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We will need to use some very simple notions of category theory, an

esoteric subject noted for its difficulty and irrelevance.

Moare and Seiberg [37]
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Introduction

4l
: i The concept of a topological quantum field theory was introduced by Atiyah (1
f-"' _as a step towards combining quantum fieid theory a;nd general relativity. Need-
| less to say, this is only one of a number of approaches to the elusive nirvana of a
: E | quantum theory of gravity. Topological quantwm field theories associate algebraic
' ' structures to manifolds in a way which interacts well with the process of “gluing”
'? g manifolds along a common boundary. In their survey of conforma) field theory,

Moore and Seiberg [37] somewhat reluctantly introduce some category theory in
an appendix, while other anthors, including Blanchet, Habegger, Masbaum and
Vogel (7], Freed {13, 14] and Reshetikhin and Turaev [40], have adopted the lan-

guage of categories and their higher-dimensional analogues more enthusiastically.
The single most important development in. the application of category theory
f | to topological quantum field theories is due to Segal [42], who realised that the
'8 “gluing” operation itself can 'ﬁe described in category theoretic térms.

- Segal's insight is to think of an n-dimensional manifold with boundary as an
;_ “arrow” between (n — 1)-dimensional manifolds, as depicted in the picture below.

a ~

domain codomain

3 Gobordisms can then “glued” along common boundary components, as illustrated

:J below. This operation of “gluing” behaves very much like a composition law for
3 i E a categqj;y,
i 1
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common boundary

After “gluing”

The resulting structure is the archetypal “cobordism category”! and we refer to
it as n-Cbbord. A. topological field theory is then a representation of n-Cobord
in an “algebraic” cobordism category. It is’this point of view, also taken up by
- Walker {47}, Baez and Dolax [2] and others, which is the focus of this dissertation.
There is, however, an important complication. The gluing of manifolds is not
strictly associative, so n-Cobord is not a category, but in fact a bicategory. This
is the first step into the realm of “higher-dimensional algebra”.

- The problem facing researchers investigating topological quan‘.;um field the-
ories is that very little has been published on higher-dimensional algebra and
indeed the subject is not well understood. Mﬁst authors have avoided handling
higher-dimensional algebra rigourously, preferring to give a vague sketch of the
subject and then refer to the recently published work of Kapranov and Voevod-
sky [22] for the detailed foundations of the subject. Kapranov and Voevodsky
give definitions of braided monoidal categories, bicategories and braided monoidal
2-categories; however their treatment has a considerable number of errors, which

is particularly disappointing in a work cited so often. We discuss some of their

errors in an appendix.

'We are not using the term “cobordism category” in the same sense as Stong {43].
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In this dissertation we give detailed descriptions of some of the categorical
structures which arise in the study of topological quantum field theories. The
aim of this treatment is to come closer to to 2 definition of cobordism category.
In other words, we attempt to characterise the algebraic properties of n- Coboid.
Our approach is close in spirit to the work of Ross Street. His perspective is
exemplified by Street [46], an excellent, though sadly unpublished, survey of
categorical structures as they apply to physics and other subjects. The measure
of success of our work is that we are able to present an account of well-known

simple topological quantum field theories with a rigour existence approaches have

~been unable to attain. Although these simple theories do not depend on the

full structure of bicategories, we believe these theories are made clearer in the

_bicategorical setting.

The thesis begins with material that is largely introductory. In Chapter we
review some elementary features of the theory of enriched categories. Qur treat-

ment of this subject follows Lawvere [32] in giving strong emphasis to enriched

'bimodules, partly because enriched bimodules provide a very natural example

of a cobordism category. The discussion of enriched category theory concludes
with the concept of Cauchy completeness, 2 key to understanding the notion of
“dual objects” which arise as an algebraic analogue to reversing the orientation
of manifolds in n-Cobord. .
Bicategories are introduced in Chapter 1. Although it has become common
to call bicategori'es. “2-categories” and 2-categories “strict 2-categories”, we have
retained the traditional terminology. Defining bica.tegoricai morphisms, trans-
formations and modifications and discussing coherence theorems for bicategories
concludes the introductory material and we proceed in Chapter 2 to the subject
of monoidal bicategories. This material is essentially new, as no complete and
correct definition of monoidal bicategories has yet, been published, although this
will change with the publication of the paper by Gordon, Power and Street [15]

