 2023

Metadata

Current code version

Nr. Code metadata description Metadata value
C1 Current code version v0.2.0
C2 Permanent link to code/repository

used for this code version
https://github.com/

ContextLab/davos/tree/v0.2.0

C3 Code Ocean compute capsule
C4 Legal Code License MIT
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
Python, JavaScript, PyPI/pip,
IPython, Jupyter, ipykernel,
PyZMQ.
Additional tools used for tests:
pytest, Selenium, Requests, mypy,
GitHub Actions

C7 Compilation requirements, operat-
ing environments, and dependencies

Dependencies: Python ≥ 3.6, pack-
aging, setuptools.
Supported OSes: MacOS, Linux,
Unix-like.
Supported IPython environments:
Jupyter Notebooks, JupyterLab,
Google Colaboratory, Binder, IDE-
based notebook editors.

C8 Link to developer documenta-
tion/manual

https://github.com/

ContextLab/davos#readme

C9 Support email for questions contextualdynamics@gmail.com

Table 1: Code metadata

1. Motivation and significance1

The same computer code may not behave identically under different circumstances.2

For example, when code depends on external packages, different versions of those packages3

may function differently. Or when CPU or GPU instruction sets differ across machines,4

the same high-level code may be compiled into different machine instructions. Because5

executing identical code does not guarantee identical outcomes, code sharing alone is often6

insufficient for enabling researchers to reproduce each other’s work, or to collaborate on7

projects involving data collection or analysis.8

Within the Python [1] community, external packages that are published in the most9

popular repositories [2, 3] are associated with version numbers and tags that allow users10

to guarantee they are installing exactly the same code across different computing en-11

vironments [4]. While it is possible to manually install the intended version of every12

dependency of a Python script or package, manually tracking down those dependencies13

can impose a substantial burden on the user and create room for mistakes and inconsis-14

tencies. Further, when dependency versions are left unspecified, replicating the original15

computing environment becomes difficult or impossible [5].16

2

https://github.com/ContextLab/davos/tree/v0.2.0
https://github.com/ContextLab/davos/tree/v0.2.0
https://github.com/ContextLab/davos#readme
https://github.com/ContextLab/davos#readme
mailto:contextualdynamics@gmail.com

Lightweight Heavyweight

.py .ipynb

pyproject.toml

.yml Python
Docker�le Operating

system

Low setup cost
High reproducibility

Note: each system may encompass
one or more systems to its left

Notebook
+ davos

Python
scripts

Jupyter
notebook

Virtual
environment Container Virtual

machine

.ipynb

%pip install davos
import davos

Figure 1: Systems for sharing code within the Python ecosystem. From left to right:
plain-text Python scripts (.py files) provide the most basic “system” for sharing raw code.
Scripts may reference external packages, but those packages must be manually installed on
other users’ systems. Further, any checking needed to verify that the correct versions of those
packages were installed must also be performed manually. Jupyter notebooks (.ipynb files)
comprise embedded text, executable code, and media (including rendered figures, code output,
etc.). When the Davos package is imported into a Jupyter notebook, the notebook’s func-
tionality is extended to automatically install any required external packages (at their correct
versions, when specified). Virtual environments allow users to install an isolated copy of
Python and all required dependencies. This typically entails distributing a configuration file
(e.g., a pyproject.toml [6] or environment.yml file) that specifies all project dependencies
(including version numbers of external packages) alongside the primary code base. Users can
then install a third-party tool [e.g., 7, 8] to read the file and build the environment. Containers
provide a means of defining an isolated environment that includes a complete operating system
(independent of the user’s operating system), in addition to (optionally) specifying a virtual
environment or other configurations needed to provide the necessary computing environment.
Containers are typically defined using specification files (e.g., a plain-text Dockerfile) that
instruct the virtualization engine regarding how to build the containerized environment. Vir-
tual machines provide a complete hardware-level simulation of the computing environment.
In addition to simulating specific hardware, virtual machines (typically specified using binary
image files) must also define operating system-level properties of the computing environment.
Systems to the left of the blue vertical line entail sharing individual files, with no additional
installation or configuration needed to run the target code. Systems to the right of the red ver-
tical line support precise control over dependencies and versioning. Notebooks enhanced using
the Davos package are easily shareable and require minimal setup costs, while also facilitating
high reproducibility by enabling precise control over project dependencies.

3

Computational researchers and other programmers have developed a broad set of17

approaches and tools to facilitate code sharing and reproducible outcomes (Fig. 1). At18

one extreme, simply distributing a set of Python scripts (.py files) may enable others19

to use or gain insights into the relevant work. Because Python is installed by default20

on most modern operating systems, for some projects, this may be sufficient. Another21

popular approach entails creating Jupyter notebooks [9] that comprise a mix of text,22

executable code, and embedded media. Notebooks may call or import external scripts23

or packages—or even intersperse snippets of other programming or markup languages—24

in order to provide a more compact and readable experience for users. Both of these25

systems (Python scripts and notebooks) provide a convenient means of sharing code,26

with the caveat that they do not specify the computing environment in which the code27

is executed. Therefore the functionality of code shared using these systems cannot be28

guaranteed across different users or setups.29

At another extreme, virtual machines [10, 11, 12] provide a hardware-level simulation30

of the desired system. Virtual machines are typically isolated, such that installing or run-31

ning software on a virtual machine does not impact the user’s primary operating system32

or computing environment. Containers [e.g., 13, 14] provide a similar “isolated” expe-33

rience. Although containerized environments do not specify hardware-level operations,34

they are typically packaged with a complete operating system, in addition to a complete35

copy of Python and any relevant package dependencies. Virtual environments [e.g., 7, 8]36

also provide a computing environment that is largely separated from the user’s main en-37

vironment. They incorporate a copy of Python and the target software’s dependencies,38

but virtual environments do not specify or reproduce an operating system for the runtime39

environment. Each of these systems (virtual machines, containers, and virtual environ-40

ments) guarantees (to differing degrees—at the hardware level, operating system level,41

and Python environment level, respectively) that the relevant code will run similarly for42

different users. However, each of these systems also relies on additional software that can43

be complex or resource-intensive to install and use, creating potential barriers to both44

contributing to and taking advantage of open science resources.45

We designed Davos to occupy a “sweet spot” between these extremes. Davos is a46

notebook-installable package that adds functionality to the default notebook experience.47

Like standard Jupyter notebooks, Davos-enhanced notebooks allow researchers to include48

text, executable code, and media within a single file. No further setup or installation is49

required from the user, beyond what is needed to run standard Jupyter notebooks. And50

like virtual environments, Davos provides a convenient mechanism for fully specifying51

(and installing, as needed) a complete set of Python dependencies, including specific52

package versions, which are contained and isolated from the rest of the user’s system.53

