forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
uniquePaths.II.cpp
81 lines (71 loc) · 2.33 KB
/
uniquePaths.II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
// Source : https://oj.leetcode.com/problems/unique-paths-ii/
// Author : Hao Chen
// Date : 2014-06-25
/**********************************************************************************
*
* Follow up for "Unique Paths":
*
* Now consider if some obstacles are added to the grids. How many unique paths would there be?
*
* An obstacle and empty space is marked as 1 and 0 respectively in the grid.
*
* For example,
* There is one obstacle in the middle of a 3x3 grid as illustrated below.
*
* [
* [0,0,0],
* [0,1,0],
* [0,0,0]
* ]
*
* The total number of unique paths is 2.
*
* Note: m and n will be at most 100.
*
**********************************************************************************/
#include <iostream>
#include <vector>
using namespace std;
//As same as DP solution with "Unique Path I", just need to consider the obstacles.
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<unsigned int>> v (row, vector<unsigned int>(col, 0));
unsigned int max=0;
for (int i=0; i<obstacleGrid.size(); i++){
for (int j=0; j<obstacleGrid[0].size(); j++){
if(obstacleGrid[i][j] == 1){
max = v[i][j] = 0;
} else {
if (i>0 && j>0) {
max= v[i][j] = v[i-1][j] + v[i][j-1];
}else if(i>0){
max = v[i][j] = v[i-1][j];
}else if(j>0){
max = v[i][j] = v[i][j-1];
}else{
max = v[i][j] = 1 ;
}
}
}
}
return max;
}
// the previous implemetation has too many if-else
// the following dynamic programming is much more easy to read
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int row = obstacleGrid.size();
int col = obstacleGrid[0].size();
vector< vector <unsigned int> > dp (row, vector<unsigned int>(col, 0));
dp[0][0] = obstacleGrid[0][0] ? 0 : 1;
for (int r=1; r<row; r++) {
dp[r][0] = obstacleGrid[r][0] ? 0 : dp[r-1][0];
}
for (int c=1; c<col; c++) {
dp[0][c] = obstacleGrid[0][c] ? 0 : dp[0][c-1];
}
for (int r=1; r<row; r++) {
for (int c=1; c<col; c++) {
dp[r][c] = obstacleGrid[r][c] == 1 ? 0 : dp[r][c-1] + dp[r-1][c];
}
}
return dp[row-1][col-1];
}