on “tricategories” since a monoidal bicategory can be thought of as 2 one-object

3



tricategory. For our purposes the most important example of a monoidal bicate-
gory is, of course, n-Cobord. Therefore a cobordism category should, at the very
least, have the structure of a monoidal bicategory. Since monoidal bicategories
are rather intricate algebraic structures, it comes as no surprise that only very
simple topological field theories are well understood. Monoidal bicategories also
allow us to formula.te the notion of an enriched bicategory. Although new, this
concept is a very natural generalization of enriched category and promises to be
of significance in the future development of higher-dimensional algebra.

In Qha.pter 3 we return to the su'bjec.i: of “dual objects”. Compact closed

categories are categories with dual objects and have been the subject of much

study. Several authors have implicitly ackmowledged that there is an analogous '

notion of compact closed bicategory, however an exp]icit definiticn has never been
published. We do define compact closed bicategories in detail and observe that
n-Cobord is. an example of such a structure.

As a preliminary definition of cobordism category, a compact closed bicat-
egory has sufficient structure to allow a treatment of a simple 2-dimensional
topological quantum field theory. A standard result says that this type of field
theory amounts to a “Frobenius algebra”. Although this result is well-known, it

is rarely treated with rigour, so we present it at some length in Chapter 4.

Ultimately, a cobordism category should have more structure tha.n a compact -

closed bicategory and in Chapter § we discuss “double structures” which provide
one approach to a complete definition of cobordism category. The thesis concludes
with an account of a two-dimensional topological field theory in terms of our
notion of cobordism category. _
We assume familiarity with the basic theory of categories and 2-categories.
The standard reference on the theory of categories is Mac Lane [34], while 2-
categories are defined by Mac La.ne_ and discussed in greater depth by Kelly and
Street (30]. Other less elementary notions are axplicitly defined in detail. The

one exception is the concept of “finite limit theory”, which appears in Barr and

4
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Wells {3] under the name “left exact theory”. Aithough useful, the use of finite

limit theories is not essential for the understanding of the theory of cobordism

‘categories, and we make only occasional references to them. We adopt the follow-

izig more or less conventional abbreviations: we use Set to denote the category
of sets and functions, Vecty, the category of vector spaces over 2 field k, Ab, the
category of abelian groups and group homomorphisms, and we use Cat to refer

to both the category of categories and functors and the 2-category of categories,

~ functors and natural transformations. chapterEnriched Categories Any category

C comes equipped with a collection of hom-sets. The hom-set C(A, B) consists
of all the arrows from A to B in C. In many cases, the sets C(A4, B) have some
additional structure: they may be a.belia_.ﬁ groups, or vector spaces for example.

Furthermore, in these cases, the operation of composition respects the additional

structure. A nabural generalization of categories then suggests itself. An enriched

category comes equipped with hom-objects C(A, B) rather than hom-sets, where

-these hom-objects come from some base category, such as Ab, the category of

-abelian groups. For ordinary categories, a composition law consists of functions

C(B,C) x C(4, B) = C(4,0)

and so if a composition law for an enriched category is to be an arrow in the
base category, we must have some analogune of the Cartesian product of sets.
This analogue will be referred to as a tensor product and those categories with a
tensor product are called monoidel cotegories. A monoidal category has all the
necessary structure to be a base category for enriched categories. Generalized
associativity laws and identity laws for enriched cat".egories can be expressed as
commuting diagrams in the base category. In this chapter we review the definition
of monoidal categories, which are of great interest in their own right, and then
give a treatment of enriched categories which is taken primarily from Kelly (28]
and Lawvere (32]. The former is thorough but dense and the latter aesthetically
pleasing but brief. |




0.1 Monoidal Categories

A monoidal category V consists of an underlying category, also denoted by V, a

specified unit object I of V, natural associativity isomorphisms
aapc(A®B)®C — AR (B®O),
and natural left and ﬁght unit isomorphisms
i l@A—- A TA:A®I;—P A,

subject to the coherence conditions that the following diagrams commute:

adl

({A®2)eCIRL

(A(BeC))eD

(A2B)2(CeD) A®{(BRC)8D)

\/

AQ(BR(CRDY)
and -
(A®I)®B —-—-———% A®(I®B)

N

AQ®B.