2. Software description54

The Davos package is named after Davos Seaworth, a smuggler referred to as “the55

Onion Knight” from the series A Song of Ice and Fire by George R. R. Martin [15]. The56

smuggle keyword provided by Davos is a play on Python’s import keyword: whereas57

importing can load a package into the Python workspace within the existing rules and58

frameworks provided by the Python language, “smuggling” provides an alternative that59

expands the scope and reach of “importing.” Like the character Davos Seaworth (who60

became famous for smuggling onions through a blockade on his homeland), we use “onion”61

comments to precisely control how packages are smuggled into the Python workspace.62

4

__init__.py project.py parsers.py exceptions.pycore.py config.py regexps.py

__init__.py ipython_post7.pyipython_common.py colab.pyipython_pre7.py jupyter.py js_functions.py

__init__.py

davos.core

davos.implementations

davos

Figure 2: Package structure. The Davos package comprises two interdependent subpackages.
The davos.core subpackage includes modules for parsing smuggle statements and onion com-
ments, installing and validating packages, isolating and managing and configuring Davos’s be-
havior. The davos.implementations subpackage includes environment-specific modifications
and features that are needed to support the core functionality across different notebook-based
environments. Individual modules (i.e., .py files) are represented by lime rounded rectangles,
and arrows denote dependencies (each arrow points to a module that imports objects defined
in the module at the arrow’s source).

2.1. Software architecture63

The Davos package consists of two interdependent subpackages (see Fig. 2). The first,64

davos.core, comprises a set of modules that implement the bulk of the package’s core65

functionality, including pipelines for installing and validating packages, custom parsers66

for the smuggle statement (see Sec. 2.2.1) and onion comment (see Sec. 2.2.2), a system67

for isolating dependencies of different projects (see Sec. 2.2.3), and a runtime interface68

for configuring Davos’s behavior (see Sec. 2.2.4). However, certain critical aspects of69

this functionality require (often substantially) different implementations depending on70

properties of the notebook environment in which Davos is used (e.g., whether the fron-71

tend is provided by Jupyter or Google Colaboratory, or which version of IPython [16]72

is used by the notebook kernel). To deal with this, environment-dependent components73

of core features and behaviors are isolated and abstracted to “helper functions” in the74

davos.implementations subpackage. This second subpackage defines multiple, inter-75

changeable versions of each helper function, organized into modules by the conditions76

that trigger their use. At runtime, Davos detects various features in the notebook envi-77

ronment and selectively imports a single version of each helper function into the top-level78

davos.implementations namespace, allowing davos.core modules to access the proper79

implementations for the current notebook environment in a single, consistent location.80

An additional benefit of this design is that it allows both maintainers and users to eas-81

ily extend Davos to support new, updated, or custom notebook variants by adding new82

davos.implementations modules that define their own versions of each helper function,83

modified from existing implementations as needed.84

2.2. Software functionalities85

2.2.1. The smuggle statement86

Functionally, importing Davos in an IPython notebook enables an additional Python87

keyword: “smuggle” (see Sec. 2.3 for details on how this works). The smuggle keyword88

5

can be used as a drop-in replacement for Python’s built-in import keyword to load89

packages, modules, and other objects into the notebook’s namespace. However, whereas90

import will fail if the requested package is not installed locally, smuggle statements can91

handle missing packages on the fly. If a smuggled package does not exist in the user’s92

Python environment, Davos will download and install it automatically, expose its contents93

to Python’s import machinery, and load it into the notebook for immediate use.94

Importantly, packages installed by Davos are made available for use in the note-95

book without affecting the user’s Python environment or existing packages. By default,96

smuggle statements will install missing packages (and any missing dependencies of those97

packages) into a notebook-specific, virtual environment-like directory called a “project”98

(see Sec. 2.2.3). In turn, smuggle statements executed in a particular notebook will99

preferentially load packages from that notebook’s project directory whenever they are100

available, rather than searching for them in the user’s main Python environment. In101

this way, smuggle statements can be substituted for import statements to automatically102

ensure that all packages needed to run a notebook are installed and available at runtime103

each time the notebook is run, without risking interfering with dependencies of the user’s104

other Python programs, or other Davos-enhanced notebooks.105

2.2.2. The onion comment106

For greater control over the behavior of smuggle statements, Davos defines an ad-107

ditional construct called the “onion comment.” An onion comment is a special type of108

inline comment that may be placed on a line containing a smuggle statement to cus-109

tomize how Davos searches for the smuggled package locally and, if necessary, downloads110

and installs it. Onion comments follow a simple format based on the “type comment”111

syntax introduced in PEP 484 [17], and are designed to make managing packages with112

Davos intuitive and familiar. To construct an onion comment, users provide the name113

of the installer program (e.g., pip) and the same arguments one would use to manually114

install the package as desired via the command line:115

enable smuggle statements
import davos

if numpy is not installed locally, pip-install it and display verbose output
smuggle numpy as np # pip: numpy --verbose

pip-install pandas (if necessary) without using or writing to the package cache
smuggle pandas as pd # pip: pandas --no-cache-dir

install scipy from a relative local path, in editable mode
from scipy.stats smuggle ttest_ind # pip: -e ../../pkgs/scipy

116

Occasionally, a package’s distribution name (i.e., the name used when installing it) may117

differ from its top-level module name (i.e., the name used when importing it). In such118

cases, an onion comment may be used to ensure that Davos installs the proper package119

if it cannot be found locally:120

package is named "python-dateutil" on PyPI, but imported as "dateutil"
smuggle dateutil # pip: python-dateutil

package is named "scikit-learn" on PyPI, but imported as "sklearn"
from sklearn.decomposition smuggle PCA # pip: scikit-learn

121

6

Because onion comments may be constructed to specify any aspect of the installer pro-122

gram’s behavior, they provide a mechanism for precisely controlling how, where, and123

when smuggled packages are installed. Critically, if an onion comment includes a version124

specifier [4], Davos will ensure that the version of the package loaded into the notebook125

matches the specific version requested, or satisfies the given version constraints. If the126

smuggled package exists locally, Davos will extract its version information from its meta-127

data and compare it to the specifier provided. If the two are incompatible (or no local128

installation is found), Davos will download, install, and load a suitable version of the129

package instead:130

specifically use matplotlib v3.4.2, pip-installing it if needed
smuggle matplotlib.pyplot as plt # pip: matplotlib==3.4.2

use a version of seaborn no older than v0.9.1, but prior to v0.11
smuggle seaborn as sns # pip: seaborn>=0.9.1,<0.11

131

Onion comments can also be used to smuggle specific VCS references (e.g., Git [18]132

branches, commits, tags, etc.):133

use quail as the package existed on GitHub at commit 6c847a4
smuggle quail # pip: git+https://github.com/ContextLab/quail.git@6c847a4

