
Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Shape Decomposition for Multi-channel

Distance Fields

Bc. Viktor Chlumský

Supervisor: Ing. Ivan Šimeček, Ph.D.

5th May 2015

Acknowledgements

I would like to thank my supervisor, Doctor Ivan Šimeček, for guidance, and
my friend, Tomáš Báča, for providing general advice on writing a scientific
thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 5th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Viktor Chlumský. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Chlumský, Viktor. Shape Decomposition for Multi-channel Distance Fields.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2015.

Abstrakt

Tato práce zkoumá možnosti vylepšeńı populárńı techniky vykreslováńı textu,
která je hojně použ́ıvaná ve 3D aplikaćıch a poč́ıtačových hrách. Předkládá
univerzálńı a efektivńı metodu konstrukce v́ıcekanálového pole vzdálenost́ı
pro vektorové obrazce, zejména znaky ṕısem, a popisuje jeho použit́ı při
vykreslováńı se zvýšenou kvalitou.

Kĺıčová slova Pole vzdálenost́ı, vykreslováńı textu, Bézierovy křivky.

Abstract

This work explores the possible improvements to a popular text rendering
technique widely used in 3D applications and video games. It proposes a uni-
versal and efficient method of constructing a multi-channel distance field for
vector-based shapes, such as font glyphs, and describes its usage in rendering
with improved fidelity.

Keywords Distance field, text rendering, Bézier curves.

ix

Contents

1 Introduction 1

1.1 Signed distance fields . 1

1.2 Practical viability . 6

1.3 State of the art . 6

2 Preliminaries 11

2.1 Bézier curves . 11

2.2 Locating sharp corners . 13

2.3 Point – edge segment distance 15

2.4 Point – shape distance . 18

2.5 Pseudo-distance fields . 19

3 Theoretical analysis 21

3.1 Shape simplification . 21

3.2 Corner analysis . 23

3.3 Plane partitioning . 28

4 Realization 31

4.1 Preparing the input . 31

4.2 Single-channel distance field construction 33

4.3 Corner preserving shape decomposition 35

4.4 Direct multi-channel distance field construction 39

5 Application 43

5.1 Shape reconstruction . 43

5.2 Text rendering . 47

6 Results 49

6.1 Outputs . 49

6.2 Rendering quality . 52

xi

6.3 Performance . 59

7 Conclusion 63
7.1 Future work . 64

Bibliography 67

A Glossary 69

B List of abbreviations 71

C Gallery 73

D Contents of the enclosed CD 75

xii

List of Figures

1.1 A two-dimensional shape. 2

1.2 The shape’s signed distance field. 2

1.3 Analysis of the distance field’s data. 3

1.4 Demonstration of reconstructing the original shape (a) from a low
resolution distance field (b) and from a low resolution image (c). . 4

1.5 A 3D representation of the signed distance field. 4

1.6 A shape with sharp corners (left) and its reconstruction from a low
resolution distance field (right). 5

1.7 A possible decomposition of the shape into a union of two round
shapes. 5

1.8 Multi-channel decomposition of several letters. 6

1.9 A reconstuction of the letters from low resolution distance fields. . 6

2.1 A quadratic Bézier curve. 11

2.2 A cubic Bézier curve. 12

2.3 A path composed of quadratic Bézier curves. 13

2.4 Finding the minimum distance between a point and a line segment. 15

2.5 Negative (A) and positive (B) distance from a Bézier curve. 17

2.6 The problem with using the distance to the closest segment. 18

2.7 Dividing the plane between two adjacent segments. 18

2.8 A generalized Voronoi diagram of the letter “A”. 19

2.9 The signed pseudo-distance from point P to edge a. 20

2.10 Contour graph of a regular distance field and a pseudo-distance
field around a corner. 20

3.1 Independent translation of a quadratic curve’s endpoints. 22

3.2 The average resulting image of filled quadrants from an SDF. . . . 23

3.3 The possible results of filled opposing quadrants using an SDF. . . 24

3.4 Dividing the plane into quadrants and subquadrants. 24

3.5 Example of quadrant alignment of a non-orthogonal corner. 24

xiii

3.6 The two possible corner types and their quadrants. 26
3.7 Possible color encoding of a corner’s quadrants using the median

of three model. 27
3.8 Quadrant coloring of a sequence of corners. 29
3.9 The border between areas colored A and B (left) and a possible

result after reconstruction (right). 29
3.10 Padding P between areas colored A and B (left) and a possible

result after reconstruction (right). 30

4.1 The initial structure of a shape prototype. 32
4.2 The structure of the shape after edge grouping. 33
4.3 Padding (white) derived from distance ratios. 37
4.4 Unnecessary false padding resulting from this method. 38

5.1 Examples of distance based visual effects. 45
5.2 SDF textures, from which individual glyphs can be extracted. . . . 47
5.3 A string of text as a textured triangle mesh. 47

6.1 The edge coloring (a) and plane partitioning (b) of the letter “e”. . 49
6.2 The decomposition of the letter “e”. 50
6.3 The edge coloring of the letter “e”. 51
6.4 The individual channels of the resulting distance field. 51
6.5 The combined reconstruction of the distance field’s components. . 51
6.6 Reconstruction of the letter “e” from a single-channel pseudo-

distance field of varying resolutions. 54
6.7 Comparison of the reconstruction of several glyphs of varying thick-

ness using the original (top) and my direct (bottom) method. . . . 56
6.8 Detail of the hash symbol reconstructed using the original (left)

and my direct (right) method, and the difference between the two
(center). 56

6.9 Contour diagram of the letter “A” constructed exactly (a), and
reconstructed from distance fields (b, c, d). 58

7.1 Image reconstruction of the glyph “A” with thin strokes. 64

C.1 The average of all possible results of corner quadrant reconstruction
with varying distance field grid alignment. 73

C.2 Some examples of multi-channel decomposition outputs. 74

xiv

List of Tables

3.1 Truth table of the filling of quadrant areas. 25
3.2 The differentiation of binary vectors that denote the inside and

outside of the shape. 26

6.1 Rendering quality for different intermediate resolutions. 53
6.2 Comparison of absolute rendering quality of the distance field tech-

niques. 55
6.3 Comparison of rendering quality for non-curved glyphs only. 56
6.4 Comparison of apparent rendering quality of the distance field tech-

niques. 57
6.5 Comparison of the error in sampled distance values throughout the

entire plane. 58
6.6 Total construction time of distance fields for all ASCII characters

of a font using different methods. 59
6.7 Comparison of text rendering framerates when using single-channel

and multi-channel distance field textures. 60

xv

Chapter 1

Introduction

One of the important problems in computer graphics is text rendering. There
are many different techniques, each specialized for a different scenario. When
the text is static, it is not a problem to take time and pre-render it with
high precision, but if its transformation, perspective, or the text itself changes
rapidly, a specialized technique has to be employed. A popular one used in
real-time graphics relies on storing the character shapes, or glyphs, in struc-
tures called signed distance fields. [11, 6] I will present an improved version of
this technique that combines multiple distance fields in a way that significantly
improves the quality of the image.

In this chapter, I will explain how the original technique works, demon-
strate the potential of my improvement, and discuss alternate methods.

1.1 Signed distance fields

In order to understand the signed distance field rendering technique, we must
first establish what a signed distance field, or SDF for short, is and how it
works.

A signed distance field in general is the result of a signed distance trans-
formation applied to a subset of N -dimensional space. It maps each point P
of the space to a scalar signed distance value. A signed distance is defined as
follows: If the point P belongs to the subset, it is the minimum distance to
any point outside the subset. If it does not belong to the subset, it is minus
the minimum distance to any point of the subset.

For our purposes, we will only use a specific type of signed distance field,
one that uses Euclidean distance, and whose domain is the two-dimensional
space only. The vector shape we wish to render will be the subset in question.
Additionally, our signed distance fields will be represented as rectangular grids
with the signed distances specified only at a finite number of discrete points,
and therefore not exact.

1

1. Introduction

The distance field in this form will serve as the simplified representation
of the vector shape, from which it can be approximately reconstructed. The
idea will be best shown on an example. Assume that we want to encode the
shape in Figure 1.1.

Figure 1.1: A two-dimensional shape.

The diagram in Figure 1.2 is a visual representation of the corresponding
distance field in a 16 × 16 grid. Note that each value is the distance to
the closest edge point as illustrated by the lines, and that outside values are
negative (blue) while inside values are positive (red).

−4.0 −3.5 −3.0 −2.8 −2.7 −2.7 −2.8 −3.0 −3.4 −3.9 −4.5 −5.1 −5.1 −5.2 −5.5 −5.9

−3.2 −2.6 −2.1 −1.8 −1.7 −1.7 −1.8 −2.1 −2.5 −3.1 −3.7 −4.1 −4.1 −4.3 −4.6 −5.0

−2.5 −1.8 −1.2 −0.8 −0.7 −0.7 −0.8 −1.2 −1.7 −2.3 −3.0 −3.1 −3.1 −3.3 −3.6 −4.1

−1.9 −1.1 −0.4 +0.1 +0.3 +0.3 +0.1 −0.3 −0.9 −1.6 −2.3 −2.1 −2.1 −2.4 −2.8 −3.3

−1.4 −0.5 +0.3 +1.0 +1.3 +1.3 +1.1 +0.5 −0.2 −0.9 −1.3 −1.1 −1.1 −1.4 −1.9 −2.6

−1.1 −0.1 +0.8 +1.7 +2.3 +2.3 +1.9 +1.2 +0.5 −0.3 −0.4 −0.1 −0.1 −0.5 −1.2 −2.0

−0.9 +0.1 +1.1 +2.1 +3.0 +3.3 +2.7 +1.9 +1.1 +0.6 +0.6 +0.9 +0.8 +0.2 −0.6 −1.5

−0.8 +0.2 +1.2 +2.2 +3.2 +4.1 +3.3 +2.6 +1.9 +1.5 +1.5 +1.8 +1.6 +0.8 −0.2 −1.1

−0.8 +0.1 +1.1 +2.1 +2.9 +3.3 +2.8 +2.4 +2.1 +2.1 +2.3 +2.8 +2.0 +1.0 −0.0 −1.0

−1.1 −0.2 +0.7 +1.5 +2.1 +2.4 +1.9 +1.4 +1.1 +1.1 +1.4 +1.9 +1.7 +0.8 −0.2 −1.1

−1.5 −0.7 +0.1 +0.7 +1.2 +1.4 +1.1 +0.6 +0.1 +0.1 +0.5 +1.1 +1.1 +0.4 −0.5 −1.4

−2.1 −1.3 −0.7 −0.1 +0.2 +0.4 +0.2 −0.3 −0.8 −0.8 −0.3 +0.2 +0.2 −0.3 −1.0 −1.8

−2.7 −2.1 −1.5 −1.1 −0.8 −0.6 −0.8 −1.1 −1.6 −1.7 −1.1 −0.8 −0.8 −1.1 −1.7 −2.4

−3.5 −2.9 −2.4 −2.0 −1.7 −1.6 −1.7 −2.0 −2.5 −2.5 −2.0 −1.8 −1.8 −2.1 −2.5 −3.1

−4.3 −3.7 −3.3 −2.9 −2.7 −2.6 −2.7 −3.0 −3.4 −3.4 −3.0 −2.8 −2.8 −3.0 −3.4 −3.9

−5.1 −4.6 −4.2 −3.9 −3.7 −3.6 −3.7 −3.9 −4.3 −4.3 −3.9 −3.8 −3.8 −4.0 −4.3 −4.7

Figure 1.2: The shape’s signed distance field.

2

1.1. Signed distance fields

1.1.1 Information carried by the distance field

Clearly, the conversion to a grid of 16×16 scalar values is lossy, so let’s examine
what information about the original shape this representation holds. Imagine
plotting a circle for each point of the grid, and using the absolute value of
the signed distance as its radius. The shape’s edge must touch each of these
circles at (at least) one point, but not intersect it. Therefore, the collective
area of the negative circles lies strictly outside the shape and the area of the
positive ones inside. Only the space that does not coincide with any circle is
uncertain. That space is shown in red in Figure 1.3.

Figure 1.3: Analysis of the distance field’s data.

Although the edge of the shape could lead anywhere through the red area,
by taking the shortest or smoothest route, it can still be reconstructed without
problems. That is, of course, assuming the shape is relatively smooth. The
distance field representation would fail to capture any small details of the
edge’s winding at this resolution, which is however usually not a problem for
text, since glyphs tend to consist of smooth strokes.

1.1.2 Benefits of distance field representation

The primary advantage of signed distance fields is the fact that the values
change very smoothly and predictably, even in areas near the edges, where
deciding which pixels belong inside the shape is hardest. Therefore, using
simple interpolation, the signed distance field grid can be sampled at a much
higher resolution, and still provide a good approximation of the actual signed
distances throughout the plane. By only considering the sign of the sampled
distances, the image can be reconstructed at any resolution (Figure 1.4b).

3

1. Introduction

(a) (b) (c)

Figure 1.4: Demonstration of reconstructing the original shape (a) from a low
resolution distance field (b) and from a low resolution image (c).

As Figure 1.4 shows, the reconstruction is almost perfect despite the dis-
tance field’s low resolution. The way this works is demonstrated in Figure 1.5,
which shows a 3D rendering of a height map generated from the distance
field. Here, only the intersections of the white grid hold exact signed dis-
tances (heights). An interpolation has been used for the rest of the surface.

Figure 1.5: A 3D representation of the signed distance field.

Imagine the values in the signed distance field as height values above water
level. The shape then forms an island or a group of islands sticking above
water. The “coastline” however is perfectly smooth this way.