A monoidal category can the thought of as a particular kind of “bicategory”, 2
coneept introduced in Chapter 1. Vmous results which appear in that chapter

are therefore of relevance to the thnory of monoidal categories. In particular,

Theorem 1.3 ensures that monoidal categories are “coherent” in the sense that
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all diagrams built up with a, {, 7, their inverses and ® (so-called “expanded
instances” of a, [ and r) must commute. This allows the common practice of
omitting labels from composites of expanded instances. For example, one might

write
(48B)8((CoD)el) = (40 (Bel)o(Ce (Do)

with no fear of ambiguity. This coherence theorem for monoidal categories first
appeared in Mac Lane [33] and was soon pursued in Kelly [23]. Ever since, results
of this type have been central to the study of categories'and,‘ inbreasingly, ‘their
higher-dimensional analogues®. Kelly {24] is an attempt to formulate “the most
genetal coherence” in terms of a useful functorial calculus, which is deseribed
in Kelly [25]. Kelly's approach is based on the theory of “clubs”. Clubs® form
part of the general machinery of “two-dimensional un-iversa.l algebra”, a subject
infroduced by Blackwell, Kelly and Power (8] as the study of structure borne
by categories, and as such do not seem suited to higher dimensional contexts
such as the theory of bicategories. At this stage a “most general coherence
theorem” is not within our grasp and approaches to the problem seem aimost as
numerous as authors in the field. As a result, coherence is a recurring theme in
this thesis, appearing in a slightly different guise as each new algebraic struc_tui‘e
is introduced.

Examples of monoidal categories include Set with the Cartesian product of
sets, Cat with the Cartesian product of categories, Ab with the usual tensor
product of abelian groups and Vect, with the usual tensor product over k.

A braiding for a monoidal ca.tegorylv consists of natural braid isomorphismst

4,5 A@B—~+BRA

*Witness Gordon, Power and Street {15].

SFurther general observations on clubs appear in Kelly 127]. .

*Kapranov and Voevodsky [22) present a case for relaxing the requirement that braids be
isomorphisms, Here we are primarily interested in braids whick are in fact symmetries and
these are certainly isomorphisms, so we ignore weaker rotions of braiding.

7




which are subject to the condition that the following two diagrams cogimute:

(a2}

(BRA)®C —> B (A C)

/ 1®c¢

01) (A®B)®C - B®(C® A)

N

A®(B®C)—-——-——>(B®C‘)®A

and

A®(C®B)————%(A®C)®B

/ : cQ@1

(02) A®(B®C) (C®A) QB

N

(4®5)9C———> Co (40 B).

A braided monoidal category is & monoidal category equipped with a braiding.

A symmetry for a monoidal category is a braiding which satisfies
e —_
CA' B — CB ,A‘ .
Note that if ¢ is a symmetry then either one of equations (0.1) and (0.2) implies

the other. In his deﬁmtmn of a symmetry, Kelly (28] 2dds tke condition that the
diagram
>X®r

12




commutes. This is unnecessary as the diagram automatically commutes for
any braiding, not just symmetries, as is proved in Proposition 2.1 of Joyal and
Strest [19]. A symmetric monoidal category is a monocidal category equipped with
a symmetry. Mac Lare [33] proves a coherence theorem for symmetric monoidal
categories: all diagrams built up of expanded instances of a, {, r and ¢ must
commute. Joyal and Street [19] prove a coherence theorem for braided monoidal
theorems which is a little more subtle. To every arrow built of expanded instances
of a, l, 7 and ¢ they associate an underlying brai&, and any two such arrows are
shown to be equal if and only if they have the same underlying braid. While this
is a very satisfying result, we have no need for it in this thesis.

Our earlier examples of monoidal categories, namely Set, Cat, Ab and Vect,

are all symmetric monoidal categories.

0.2 Enriched Categories

Throughout the section V will denote a fixed monoidal category and we introduce

) “V—categofies" or “categories enriched over the base V”. Much of the theory

of ordinary categories can be developed for enriched categories, as can be seen
in Kelly [28]. In this chapter we concentrate on two aspects of that theory:
bimodules over enriched categories and Cauchy complete enriched categories.
These notions are of relevance to the study of compact closed categories and

bicategories, which we discuss in Chapter 3.