134

Davos processes onion comments internally before forwarding arguments to the installer135

program. In addition to preventing shared notebooks from executing arbitrary code in a136

user’s shell, this enables Davos to adapt its behavior based on how particular flags will137

affect the behavior of the installer program. For example, including pip’s --no-input138

flag will also temporarily enable Davos’s non-interactive mode (see Sec. 2.2.4). Simi-139

larly, if an onion comment contains either the -I/--ignore-installed, -U/--upgrade,140

or --force-reinstall flag, Davos will skip checking for a local copy of the smuggled141

package before installing a new one:142

install hypertools v0.7 without first checking for it locally
smuggle hypertools as hyp # pip: hypertools==0.7 --ignore-installed

always install the latest version of requests, including pre-releases
from requests smuggle Session # pip: requests --upgrade --pre

143

Since the purpose of an onion comment is to describe how a smuggled package should be144

installed (if necessary) so that it can be loaded and used immediately, options that would145

cause the package not to be installed (such as -h/--help or --dry-run) are disallowed.146

Additionally, when using a Davos project to isolate smuggled packages (the default be-147

havior; see Sec. 2.2.3), onion comments may not contain options that would change the148

package’s installation location (such as -t/--target, --root, or --prefix). However,149

if the user disables project-based isolation and specifies --target <dir>, Davos will en-150

sure that <dir> is included in the module search path (i.e., sys.path), prepending it if151

necessary, so the package can be loaded.152

2.2.3. Projects153

Standard approaches to installing packages from within a notebook can alter the local154

Python environment in potentially unexpected and undesired ways. For example, running155

7

a notebook that installs its dependencies via system shell commands (prefixed with “!”)156

or IPython magic commands (prefixed with “%”) may cause other existing packages in the157

user’s environment to be uninstalled and replaced with alternate versions. This can lead158

to incompatibilities between installed packages, affect the behavior of the user’s other159

scripts or notebooks, or even interfere with system applications.160

To prevent Davos-enhanced notebooks from having unwanted side-effects on the user’s161

environment, Davos automatically isolates packages installed via smuggle statements162

using a custom scheme called “projects.” Functionally, a Davos project is similar to163

a standard Python virtual environment (e.g., created with the standard library’s venv164

module or a third-party tool like virtualenv [19]): it consists of a directory (within165

a hidden .davos folder in the user’s home directory) that houses third-party packages166

needed for a particular project or task. However, Davos projects do not need to be167

manually activated and deactivated, do not contain separate Python or pip executables,168

and extend the user’s main Python environment rather than replace it.169

When Davos is imported into a notebook, a notebook-specific project directory is170

automatically created (if it does not exist already).171

Notebook-specific projects are named for the absolute path to the notebook file.172

========== TODO: finish editing from here to end ==========173

We implemented a “project” system in Davos to protect against the above scenario.174

By default, importing Davos creates a new project folder in the user’s home directory175

(contained within a hidden .davos folder). The default project name is computed to176

uniquely identify each notebook according to its filename and path. Any packages that177

were not originally available in the notebook’s runtime environment are installed to the178

notebook’s project directory. When external libraries are smuggled, Davos temporally179

appends the current project directory to the search path. Because the user’s system path180

remains unchanged, and because none of the runtime environment’s packages are altered,181

the user’s system and runtime environment remain unaffected (aside from installing the182

Davos package itself to the runtime environment).183

Each notebook’s project may be customized by setting davos.project to any string184

that can be used as a valid folder name in the user’s operating system. By customizing185

the project name, users can build multi-notebook projects that share the same core set of186

dependencies without needing to duplicate each package for each notebook in the project.187

Finally, if the user does wish to modify their runtime environment, this may be done188

by setting davos.project to None. Doing so will cause any packages installed by Davos189

to affect the user’s runtime environment. This is generally not recommended, as it can190

lead to unintended consequences for other code that shares the runtime environment.191

2.2.4. Configuring and querying Davos192

Davos’s behavior may be customized by modifying a set of attributes attached to the193

davos module object that is added to the workspace when Davos is imported. These at-194

tributes may be modified, displayed, or checked programmatically at runtime (see Sec. 3195

for an illustrative example or Sec. 2.3 for implementation details and additional informa-196

tion). These include:197

• .active: This attribute controls whether support for smuggle statements and198

onion comments is enabled (True) or disabled (False). When Davos is first im-199

ported, the .active attribute is set to True.200

8

• .auto rerun: This attribute controls how Davos behaves when attempting to201

smuggle a new version of a package that was previously imported and cannot be202

reloaded. This can happen if the package includes extension modules that dynami-203

cally link C or C++ objects to the Python interpreter, and the code that generates204

those objects was changed between the previously imported and to-be-smuggled ver-205

sions. If this attribute is set to True, Davos will automatically restart the notebook206

kernel and rerun all code up to (and including) the current smuggle statement. If207

set to False (the default), Davos will instead issue a warning, pause execution, and208

prompt the user to either restart and rerun the notebook, or continue running with209

the previously imported package version until the next time the kernel is restarted210

manually. Note that, as of this writing, the .auto rerun attribute is not supported211

in Google Colaboratory notebooks.212

• .confirm install: If set to True (default: False), Davos will require user confir-213

mation before installing a smuggled package that does not yet exist in the user’s214

environment.215

• .noninteractive: Setting this attribute to True (default: False) enables non-in-216

teractive mode, in which all user interactions (prompts and dialogues) are disabled.217

Note that in non-interactive mode, the confirm install option is set to False.218

If auto rerun is set to False while in non-interactive mode, Davos will raise an219

exception if a smuggled package cannot be reloaded, rather than prompting the220

user.221

• .pip executable: This attribute’s value specifies the path to the pip executable222

used to install smuggled packages. The default is programmatically determined from223

the Python environment and falls back to sys.executable -m pip if no executable224

can be found.225

• .suppress stdout: If this attribute is set to True (default: False), Davos sup-226

presses printed (console) outputs from both itself and the installer program. This227

can be useful when smuggling packages that need to install many dependencies228

and/or generate extensive output. However, if the installer program throws an229

error, both its stdout and stderr streams will be displayed alongside the Python230

traceback to allow for debugging.231

• .project: This attribute is a string that specifies the name of the “project” associ-232

ated with the current notebook. As described in Section 2.2.3, a notebook’s project233

determines where and how any smuggled dependencies are installed if they are not234

available in the current runtime environment. By default, this attribute is named235

according to the current notebook’s absolute file path. However, the project name236

may be customized to enable shared dependency installations across notebooks (see237