This means that shapes represented using a signed distance field are infi-
nitely scalable without any pixelation.

4

1.1. Signed distance fields

1.1.3 The problem

The problem is that “smooth” isn’t always what we’re looking for. Shapes
often have sharp corners, which cause irregularities in the distance field.

Figure 1.6: A shape with sharp corners (left) and its reconstruction from a low
resolution distance field (right).

Because the technique relies on interpolation, which provides a good ap-
proximation only where the rate of change is more or less constant, the corners
cannot be reconstructed correctly, and will instead look rounded or chipped
in the resulting image. Figure 1.6 displays one such case.

1.1.4 Multi-channel distance fields

A possible solution to the case in Figure 1.6 is to divide it into two smooth
shapes, as shown in Figure 1.7, and create two separate distance fields. When
reconstructing the image, one can first reconstruct the two auxiliary sub-
shapes, and afterwards fill only those pixels that belong in both.

Figure 1.7: A possible decomposition of the shape into a union of two round
shapes.

The distance fields are usually stored as monochrome images. However,
image files have the ability to hold at least 3, and sometimes 4 or more color
channels, making it natural to encode the two separate distance fields as one
image, where each channel holds one of them.

The goal of this thesis is to explore the possibilities of combining multiple
distance fields to improve the quality of rendering corners.

5

1. Introduction

1.2 Practical viability

To verify the potential of the effort, I have performed such decomposition
manually on a string of three letters. This is shown in Figure 1.8.

(a) A string of letters. (b) An ad-hoc decomposition.

Figure 1.8: Multi-channel decomposition of several letters.

I have generated both single-channel and multi-channel signed distance
fields using this decomposition, and reconstructed the image of the string
from each. The results can be seen in Figure 1.9.

(a) Using single channel. (b) Using decomposition.

Figure 1.9: A reconstuction of the letters from low resolution distance fields.

Both versions are perfectly readable, but the appearance of the font is
very different and much less sharp using the basic single channel distance
field, while when using the improved method, the result is almost indistin-
guishable from the original (Figure 1.8a). This difference in quality of recon-
struction shown on a real-life scenario should prove the practical viability of
using a multi-channel distance field in place of a conventional one.

1.3 State of the art

There aren’t many advanced and widely used technologies for dynamic text
rendering in real-time graphical applications and games. In most cases, a sim-
ple raster representation of the glyphs is sufficient. Another common way is
to draw the glyphs in the form of triangle meshes.

6

1.3. State of the art

Where both high quality and performance is demanded, the signed distance
field technology, which was first proposed in 2006 [11], is still considered the
state-of-the-art technology. Some of its many advantages include:

• The rendering process is extremely efficient in a hardware-accelerated
context, comparable to basic textured drawing. It therefore requires no
pre-rasterization step and is ideal for dynamic text, whose transforma-
tion changes between frames.

• Rendering quality is high and scalable – if the source SDF is large enough
in proportion to the target text size, the result will be almost indistin-
guishable from exact methods. Otherwise, a larger SDF can be used.

• It can be used to display text at an arbitrary resolution with no blurring,
pixelation, or other disruptive artifacts.

• Its implementation (in OpenGL for example) is relatively easy in com-
parison with other methods that provide similar image quality.

• It is capable of inexpensive and easy to implement anti-aliasing.

• It holds information about edge distance, which can be used to easily im-
plement plenty of inexpensive visual effects, such as outlines or shadows,
or even animations.

Of course, it is an approximate method and therefore isn’t perfect. It
cannot capture features smaller than the resolution of the SDF’s grid, and
thin strokes are a problem too. Another issue is its tendency to round corners,
as mentioned before.

Even then, no other known method can match all if its advantages. For this
reason, combined with its simplicity, it is currently a very popular method for
displaying all text in a 3D application, including static text, for which exact
methods may have better results, but are also more complex to implement in
a real-time graphics context.

1.3.1 Alternate methods

Apart from the simplest, yet widely used methods, of using raster glyphs or
triangle meshes, there are very few alternatives to signed distance fields used
in practice. Let’s summarize the most significant ones and and compare them
to the distance field technique.

1.3.1.1 Raster glyphs

This is the simplest method, where character glyphs are treated like regular
images. When the glyphs are magnified, they will become blurry or pixelated.

7

1. Introduction

Compare (b) and (c) in Figure 1.4 as a good example of the quality difference.
It is only marginally faster than the distance field method, but this is negated
by the need for larger image resolution.

1.3.1.2 Triangle meshes

The next possibility is converting the vector glyphs into triangle meshes. How-
ever, since modern font formats define their glyph shapes using parametric
curves, this conversion has to be approximate, and depending on the ori-
ginal complexity of the glyph’s shape and the desired quality, the amount of
triangles can become unpractically high, especially considering that a large
amount of characters may be needed to be displayed at the same time. There-
fore, the quality to performance ratio is generally much worse than what
distance fields have to offer.

1.3.1.3 Exact vector rendering

A more advanced version of the triangle mesh rendering method is the possib-
ility of using programmable shaders to draw parametric curves exactly. This
method is described in [9].

It is an exact method, and therefore provides higher quality than distance
fields, but its performance cost is even higher than that of the triangle mesh
method. The glyphs also have to be divided into a large amount of triangles,
but additionally, complex shader calculations must be performed in the ren-
dering process.

1.3.1.4 Advanced texture-based methods

There are other more advanced niche techniques which attempt to eliminate
the need for large triangle meshes and encode the geometry of the shapes
in textures. One such technology is [12], which reconstructs the shape using
functions whose coefficients it looks up from texture data. Another one is
the experimental library called GLyphy [4], which approximates the shape
geometry using circular arcs, and also stores their definitions as texture data.

All of these methods offer higher quality than distance fields, however,
they require complex shader computations, including multiple texture lookups,
making them far less efficient. Because of this, they are rarely used in practice.

1.3.2 Pre-existing solution

Although Valve hinted at the possible improvement of adding more channels
to the distance field in 2007 [6], a working solution for multi-channel distance
field construction has not been published until November 2014 – after I started
working on this thesis. Only limited information about this solution is avail-
able [10], but it is clear the author took an approach very different to my own.

8

1.3. State of the art

The author himself mentions problems with artifacts and lower robustness, as
well as having to treat several special cases. He also uses four color channels,
while my method only needs three for the same task.

Based on this limited information about his method, I believe that my
final solution is more effective and more reliable, as well as faster and simpler.

9

Chapter 2

Preliminaries

In this chapter, I will cover the basic mathematical concepts required to un-
derstand the problems addressed in this work. We will predominantly focus
on the geometry of the vector shapes, and their conversion to distance fields.

2.1 Bézier curves

The font glyphs and other vector shapes will be described by outlines that
consist of line segments and Bézier curves. A line segment is trivial, but it
can also be defined as a sort of “Bézier curve” of order 1, which will be useful
later on. The parametric definition of a line segment between points P0 and
P1 is:

B1(t) = (1− t)P0 + tP1 (2.1)

= P0 + t(P1 − P0) (2.2)

The first formulation is a weighted average between the two endpoints,
while the second adds a portion of the line’s vector to its initial point. A line
segment is simply the set of all points B1(t) for all t ∈ 〈0, 1〉.

Bézier curves are a class of parametric curves. A Bézier curve of order 2,
also known as a quadratic Bézier curve, is the simplest one. Like the line seg-
ment, it also has two endpoints, but additionally a single control point, which
lies outside the curve, but affects its path. This is illustrated in Figure 2.1.

P0

P1

P2

Figure 2.1: A quadratic Bézier curve.

11

2. Preliminaries

The parametric function generating the points along the quadratic Bézier
curve with endpoints P0 and P2 and control point P1 is: [5]

B2(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 (2.3)

= P0 + 2t(P1 − P0) + t2(P2 − 2P1 + P0) (2.4)

Same as with the line segment, all points B2(t) for any t in the range 〈0, 1〉
lie on the Bézier curve.

A cubic Bézier curve (of order 3) is similar, but has two control points, as
illustrated in Figure 2.2.

P0

P1
P2

P3

Figure 2.2: A cubic Bézier curve.

The parametric function generating the points along the cubic Bézier curve
with endpoints P0 and P3 and control points P1 and P2 is: [5]

B3(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (2.5)

= P0 + 3t(P1 − P0) + 3t2(P2 − 2P1 + P0) + t3(P3 − 3P2 + 3P1 − P0)
(2.6)

Bézier curves of higher order will not be used.

2.1.1 Limitations

Unfortunately not any curve can be represented exactly as a Bézier curve or
spline. For example, it is not possible to describe a circle exactly, no matter
the curve’s order. [13] The problem is comparable to converting a sine function
to a polynomial. It is not possible exactly, but an approximation, such as the
Taylor polynomial can be used.

A higher order Bézier curve cannot be described exactly by curves of lower
order, so it is not possible to convert cubic Bézier curves to quadratic ones
without error. The opposite conversion is possible exactly, but since cubic
curves are more complex, and working with them is harder, this conversion
wouldn’t be very practical. Therefore, we will work with both quadratic and
cubic Bézier curves.

12

2.2. Locating sharp corners

2.2 Locating sharp corners

The vector path of the shape’s outline has many vertices, but only some of
them may be in fact corners. In Figure 2.3, only point C is a sharp corner,
while B and D smoothly connect two curves into a spline.

A
A′

B

B′

C

C ′

D

D′

E

Figure 2.3: A path composed of quadratic Bézier curves.

To find the corners, it is necessary to detect whether the curve’s direction
changes abruptly at the endpoint. The direction vector can be obtained from
the curve’s derivative at any point:

dB1
dt (t) = P1 − P0 (2.7)
dB2
dt (t) = 2t(P2 − 2P1 + P0) + 2(P1 − P0) (2.8)
dB3
dt (t) = 3t2(P3 − 3P2 + 3P1 − P0) + 6t(P2 − 2P1 + P0) + 3(P1 − P0) (2.9)

For a line segment (as defined by Equation 2.2), the direction is obviously
always the vector P1 − P0. At the beginning of a curve, where t = 0, the
direction is also P1 − P0. This may be intuitive from Figures 2.1 and 2.2, but
let’s verify this:

dB1
dt (0) = dB1

dt (1) = P1 − P0 (2.10)
dB2
dt (0) = 2(P1 − P0) (2.11)
dB2
dt (1) = 2(P2 − 2P1 + P0) + 2(P1 − P0) = 2(P2 − P1) (2.12)
dB3
dt (0) = 3(P1 − P0) (2.13)
dB3
dt (1) = 3(P3 − 3P2 + 3P1 − P0) + 6(P2 − 2P1 + P0) + 3(P1 − P0)

= 3(P3 − P2)
(2.14)

Using the derivatives, we have confirmed that the vector to the adjacent
control point in fact represents the curve’s direction vector at the endpoint.
Since we are only interested in the direction, the constant factors can be

13

2. Preliminaries

ignored. Knowing the direction vector of both curves meeting at the endpoint,
its “sharpness” can be computed using the cross product.

The cross product of two vectors is not normally defined in two-dimensional
space, but since this operation will be needed on multiple occassions, I will
define it as the following operation between two vectors, ~a and ~b, that returns
a scalar value:

~a×~b def
= axby − aybx (2.15)

The core property of this operation is that the result is 0 for any two
parallel vectors (which also implies Equation 2.16). It can be thought of as
an indicator of the vectors’ difference in direction. The sign of the result also
tells us if the vectors are in clockwise order. Other properties of this operation
include:

~a× ~a = 0 (2.16)

~a×~b = −(~b× ~a) (2.17)

(k1~a)× (k2~b) = k1k2(~a×~b) : k1, k2 ∈ R (2.18)

So, to check if the connection between the curves BA(t) and BB(t) is
a corner, one must find if

dBA
dt (1)× dBB

dt (0)
?
= 0. (2.19)

For the vertices B, C, and D respectively from Figure 2.3, this would be:

(B −A′)× (B′ −B) = 0 (2.20)

(C −B′)× (C ′ − C) 6= 0 (2.21)

(D − C ′)× (D′ −D) = 0 (2.22)

Since we are going to use floating point arithmetics, the result will almost
never be exactly zero, and sometimes it may be desirable to treat very obtuse
corners as smooth too. Therefore, in practice, a maximum angle α ≤ π should
be chosen and used as a threshold to detect sufficiently sharp corners only. To
achieve this, the direction vectors must be normalized first, and the resulting
formula would be: ∣∣∣∣∣ dBA

dt (1)

‖dBA
dt (1)‖

×
dBB
dt (0)

‖dBB
dt (0)‖

∣∣∣∣∣ ?
≤ sinα (2.23)

To also account for the possibility that the two adjacent edges are in fact
parallel, making the cross product zero, but form a 180 degree turn at the
corner, which is valid for a shape composed of curves, additionally, we also
have to check the dot product of the direction vectors, making sure it is
positive, meaning the vectors don’t have opposite directions:

dBA
dt (1) · dBB

dt (0)
?
> 0. (2.24)

14

2.3. Point – edge segment distance

2.3 Point – edge segment distance

Because a signed distance field is an array of signed distances from points in
the grid to the shape’s outline, we must be able to compute these distances.
The shape’s outline consists of edge segments, which are one of a line segment,
a quadratic Bézier curve, or a cubic Bézier curve. These will be collectively
referred to as segments.

Let’s start by establishing the mechanism of determining the minimum
Euclidean distance between a point and the three types of edge segments.