0.2.1 The Definition of an Enriched Category

A V-category A consists of a collection of objects (4, B, C, .. .} of A, which we’
denate by 4,°, an assignment of a hom-object A(A; B) of V to each ordered pair
of objects A, B of .A., a composition law
ma,p,c: A(B,C) ® A(A, B) - A(4,C)
SThis should be distinguished from the notation used in Kelly [28] where 4; is used to mean

“enderlying ordirary category”. Kelly uses obA to denote the collection of objects of A.

9




for each ordered triple of objects A, B, C, and an identity element 141 —
A[A, A) for each object A. These data are subject to the conditions that the
following diagrams commute in V:

(A(C.D)RA(B,CHAAB)

A(C.2)@{A(B,CISAA,B))

mel ' ' | 1®m
(0.3)
B A{B'D}QA(A’B)\ ' / S
A(AD)
and

A(B,B) ® A(A,B) —™ 5 A(4, B) P A(A, B) ® A(A, A)

(0.4) Ig®1 / \ 1®1A_

I® A(A, B) A(4,B)® 1.

Categories euriched over Set are ordinary categories, those enriched over
Cat a.ré 2-categories. Ab-categories are usually called adcfitz'ue categariés, ﬁrhile
Vectk—ﬁategoﬁes are called k-linear categories and include Rep(G), the category
whose objects are -linear representations of a group G with ﬁzorphisms the in-
t'ertwinj.ug operators. To gain some insight into these examples, it often pays to
consider the simple case of enricked categories with only one object. An addi-
tive category with one object consists of an abelian group R equipped with 2
E_omomorphism of abelian groups m: R@ R — R. By .deﬁ_n.ition of the tensor
product of abelian groups, this corresponds to a binary operation -: R x R — R
that distributes over addition and condition (0.3) forces this operation, which

we naturally call multiplication, to be associative. The identity element gives a

10
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distinguished element 1 of R and condition (0.4) ensures that 1 is a left and right
multiplicative identity. In other words, a one-object additive category is a ring.
In the same way, a k-linear category with only one object is sunply a k-algebra.

Notice in all of our examples, the base category is in fact enriched over itself:
Set is a category, Cat is a 2-category, Ab is an additive category and Vect, is
a k-linear category. This is due to the fact that each of these base categories is
“closed”. A monoidal category V is closed with respect to its tensor product (on
the right) if for each object B of V, the functu_sr —®B:V — V has a right adjoint
[B, -], which is to say that there is a bijection

A@B — (¢
A - [B/{]

which is natural in A and C. The counit for this adjunction, which we denote

by €z, has C-components [B,C]® B — C. We refer to this counit as evaluation
and it allows us to enrich ¥ over itself. For objects A and B of V we define a
hom-object by [4, B], the so-called internal hom. The composition law

[B,CI® [A, B] — (4, C)

is defined to be the arrow which corresponds under the adjunction to

(B,Cl®[4,B) @ A= B,Cle (4.5 4) 24 2. cle s -F—s .

The identity I — [A, A4] is defined as the arrow which corresponds to the iso-
morphism I ® A — A. It is straightforward to establish that these definitions
do indeed exhibit V as entiched over itself in the manner suggested by our ex-
amples abave. Note also that if V is clesed and symmetric, then. the functor
B® ~:V —>Valsohas a right adjoint, namely (~, B].

The notion of “enriched sub-category” is rather more subtle than the corre-
sponding notion of ordinary subcategory. For our purposes it suffices to define
a particuler type of enriched sub-category. We say that B is a fu!l enriched
sub-category of A if every object of B is an object of A and B(A4, A') = A(A4, A).