Sec. 2.2.3).238

Davos namespace also defines the davos.configure() function, which allows setting239

multiple configuration options simultaneously. In addition to the above configurable240

attributes, the davos object also includes several read-only attributes that contain po-241

tentially useful information about the current environment or Davos’s behavior:242

9

• .environment: This attribute’s value is a string describing the notebook environ-243

ment Davos was imported into. As of the current version (0.2.0), this attribute will244

be set to either \IPython<7.0", \IPython>=7.0", or \Colaboratory".245

• .ipython shell: This attribute contains the global IPython InteractiveShell246

instance underlying the notebook kernel session.247

• .smuggled: This attribute is set to a Python dictionary that functions as a cache of248

any smuggle commands run during the current session. The dictionary’s keys are249

package names and the values are arguments passed via the corresponding smuggle250

statement’s onion comment.251

• .all projects: This attribute contains a list of all local projects (i.e., projects252

with virtual environment directories located in $HOME/.davos/projects). See Sec-253

tion 2.2.3 for additional information about Davos projects.254

2.3. Implementation details255

Although Davos is designed to appear to add a new keyword to Python’s vocabulary,256

this illusion is actually created through several “hacks” that make use of the notebook’s257

IPython backend for processing and executing users’ code. Specifically, when Davos is first258

imported, or when it is activated after having been set to an inactive state, two actions259

are triggered. First, the smuggle() function is injected into the IPython user namespace.260

Second, the Davos parser is registered as a custom IPython input transformer.261

IPython preprocesses all executed code as plain text before it is sent to the Python262

compiler, in order to handle special constructs like %magic and !shell commands. Davos263

uses this process to transform smuggle statements into syntactically valid Python code.264

The Davos parser uses a regular expression to match lines of code containing smuggle265

statements (and, optionally, onion comments), extract relevant information from their266

text, and replace them with equivalent calls to the smuggle() function. For example, if267

a user runs a notebook cell containing268

smuggle numpy as np # pip: numpy>1.16,<=1.20 -vv
269

the code that is actually executed by the Python interpreter would be270

smuggle(name="numpy", as_="np", installer="pip",
 args_str="""numpy>1.16,<=1.20 -vv""",
 installer_kwargs={'editable': False,
 'spec': 'numpy>1.16,<=1.20',
 'verbosity': 2})

271

The call to the smuggle() function carries out Davos’s central logic by determining272

whether the smuggled package must be installed, carrying out the installation if necessary,273

and subsequently loading it into the namespace. This process is outlined in Figure 3.274

Because the smuggle() function is defined in the notebook namespace, it is also possible275

(though never necessary) to call it directly. Deactivating Davos will delete the name276

“smuggle” from the namespace, unless its value has been overwritten and no longer277

refers to the smuggle() function. It will also deregister the Davos parser from the set of278

input transformers run when each notebook cell is executed. While the overhead added279

by the Davos parser is minimal, this may be useful, for example, when optimizing or280

precisely profiling code.281

10

Ensure package is installed Import package and update runtime

no

no

no

no no

yes

yes yes

yes

yes

yes

no no

yes

yes

no continue

restart

no

no

yes

yessmuggle function
executed

is the
package part of

the standard
library?

force reinstall,
ignore installed,

or upgrade?

package
smuggled

before in this
session?

previous
smuggle had
same onion
comment?

is auto
re-run

enabled?

is non-
interactive

mode
enabled?

restart
or continue?

is the
package
installed
locally?

is the
correct version
of the package

installed?

install
package

prompt user
to restart/re-run

or continue

raise
SmugglerError

restart kernel and
re-run code up

through current cell

package
has been
installed

success?

has
the package
already been

imported?

load
package

reload
package

kernel
restart

required

done

Figure 3: smuggle() function algorithm. At a high level, the smuggle() function may be
conceptualized as following two basic steps. First (left), Davos ensures that the correct version
of the desired package has been installed, carrying out the installation automatically if needed.
Second (right), Davos imports the package and updates the current runtime environment.

3. Illustrative Example282

Across different versions of a given package, particular modules, functions, and other283

objects may be updated, removed, renamed, or otherwise altered. In addition to changing284

the behaviors of active computations, these changes can render saved objects created285

using one version of a package incompatible with other versions of the same package.286

For example, the popular pandas [20] library used to include the Panel data structure287

for storing 3-dimensional arrays. Since version 0.20.0, however, the Panel class has been288

deprecated, and in version 0.25.0, it was removed entirely. Suppose a user had a dataset289

stored in a Panel object (created using an older version of pandas) and had saved it to290

their disk (e.g., for later reuse or to share with other users) by serializing the Panel with291

Python’s pickle protocol. The pickle protocol is a popular built-in method of persisting292

data in Python, allowing users to save, share, and load arbitrary objects. However, in293

order to successfully “unpickle” (i.e., load and restore) a “pickled” (i.e., saved) object,294

the object’s class must be defined in and importable from the same module as when it295

was saved. Thus, because of the Panel class’s removal, the user’s dataset could not be296

read by any version of pandas from 0.25.0 or beyond. These incompatibilities are also297

not limited solely to traditional forms of data. For example, saved model states and other298

objects may reference modules, functions, attributes, classes, or other objects that may299

not be identical (or even present) across all versions of their associated package.300

The example provided in Figure 4 demonstrates how the Davos package can be used to301

circumvent these incompatibilities by carefully controlling which versions of each package302

are used in different parts of the notebook. The example shows how a dataset and303

model that require now-incompatible components of the pandas and scikit-learn [21]304

packages may be loaded in (using older versions of each package) and used alongside305

more recent versions of each package that provide new and improved functionality. When306

included at the top of a Jupyter notebook, the code in Figure 4 ensures that these objects307

11

%pip install davos
import davos

extra_msg = "pandas<0.25.0 is needed to load the old data file and requires Python<3.8"
davos.require_python(">=3.6,<3.8", extra_msg=extra_msg)

from os.path smuggle is_file
smuggle joblib # pip: joblib<=1.2.0

davos.auto_rerun = True
smuggle numpy as np # pip: numpy==1.21.6

if not is_file("~/datasets/data-new.csv"):
 smuggle pandas as pd # pip: pandas<0.25.0
 tmp_data = pd.read_pickle("~/datasets/data-old.pkl")
 tmp_data.to_frame().to_csv("~/datasets/data-new.csv")

smuggle pandas as pd # pip: pandas==1.3.5

davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
smuggle tensorflow as tf # pip: tensorflow==2.9.2
from umap smuggle UMAP # pip: umap-learn[plot,parametric_umap]==0.5.3
davos.configure(suppress_stdout=False, noninteractive=False)

smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3
smuggle seaborn as sns # pip: seaborn==0.12.1
smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4

davos.project = None
smuggle widgetsnbextension as _
davos.use_default_project()
smuggle ipywidgets as _ # pip: ipywidgets==7.6.5

from tqdm.notebook smuggle tqdm # pip: tqdm==4.62.3

data = pd.read_csv("~/datasets/data-new.csv", index_col=[0, 1])
smuggle sklearn # pip: scikit-learn<0.22.0
transformer = joblib.load("~/models/text-transformer.joblib")
smuggle sklearn # pip: scikit-learn==1.1.3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Figure 4: Example use case for Davos. Snippets from this example are also excerpted in the
main text of Section 3.