2.3.1 Point – line segment

This is obviously the easiest problem of the three, and an analytic solution is
well known. The algebraic formula for the distance between a point P and
a line (P0, P1) is:

distance(P, (P0, P1)) =
|P × (P1 − P0)− P0 × P1|

‖P1 − P0‖
(2.25)

For a line segment though, the computation is a little more complicated.
The formula only yields the perpendicular distance, which is fine for point A
in Figure 2.4, but for point B, the minimum distance is actually the distance
from endpoint P1, whereas the previous formula would output the distance
from B’s perpendicular projection onto the infinite line, which is closer, but
does not belong to the line segment.

P0

P1 = B′

A

B

A′

Figure 2.4: Finding the minimum distance between a point and a line segment.

What we need to do instead is find the parameter t from the parametric
equation of the line segment (Equation 2.2), for which the distance is minimal.
If it doesn’t lie on the line segment, the closer endpoint will be used instead.

There are two possible ways to find the value of t. Either, we minimize the
distance ‖B1(t)−P‖ by finding the root of its derivative (Equation 2.26), or,
knowing that the direction to the point P is always perpendicular to the line
at B1(t), we only need to find where the dot product is zero (Equation 2.27).

d
dt‖B1(t)− P‖ = 0 (2.26)

(B1(t)− P) · dB1
dt (t) = 0 (2.27)

15

2. Preliminaries

By simplifying either formula, we arrive at:

t =
(P − P0) · (P1 − P0)

(P1 − P0) · (P1 − P0)
(2.28)

After obtaining the parameter t, we can check that it lies in the range
〈0, 1〉 and therefore on the line segment. If it does not, we simply clamp the
value to this range (set it to either 0 or 1, whichever is closer to the original
result). Since B1(0) = P0 and B1(1) = P1, this will yield the closer endpoint
as planned. The final distance can then be obtained simply as the distance
between B1(t) and P .

2.3.2 Point – Bézier curve

The very same approach can be also applied to Bézier curves. Since they are
continuous, it is also true that the minimum distance is perpendicular. The
only difference is, that there could be multiple perpendiculars leading to P ,
as well as multiple extremes of the distance, including maxima.

The generalized equations for a Bézier curve of an arbitrary degree n are:

d
dt‖Bn(t)− P‖ = 0 (2.29)

(Bn(t)− P) · dBn
dt (t) = 0 (2.30)

Before continuing, let’s define some auxiliary vectors to simplify the for-
mulae.

~p = P − P0 (2.31)

~p1 = P1 − P0 (2.32)

~p2 = P2 − 2P1 + P0 (2.33)

~p3 = P3 − 3P2 + 3P1 − P0 (2.34)

Now, the Bézier curves can be expressed as:

B2(t) = t2 ~p2 + 2t ~p1 + P0 (2.35)

B3(t) = t3 ~p3 + 3t2 ~p2 + 3t ~p1 + P0 (2.36)

For a quadratic Bézier curve, the formula from Equation 2.30 is then:

(t2 ~p2 + 2t ~p1 − ~p) · (2t ~p2 + 2~p1) = 0 (2.37)

(~p2 · ~p2)t3 + 3(~p1 · ~p2)t2 + (2~p1 · ~p1 − ~p2 · ~p)t− ~p1 · ~p = 0 (2.38)

Since all of the vectors are arbitrary, this is a general cubic equation. Such
an equation can be solved analytically, using Cardano’s formula [17].

It can only degenerate into a lower order polynomial if ~p2 = ~0. In that
case, the quadratic term will also be zero, and it becomes a linear equation.

16

2.3. Point – edge segment distance

Using Equation 2.33, this only happens when P1 = 1
2(P0 + P2), meaning the

control point P1 lies directly in the middle between the endpoints, resulting
in a straight line. This is consistent with the line segment scenario.

For a cubic Bézier curve, the formula from Equation 2.30 is:

(t3 ~p3 + 3t2 ~p2 + 3t ~p1 − ~p) · (3t2 ~p3 + 6t ~p2 + 3~p1) = 0 (2.39)

(~p3 · ~p3)t5 + 5(~p2 · ~p3)t4 + (4~p1 · ~p3 + 6~p2 · ~p2)t3

+ (9~p1 · ~p2 − ~p2 · ~p)t2 + (3~p1 · ~p1 − 2~p2 · ~p)t− ~p1 · ~p = 0
(2.40)

In this case, we must find the roots of a general quintic equation. Un-
fortunatelly, it has been proven that an analytical solution is impossible by
Abel [16], so a numerical approximation is necessary.

For both the quadratic and the cubic Bézier curve, all roots t in the range
〈0, 1〉 must be inspected, as well as the endpoints t = 0 and t = 1. For each,
the distance ‖Bn(t) − P‖ must be computed, and the minimum shall be the
result.

2.3.3 Signed distance

Now that we have found the minimum distance, we also have to decide whether
it is positive or negative. By distinguishing the two endpoints of an edge
segment, the line segment or curve can be considered oriented. That way,
one side of the segment can be designated as the inside, and the other as the
outside. Points on the segment’s inside will then be in a positive distance,
and the rest in a negative distance, as illustrated in Figure 2.5.

outside

inside

A
B

Figure 2.5: Negative (A) and positive (B) distance from a Bézier curve.

We already know that the direction of the curve at t is dBn
dt (t), and we also

know the parameter t of the closest point on the curve Bn(t) to P . All that’s
left to do to determine which side P is on, is to find the relative direction from
Bn(t) to P in respect to the curve’s direction. That’s what cross product is
for.

17

2. Preliminaries

The complete formula for the signed distance therefore is:

sdistance(Bn, P) = sgn
(
dBn
dt (t)× (Bn(t)− P)

)
‖Bn(t)− P‖ (2.41)

2.4 Point – shape distance

When finding the signed distance from the entire shape, the first idea might
be to simply use the distance from the closest edge segment. This would work
well for the absolute distance, but poses a problem with determining the sign.

BA

BB

A

B

C

D

E

S

Figure 2.6: The problem with using the distance to the closest segment.

Consider the situation in Figure 2.6, where the segments BA and BB make
up a convex corner S of the shape. For point A, segment BA is the closest.
For pont B, it is segment BB. For points C, D, and E however, both segments
are equally distant, and the minimum distance is that to the corner S.

Point A is on the outside of BA and on the inside of BB. Since it is closer
to BA, only that will be taken into consideration and A will be ruled outside.
Point E is on the outside of both BA and BB, so it will also be correctly ruled
outside. Point C is on the outside of BA but on the inside of BB. It is equally
close to both segments, and therefore it is unclear which value should be used.

To solve this, we will divide the plane between the two segments along
a ray leading from S in the direction of the corner, as shown in Figure 2.7.

BA

BB

A

B

C

D

E
S

Figure 2.7: Dividing the plane between two adjacent segments.

18

2.5. Pseudo-distance fields

To achieve this, the signed distance value from each edge is not enough. In
Figures 2.6 and 2.7, although the shortest distance from C to segments BA and
BB is equal, the signed distance to BA must be used. That’s because relative
to the corner, it lies on BA’s half of the plane. This can be also described by
how orthogonal to the segment’s direction at the corner the point is. The rate
of “orthogonality” between two normalized vectors can be measured by their
cross product. In the case of C, it would hold that:∣∣∣∣∣ dBA

dt (1)

‖dBA
dt (1)‖

× C −BA(1)

‖C −BA(1)‖

∣∣∣∣∣ >
∣∣∣∣∣ dBB

dt (0)

‖dBB
dt (0)‖

× C −BB(0)

‖C −BB(0)‖

∣∣∣∣∣ (2.42)

This also works in general. The dividing ray is equally non-perpendicular
to both segments, but points above it would make a sharper angle with BA

than with BB.

Therefore, if distances are equal, we must maximize the “orthogonality”:

orthogonality(Bn, P) =

∣∣∣∣∣ dBn
dt (t)

‖dBn
dt (t)‖

× P −Bn(t)

‖P −Bn(t)‖

∣∣∣∣∣ (2.43)

It is worth noting that partitioning the plane by which segment or edge
is the closest according to these rules results in a generalized Voronoi tessela-
tion. [2] An example of a generalized Voronoi diagram generated by dividing
the plane by the closest edge is shown in Figure 2.8.

Figure 2.8: A generalized Voronoi diagram of the letter “A”.

2.5 Pseudo-distance fields

A special variant of the signed distance field is the signed pseudo-distance
field, which uses signed pseudo-distances instead. The pseudo-distance to an
edge segment is the minimum perpendicular distance to any point lying on

19

2. Preliminaries

the edge segment itself or anywhere on its infinite extension which leads from
each endpoint. Unlike before, the distance to endpoints is not considered.

For a line segment, this is trivial, and Equation 2.25 can be used. For
curves, there are two possible approaches with different outputs. Either the
parameter t is computed as usual, but isn’t clamped to the range 〈0, 1〉, res-
ulting in a smooth continuation of the curve, or the curve is extended using
straight rays, and the candidates for closest point on the segment will include
solutions perpendicular to both the curve itself, and the rays. An example of
pseudo-distance can be seen in Figure 2.9.

P

a

Figure 2.9: The signed pseudo-distance from point P to edge a.

Figure 2.9 also demonstrates however, that edge pseudo-distances won’t be
enough to find the shape pseudo-distance. Note that at point P , the minimum
pseudo-distance is to the edge a and is positive. This would place P inside
the shape. It is clear however, that edge a is completely irrelevant in this area
and that P is in fact outside. The correct pseudo-distance to the shape is
therefore the pseudo-distance to the edge segment that is closest in terms of
true distance.

(a) A true distance field. (b) A pseudo-distance field.

Figure 2.10: Contour graph of a regular distance field and a pseudo-distance
field around a corner.

The difference between a regular and a pseudo-distance field is best seen
in Figure 2.10. At first glance, it may seem that this change of the distance
metric facilitates the preservation of sharp corners, but that is not the case.

20

Chapter 3

Theoretical analysis

In this chapter, I will present the problems of multi-channel shape decompos-
ition from a theoretical standpoint, and the solutions I have developed.

3.1 Shape simplification

The outline of the vector shape may include subtle details or even uninten-
tional imperfections that may be only visible at a large magnification and
that are smaller than the grid of the signed distance field. Such nuances may
hinder the effectiveness of the decomposition as the edges in these areas will
be too short to be encoded in the distance field, and attempting to preserve
the sharpness of their corners will be counterproductive. Therefore, some
preprocessing of the shape vector is in order.

3.1.1 Merging close vertices

If two or more adjacent vertices are too close together, a possible solution
would be to somehow exclude them from the decomposition logic, and not
attempting to preserve corners in these areas.

In some cases however, it may be better to treat the group of vertices as
one. The Open Sans typeface for example, has a recurring design element,
where a very short edge divides what would otherwise be a sharp concave
corner. The edge is so short that it in fact looks like a sharp concave corner
at reasonable sizes, and therefore treating it as such would be preferable to
losing sharpness in the area.

To do this, we can prune the shape in pre-process of any edges shorter
than a given limit. The outline then has to be reconnected by moving the
endpoints of the remaining edges together.

21

3. Theoretical analysis

3.1.2 Moving the endpoint of a curve

If the edge segment, whose endpoint we need to move is a line segment, the
operation is trivial. If it is a curve though, we must take care not to alter its
appearance any more than necessary.

An effective way to achieve this is to preserve the curve’s direction at
the endpoints, and therefore not creating (or destroying) new corners and
preserving the adjoining corners’ angles. For a cubic Bézier curve, this is
also simple. Since its direction vectors at endpoints are P1 − P0 and P3 − P2

(Equations 2.13 and 2.14), by changing the position of P1 along with P0 and
P2 along with P3, both of these vectors will remain unchanged.

The same cannot be said for the simpler quadratic curves however, where
only one control point is shared between the endpoints.

P0

P1
P2

P ′0

P ′2

P ′1,0

P ′1,2P ′′1

Figure 3.1: Independent translation of a quadratic curve’s endpoints.

In Figure 3.1, we start with the curve (P0, P1, P2). If we were to move the
endpoint P0 to P ′0, the correct way to adjust the control point P1 would be to
move it along P2 − P1 using the following formula:

P ′1,0 = P1 +
(P0 − P1)× (P ′0 − P0)

(P0 − P1)× (P2 − P1)
· (P2 − P1) (3.1)

Adjusting the control point along P0 − P1 when moving P2 to P ′2 instead
would look like this:

P ′1,2 = P1 +
(P2 − P1)× (P ′2 − P2)

(P2 − P1)× (P0 − P1)
· (P0 − P1) (3.2)

One can verify that the orientation of the curve at either endpoint hasn’t
changed by checking the cross products:

(P0 − P1)× (P ′0 − P ′1,0)
?
= 0 (3.3)

(P2 − P1)× (P2 − P ′1,0)
?
= 0 (3.4)

22

3.2. Corner analysis

Both of the equations have been checked by a computer and confirmed
to hold for any vectors P0, P1, P2, and P ′0, and substituting P ′1,0 using Equa-
tion 3.1. However, this alone doesn’t guarantee that the direction vectors
weren’t flipped, still making the cross products zero but changing the shape
in a major way. Since this is the only way to alter a quadratic Bézier curve
while preserving endpoint directions, if it fails, that means the direction can-
not be preserved due to limitations of the quadratic curve.

Combining the two operations in any order places the control point at P ′′1 :

P ′′1 = P ′1,0 +
(P2 − P ′1,0)× (P ′2 − P2)

(P2 − P ′1,0)× (P ′0 − P ′1,0)
· (P ′0 − P ′1,0) (3.5)

= P ′1,2 +
(P0 − P ′1,2)× (P ′0 − P0)

(P0 − P ′1,2)× (P ′2 − P ′1,2)
· (P ′2 − P ′1,2) (3.6)

Again, it has been confirmed by a computer program that (3.5) and (3.6)
are equivalent, and therefore moving the two endpoints in any order results
in the same curve.