11




0.2.2 Enriched Functors and Natural Transformations

Ordinary categories, functors and natural transformations make up the 2-category
structure Cat. Enriched categories are similazly the cbjects of a two;dimensional
structure as it is possible to define a.na.logues of functors and natural transforma-
tions which respect the enriched structure. |

For V—catégories A and B, a V-functor F' .A — B consists of a map of ob jects
F: Ay ~ By and an assignment of an arrow Fy g: A(4, B) — B(F A, FB) to each
ordered pair A, B of objects of .A. These data are required o respect composition

and identities in the sense that the following diagrams commute:,

A(B,C) ® A(A, B)

m

> A(A,C)

F@F - F

B(FB,FC)® B(F4,FB) — = > B(F4,FC) _

and _
A4, 4)

Ira

-y
B(TA,TA).
Given V-functors F: A — B and G:B -~ A there is an obvious composite

V-functor G o F: A — C. Composition of V-functors is associative and each
V-category A has an identity V-functor 14: A — A given by

Laga,m): A(4, B) = A(A, B).

Thus V-categories and V-functors form a category.
When we enrich over Set we clearly recover the notion of ordinary functor,

while a Cat-functor is the same as the usual notion of 2-functor. Continuing with

12
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the terminology of m_ir other examples, an Ab-functor is called an additive functor
and a Vecte-functor is called & k-linear functor. Returning to the special case
of enriched categories with only one object, it is clear that an additive functor

between rings is siraply a ring homomorphism and 2 k-linear functor between

k-zlgebras is a homomorphism of algebras.
For V-functors F', G: A — B, a V-natural transformation a: F — G consists

of a family of components ay: I — B(F A, GA) indexed by objects A of .4 which

is V-natural, which is to say that the following diagram commutes:

ag® F
1® A(4,B) —— > B(FB,GB) ® B(FA, FE)

T

IR

B(FA,GB)

m
b4
A(A,B)® I —> B(GA,GB) ® B(FA, GA).
GQRaya

Note that in labelling the left-hand arrow of this diagram simply as an isomor-
phi'sm,' we are making our first appeal to the coherence theorem for monoidal
categories. '
In a manner exactly analogous to ordinary natural transformations, V-natural
transformations can be composed both vertically and horizontally. Given two
V-natural transformations a: F — @ and §: G — H, where F,G, H: A~ B, we

define the vertical composite fa: F — H in terms of its the A-component

@
Irelr _’?i_;} B(GA, HA) ® A(FA,GA) > B(FA,HA).

Given V-natural transformations cc F — G and o FY — _C-", where I and
G:A — B and F' and G': B — C, we define the A-component of the horizontal

- composite &' o a: F' o F' — G’ o G to be either of the two boundary composites of

13




the diagram

1® a,
I=IQI : > 1 ® B(FA, GA)
0, ®1 = Gy @ F'
\4 \%
B(FA,GA)®I C(F'GA,G'GA)® C(F'FA, F'GA)
G’ D afFA m
¥ v
C(G'FA GGARC(FFAGFA) > C(F'FA,G'GA).
m

Note that the V-natu:ality of o ensures that this diagram commnutes. Relatively
straightforward diagram chasing verifies that these vertical and horizontal com-

posites are indeed V-natural transformations. Also, the vertical composition law

is associative and each V-functor F: 4 — B has an identity V-natural transfor-

mation 1p: F — F which has components 1r4: 1 — B(FA, FA). We denote by
V-Cat(A, B) the resulting category of V-natural functors A — B and V-natural
transformations with vertical composition. The horizontal corposition law is also
associative, it has the same identities ag the vertical law and the two composition
laws satisfy the interchange law. Thus V-categories, V-functors and V-natural
transformations form a 2-category, whick we denote by V-Cat.

0.2.3 TUnderlying Categories

In all our examples, the objects of the base category have underlying sets, so
we can igﬁore the “extra structure” of the enriched categories and be left with
an ordinary category. To see how this can be done in the abstract setting, re-
call that there is a bijection between the elements of an abelian group A and
homornorphisms Z — A, there is a bijection between elements of a vector space
V over k and linear maps £ — V" and a bijection between objects in a category

and functors from 1 — C. In each case, elements of the “underlying set” of an

14




object A of the base category V. amount to arrows J ~ A in V. Equipped with
this insight we are able to associate an “underlying” ordinary ca.t;e'ghory to any
ecriched category. '

Given a V-category A, we define the underlying category ‘UA to be the cat-

egory with the same objects as A and with arrows f: A — B given by arrows

 fiI = A(4,B) in V. The composite gf of arrows f:A— Band g:B — Cis

given by

_ ® . .
rerer 224 A(B,C) ® A4, B) -5 A(4,C).