12

will be loaded successfully and analyzed using the same set of package versions, no matter308

when or by whom the notebook is run.309

After installing and importing Davos (lines 1–2), we first smuggle two utilities for310

interacting with local files in the code below. The smuggle statement in line 4 loads311

the is file() function from the Python standard library’s os.path module. Standard312

library modules are included with all Python distributions, so this line is functionally313

equivalent to an import statement and does not need or benefit from an onion comment.314

Line 5 loads the joblib package [22], installing it first, if necessary. Since joblib’s315

I/O interface has historically remained stable and backwards-compatible across releases,316

requiring that users have a particular exact version installed would likely be unnecessarily317

restrictive. However, a future release might introduce some breaking change. The onion318

comment in line 5 helps ensure the analysis notebook continues to run properly in the319

future by limiting allowable versions to those already released when the code was written:320

%pip install davos
import davos

extra_msg = "pandas<0.25.0 is needed to load the old data file and requires Python<3.8"
davos.require_python(">=3.6,<3.8", extra_msg=extra_msg)

1
2
3
4
5

321

Line 7 then uses the davos.config object to enable Davos’s auto rerun option before322

smuggling the next two packages: NumPy [23] and pandas. Because these packages rely323

heavily on custom C data types, loading the particular versions from the onion comments324

may require restarting the notebook kernel if different versions had been previously im-325

ported during the same interpreter session (see Sec. 2.2.4).326

from os.path smuggle is_file
smuggle joblib # pip: joblib<=1.2.0

7
8

327

Setting the auto rerun attribute to True is particularly useful for managing the instal-328

lation of pandas in the next lines:329

davos.auto_rerun = True
smuggle numpy as np # pip: numpy==1.21.6

10
11

330

If we suppose that the data contained in data-old.pkl is stored in a pickled Panel331

object, then we must use a version of pandas prior to 0.25.0 (i.e., the version in which332

the Panel class was removed) to be able to load it in. Line 11 ensures that an older333

version of pandas will be imported, enabling the data to be read in (and, in line 13,334

written to a CSV file, which is compatible with newer pandas versions).335

Newer versions of pandas have brought substantial improvements including better336

performance, bug fixes, and additional functionality. Although the original dataset had337

to be read in using an older version of the package, we can take advantage of these more338

recent updates by smuggling pandas a second time on line 15 (whose onion comment339

specifies that version 1.3.5 should be installed and loaded). Since a different version of340

pandas had already been loaded by the Python interpreter (on line 11), the notebook341

kernel must be restarted in order to replace the old version’s custom C extensions with342

those from the new version. The auto rerun flag set on line 7 enables Davos to trigger this343

process automatically so that the code can continue running without user intervention,344

and converting the dataset to a CSV file in lines 10–13 ensures that the older version of345

pandas does not need to be reinstalled.346

13

Next, line 17 uses the davos.configure() function to disable the auto rerun option347

and simultaneously enable two other options: suppress stdout and noninteractive.348

With these options enabled, lines 18–19 smuggle TensorFlow [24], a powerful end-to-end349

platform for building and working with machine learning models, and UMAP [25], a package350

that implements a family of related manifold learning techniques. The onion comment in351

line 19 also specifies that UMAP should be installed with the optional requirements needed352

for its “plot” and “parametric umap” features. Together, these two packages depend on353

36 other unique packages, most of which have dependencies of their own. And if many of354

these are not already installed in the user’s environment, lines 18–19 could take several355

minutes to run. Enabling the noninteractive option ensures that the installation will356

continue automatically without user input during that time. Enabling suppress stdout357

also suppresses console outputs while installing these packages and their many dependen-358

cies to prevent other potentially important outputs from being buried.359

if not is_file("~/datasets/data-new.csv"):
 smuggle pandas as pd # pip: pandas<0.25.0
 tmp_data = pd.read_pickle("~/datasets/data-old.pkl")
 tmp_data.to_frame().to_csv("~/datasets/data-new.csv")

smuggle pandas as pd # pip: pandas==1.3.5

13
14
15
16
17
18

360

After re-enabling these two options (line 20), we next smuggle specific versions of361

three plotting packages: Matplotlib [26], seaborn [27], and Quail [28] (lines 22–24).362

Because the first two are requirements of UMAP’s optional “plot” feature, they will have363

already been installed by line 19, though possibly as different versions than those specified364

in the onion comments on lines 22 and 23. If the installed and specified versions are the365

same, these smuggle statements will function like standard import statements to load the366

packages into the notebook namespace. If they differ, Davos will download the requested367

versions in place of the installed versions before doing so.368

davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
smuggle tensorflow as tf # pip: tensorflow==2.9.2
from umap smuggle UMAP # pip: umap-learn[plot,parametric_umap]==0.5.3

20
21
22

369

Line 24 uses an onion comment to specify that Quail should be installed directly from a370

specific GitHub commit (6c847a4). This ability to load packages directly from GitHub371

repositories can enable developers to more easily use forked or modified versions of other372

packages in their notebooks, even if those versions have not been officially released.373

In lines 26–29, we demonstrate another aspect of Davos’s functionality that supports374

more advanced installation scenarios. The ipywidgets [29] package provides an API375

for creating various JavaScript widgets with Python code, and the widgetsnbextension376

package provides the machinery needed by the notebook frontend to display them.377

davos.configure(suppress_stdout=False, noninteractive=False)

smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3
smuggle seaborn as sns # pip: seaborn==0.12.1
smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4

23
24
25
26
27

378

A complication is that ipywidgets must be installed in the same environment as the379

IPython kernel, whereas widgetsnbextension must be installed in the environment that380

14

houses the Jupyter notebook server. In many basic setups, these two environments are381

the same. However, a common “advanced” approach entails running the notebook server382

from a base environment, with additional environments each providing their own separate,383

interchangeable IPython kernels. To accomodate this multi-environment scenario, on384

lines 26 and 28, we use the pip executable option to control which environments each385

package should be installed to. Once these two packages are installed and imported, line386