3.2 Corner analysis

In order to correctly adjust the distance field to accommodate for sharp
corners, we must first understand what exactly happens around them.

Let’s divide the plane into four quadrants, with the ones lying inside the
shape filled. Figure 3.2 shows the average case behavior of the image recon-
structed from a signed distance field. Figure 3.2a corresponds to a convex
corner of the shape, Figure 3.2b to a straight edge, and Figure 3.2c to a con-
cave corner. The correct border is hatched.

(a) Top-left only. (b) Top-left and top-right. (c) All but bottom-right.

Figure 3.2: The average resulting image of filled quadrants from an SDF.

There is however one other case. When only the opposite quadrants are
filled, the result can be one of several possibilities depending on the alignment
with the grid of the distance field. The possibilities include the cases illustrated
in Figure 3.3 and anything inbetween.

23

3. Theoretical analysis

Figure 3.3: The possible results of filled opposing quadrants using an SDF.

The amount of rounding off at the corner also depends on the alignment
with the distance field’s grid and therefore is essentially random. A composite
image of all possible outcomes is shown in Figure C.1. What is important, is
that some quadrants are guaranteed to remain homogeneous.

Using the observations from Figures 3.2 and 3.3, we can divide any corner
into eight roughly homogeneous areas, as illustrated in Figure 3.4.

A B

C D

A′ B′

C ′ D′

Figure 3.4: Dividing the plane into quadrants and subquadrants.

All of the previous illustrations only capture the case of an axis aligned
and orthogonal corner. Of course, a corner can be oriented in any way and
can form any angle. The quadrants would then also be aligned differently,
always along the two edge segments at the corner, as illustrated in Figure 3.5.

Figure 3.5: Example of quadrant alignment of a non-orthogonal corner.

24

3.2. Corner analysis

Based on whether the shape is filled in a given quadrant A through D (1)
or not (0), it can be determined if the areas A′ through D′ will appear filled
in the resulting image. This is captured in Table 3.1.

A B C D A′ B′ C ′ D′

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 1 1 0 ? ? ? ?
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 1 ? ? ? ?
1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1

Table 3.1: Truth table of the filling of quadrant areas.

This can be expressed by a Boolean function f that returns whether the
central subquadrant is filled depending on the intended filling of the quadrants.
Its first parameter is the fill of the local quadrant, the following two are the
neighboring quadrants, the forth one is the opposite quadrant, and the last
one, r, is a random bit, which has a role in the two uncertain scenarios.

A′ = f(A,B,C,D, r) (3.7)

B′ = f(B,A,D,C, r) (3.8)

C ′ = f(C,A,D,B, r) (3.9)

D′ = f(D,B,C,A, r) (3.10)

Based on Table 3.1, function f can be defined as follows:

f(A,B,C,D, r)
def
= AB +AC +BCD + rABCD + rABCD (3.11)

3.2.1 Switching to multiple channels

Using more than one channel in the distance field, the same rules apply for
the values in each channel. Instead of using a binary value to denote the fill

25

3. Theoretical analysis

of an area, we will use binary vectors, where each dimension corresponds to
a certain channel. For any such vector A, its norm ‖A‖ ∈ B will determine if
it marks an area inside the shape (1) or outside (0).

The function f can also be generalized to accept and return binary vectors,
performing the original operation separately for each channel:

fn(A,B,C,D, r)
def
= (f(a1, b1, c1, d1, r), ..., f(an, bn, cn, dn, r))

: A,B,C,D ∈ Bn, r ∈ B (3.12)

All that is left to do is to assign the correct color combinations for quad-
rants of convex and concave corners (Figure 3.6).

A B

C D

A′ B′

C ′ D′

inner outer border

outer border outer opposite

(a) A convex corner.

E F

G H

E′ F ′

G′ H ′

inner core inner border

inner border outer

(b) A concave corner.

Figure 3.6: The two possible corner types and their quadrants.

To ensure the corners are sharp, the channels must be chosen in such a way,
that the areas that are supposed to be filled are distinguishable from those

Inside Outside

A B
fn(A,B,C,D, 0) fn(B,A,D,C, 0)
fn(A,B,C,D, 1) fn(B,A,D,C, 1)

E C
fn(E,F,G,H, 0) fn(C,A,D,B, 0)
fn(E,F,G,H, 1) fn(C,A,D,B, 1)

F D
fn(F,E,H,G, 0) fn(D,B,C,A, 0)
fn(F,E,H,G, 1) fn(D,B,C,A, 1)

G H
fn(G,E,H, F, 0) fn(H,F,G,E, 0)
fn(G,E,H, F, 1) fn(H,F,G,E, 1)

Table 3.2: The differentiation of binary vectors that denote the inside and
outside of the shape.

26

3.2. Corner analysis

that are not. Therefore, the values of vectors A,B,C,D,E, F,G,H ∈ B2 must
be chosen so that the norm of no vector in the left column of Table 3.2 is equal
to the norm of any vector in the right column.

3.2.2 Median of three model

By having a computer program test all possible values of vectors A through
H, I have found that the minimum dimension n for which the distinction can
be satisfied is 3. The most intuitive working model I have discovered this way,
is one where the median value of the three components of the vector dictates
the result:

‖A‖ def
= median(a1, a2, a3) (3.13)

An example of this is shown in Figure 3.7, where the first dimension of the
binary vectors is encoded using the red color channel, the second dimension
with green channel, and the third one with blue channel.

(1, 1, 0) (1, 0, 0)

(0, 1, 0) (0, 0, 0)

(a) A convex corner.

(1, 1, 1) (1, 0, 1)

(1, 1, 0) (1, 0, 0)

(b) A concave corner.

Figure 3.7: Possible color encoding of a corner’s quadrants using the median
of three model.

The individual dimensions in this model are interchangable because me-
dian disregards the order of arguments. For a convex corner with inner quad-
rant A, outer border quadrants B and C, and outer opposite quadrant D, it
must hold that:

B + C ≤ A (3.14)

BC = D = ~0 (3.15)

‖B‖ = ‖C‖ = 0 (3.16)

For any concave corner with inner core quadrant E, inner border quadrants
F and G, and outer quadrant H, it must hold that:

FG ≥ H (3.17)

F +G = E = ~1 (3.18)

‖F‖ = ‖G‖ = 1 (3.19)

27

3. Theoretical analysis

3.3 Plane partitioning

Having set the rules of channel assigment around corners, it is now necessary
to enforce them throughout the plane. There are many corners in a a shape’s
outline, and the neighborhood of each of them must be assigned different
coloring without interfering with the rest. To achieve this, the plane must be
divided not only into quadrants around corners, but also between quadrants
of different corners.

To divide the plane, I have utilized the generalized Voronoi tesselation
introduced in Section 2.4, with edges split into two half-edges. The plane is
this way divided into areas with a common nearest half-edge. Each half-edge
coincides with one corner, and therefore the half-edge’s area can be attributed
to that corner. Each corner then has two areas in the Voronoi partitioning,
and in those areas, the plane is divided according to that corner’s quadrants.

Ideally, the touching quadrants of different corners should have the same
color. This can be enforced for the quadrants of adjacent corners, which are
guaranteed to meet at the midpoint of each edge, using a coloring strategy.

3.3.1 Coloring strategy

Using the median of three model from Section 3.2.2, there are several valid
ways to assign colors to quadrants of a corner. In order to make sure the
touching quadrants of adjacent corners are colored the same, we can use the
following procedure:

• Set I to any vector with two set bits, set O to any vector with one set
bit, such that IO 6= ~0.

• Walk along the edge and for each corner:

– If it is convex, use I for its inner quadrant, ~0 for outer opposite,
O for the first outer border quadrant, and I − O for the second
outer border quadrant (the one touching the area of the following
corner). Set O := I −O.

– If it is concave, use O for its outer quadrant, ~1 for inner core quad-
rant, and I for the first inner border quadrant. Set I := ~1− (I−O)
and use the new value of I for the remaining inner border quadrant.

Unfortunatelly, it is not always possible to apply this method in a way
that the first and last corner’s quadrants are matched, which means that
some shapes must have at least one edge with mismatching colors.

Take the example in Figure 3.8. Here we start with I1 = (1, 1, 0) and
O1 = (1, 0, 0). The first corner is a concave one, so its quadrants are colored
according to these rules, and only I is changed:

I2 = ~1− (I1 −O1) = ~1− ((1, 1, 0)− (1, 0, 0)) = (1, 1, 1)− (0, 1, 0) = (1, 0, 1)
(3.20)

28

3.3. Plane partitioning

O1

O2 O3

O4

O5 O6

O7

I1

I2

I3

I4 I5

I6

I7

I8

Figure 3.8: Quadrant coloring of a sequence of corners.

The next corner is convex, so only O is changed this time:

O2 = I2 −O1 = (1, 0, 1)− (1, 0, 0) = (0, 0, 1) (3.21)

And so on. You can check that the quadrants of each corner satisfy the
condition established in Table 3.2, and also that each edge has a single solid
color on each side.

If the ends of the sequence were to be connected though, this poses a prob-
lem, as O7 6= O1. The outside quadrant color would have to change in the
middle of the connecting edge.

3.3.2 Collisions of uncorrelated areas

Often, the quadrants of unrelated edges from completely different parts of the
shape will meet too. Unfortunately, this happens in a very irregular and un-
predictable fashion, and therefore the quadrant coloring in these cases cannot
be reliably correlated.

Since the distance field representation isn’t exact, it can be disturbed by
nearby edges in such a way that the border between the uncorrelated quad-
rants will be shifted slightly differently for each color channel. This phe-
nomenon is illustrated in Figure 3.9.

A

B

A

B

AB A+B

Figure 3.9: The border between areas colored A and B (left) and a possible
result after reconstruction (right).

29

3. Theoretical analysis

Note that if A = (1, 1, 0) and B = (1, 0, 1), both inside values, as is the
case in the picture, then AB = (1, 0, 0), which is an outside value. This means
that an unintentional hole will appear in the resulting image at this spot, and
that is a serious problem.

To prevent this, we will introduce padding. Between the separate areas
in the plane partitioning, a neutral area of padding will be inserted and filled
with a neutral color p(A,B) derived from the colors on both sides, A and B.
The effect is demonstrated in Figure 3.10.

A

B

P = p(A,B)

A

B

P
AP A+ P

BP B + P

Figure 3.10: Padding P between areas colored A and B (left) and a possible
result after reconstruction (right).

We can see that for this to work, it must hold that

‖A‖ = ‖B‖ = ‖p(A,B)‖ = ‖Ap(A,B)‖ = ‖A+ p(A,B)‖
= ‖Bp(A,B)‖ = ‖B + p(A,B)‖. (3.22)

The neutral color depends on whether this is inside the shape, or outside.
For the inside, we can use p(A,B) = A+B, and for the outside p(A,B) = AB.
Note that if A = B, which is the ideal case when no padding is needed, then
p(A,B) will also be equal to A and B, making the padding invisible.

30

Chapter 4

Realization

This chapter details the workings of the proposed methods and algorithms.

4.1 Preparing the input

The first step will be to acquire the vector shape in the right format.

4.1.1 Loading shape from file

Since the primary purpose of this work is improving text rendering, it is im-
portant to be able to load character glyphs from widely used font file formats,
specifically vector formats, such as TrueType and OpenType. To also allow
for decomposition of other miscellaneous vector shapes, I have added basic
support for SVG files.

4.1.1.1 Loading font files

The two commonly used formats for vector-based fonts are TrueType (TTF)
and OpenType (OTF). [1] Both of these formats are based on storing the
outlines of individual characters (glyphs) using line segments, and quadratic
or cubic Bézier splines. To decode these two formats, I have used the FreeType
library [15], which enables extraction of the individual curves.

4.1.1.2 Loading SVG files

SVG files have the form of XML documents. Although they have extensive
capabilities for vector graphics storage, we must extract only a single colorless
shape. For this simple task, I used the lightweight TinyXML 2 library [14] to
parse the XML file and locate the first <path> element. The definition of the
path is then parsed from the element’s attributes according to [19].

31

4. Realization

4.1.2 Input representation

It might not be immediately clear how to represent a vector shape using
outlines, since it might not form a simply connected space [18]. For this, I
have adopted the approach used by the TTF and OTF file formats, which
solves the exact same problem.

Each shape, or glyph, consists of a set of non-intersecting outlines, or con-
tours, which are closed paths made up of edge segments. The edge segments in
the contours are oriented, determining the contour’s winding, so for example,
if the segments of a contour are oriented clockwise, its winding is positive.
When combining the contours into a single shape, a clockwise oriented con-
tour will be additive, and a counter-clockwise one subtractive.

This means, that counter-clockwise oriented contours can be placed inside
clockwise oriented ones to form cutouts. This system has an important prop-
erty, which is that the inside of the shape is always on the same side of an
oriented edge segment. This property will be very important when computing
signed distances later on.

An edge segment is a part of the outline that smoothly connects two ver-
tices. It can be either a line segment, a quadratic Bézier curve, or a cubic
Bézier curve.

Shape Contours Edge segments

Figure 4.1: The initial structure of a shape prototype.

An example can be seen in Figure 4.1. The glyph of the letter “Ř” here
consists of three contours. The basic “R” shape and the caron are oriented
clockwise, while the central crescent cutout is oriented the opposite way.

This representation shall be called the shape prototype, and if the provided
SVG and font file loading capabilities don’t suffice, such prototype can be
easily constructed by other means.