By way of example, consider a category A enriched over Cat, which is simply

a 2-category. The underlying category U/.4 is the category obtained from .4 by

ignoring the 2-cells. -
‘We can go further and give a 2-functor U: V-Cat — Cat and associate under-

- +lying functors and natural transformations to V-functors and V-natural transfor-

- wvmations. To this end, we introduce a V-category T which has one object, 0 and

“has the hom-object Z(0,0) = I. The composition law in 7 is the isomorphism
I ® I — I and the identity element I — I is the identity arrow of I in V. Note
that a V-functor I — A simply amounts to an object of V. We now define U to
be the representable 2-functor V-Cat(Z, —). Explicitly, the underlying functor
UT:UA — UB associated to the V-functor F: A — B takes objects A to FA and

~arrows f: A — B in U.A4 to the composite

f Fan
I —> A(4,B) —=2 B(FA,FB).

The underlying natural transformation Ua essociated to a V-natural transforma-

tion c: F — G is even simpler to describe. The A-component of U is the arrow

FA — GAin UB given by oq: ] — B(FA, GA). '
The amount of information lost in the passage from enriched categories o

their underlying categories depends very much on the base.
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0.3 Enriched Bimodules

In ring theory, there is a well-known notion of “bimodule”. Given rings R and 5,
an (R, 5)-bimodule consists of an abelian group M which is a left R-module and
2 right S-module such that the K and S actions commute. In detail this means
we are a left action of R on M and a right action of S on M, both of which we
denote by -. These actions yield group homomorphisms

(0.5) . R®M — M
(0.6) M®S — M.

The two actions are subject to the condition that they comroute, that is

(0.7) | (r-m)-s=r-(m-s)

forallr € R, s € S and m € M. Given two (R, §)-bimodules M and N, the
obvious notion of a bimodule map is a group homomorphism f: M — N which

respects the R and S actions, in the sense that

(0.8) | flrem) = r-f(m)

(0.9) ' flm-s) = f(m)-s.

An important feature of bimodule maps is that not only do they give (&, S5)-

bimodules a category structure, but this category is itself an additive category.
There is another equivaleht formulation of these data which is of particular

interest. An (R,.S)-bimodule can be considered to be an additive functor

©10)  SPQR~— Ab

where S% is the opposite® of the ring'S. Described in these terms, a bimodule

map is an additive natural transformation.

859 has elements § for each s € § and has addition defined as in §, but has multiplication
reversed: 3157 = 3351,

16




Probably the most important feature of bimodules is that they can be “com-

- posed” using the operation of tensor product over a ring: given an (R, S)-

bimodule M and an (T, R)-bimodule N » We can give their tensor product N@p M
he structure of a (T, ) bimodule in the obvious way. A very stggestive notation
is to write an (R, .S'J-bixﬁodule s an arrow § —— R. Then when M-S - R and
N:R~—T as above, we have N @5 M:§ -~ T. Up to isomorphism, this tensor
product of bimodules is associative. Furthermore any ring R can itself be con-
sidered as a bimodule R —— R, and as such is .a.n identity for the tensor product,
at least up to isomorphism, in the sense that ROeM=XMand NQprR2N
for any left R-module M and right R-module N, Composition laws such as this,
which' fall short of yielding categories only in that tﬁe associativity and identity
laws are isomorphisms rather than equalities, are the subject of Chapter 1.

A bimodule is an object of Ab and rings are additive categories, so it is natural
to expect it to be possible to develop a similar notion of bimodule enriched
over base cé.tegori_es other than Ab. By analogy with equation (0.10), given
V-categories A and 8 it would seem reasonable to define a V-bimodule A —+ B
as a V-functor

A7 @B =V,

Of course, this necessitates defining the opposite of a V-category and the tensor
product of V-categories. In making these definitions, we wﬂl make use of a
symmetry for V. Maps of enriched bimodules tan then be defined as V-natural
transformations. ‘ _

Generalizing composition of bimodules is slightly more complicated. Recall
that the tensor product of modules over a ring can be expréssed as a coequé,lizer.
Explicitly, if M is a left R-module and N a right R-module, then the following
is 2 coequalizer diagram in Ab: '