31 smuggles tqdm [30], which display progress bars to provide status updates for running387

code. In Jupyter notebooks, the tqdm.notebook module can be imported to enable more388

aesthetically pleasing progress bars that are displayed via ipywidgets, if that package is389

installed and importable. Therefore, to take advantage of this feature, it was important390

to smuggle tqdm after ensuring the ipywidgets package was available.391

Next, we load in the reformatted dataset (line 33) and pre-trained model (line 35)392

that we wish to use in our analysis. In our hypothetical example, we can suppose that the393

model was provided as a scikit-learn Pipeline object that passes data through two394

pretrained models in succession. First, a trained CountVectorizer instance converts text395

data to an array of word counts. Second, the word counts are passed to a topic model [31]396

using a pretrained LatentDirichletAllocation instance.397

davos.project = None
smuggle widgetsnbextension as _
davos.use_default_project()
smuggle ipywidgets as _ # pip: ipywidgets==7.6.5

from tqdm.notebook smuggle tqdm # pip: tqdm==4.62.3

29
30
31
32
33
34

398

Let us suppose that the Pipeline object had been saved by its original creator using the399

joblib package, as scikit-learn’s documentation recommends. Because joblib uses400

the pickle protocol internally, the ability to save and load pre-trained models is not guar-401

anteed across different scikit-learn versions. For example, suppose that the Pipeline402

object was created using scikit-learn v0.21.3. In that version of scikit-learn, the403

LatentDirichletAllocation class was defined in sklearn.decomposition.online lda.404

However, in version 0.22.0, that module was renamed to online lda, and in version405

0.22.1, it was again renamed to lda.406

In order to correctly load the model that includes the pre-trained LatentDirichlet-407

Allocation instance, in line 34, we first smuggle a version of scikit-learn prior to408

v0.22.0 (i.e., before the first time the relevant module’s name was changed). Once the409

model is loaded and reconstructed in memory from a compatible package version (line410

35), we upgrade to a newer version of scikit-learn in line 36. Taken together, the411

code in Figure 4 shows how Davos can enable users to load in data and models that are412

incompatible with newer versions of pandas and scikit-learn, but still analyze and413

manipulate the data and model output using the latest approaches and implementations.414

4. Impact415

Like virtual environments, containers, and virtual machines, the Davos package (when416

used in conjunction with Jupyter notebooks) provides a lightweight mechanism for shar-417

ing code and ensuring reproducibility across users and computing environments (Fig. 1).418

Further, Davos enables users to fully specify (and install, as needed) any project de-419

pendencies within the same notebook. This provides a system whereby executable code420

15

(along with text and media) and code for setting up and configuring the project depen-421

dencies, may be combined within a single notebook file.422

Although existing notebooks can incorporate system calls that install project require-423

ments, handling project requirements in the general case is non-trivial (e.g., see Fig. 3).424

Further, Davos incorporates its own virtual environment system that isolates notebook-425

installed packages from the runtime environment (Sec. 2.2.3). In many setups this feature426

can eliminate the need to set up a seperate virtual environment or container (e.g., in con-427

junction with a requirements.txt, project.toml, or environment.yml file specifying428

the project’s dependencies).429

We designed Davos for use in research applications. For example, in many settings,430

Davos may be used as a drop-in replacement for more-difficult-to-set-up virtual envi-431

ronments, containers, and/or virtual machines. For researchers, this lowers barriers to432

sharing code. By eliminating most of the setup costs of reconstructing the original re-433

searchers’ computing environment, Davos also lowers barriers to entry for members of434

the scientific community and the public who seek to run shared code.435

Beyond research applications, Davos is also useful in pedagogical settings. For ex-436

ample, in programming courses, instructors and students may use the Davos package437

to ensure their notebooks will run correctly on others’ machines. When combined with438

online notebook-based platforms like Google Colaboratory, Davos provides a convenient439

way to manage dependencies within a notebook, without requiring any software (beyond440

a web browser) to be installed on the students’ or instructors’ systems. For the same441

reasons, Davos also provides an elegant means of sharing ready-to-run notebook-based442

demonstrations or tutorials that install their dependencies automatically.443

Since its initial release, Davos has found use in a variety of applications. In addi-444

tion to managing computing environments for multiple prior and ongoing research stud-445

ies [32, 33, 34], Davos is being used by both students and instructors in programming446

and methods courses such as Storytelling with Data [35] (an open course on data sci-447

ence, visualization, and communication) and Laboratory in Psychological Science [36]448

(an open course on experimental and statistical methods for psychology research) to sim-449

plify distributing lessons and submitting assignments, as well as in online demos such450

as abstract2paper [37] (an example application of GPT-Neo [38, 39]) to share ready-451

to-run code that installs dependencies automatically. The 2023 offering of Neuromatch452

Academy [40] also included an “experimental” module that uses Davos to manage de-453

pendencies related to a large language model-based tutor [41].454

Our work also has several more subtle “advanced” use cases and potential impacts.455

Whereas Python’s built-in import statement is agnostic to packages’ version information,456

smuggle statements (when combined with onion comments) are version-sensitive. And457

because onion comments are parsed at runtime, required packages and their specified458

versions are installed in a just-in-time manner. Thus, it is possible in most cases to459

smuggle a specific package version or revision even if a different version has already460

been loaded. This enables more complex uses that take advantage of multiple versions461

of a package within a single interpreter session (e.g., see Sec. 3 and Fig. 4). This could462

be useful in cases where specific features are added or removed from a package across463

different versions, or in comparing the performance or functionality of particular features464

across different versions of the same package.465

A second more subtle impact of our work is in providing a proof-of-concept of how the466

ability to add new “keyword-like” operators to the Python language could be specifically467

useful to researchers. With Davos, we accomplish this by leveraging IPython notebooks’468

16

internal code parsing and execution machinery. We note that, while other popular pack-469

ages similarly use these mechanisms to providing notebook-specific functionality (e.g.,470

[26, 42]), this approach also has the potential to be exploited for more nefarious pur-471

poses. For example, a malicious user could design a Python package that, when imported,472

substantially changes the notebook’s functionality by adding new unexpected keyword-473

like objects (e.g., based around common typos). We also note that this implementation474

approach means Davos’s functionality is currently restricted to IPython notebook en-475

vironments. However, there have been early-stage discussions of providing this sort of476

syntactic customizability as a core feature of the Python language, including a draft pro-477

posal [43]. In addition to enabling Davos to be extended for use outside of notebooks,478

this could lead to exciting new tools that, like Davos, extend the Python language in479

useful and more secure ways.480

4.1. Pitfalls and limitations481

While Davos enables developers to conveniently specify all project dependencies, there482

are some edge cases and limitations that are worth considering. First, reproducibility is483

not solely about dependency management. In addition to ensuring that project depen-484

dencies are satisfied, the user running a given notebook must also execute the code in the485

indicated order. For example, the cells in a notebook may be manually run out of order.486