32

4.2. Single-channel distance field construction

4.1.3 Shape preprocessing

After having acquired the shape in this format, the contour must be divided
into edges at actual corners. The mechanism of identifying these is described
in Section 2.2. This step basically groups several smoothly connected edge
segments into a single logical edge, and alters the hierarchy of the shape
contents, as shown in Figure 4.2.

Shape Contours Edges Edge segments

Figure 4.2: The structure of the shape after edge grouping.

4.1.3.1 Edge pruning

The next step, which is optional, is to prune the shape of edges that are too
short to be properly represented in the low-resolution distance field and unfit
for any attempts at corner preservation.

Here, edges, whose (estimated) length is below a given threshold will be
removed. After that, the resulting gaps will be closed up by moving the
endpoints of the disconnected neighboring edges to their midpoint using the
technique from Section 3.1.

At this point, the shape is ready for processing, and what to do with it is
up to the user. I have implemented two algorithms, which construct a multi-
channel signed distance field of the shape that improves the rendering quality
of sharp corners. Each takes a fundamentally different approach to the dis-
tance field’s construction.

4.2 Single-channel distance field construction

The most basic functionality, which could not have been omitted is the con-
struction of a regular single-channel distance field. This is necessary mainly
for comparative testing, but some concepts described here will be useful later
on.

33

4. Realization

4.2.1 General image construction

The distance fields will have the form of raster images. All algorithms in this
thesis whose task is to generate an image will have roughly the following form,
and only the GeneratePixel function will differ:

Algorithm 1 The general procedure for generating an image.

1: procedure ConstructImage(bitmap,width, height)
2: for y ← 0 to height− 1 do
3: for x← 0 to width− 1 do

4: P ← TransformCoordinate(
x+

1
2

width ,
y+

1
2

height)
5: bitmap(x, y)← GeneratePixel(P)

The entire bitmap of the image will be traversed once using a cycle, and
the color of a single pixel determined in each step. Each pixel corresponds
to a position in the coordinate system of the vector shape. That position is
computed using a transformation function TransformCoordinate. This
transformation will be specified by the user in order to frame the shape in the
desired way. Note that half a pixel size is added to the pixel coordinates. This
is so that the position of the pixel’s center is used.

Another issue is converting the signed distance to a color value. Each
color channel is typically stored as a single byte – an integer value between
0 to 255. For this, a maximum absolute distance dMAX must be chosen by
the user, and the range 〈−dMAX ,+dMAX〉 converted to 〈0, 255〉 in the case of
a byte bitmap. Finally, the value is rounded if necessary.

For this conversion, I will define the distanceColor map as

distanceColor(distance)
def
=

(
distance

distanceRange
+

1

2

)
·maxColor, (4.1)

where distanceRange = 2dMAX is the width of the distance range andmaxColor
is the maximum color value, 255 for byte bitmaps.

4.2.2 Finding the signed distance to the closest edge

As described in Section 2.4, to determine which edge is the closest, the distance
measure has to include two values – the actual distance, and a measure of
orthogonality. All signed distance values in the following algorithms will hold
both of these components, and the comparison function Cmp will correctly
take both into account to determine which distance value is factually closer.

I have implemented the EdgeSignedDistance function, which returns
the correct signed distance from an edge in this format, according to Sec-
tion 2.3. For cubic curves, which require solving a fifth degree polynomial
equation, it uses Henrik Vestermark’s implementation of the Jenkins-Traub
algorithm [7], which is a globally convergent approximate solution method.

34

4.3. Corner preserving shape decomposition

Using this function and the comparison Cmp, the edge whose absolute
distance is deemed lower than any other is the closest edge at position P :

Algorithm 2 Finding the closest edge of shape s to a point P .

1: function ClosestEdge(P, s)
2: dMin←∞
3: eMin← nil
4: for each contour c of shape s do
5: for each edge e of contour c do
6: d← EdgeSignedDistance(P, e)
7: if Cmp(d, dMin) < 0 then
8: dMin← d
9: eMin← e

10: return eMin

The signed distance from the shape can be now determined simply as the
signed distance from the closest edge:

Algorithm 3 Pixels of a regular signed distance field.

1: function GeneratePixel(P)
2: e← ClosestEdge(P, s)
3: d← EdgeSignedDistance(P, e)
4: return distanceColor(d)

A more sophisticated lookup of the closest edge could be employed here
to increase the algorithm’s performance.

4.2.3 Pseudo-distance field

The pseudo-distance field can be constructed just as simply, assuming an
EdgeSignedPseudoDistance function that returns the correct shape pseudo-
distance in accordance with Section 2.5.

Algorithm 4 Pixels of a pseudo-distance field.

1: function GeneratePixel(P)
2: e← ClosestEdge(P, s)
3: d← EdgeSignedPseudoDistance(P, e)
4: return distanceColor(d)

4.3 Corner preserving shape decomposition

There are several possible ways to construct the signed distance field of a shape’s
multi-channel decomposition:

35

4. Realization

• Constructing the exact vector representation of the decomposition and
using it to generate the SDF,

• constructing a raster representation of the decomposition and using it
to generate the SDF,

• or, constructing the distance field directly.

I have not attempted the first option, because it would include a problem
very similar to the construction of the vector representation of an exact gen-
eralized Voronoi diagram of Bézier curves and line segments. That problem
alone would be extremely difficult, and would probably exceed the scope of
this whole thesis.

Therefore, I started with the second option, which is the easiest. It has two
disadvantages however. Firstly, the SDF will be generated from an image of fi-
nite resolution, and therefore won’t be exact. This can however be negligible if
the resolution is high enough. The second problem is that constructing a pos-
sibly very large image of the intermediate decomposition will have a major
impact on the algorithm’s performance and memory consumption.

4.3.1 Edge channel assigment

Although coloring pertains to corner quadrants, it should be apparent from
Figure 3.8, that the colors can be assigned to edges instead. Since it might
be necessary that the two endpoints of an edge have different coloring, each
edge will be assigned four colors in total – two inner and two outer, for the
first half and the second half of the edge.

The edge colors will be assigned using the coloring strategy from Sec-
tion 3.3.1.

4.3.2 Construction of the intermediate decomposition

The next step is to render the high resolution representation of the decompos-
ition. At each pixel of the decomposition, it must be determined which corner
it belongs to by finding the closest half-edge. Then, it must be decided which
of the corner’s quadrants the pixel occupies.

The closest half-edge can be determined using ClosestEdge, and then
finding at what portion t ∈ 〈0, 1〉 this edge is closest to P . A value t < 1

2
implies the first half of the edge and its first endpoint A as the parent corner.
A value t ≥ 1

2 implies the second half of the edge and its second endpoint B
as the parent corner.

After acquiring the closest edge with endpoints A and B, its neighboring
edges nA and nB, its signed distance d, and the portion t at which the distance
is minimal, the following algorithm can be used to determine the quadrant in
which the point P lies.

36

4.3. Corner preserving shape decomposition

Algorithm 5 Determining the pixel’s quadrant.

1: if t < 1
2 then

2: core←
(

(P −A)× dnA
dt (1) > 0

)
⊕ (is A convex?)

3: else
4: core←

(
(P −B)× dnB

dt (0) > 0
)
⊕ (is B convex?)

5: if d ≥ 0 then
6: if core then quadrant← inner core else quadrant← inner border
7: else
8: if core then quadrant← outer opposite else quadrant← outer border

Now, applying the median of three model from Section 3.2.2, the inner core
pixels will be colored white (all channels on), and outer opposite pixels black
(all channels off). For the border quadrants, the half-edge’s inner or outer
color will be used, depending on the quadrant, as assigned in the previous
step.

The only remaining issue to be solved is when two inner or two outer areas
of different colors touch, which has to be resolved using padding (described
in Section 3.3.2). I have developed two methods of inserting padding into the
decomposition.

4.3.2.1 Padding from distance ratios

This approach isn’t perfect, but it works very well in most situations and can
be performed in one pass along with the previous color computation.

Once the closest edge for a pixel has been found, additionally all edges,
which are less than x times farther, and on the same side of the shape, must
be found as well. The coloring of each of these vertices will be then combined
(using OR if inside, AND if outside).

d

2d

Figure 4.3: Padding (white) derived from distance ratios.

This mechanism, in most cases, results in a stripe proportional to the
shape’s thickness in that area. The example in Figure 4.3 uses x = 2 and
because of that, divides the stroke into thirds.

37

4. Realization

There is however a small problem with this approach. In Figure 4.4, the
reddish area also satisfies this condition for edges a and b, marking it as
padding between the edges, which it clearly is not. Although this behavior
is not intentional, it is harmless, as all it does is add unnecessary areas of
padding very far from any edges (a has to be the closest one for this to happen),
which have no impact on image quality, but may make the decomposition look
strange. I have tried to fix this cosmetic issue, but failed to reach a solution
without side effects.

d

2d

a b

Figure 4.4: Unnecessary false padding resulting from this method.

4.3.2.2 Padding in post-process

The other option is to generate the image without addressing this problem,
and solving it separetely afterwards, by locating pixels closer than x to pixels
of incompatible color, and marking them. In this case, the appropriate value
of x can be derived from the original and target SDF resolution, making the
padding only exactly as thick as needed to prevent artifacts. In another pass,
the inner marked pixels would be recolored white, and the outer ones black.

4.3.3 Distance field construction from raster decomposition

The last step after acquiring the raster representation of the decomposition is
constructing the multi-channel signed distance field. Of course, the procedure
is exactly the same as constructing a regular signed distance field separately
for each color channel.

Exact linear-time algorithms exist for this task [3], but I chose to take
a simpler approach, iterating over all of the border pixels in the decomposition,
and incorporating the signed distance of each into the entire distance field, thus
eventually finding the minimum for each cell.

Interestingly, even computing the correct signed distance between one such
border pixel and a distance field cell position poses a problem. Since the actual
border of the shape isn’t at the border pixel but right next to it, the Euclidean
distance has to be adjusted by about half a pixel to account for this.

38

4.4. Direct multi-channel distance field construction

4.4 Direct multi-channel distance field
construction

After carefully analyzing the properties of the various decompositions and ob-
serving the behavior of the distance fields, I have managed to develop a sim-
plified version of the algorithm, which is able to construct the multi-channel
distance field directly from the vector representation of the shape.

This algorithm is superior to the indirect construction for the following
reasons:

• It is very fast. It’s time complexity is equivalent to the construction of
a regular distance field.

• It requires no additional memory apart from a constant number of tem-
porary variables.

• It doesn’t lose the signed distance information in any part of the image,
which can be used for visual effects. It even preserves sharp corners at
other distances from the outline.

• The algorithm itself is simple and elegant.

Because of this, I have omitted some optimizations in the implementation
of the previous algorithm, and only mentioned the possibilities. They can
however be added easily.

The direct algorithm is also based on the median of three model, and
therefore works with 3 channels. It has three steps.

4.4.1 Edge channel assignment

This time, each edge will be only assigned one color. The only exception to
this is the case when a contour has a teardrop shape – when it only consists
of a single edge, but forms a sharp corner where it connects to itself. In this
case, the edge has to be divided into half-edges with different colors.

There are only two rules for the coloring. First, every edge must have at
least two channels on (leaving white, yellow, magenta, or cyan colors only),
and second, in order for a corner to remain sharp, its two adjacent edges must
have exactly one channel in common.

In practice, this means that we need to cycle between the three two-channel
colors – yellow, magenta, and cyan – so that no two adjacent edges have the
same color. This is always possible without dividing the edges any further
(except in the teardrop case). The following is a simple method to achieve
this:

39

4. Realization

Algorithm 6 Simple edge color assignment assuring that no two adjacent
edges of shape s share the same color.

1: procedure EdgeColoring(s)
2: for each contour c of shape s do
3: if c has only 1 edge then
4: current← (1, 1, 1)
5: else
6: current← (1, 0, 1)

7: for each edge e of contour c do
8: color(e)← current
9: if current = (1, 1, 0) then

10: current← (0, 1, 1)
11: else
12: current← (1, 1, 0)

Additionally, the white color can be used in some special cases, as a sort
of neutral color. As applied in Algorithm 6, it can be used for fully smooth
contours (with only one edge). For this case it is the safest option, because it
won’t cause clashes with neighboring contours that are too close. It could also
be used as padding, or to exclude edges from the corner preserving scheme.
This could be used for the very short edges, where coloring won’t pay off,
instead of pruning them in the pre-process stage.

4.4.2 Distance field construction

Now that each edge has a color, the distance field can be constructed in exactly
the same way as the pseudo-distance field (Section 4.2.3), except that for each
channel of the distance field, only the edges with that channel set will be
considered. This is facilitated by Algorithm 7.

Another perspective to look at this is that we are constructing three
pseudo-distance fields, each with only a subset of the original shape’s edges.
However, since the subsets of edges are generally disconnected, these are not
correctly formed distance fields that could be constructed from an actual de-
composition. The values in the distance fields won’t be continuous either,
there will be hard jumps between large negative and large positive distances,
referred to as false edges. It has been confirmed by testing though, that these
cases can only arise either far from any edges, or at edges that do not belong
to the discontinuous distance field channel. If an edge does not belong to one
channel, it must belong to the other two according to the coloring rules, and
therefore the distance values for the remaining two channels will be the same.
Because of

median(a, a, b) = a, (4.2)

the value in the discontinuous channel won’t affect the result.

40

4.4. Direct multi-channel distance field construction

Algorithm 7 Pixels of a corner preserving multi-channel distance field.