(0.11) NQReM ? N@M-—s> N M.
Here ® is tensor product of abelian grougs and the parallel arrows are given by the

17




R-action on M and the R-action on V. If composition of enriched bimodules is to
be defined in a similar fashion then we will require the existence of coequalizers in
the base category. In fact, coproducts are also needed, so we will insist that our
base is cocomplete. Following the example of ordinary bimodules, it is reasonable
to expect that V-bimodules A-— B can be given the structure of a V category. To
do so will require the formation of limits in V, which imposes another condition
on our base. We will therefore eventually insist that V is a symmetric, complete
and cocomplete closed monoidal category. Note that Set, Cat, Ab and Vect;

all satisfy these requirements.

0.3.1 Tensor Products and Opposites

" In this section, V is only assumed to be a symmetric monoidal category. If A and
B are V-categories, we define their fensor product A® B to be the V-category
with objects Ay x By and hom-objects

{A@ B) ((A, B), (4, B')) = A(4, A)® B(B, B').

The composition law is given bjr the composite
(A4 ,4M0B(B',B")) @ A(A,A')85(8,5))

7 .
(A(A’, AM@A(AA))B(B(B' B)0B(B,5'))

mam

¥
| A(A',A")@B(B,B")

for which we make our first appeal to the coherence theorem for symmetric

monoidal categories: the arrow labelled Simply as an isomorphism can be any
suitable expanded instance of ¢ and c. The identity element for the object (4, B)
is given by the composite |

I2Il i,@_ls} A(A, A) ® B(B, B).
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It is easy to check that this deﬁmtmn of AR B yields a V-category. The V-category

| I which was introduced in Section 0. 2.3, is a unit for the tensor product of

V—caj:egorles since there are isomorphisms’ 4@ 7 o A = T® A. It can also be
shown that up to isomorphism the tensor product for V-categories is associative,
that is to say (A®@ B)®C 2 A® (B C). Indeed V-Cat is itself a monoidal
category. _

By way of example, consider the case of k-linear categories. Recall that a
k-linear category with only one object is a k-algebra. The unit 7 in this case is
simply k considered as an algebra over itself, If A and B are two k-algebras, their
tensor product as k-linear categories is the vector space tensor product AQ, B
with the algebra structure defined by (¢ ® b)(a' @ V) = aa’ @ bY'.

Given a V-category A, we define its opposite A® to be the V-category with
the same objects as .4 but with hom-objects given by AP(A, B) = A(B, A4).

Composition is given by

A(C, B) ® A(B, 4) = A(B, 4) ® A(C, B) —™> A(C, A)

and identity elements are the same as for A. This definition coincides with the
usual notion of opposite in the case of ordinary categories and when rings are
considered to be additive catego'ies it coincides with the usual opposite of a ring.

We are now in in a position to define bimodules ermched over a base V.

0.3.2 The Definition of Enriched Bimodules

From this point on, we assume that V is a symmetric, complete and coconiplete
closed monoidal category. A V-bimodule M is a V-functor

A"P@é-—»l}

ﬁhere A anci 8 are V-categories. We also say that M is a left B-, right A-module

and write M: 4+ B. Some authors call bimodules profunctors, distributeurs or

TMore precisely, the isomorphisms are 2-natural :somorplusms See chapter.l for more on
two-dimensional algebra.
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distributors. There is an alternative more Intuitive formulation of this definition
which resembles the ordinary notion of bimodule even more closely. An enriched
bimodule M: A — 5 consists of a collection of objects M(4,B) € V, indexed
by objects of A'and B, together with arrows

(0.12) M(4,B)® A(4,4) — M(A',B)
(0.13) B(B,B')® M(A,B). — M(A,B)

in V whick arrows are required to be actiuns, in the sense that they both satisfy
axioms of associativity and identity, and are required to commute. We denote
both actions by -. The axiom of associativity for the A action states that the
diagram J

M(4,B)® (A4, A) @ A4, 47) 22 (4, B) @ A(A", 4)

IR

M(A", B)