If different cells in a Davos-enhanced notebook made use of different versions of the same487

package, this could result in more confusion or greater replication failure rates relative488

to standard Jupyter notebooks. Therefore an important consideration when using Davos489

is that it is perhaps even more important to execute notebook cells in order than would490

be the case in the standard (non-Davos) setup. One approach to mitigating this risk491

for notebooks that use several versions of the same library would be to include smuggle492

statements in the same cell(s) where the library was called. A second approach would493

be for developers who wish to use Davos to include notes regarding which cells must494

be executed in sequence. This is already a common practice for notebooks that include495

system calls to install required packages and dependencies, and the same approach would496

work well for Davos-enhanced notebooks as well.497

A second limitation of Davos relates to how packages are installed and managed. As498

of this writing, Davos can install packages using pip, but not other standard Python499

package management systems such as conda. Therefore packages that are not installable500

via pip are currently unsupported by Davos. We anticipate adding support for other501

package management systems, including conda, in a future release.502

A third limitation of Davos is that it cannot be used to manage projects that depend503

on non-Python software. For example, system software or libraries from other languages504

(e.g., in a mixed Python and R notebook), cannot be smuggled by Davos. A notebook505

that utilizes or depends on non-Python software would therefore need to use existing506

non-Davos approaches to managing those requirements.507

5. Conclusions508

The Davos package supports reproducible research by providing a novel, lightweight509

system for sharing notebook-based code. But perhaps the most exciting uses of the510

Davos package are those that we have not yet considered or imagined. We hope that511

the research and scientific Python communities will find Davos to provide a convenient512

means of managing project dependencies to facilitate code sharing and collaboration. We513

17

also hope that some of the more advanced applications of our package might lead to new514

insights or discoveries.515

Author Contributions516

Paxton C. Fitzpatrick: Conceptualization, Methodology, Software, Validation,517

Writing - Original Draft, Visualization. Jeremy R. Manning: Conceptualization, Re-518

sources, Validation, Writing - Review & Editing, Visualization, Supervision, Funding519

acquisition.520

Funding521

Our work was supported in part by NSF grant number 2145172 to JRM. The content522

is solely the responsibility of the authors and does not necessarily represent the official523

views of our supporting organizations.524

Declaration of Competing Interest525

We wish to confirm that there are no known conflicts of interest associated with this526

publication and there has been no significant financial support for this work that could527

have influenced its outcome.528

Acknowledgements529

We acknowledge useful feedback and discussion from the students of JRM’s Story-530

telling with Data course (Winter, 2022 offering) who used preliminary versions of our531

package in several assignments.532

References533

[1] G. van Rossum, Python reference manual, Vol. 111, Centrum voor Wiskunde en534

Informatica Amsterdam, 1995.535

[2] Python Software Foundation, The Python Package Index (PyPI), https://pypi.536

org (2003).537

[3] conda-forge community, The conda-forge Project: Community-based Software Dis-538

tribution Built on the conda Package Format and Ecosystem (July 2015). doi:539

10.5281/zenodo.4774217.540

[4] N. Coghlan, D. Stufft, Version Identification and Dependency Specification, PEP541

440, Python Software Foundation (March 2013).542

[5] J. F. Pimentel, L. Murta, V. Braganholo, J. Freire, A large-scale study about quality543

and reproducibility of Jupyter notebooks, in: 2019 IEEE/ACM 16th International544

Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 507–517. doi:545

10.1109/MSR.2019.00077.546

[6] B. Cannon, N. Smith, D. Stufft, Specifying Minimum Build System Requirements547

for Python Projects, PEP 518, Python Software Foundation (May 2016).548

18

https://pypi.org
https://pypi.org
https://pypi.org
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077

[7] Anaconda, Inc., conda, https://docs.conda.io (2012).549

[8] S. Eustace, Poetry: Python packaging and dependency management made easy,550

https://github.com/python-poetry/poetry (December 2019).551

[9] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,552

K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Will-553

ing, Jupyter Notebooks – a publishing format for reproducible computational work-554

flows, in: F. Loizides, B. Scmidt (Eds.), Positioning and Power in Academic Pub-555

lishing: Players, Agents and Agendas, IOS Press, Netherlands, 2016, pp. 87–90.556

doi:10.3233/978-1-61499-649-1-87.557

[10] R. P. Goldberg, Survey of virtual machine research, Computer 7 (6) (1974) 34–45.558

[11] Y. Altintas, C. Brecher, M. Weck, S. Witt, Virtual Machine Tool, CIRP Annals559

54 (2) (2005) 115–138. doi:10.1016/S0007-8506(07)60022-5.560

[12] M. Rosenblum, VMware’s Virtual Platform: A virtual machine monitor for com-561

modity PCs, in: IEEE Hot Chips Symposium, IEEE, 1999, pp. 185–196.562

[13] D. Merkel, Docker: Lightweight Linux containers for consistent development and563

deployment, Linux Journal 239 (2) (2014) 2.564

[14] G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers for mobil-565

ity of compute, PLoS ONE 12 (5) (2017) e0177459. doi:10.1371/journal.pone.566

0177459.567

[15] G. R. R. Martin, A Clash of Kings, A Song of Ice and Fire, Voyager Books, 1998.568

[16] F. Pérez, B. E. Granger, IPython: a system for interactive scientific computing,569

Computing in science and engineering 9 (3) (2007) 21–29. doi:10.1109/MCSE.2007.570

53.571

[17] G. van Rossum, J. Lehtosalo, L. Langa, Type Hints, PEP 484, Python Software572

Foundation (September 2014).573

[18] L. Torvalds, J. Hamano, Git: Fast version control system, https://git.kernel.574

org/pub/scm/git/git.git (April 2005).575

[19] I. Bicking, B. Gábor, Python Packaging Authority, virtualenv: Virtual Python En-576

vironment builder, https://github.com/pypa/virtualenv (September 2007).577

[20] W. McKinney, Data Structures for Statistical Computing in Python, in: S. van der578

Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science Conference, 2010,579

pp. 56–61. doi:10.25080/Majora-92bf1922-00a.580

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-581

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-582

napeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in583

Python, Journal of Machine Learning Research 12 (2011) 2825–2830.584

[22] G. Varoquaux, Joblib: Computing with Python functions, https://github.com/585

joblib/joblib (July 2010).586

19

https://docs.conda.io
https://github.com/python-poetry/poetry
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1016/S0007-8506(07)60022-5
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/git/git.git
https://github.com/pypa/virtualenv
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/joblib/joblib
https://github.com/joblib/joblib
https://github.com/joblib/joblib