1: function GeneratePixel(P)
2: dRed←∞, dGreen←∞, dBlue←∞
3: for each contour c of shape s do
4: for each edge e of contour c do
5: d← EdgeSignedDistance(P, e)
6: if color(e) · (1, 0, 0) 6= 0 and Cmp(d, dRed) < 0 then
7: dRed← d, eRed← e

8: if color(e) · (0, 1, 0) 6= 0 and Cmp(d, dGreen) < 0 then
9: dGreen← d, eGreen← e

10: if color(e) · (0, 0, 1) 6= 0 and Cmp(d, dBlue) < 0 then
11: dBlue← d, eBlue← e

12: dRed← EdgeSignedPseudoDistance(P, eRed)
13: dGreen← EdgeSignedPseudoDistance(P, eGreen)
14: dBlue← EdgeSignedPseudoDistance(P, eBlue)
15: return distanceColor((dRed, dGreen, dBlue))

Another property to note is that by taking only the median channel at
each cell, we would get the exact pseudo-distance field from Section 4.2.3.
This has been confirmed by tests. Because of this, the approximately correct
signed distance can be sampled from anywhere in the field.

4.4.3 Collision correction

Just like the indirect method, it has been shown that this method causes tiny
artifacts in certain situations. These only appear in areas where two false
edges are too close together, and fortunatelly can be quite easily corrected.

For this, an additional pass of the output distance field is needed. False
edges can be detected by the hard jump from a large negative to a large
positive distance value between two adjacent cells. If this is detected for at
least two color channels in a single cell, this area might cause artifacts. Such
a cell shall be flagged for collision correction.

The correction itself is even simpler. We have established that the median
component of each cell is guaranteed to be the exact pseudo-distance, so we
can simply use this median value for all three components in the flagged cells.
This means that the critical cells will work as in a single-channel distance field,
losing their quality enhancing properties, but avoiding to cause artifacts.

This correction routine has shown to work well in practice, but the threshold
difference between adjacent signed distance values indicating a false edge had
to be adjusted carefully in order for it to detect all artifacts but also minimize
false positives, which would cause the distance field to degenerate into the
original single-channel variant.

41

Chapter 5

Application

In this chapter, I will cover how the signed distance fields can be used to draw
text or other vector shapes. Since the technique is intended for use in real-
time graphics, I will focus on its realization using the programmable real-time
graphics pipeline and shaders.

5.1 Shape reconstruction

First of all, we will look at the complete procedure of reconstructing a raster
image of the original shape from a signed distance field. This is done by
determining at each pixel of the raster image, whether or not it lies inside the
shape. Let’s assume that using the correct transformation, we have computed
that the current pixel lies at point P in the coordinate system of the distance
field’s grid. Now, we need to sample a value from that position in the distance
field. The most common sampling methods are bilinear and bicubic. We
will use bilinear sampling as it is the preferred option for this application of
distance fields. [6]

Algorithm 8 Bilinear sampling of the distance field.

1: function SampleBilinear(sdf, P)
2: x1 ← bPx − 1

2c
3: y1 ← bPy − 1

2c
4: x2 ← x1 + 1
5: y2 ← y1 + 1
6: wx ← Px − x1 − 1

2
7: wy ← Py − y1 − 1

2
8: return (1− wx)(1− wy)sdf(x1, y1) + wx(1− wy)sdf(x2, y1)

+ (1− wx)wysdf(x1, y2) + wxwysdf(x2, y2)

Now that we have sampled a value from the distance field, we can convert

43

5. Application

it back to a signed distance, using the inverse of the distanceColor function:

colorDistance(distanceColor(x)) = x (5.1)

colorDistance(color)
def
=

(
color

maxColor
− 1

2

)
· distanceRange (5.2)

The following is the basic procedure that generates pixels of the image
reconstruction, using insideColor for pixels inside the shape and outsideColor
for pixels outside.

Algorithm 9 Pixels of the image reconstructed using a single-channel SDF.

1: function GeneratePixel(P)
2: sample← SampleBilinear(sdf, P)
3: d← colorDistance(sample)
4: if d ≥ 0 then
5: return insideColor
6: else
7: return outsideColor

5.1.1 Reconstruction from a multi-channel distance field

With the median of three model, the reconstruction process is almost equally
simple, with only one additional step. In this case, the result of the sampling
won’t be a scalar value, but a vector, where each component is the sample
of one color channel. Immediately after acquiring this vector, its median
component can be extracted and used as the scalar value from before. Its
conversion to signed distance and the rest of the procedure will be the same:

Algorithm 10 Pixels of the image reconstructed using multi-channel SDF.

1: function GeneratePixel(P)
2: ~s← SampleBilinear(sdf, P)
3: sample← median(sR, sG, sB)
4: d← colorDistance(sample)
5: if d ≥ 0 then
6: return insideColor
7: else
8: return outsideColor

5.1.2 Anti-aliasing

Instead of always using either the inside color or the outside color, we could
smoothly blend from one to the other at the edge, thereby eliminating hard
pixelated edges and achieving anti-aliasing. For this, we need to choose

44

5.1. Shape reconstruction

a threshold value t, and for distance values in the interval 〈−t, t〉, use the
weighted average of the two colors:

Algorithm 11 Pixels of the reconstructed image with anti-aliasing

1: function GeneratePixel(P)
2: ~s← SampleBilinear(sdf, P)
3: sample← median(sR, sG, sB)
4: d← colorDistance(sample)
5: w ← clamp

(
d
t ,−1, 1

)
6: return 1−w

2 outsideColor + 1+w
2 insideColor

The value of t should be chosen so that the interval 〈−t, t〉 in signed dis-
tance units is about as wide as a single pixel in the target bitmap.

5.1.3 Special effects

By using a different transformation from the signed distance d to the pixel
color, a number of different visual effects can be achieved. Some examples of
such transformations are shown in Figure 5.1. The used transformation from
signed distance to color can be seen at the bottom.

− +0

(a) Thickness adjustment

− +0

(b) Outline

− +0

(c) Soft shadow

Figure 5.1: Examples of distance based visual effects.

5.1.4 Usage in OpenGL

The intended usage of this rendering method is in real-time graphics, where
a graphics library such as OpenGL [8] is commonly used. With these libraries,
the signed distance field has to be loaded into a 2D texture, and its evaluation
happens in a pixel (fragment) shader. The graphics library is capable of
performing the bilinear sampling routine by itself, since it is a very common

45

5. Application

task in 3D graphics. This is one of the reasons why distance fields are a natural
choice in this context.

The pixel or fragment shader basically has to perform something very sim-
ilar to our GeneratePixel methods. The main difference is that in a 3D
scene, the scale of the distance field in the resulting image might not be con-
stant throughout, and therefore the threshold t cannot be determined globally
before rendering. Instead, it has to be computed separately at each pixel or
fragment. Fortunatelly, the OpenGL Shading Language (GLSL) offers the
fwidth function for this task, which returns the amount of change of a vari-
able between adjacent pixels.

Assuming that the correct position P has been computed in the vertex
shader, the following is the complete OpenGL fragment shader that renders
a shape encoded by a multi-channel distance field stored in a texture, and
applies anti-aliasing. It is roughly equivalent to Algorithm 11.

1 varying vec2 P;

2 uniform sampler2D sdf;

3 uniform vec4 outsideColor;

4 uniform vec4 insideColor;

5

6 // Computation of the median value using minima and maxima

7 float median(float a, float b, float c) {

8 return max(min(a, b), min(max(a, b), c));

9 }

10

11 void main() {

12 // Bilinear sampling of the distance field

13 vec3 s = texture2D(sdf, P).rgb;

14 // Acquiring the signed distance

15 float d = median(s.r, s.g, s.b) - 0.5;

16 // The anti-aliased measure of how "inside" the fragment lies

17 float w = clamp(d/fwidth(d) + 0.5, 0.0, 1.0);

18 // Combining the two colors

19 gl_FragColor = mix(outsideColor, insideColor, w);

20 }

The shader can be easily modified or expanded in many ways, for example
to make some parameters ajustable, or to support the visual effects mentioned
before.

The shader is also backwards compatible with single-channel distance
fields, where all three components of s would be equal, and although the call
to the median function would be unnecessary, the result would be the same.
This again shows that one simple median calculation is the only additional
operation required in my multi-channel distance field rendering method.

46

5.2. Text rendering

5.2 Text rendering

So far, we have covered how to reconstruct the image of a single shape from its
distance field representation. To display text however, the images of individual
glyphs have to be composed together.

Typically in real-time graphics, the distance fields of glyphs of the entire
character set will be compiled into a single texture. Each glyph will be located
at a known position in this texture. Examples of such textures are shown in
Figure 5.2.

(a) Single-channel. (b) Multi-channel.

Figure 5.2: SDF textures, from which individual glyphs can be extracted.

Note that much of the space in these textures is empty due to a regular
but inefficient distribution of the glyphs. To utilize the maximum possible
available space of the texture, a 2D bin packing algorithm is often used for
this task.

A text can be rendered as a sequence of rectangles whose vertices are
correctly positioned and correctly mapped to the glyph positions inside the
texture. All of the necessary metrics can be retrieved from the definition of
the font. Figure 5.3 shows an example application of this principle in the form
of a triangle mesh.

Lorem ipsum
Figure 5.3: A string of text as a textured triangle mesh.

47

Chapter 6

Results

In this chapter, I will evaluate the outputs of the devised algorithms and
measure the changes in rendering quality and performance.

6.1 Outputs

First of all, we will examine the actual outputs of both the indirect decom-
position algorithm and the direct distance field construction algorithm.

6.1.1 Outputs of the indirect decomposition method

Before jumping to the finished outputs, we will look at the steps that lead
there. Let’s take the letter lowercase “e” from the Open Sans bold typeface for
example. In Figure 6.1a, we can see the inner and outer edge colors assigned
according to the rules of the median of three model, using the procedure
described in Section 3.3.1. Notice that the glyph’s longest edge on the very

(a) Edge coloring (b) Plane partitioning

Figure 6.1: The edge coloring (a) and plane partitioning (b) of the letter “e”.

49

6. Results

left had to be divided in the middle in order to connect the beginning and the
end of the contour.

In Figure 6.1b, we can see how the plane is divided between the edges.
This is basically the Voronoi plane partitioning. Pixels that are closest to
a certain edge have that edge’s (or half-edge’s) inner or outer color in this
image, depending on whether the pixel lies inside the shape or outside.

Using this partitioning, the corners can now be divided into the four quad-
rants, which shall be colored according to the incident edges’ colors. Fig-
ure 6.2a shows this finished decomposition.

The next problem is resolving the possible clashes described in Section 3.3.2
using padding. Figure 6.2b marks the areas inside the glyph designated as
padding in black. This is using the distance ratio method, so all areas, where
another edge is less than twice as far as the closest edge, will be shared by all
such edges. If they happen to have the same color, it will not have any effect.
Figure 6.2c shows the decomposition including this inter-edge padding, which
is mainly noticeable in the central horizontal stroke. Padding has also been
added in the middle of the divided leftomst edge, separating the colors of the
half-edges.

(a) Decomposition (b) Inner padding (c) Padded decomposition

Figure 6.2: The decomposition of the letter “e”.

Some other examples of glyph decompositions can be found in Figure C.2.

6.1.2 Outputs of the direct decomposition method

Now let’s look at the outputs of the direct multi-channel distance field con-
struction method. Again, the first step is edge coloring, shown in Figure 6.3
on the lowercase letter “e” as an example. This time however, each edge has
only one color.

Using this edge coloring, the multi-channel signed distance field can be
constructed directly. Figure 6.4 shows the three individual color channels of
this distance field along with the glyph’s real outline in black. White color
denotes zero, red, green, and blue, respectively, are positive distance values,
and cyan, magenta, and yellow, respectively, are negative distance values.

50

6.1. Outputs

Figure 6.3: The edge coloring of the letter “e”.

(a) Red channel (b) Green channel (c) Blue channel

Figure 6.4: The individual channels of the resulting distance field.

Notice that each component of the distance field behaves like a regular
distance field near the edges whose color includes the channel of that compon-
ent, and completely ignores the rest. The red component, for example, uses
the pseudo-distances to the yellow and magenta edges, but ignores the cyan
edge.

Visualizing the combined components of the distance field meaningfully
would be problematic, but let’s look at the combined reconstruction of the
three distance fields instead in Figure 6.5.

Figure 6.5: The combined reconstruction of the distance field’s components.

51

6. Results

This image is comparable to the indirect decomposition (Figure 6.2c), ex-
cept this time, the distance field doesn’t properly encode some of the false
edges, which aren’t part of the shape’s outline. You can see the corner quad-
rants have been correctly filled according to the median of three model (Sec-
tion 3.2.2), and therefore applying the median function will yield an image of
the letter “e” with sharp corners.

6.2 Rendering quality

In this section, I will measure the factual improvement in quality of rendering
using my multi-channel distance field technique, and compare the results with
the original single-channel version.

6.2.1 Methodology of quality measurement

We will need a method of quantifying the image quality in order to measure
it and compare the results. Using a distance field with given dimensions and
an exact representation of the original shape, we will sample the distance field
at a very large number of points (tens of millions), which is equivalent to
producing a high resolution reconstruction of the shape, and at each point,
we will observe several indicators.

6.2.1.1 Pixel mismatch (PM)

This is the simplest metric. At each point, it will be determined whether
it lies inside the shape according to the exact vector representation and the
distance field. The resulting value will be the portion of the points where the
two values do not match. For example, the value 0.1 signifies that in 90% of
the area the pixels will be filled correctly, and in 10% not.

6.2.1.2 Weighted pixel mismatch (WPM)

This metric is designed to distinguish more serious artifacts. When pixels
don’t match exactly around edges, it is usually due to the limited precision
of the distance field format. However, when chunks of incorrect pixels start
to appear relatively far away from edges, or when and edge becomes severely
misplaced, it may result in a noticeable distortion of the image. In this metric,
the absolute distances at which the mismatches occurred are summed, so that
mismatching pixels farther from the outline have greater weight.

6.2.1.3 Weighted distance difference (WDD)

To evaluate the distance field’s precision in other areas than just around the
outline, which is important for visual effects that use signed distance values, I
have also added a metric that measures the difference in reported and actual

52

6.2. Rendering quality

signed distance. Since the distance values are less likely needed further away
from the outline, the difference will be given a greater weight the closer to the
outline it is. The value is computed as∑

P

|d− dS |e−
|d|
k , (6.1)

where P are the sampled points, d is the correct signed distance, dS is the
signed distance sampled from the distance field, and k is an adjustable weight
distribution parameter, which I set to 60.

6.2.2 Intermediate decomposition resolution

Before comparing the quality of the original and improved methods, we must
determine the optimal configuration of the algorithms. The most significant
parameter here is the resolution of the intermediate decomposition for the
indirect method. Obviously, increasing this resolution will increase precision,
but also the computation time. Therefore, we need to find a compromise
between the two, a point where increasing the resolution any further only
causes a marginal change in output quality.

The first quality measurement is focused on determining this optimal ratio
between the size of the intermediate decomposition and the target distance
field. I used the ASCII character set of the Open Sans bold typeface, and
a fixed size of the distance field, large enough to represent the glyphs with
only minor imprecisions. Reference is the quality measurement for the original
single distance field method. The other rows are the results of the indirect
decomposition algorithm with different resolution ratios.

Ratio Average error Time (s)
PM WPM

Reference 0.000721± 0.00029 0.00158 ± 0.0010 0.376
2 0.00745 ± 0.0017 0.0188 ± 0.0062 9.349
4 0.00322 ± 0.00091 0.00371 ± 0.0018 21.727
8 0.00158 ± 0.00045 0.000911 ± 0.00039 58.040

16 0.000665± 0.00028 0.000216 ± 0.00012 176.996
32 0.000282± 0.00019 0.0000522± 0.000053 575.024
64 0.000222± 0.00018 0.0000420± 0.000051 2132.878

128 0.000204± 0.00019 0.0000397± 0.000050 7773.227
131 0.000283± 0.00019 0.0000452± 0.000049 8128.431

Table 6.1: Rendering quality for different intermediate resolutions.

As you can see in Table 6.1, the error doesn’t significantly decrease beyond
about 64 times the dimensions of the target distance field, while the total

53

6. Results

computation time (last column) starts to become impractical. Therefore, I
will use this value as the default for the indirect method in the following tests.

The measurement in the last row (ratio 131) tests whether using a power
of two has any impact on the precision, and since the error is much larger
than both 27 and 26 (lower ratios), it is clear that using a power of two as the
resolution ratio is in fact advantageous.

6.2.3 Comparison of reconstruction precision

Now, we finally get to the most important test, the measurement of the dif-
ference in quality of the resulting image, reconstructed from signed distance
fields using the original and my two improved methods.

Original refers to the original single-channel pseudo-distance method,
indirect is my multi-channel method with an intermediate raster decompos-
ition (of resolution 64 times higher in each dimension than the target SDF
resolution – unless stated otherwise), and direct is my direct multi-channel
distance field construction method.

In the following tests, I will use the average error of the 94 printable ASCII
characters from the Open Sans typeface, using the regular (R), bold (B), and
light (L) variants.

Figure 6.6 shows the range of the distance field resolutions I will be using.
The shape in the leftmost image (resolution 7×8 pixels) is already disintegrat-
ing, and therefore going any lower would be pointless. The rightmost image
(43 × 50 pixels) on the other hand seems to possess a satisfying precision,
apart from the sharpness of corners.

(a) Size 8 (b) Size 12 (c) Size 16 (d) Size 24 (e) Size 32 (f) Size 48

Figure 6.6: Reconstruction of the letter “e” from a single-channel pseudo-
distance field of varying resolutions.

The results for the absolute pixel mismatch are in Table 6.2. We can
see that at smaller sizes of the distance field, and especially with the light
variant of the typeface, all of the methods have problems encoding the glyphs
correctly. This is because the strokes of the glyphs are too thin relatively to
the density of the distance field grid. The indirect method suffers from this the
most, as when the two parallel edges of a stroke have different colors, the stroke
will be divided into even thinner sub-strokes. Because of this “thinning”, the
indirect method performs even worse than the original in one instance.

54

6.2. Rendering quality

S
ty

leSDF Average pixel mismatch (PM)
size Original Indirect Direct

8 L 0.0842 ± 0.028 0.0818 ± 0.029 0.0706 ± 0.034
8 R 0.0864 ± 0.031 0.0849 ± 0.031 0.0713 ± 0.038
8 B 0.0390 ± 0.022 0.0289 ± 0.025 0.0265 ± 0.021

12 L 0.0689 ± 0.018 0.0657 ± 0.021 0.0512 ± 0.021
12 R 0.0217 ± 0.0082 0.0189 ± 0.011 0.0130 ± 0.0079
12 B 0.0124 ± 0.0051 0.00514 ± 0.0049 0.00419 ± 0.0042

16 L 0.0284 ± 0.016 0.0303 ± 0.017 0.0203 ± 0.016
16 R 0.00755 ± 0.0031 0.00501 ± 0.0035 0.00325 ± 0.0026
16 B 0.00637 ± 0.0025 0.00236 ± 0.0019 0.00203 ± 0.0020

24 L 0.00454 ± 0.0018 0.00411 ± 0.0031 0.00206 ± 0.0013
24 R 0.00322 ± 0.0012 0.00104 ± 0.00086 0.000857± 0.00088
24 B 0.00303 ± 0.0011 0.000857± 0.00078 0.000792± 0.00082

32 L 0.00180 ± 0.00067 0.000944± 0.00063 0.000553± 0.00053
32 R 0.00171 ± 0.00064 0.000642± 0.00045 0.000465± 0.00048
32 B 0.00163 ± 0.00062 0.000589± 0.00042 0.000433± 0.00044

48 L 0.000797± 0.00032 0.000270± 0.00021 0.000213± 0.00022
48 R 0.000741± 0.00030 0.000247± 0.00019 0.000204± 0.00021
48 B 0.000717± 0.00029 0.000222± 0.00018 0.000190± 0.00020

Table 6.2: Comparison of absolute rendering quality of the distance field tech-
niques.

For the lower SDF resolutions, we can generally only see a small improve-
ment. Looking at the absolute values, it is obvious that some of these resol-
utions are simply too low to encode the glyph properly. A mismatch value
of 0.5 is the equivalent of filling the pixels randomly. The mismatch of two
completely different letters, A and Z for example, is about 0.25.

Let’s agree that the SDF resolution is acceptable if at least 99% of the
pixels if the original method match (PM < 0.01). In these cases, the indirect
method reduces the amount of mismatched pixels on average 2.59 times, and
the direct method 3.38 times. The improvement is most significant for char-
acters that contain little to no curves – for some of those, the direct method
even reaches zero error.

As we are now able to properly reconstruct corners, reconstruction of
curves becomes the next biggest issue, which isn’t addressed by my decompos-
ition technique. In Table 6.3, we can see the results of the same measurement
for the subset of glyphs that consist of straight line segments only. Notice
that the average for the original method is almost the same as before. This
shows that corners are a much bigger issue than imprecise curvature. The
multi-channel methods however exhibit significantly lower error values.

55

6. Results

SDF Average pixel mismatch (PM)
size Original Indirect Direct

16 0.00724 0.00352 ± 0.0025 0.00145 ± 0.0020
24 0.00322 0.000246 ± 0.00025 0.0000243 ± 0.000056
32 0.00171 0.000243 ± 0.00015 0.00000763± 0.000028
48 0.000709 0.0000607 ± 0.000063 0.00000038± 0.0000013

Table 6.3: Comparison of rendering quality for non-curved glyphs only.

In conclusion, my decomposition methods decrease the error in rendering
straight lines and sharp corners by several orders of magnitude, but do not
improve the rendering of curves. Figures 6.7 and 6.8 offer a comparison of the
reconstruction of several glyphs using the original and my improved technique.

Figure 6.7: Comparison of the reconstruction of several glyphs of varying
thickness using the original (top) and my direct (bottom) method.

Figure 6.8: Detail of the hash symbol reconstructed using the original (left)
and my direct (right) method, and the difference between the two (center).

56

6.2. Rendering quality

Next, we will evaluate the weighted pixel mismatch for the three methods,
which should be a better indicator of the apparent image quality. Any artifacts
in the form of isolated islands of mismatching pixels will be punished more
severely, along with significant extrusions or indents of the outline. These
imprecisions have the biggest impact on the resulting image quality.

S
ty

leSDF Average weighted pixel mismatch (WPM)
size Original Indirect Direct

8 R 2.52 ± 1.2 2.60 ± 1.2 2.12 ± 1.4
12 R 0.229 ± 0.13 0.269 ± 0.31 0.123 ± 0.13
16 R 0.0462 ± 0.025 0.0262 ± 0.041 0.0126 ± 0.018

24 L 0.0181 ± 0.011 0.0210 ± 0.028 0.00522 ± 0.0082
24 R 0.0139 ± 0.0080 0.000945± 0.0014 0.000652± 0.00097
24 B 0.0135 ± 0.0074 0.000756± 0.0012 0.000743± 0.0012

32 L 0.00524 ± 0.0030 0.000852± 0.00099 0.000396± 0.00072
32 R 0.00522 ± 0.0032 0.000243± 0.00032 0.000196± 0.00029
32 B 0.00525 ± 0.0034 0.000234± 0.00029 0.000209± 0.00027

48 L 0.00176 ± 0.0011 0.000055± 0.00008 0.000040± 0.00008
48 R 0.00155 ± 0.0010 0.000041± 0.00006 0.000037± 0.00006
48 B 0.00156 ± 0.0010 0.000042± 0.00005 0.000039± 0.00005

Table 6.4: Comparison of apparent rendering quality of the distance field
techniques.

We can see the results, this time for the entire ASCII character set again,
in Table 6.4. Again, almost no improvement can be seen at the lower sizes,
where the distance field resolution is insufficient. At higher sizes however, the
errors are up to about 40 times lower using one of the multi-channel methods,
which is a very significant improvement.

We can also see that the indirect method performs much worse than the
direct one for the light font variant up until the highest resolution. At size 24,
the error is actually higher than the original. This is caused by the method’s
tendency to divide the already very thin strokes into even thinner sub-strokes.

6.2.4 Preservation of distance information

In some cases, the correct signed distance may be needed further away from
the outline. This capability will be tested next using the weighted distance
difference metric.

Table 6.5 shows that the direct decomposition method encodes the signed
distance with approximately half the original error. The indirect method un-
fortunately isn’t designed for this functionality, and therefore performs worse
than the original.

57

6. Results

SDF Average weighted distance difference (WDD)
size Original Indirect Direct

12 2.180 ± 0.607 1.877 ± 0.670 1.434 ± 0.654
16 1.281 ± 0.320 1.167 ± 0.402 0.7575 ± 0.337
24 0.6016 ± 0.163 0.6449 ± 0.225 0.3290 ± 0.157
32 0.3198 ± 0.0864 0.4629 ± 0.171 0.1699 ± 0.0840
48 0.1447 ± 0.0400 0.3401 ± 0.146 0.07638± 0.0374

Table 6.5: Comparison of the error in sampled distance values throughout the
entire plane.

(a) Reference (b) Original

(c) Indirect (d) Direct

Figure 6.9: Contour diagram of the letter “A” constructed exactly (a), and
reconstructed from distance fields (b, c, d).

58

6.3. Performance

Figure 6.9 shows the signed pseudo-distance reconstruction of a single
glyph in the form of equidistant contour lines. In this example, we can see
the precision is lowest at the center of the glyph’s strokes, where the distance
field forms a “ridge”. At the outline, and in its vicinity, the distance is repres-
ented accurately for both of the multi-channel techniques. The direct method
preserves the sharp angles even further outside the shape, but gradually loses
precision. The indirect method is the most precise in the portion below the
glyph, but behaves completely incorrectly inbetween edges. Notice that in
some parts, most noticeably in the upper left, it forms a “double-ridge”, which
is a common occurence for this method.

6.3 Performance

The only remaining aspect to evaluate is the performance of the algorithms.
This includes the cost of running the algorithms themselves, and the cost of
using their outputs to render images.

Since the distance fields can be pre-generated once, and come packaged
with the target program, their construction time is less important. In some
cases however, it might be required to construct the distance fields for indi-
vidual characters dynamically at runtime, for example when the character set
is too large, and only an unknown small portion is expected to be used. In
these cases, the generation of the distance fields has to be fast as well.

6.3.1 Distance field construction time

Table 6.6 shows the total time it took to construct distance fields of varying
resolutions for all ASCII characters of the Open Sans typeface, with the use
of the three different methods. Please note that the implementation of the
indirect algorithm isn’t optimal, because it has been deprecated by the dir-
ect algorithm. Also, since these values have been measured on one specific

Total time (seconds)
SDF size Original Direct Indirect

8 0.010 0.011 45.013
12 0.022 0.026 105.28
16 0.039 0.045 192.87
24 0.088 0.099 448.78
32 0.158 0.176 827.47
48 0.355 0.394 1942.1

Table 6.6: Total construction time of distance fields for all ASCII characters
of a font using different methods.

59

6. Results

machine (Intel i5 3570K), the absolute values aren’t objective by themselves,
only their relative differences.