[23] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-587

napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,588

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson,589

P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,590

T. E. Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357–362.591

doi:10.1038/s41586-020-2649-2.592

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,593

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-594

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,595

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,596

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-597

den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine598

Learning on Heterogeneous Systems (2015).599

URL https://www.tensorflow.org/600

[25] L. McInnes, J. Healy, N. Saul, L. Großberger, UMAP: Uniform Manifold Ap-601

proximation and Projection, Journal of Open Source Software 3 (29) (2018) 861.602

doi:10.21105/joss.00861.603

[26] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and604

Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.605

[27] M. L. Waskom, seaborn: statistical data visualization, Journal of Open Source Soft-606

ware 6 (60) (2021) 3021. doi:10.21105/joss.03021.607

[28] A. C. Heusser, P. C. Fitzpatrick, C. E. Field, K. Ziman, J. R. Manning, Quail: A608

Python toolbox for analyzing and plotting free recall data, Journal of Open Source609

Software 2 (18) (2017). doi:10.21105/joss.00424.610

[29] J. Frederic, J. Grout, Jupyter Widgets Contributors, ipywidgets: Interactive Widgets611

for the Jupyter Notebook, https://github.com/jupyter-widgets/ipywidgets612

(August 2015).613

[30] C. da Costa-Luis, S. K. Larroque, K. Altendorf, H. Mary, richardsheridan, M. Ko-614

robov, N. Raphael, I. Ivanov, M. Bargull, N. Rodrigues, G. Chen, A. Lee, C. Newey,615

CrazyPython, JC, M. Zugnoni, M. D. Pagel, mjstevens777, M. Dektyarev, A. Roth-616

berg, A. Plavin, D. Panteleit, F. Dill, FichteFoll, G. Sturm, HeoHeo, H. van617

Kemenade, J. McCracken, MapleCCC, M. Nordlund, tqdm: A Fast, Extensible618

Progress Bar for Python and CLI, https://github.com/tqdm/tqdm (September619

2022). doi:10.5281/zenodo.595120.620

[31] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of Machine621

Learning Research 3 (2003) 993–1022.622

[32] J. R. Manning, E. C. Whitaker, P. C. Fitzpatrick, M. R. Lee, A. M. Frantz, B. J.623

Bollinger, D. Romanova, C. E. Field, A. C. Heusser, Feature and order manipulations624

in a free recall task affect memory for current and future lists, PsyArXiv (January625

2023). doi:10.31234/osf.io/erzfp.626

20

https://doi.org/10.1038/s41586-020-2649-2
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.00424
https://github.com/jupyter-widgets/ipywidgets
https://github.com/tqdm/tqdm
https://doi.org/10.5281/zenodo.595120
https://doi.org/10.31234/osf.io/erzfp

[33] L. L. W. Owen, J. R. Manning, High-level cognition is supported by information-627

rich but compressible brain activity patterns, bioRxiv (March 2023). doi:10.1101/628

2023.03.17.533152.629

[34] K. Ziman, M. R. Lee, A. R. Martinez, E. D. Adner, J. R. Manning, Category-based630

and location-based volitional covert attention affect memory at different timescales,631

PsyArXiv (2023). doi:10.31234/osf.io/2ps6e.632

[35] J. R. Manning, Storytelling with Data, https://github.com/ContextLab/633

storytelling-with-data (June 2021). doi:10.5281/zenodo.5182775.634

[36] J. R. Manning, ContextLab/experimental-psychology: v1.0 (Spring, 2022), https:635

//github.com/ContextLab/experimental-psychology/tree/v1.0 (May 2022).636

doi:10.5281/zenodo.6596762.637

[37] J. R. Manning, abstract2paper, https://github.com/ContextLab/638

abstract2paper (June 2021). doi:10.5281/zenodo.7261831.639

[38] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,640

A. Thite, N. Nabeshima, S. Presser, C. Leahy, The Pile: An 800GB Dataset of641

Diverse Text for Language Modeling, arXiv preprint (2020). doi:10.48550/arXiv.642

2101.00027.643

[39] S. Black, L. Gao, P. Wang, C. Leahy, S. Biderman, GPT-Neo: Large Scale644

Autoregressive Language Modeling with Mesh-Tensorflow, http://github.com/645

eleutherai/gpt-neo (March 2021). doi:10.5281/zenodo.5297715.646

[40] T. van Veigen, A. Akrami, K. Bonnen, E. DeWitt, A. Hyafil, H. Ledmyr, G. W. Lind-647

say, P. Mineault, J. D. Murray, X. Pitkow, A. Puce, M. Sedigh-Savestani, C. Stringer,648

T. Achakulvisut, E. Alikarami, M. S. Atay, E. Batty, J. C. Erlich, B. V. Galbraith,649

Y. Guo, A. L. Juavinett, M. R. Krause, S. Li, M. Pachitariu, E. Straley, D. Vale-650

riani, E. Vaughan, M. Vaziri-Pashkam, M. L. Waskom, G. Blohm, K. P. Körding,651

P. Schrater, B. Wyble, S. Escola, M. A. K. Peters, Neuromatch Academy: Teaching652

computational neuroscience with global accessibility, Trends in Cognitive Sciences653

25 (7) (2021) 535–538. doi:10.1016/j.tics.2021.03.018.654

[41] J. R. Manning, H. Manjunatha, K. P. Körding, Chatify: A Jupyter extension655

for adding LLM-driven chatbots to interactive notebooks, https://github.com/656

ContextLab/chatify (July 2023). doi:10.5281/zenodo.8152315.657

[42] A. C. Heusser, K. Ziman, L. L. W. Owen, J. R. Manning, HyperTools: a Python tool-658

box for gaining geometric insights into high-dimensional data, Journal of Machine659

Learning Research 18 (152) (2018) 1–6.660

[43] M. Shannon, Syntactic Macros, Draft PEP 638, Python Software Foundation661

(September 2020).662

21

https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.1101/2023.03.17.533152
https://doi.org/10.31234/osf.io/2ps6e
https://github.com/ContextLab/storytelling-with-data
https://github.com/ContextLab/storytelling-with-data
https://github.com/ContextLab/storytelling-with-data
https://doi.org/10.5281/zenodo.5182775
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://doi.org/10.5281/zenodo.6596762
https://github.com/ContextLab/abstract2paper
https://github.com/ContextLab/abstract2paper
https://github.com/ContextLab/abstract2paper
https://doi.org/10.5281/zenodo.7261831
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.48550/arXiv.2101.00027
https://doi.org/10.48550/arXiv.2101.00027
http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1016/j.tics.2021.03.018
https://github.com/ContextLab/chatify
https://github.com/ContextLab/chatify
https://github.com/ContextLab/chatify
https://doi.org/10.5281/zenodo.8152315

	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	The smuggle statement
	The onion comment
	Projects
	Configuring and querying Davos

	Implementation details

	Illustrative Example
	Impact
	Pitfalls and limitations

	Conclusions