All of the algorithms have linear time complexity in respect to the number
of pixels of the distance field (quadratic in respect to the SDF size units). The
indirect algorithm however has a severe overhead of having to construct a high
resolution image of the decomposition, which has (by default) 64× 64 = 4096
times more pixels than the distance field, and then it has to compute the
distance field from it. Although this computation could be implemented more
efficiently, it will always be a significant overhead, and therefore the running
time of the indirect method is several orders higher than the rest, making it
not suitable for dynamic runtime distance field generation.

The computation time of the direct method on the other hand, is the
lowest it could possibly be, only marginally higher than the construction of
a regular single channel pseudo-distance field, which is the theoretical min-
imum. Although it factually has to construct three distance fields, it does so
simultaneously, and therefore requires much less than three times the original
time.

6.3.2 Real-time rendering performance

Since rendering performance is the original distance field technique’s primary
advantage, it is extremely important that this advantage isn’t lost. To test
this, I have created an OpenGL program, where an enormous amount of text
is drawn on the screen from a distance field. I have designed it so that as
little extra time as possible is spent with other tasks than the rendering itself.
The text is drawn in batches of about 32 characters per draw call, and no
uniform variables or other states are changed in between, only the vertex array
object. The vertex shader only performs a single matrix transformation of the
coordinates, and for the fragment shader, variants of the implementation from
Section 5.1.4 have been used.

The measured framerates (frames per second) are shown in Table 6.7.

Frames per second Distance field dimensions

Distance field type 256 512 1024 2048

Single-channel (R) 30.812 28.604 26.435 21.020
Single-channel (RGB) 29.084 26.197 20.150 9.175
Multi-channel 27.183 24.762 19.559 9.161

Single-channel (R) + AA 28.427 26.333 24.221 18.977
Single-channel (RGB) + AA 26.647 23.979 18.425 8.418
Multi-channel + AA 25.047 22.863 17.957 8.406

Table 6.7: Comparison of text rendering framerates when using single-channel
and multi-channel distance field textures.

60

6.3. Performance

Again, since the measurements have been performed on a specific machine
(Nvidia GTX760), only the differences are of importance. The test has been
performed with both single-channel and multi-channel distance fields in several
resolutions, and with and without anti-aliasing (AA). Furthermore, the single-
channel variant has been tested storing the texture both as only one channel
(R), and as a regular 3-channel image (RGB).

As you can see, the performance impact of using a multi-channel distance
field varies by the size of the distance field texture. For small resolutions,
the decrease in framerate is only about 12%. For higher resolutions however,
it seems that the sampling of the texture is a significantly slower operation,
and interestingly, a very noticeable difference can be seen just in sampling
a monochrome (R) versus a color (RGB) texture. The cost of the additional
median computation is negligible in these cases, but the increase in the number
of texture channels brings up to a 56% drop in performance.

The anti-aliasing routine seems like a relatively inexpensive addition to
the rendering process, causing a slow of 8 to 10%.

In conclusion, the performance of the multi-channel distance field render-
ing method is 12 to 56 or possibly more percent worse than that of single-
channel distance field rendering, depending on the distance field resolution.
This result is slightly less optimistic than I anticipated, but hopefully still
worth the increase in image quality.

An interesting observation is that since texture sampling is the most ex-
pensive operation, the original method is almost just as slow as the improved
one when the single-channel distance field is needlessly stored as and sampled
from a 3-channel texture.

61

Chapter 7

Conclusion

I have successfully created a solution for generating multi-channel signed dis-
tance fields of vector-based shapes, which serve as an approximate represent-
ation of said shapes that can be used for very efficient high quality real-time
rendering.

Unlike the original single-channel distance field rendering technique, my
improved method is capable of near-perfect reconstruction of the shape’s
corners, and because of this, the average error of the reconstructed image
of the shape is lower by several orders of magnitude. The real-time rendering
performace is only slightly worse for low distance field resolutions, but up to
56% worse for higher resolutions. However, since in some cases it can provide
higher quality at a lower distance field resolution, it can allow for reduction
of this resolution, bringing an improvement in both quality and performance.

I have developed two ways of constructing the multi-channel distance field,
the indirect and the direct method. The indirect method was developed first,
inspired by the original idea of decomposing the general shape into a com-
bination of smooth shapes. With the findings and experience I have acquired
during the development of this method, I was able to come up with a much
more sophisticated, direct method of construction of the multi-channel dis-
tance field. The direct method has proven superior to the indirect one in all
aspects, especially in the cost of its computation, which is only marginally
higher than the computation of a single-channel distance field.

Because of my solution’s quality improvement over the single-channel dis-
tance field technique, it could be used in place of the original technique in
most scenarios, improving rendering quality without any major drawbacks.
I see the biggest potential of my solution in rendering text in real-time 3D
scenes, where performance is vital, and where the perspective can cause the
text to appear very large, exposing any imperfections.

63

7. Conclusion

7.1 Future work

During the development of this work, I have come up with several ideas that
could be explored further. There are also some details in my method of multi-
channel decomposition that could be improved.

7.1.1 Improved coloring strategy

The first step of both the indirect and direct construction methods is assigning
colors to the shape’s edges. There are usually multiple possibilities of how the
colors could be assigned. Depending on which one is used, the effectiveness of
the decomposition can slightly vary.

For the indirect method, we could for example choose a different starting
edge that will be divided into halves of different colors, or maybe even dividing
more than one would pay off in other areas. For the direct method, the only
rule is that two consecutive edges cannot have the same color. This allows for
many possible color sequences.

Since the impact is much less significant for the direct method, which
essentially replaced the original indirect one, I haven’t pursued this possibility
any further.

7.1.2 Thickening decomposition

Although I have focused solely on improving the rendering quality of sharp
corners, there are other disadvantages of the distance field rendering technique
that could be solved by a multi-channel decomposition. One of them is the
representation of thin features.

If a stroke is thinner than about two cells of the distance field grid across,
it cannot be encoded properly and will probably be heavily distorted if at
all visible in the reconstructed image (see Figure 7.1a). However, if the thin

(a) Single-channel (b) Multi-channel (c) Multi-channel (flat)

Figure 7.1: Image reconstruction of the glyph “A” with thin strokes.

64

7.1. Future work

feature were to be represented as a union of two much thicker strokes (one
on each side) encoded in multiple channels, the issue could be resolved. This
would reduce the minimum required resolution of the distance field to properly
encode thinner fonts.

Figure 7.1 shows an example of this. On the left, you can see the result
of using a low resolution single-channel distance field on a thin typeface. The
center image demonstrates the reconstruction of the image using a thickening
multi-channel decomposition. In addition to the white parts, which represent
areas where all three color components are evaluated as inside, we can also use
the yellow, cyan, and magenta areas, where only two components are. The
final result after applying the median function is seen in Figure 7.1c. Although
it isn’t perfect, it certainly makes the character readable.

7.1.3 Models for higher number of channels

In this work, I have primarily used the median of three coloring model, which
uses three channels – the normal amount for RGB images. However, I the-
orize that a higher number of channels could be utilized for an even higher
reconstruction precision. One potential possibility would be the combination
of corner preservation and thickening.

65

Bibliography

[1] Adobe Systems Incorporated. Font formats. https://www.adobe.com/
type/browser/info/formats.html, 2006.

[2] Franz Aurenhammer and Rolf Klein. Voronoi diagrams. Handbook of
computational geometry, 5:201–290, 2000.

[3] Heinz Breu, Joseph Gil, David Kirkpatrick, and Michael Werman. Linear
time Euclidean distance transform algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(5):529–533, 1995.

[4] Behdad Esfahbod. GLyphy – high-quality glyph rendering using OpenGL
ES2 shading language. http://glyphy.org, 2014.

[5] Gerald Farin. Curves and surfaces for computer-aided geometric design:
a practical guide. Elsevier, 2002.

[6] Chris Green. Improved alpha-tested magnification for vector textures and
special effects. In ACM SIGGRAPH 2007 courses, pages 9–18. ACM,
2007.

[7] Michael A. Jenkins and Joseph F. Traub. A three-stage algorithm for
real polynomials using quadratic iteration. SIAM Journal on Numerical
Analysis, 7(4):545–566, 1970.

[8] Khronos Group. OpenGL overview. http://www.opengl.org/about/,
May 2015.

[9] Charles Loop and Jim Blinn. Resolution independent curve rendering us-
ing programmable graphics hardware. In ACM Transactions on Graphics
(TOG), volume 24, pages 1000–1009. ACM, 2005.

[10] Gergely Patai. Playing around with distance field font ren-
dering. https://lambdacube3d.wordpress.com/2014/11/12/playing-
around-with-font-rendering/, November 2014.

67

https://www.adobe.com/type/browser/info/formats.html
https://www.adobe.com/type/browser/info/formats.html
http://glyphy.org
http://www.opengl.org/about/
https://lambdacube3d.wordpress.com/2014/11/12/playing-around-with-font-rendering/
https://lambdacube3d.wordpress.com/2014/11/12/playing-around-with-font-rendering/

Bibliography

[11] Zheng Qin, Michael D. McCool, and Craig S. Kaplan. Real-time texture-
mapped vector glyphs. In Proceedings of the 2006 symposium on inter-
active 3D graphics and games, pages 125–132. ACM, 2006.

[12] Nicolas Ray, Xavier Cavin, and Bruno Lévy. Vector texture maps on the
GPU. Technical report, Technical Report ALICE-TR-05-003, 2005.

[13] Aleksas Rǐskus. Approximation of a cubic Bézier curve by circular arcs
and vice versa. Information technology and control, 35(4):371–378, 2006.

[14] Lee Thomason. TinyXML-2. http://www.grinninglizard.com/
tinyxml2/, March 2015.

[15] David Turner, Robert Wilhelm, and Werner Lemberg. The FreeType
project. http://www.freetype.org/, December 2014.

[16] Eric W. Weisstein. Abel’s impossibility theorem. http://

mathworld.wolfram.com/AbelsImpossibilityTheorem.html, 2002.

[17] Eric W. Weisstein. Cubic formula. http://mathworld.wolfram.com/
CubicFormula.html, 2002.

[18] Eric W. Weisstein. Simply connected. http://mathworld.wolfram.com/
SimplyConnected.html, 2002.

[19] World Wide Web Consortium. Paths – SVG 1.1 (second edition). http:
//www.w3.org/TR/SVG/paths.html, August 2011.

68

http://www.grinninglizard.com/tinyxml2/
http://www.grinninglizard.com/tinyxml2/
http://www.freetype.org/
http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html
http://mathworld.wolfram.com/AbelsImpossibilityTheorem.html
http://mathworld.wolfram.com/CubicFormula.html
http://mathworld.wolfram.com/CubicFormula.html
http://mathworld.wolfram.com/SimplyConnected.html
http://mathworld.wolfram.com/SimplyConnected.html
http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/SVG/paths.html

Appendix A

Glossary

anti-aliasing
A technique that attempts to reduce distortion arising from the discrete
nature of pixels in a raster.

clamp
A function that yields the closest value to x in a given range 〈a, b〉:

clamp(x, a, b) = min(max(x, a), b) (A.1)

contour
A cyclic sequence of edges forming an outline. A vector shape is com-
posed of one or more contours.

glyph
The visual representation of a character in a specific typeface.

pseudo-distance
See Section 2.5.

segment
The building block of edges and contours. An edge segment can be
either a line segment, or a Bézier curve.

shader
A program for graphics hardware that computes the color of each pixel
of the rendered image.

spline
A smooth curved line that is composed of one or more primitive curves
in a sequence.

texture
Representation of a raster image from which the color at a given point
can be efficiently sampled by graphics hardware.

69

Appendix B

List of abbreviations

3D Three-dimensional

AA Anti-aliasing

ASCII American Standard Code for Information Interchange

GLSL OpenGL Shading Language

OpenGL Open Graphics Library

OTF OpenType font

PM Pixel mismatch

RGB Red, green, blue

SDF Signed distance field

SVG Scalable Vector Graphics

TTF TrueType font

WDD Weighted distance difference

WPM Weighted pixel mismatch

XML Extensible Markup Language

71

Appendix C

Gallery

(a) Top-left only. (b) Top-left and top-right.

(c) All but bottom-right. (d) Top-left and bottom-right.

Figure C.1: The average of all possible results of corner quadrant reconstruc-
tion with varying distance field grid alignment.

73

C. Gallery

(a) Uppercase “A” (b) Uppercase “X” (c) Uppercase “Ř”

(d) Hash (e) Ampersand (f) At sign

Figure C.2: Some examples of multi-channel decomposition outputs.

74

Appendix D

Contents of the enclosed CD

thesis.pdf.................................. the thesis in PDF format
readme.html...................description of contents and user manual
bin...Windows binaries
freetype.............the prerequisite FreeType library for loading fonts
gallery additional outputs and visualizations in high definition
src...source code

decomposition.h.....................main header file of the library
main.cpp......a console program wrapping the library’s functionality
core.............. the core algorithms with no external dependencies
io.........additional code for loading input and saving image output

75

	Introduction
	Signed distance fields
	Practical viability
	State of the art

	Preliminaries
	Bézier curves
	Locating sharp corners
	Point – edge segment distance
	Point – shape distance
	Pseudo-distance fields

	Theoretical analysis
	Shape simplification
	Corner analysis
	Plane partitioning

	Realization
	Preparing the input
	Single-channel distance field construction
	Corner preserving shape decomposition
	Direct multi-channel distance field construction

	Application
	Shape reconstruction
	Text rendering

	Results
	Outputs
	Rendering quality
	Performance

	Conclusion
	Future work

	Bibliography
	Glossary
	List of abbreviations
	Gallery
	Contents of the enclosed CD