WV o
(M(A: B) @ A(A,: A)) ® A(A", A’) ""'@"';} M(Arl B) ® A(A”s A') ‘

commutes, which is a generalization of the condition on right actions for ordinary
bimodules that (m-7) -7 =m - {rr'). The identity axiom for the A action states

that the disgram '
M(A,BY®I

1@14

M(4,B) ® A(4, 4) —> M(4, B)

commutes and this genera.hzes the condition for ordinary bimodules that m-1 =

m. The axioms of assoc1at1v1ty and identity for the actlon of B, which generahze
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the corresponding axioms satisfied by the left actions for ordinary bimodules;
are very similar and so we omit them here. The requirement that the 4 and B
actions commute with each other is a generalization of equation (0.7) for ordinary

bimodules. It is expressed by the commuitative diagram

B(B,B')® (M(A,B)® A4, 4)) Lel'-} B(B,B"Y® M(A', B)

i

M(4', B

v :
(B(B,B")® M(A,B)) @ A(A', 4) ——-1> M(A,BY® A(A', A).
] L@

The equivalence of these two definitions of bimodules is straightforward to es-
tablish. Given actions as above, composing either leg of diagram (0.3.2) with an

appropriate expanded instance of ¢ and ¢ yields an arrow
(A(4',A) ® B(B,B")) ® M(A,B) — M(A', B
which corresponds under the internal hom adjunction to an arrow
Mapy a5y A(A, A) @ B(B, B') — [M(A, B), M(A', B")]

and the associativity, identity and commutativity axioms for the actions ensure

that M4 m),4,21) gives the data for a V-functor APQ B — V. Con\e:ersely given
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such 2 functor, we can obtain a B action as the composite

B(B,B')® M(A4, B)

o

v
(I® B(B,B")) ® M(4, B)

(la@l)®1

v
(A(4, 4) ® B(B, B")) & M(4, B)

M

¥
M(A, B

where M corresponds to M'(A,BL(A,Q) under the internal hom é.djunction. A
similar composite yields the A action. The description of bimodules in terms
of A and B actions will be useful in describing the operation of composition
of bimodules. Henceforth we will move freely.between the two formulations of
enriched bimodules.

Since enriched bimodules are V-functors, one should clearly consider V-natural
" trapsformations between them. A V-bimodule maﬁ M — M’ between enriched
bimodules M, M": A —— B is a V-natural transformation M — M’. The In-
terpretation of this definiticn when bimodules are treated in terms of B and A
actions is straightforward. A. bimodule map a: M — M’ consists of a collection
of arrows oq g: M(A4,B) — M/'(A,B) in V which respect the 4 and B actions.
Explicitly, saying o respects the A action means that all diagrams of the form

M(A, B) ® A(A, A) — M(4', B)
aa5®1 Qa8
M'(A,B)® A4, 4) —> M'(4, B)
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commute. Similar commuting diagrams express the fact that o respects the B
action. Enriched bimodule maps between bimodules A —— B can be composed
in the obvious way and this composition is clearly asscciative and has identities
for each bimodule. We thus have a category, which we denote by V-Mod (A, B),
of bimodules A —— B and bimodule maps between them. It is also possible to
construct a V-category whose objects are bimodules A -+ B, however we defer
this construction to the next section.

Lawvere [32] introduces the notien of V-module as a “generalized V-functor”
and indeed any V-functor F: A — B gives rise to a bimodule F.: A —— B defined
by

F.(A, B) = B(FA, B)

and another bimodule F*: B ~— A which is defined by

F*(B, A) = B(B, FA).

~* The B action in both cases is given by composition in B, while the 4 action on
~ F, is defined by |

B(FA, B) @ A(4, &) --il B(FA,B)® B(F 4, F4) "> B(F A, )

and the A action on F* by a similar composite. Assomatmty of composition
for enriched categories ensures that F, and F* are indeed bimodules. The bi-
modules associated in this way to an enriched fumctor are central to Cauchy
completeness, the subject of the final section of this chapter. Given a V-natural

transformation o: /' — G we can define 2 map of bimodules ,: G. — F. which
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has (4, B)-componert given by the composite
B(FA,B)

12

¥ :
B(FA,B)®I

1@ &y
v

B(FA,B)® B(GA,FA)

m

. W
B(CA, FA).

Similarly, we can define a bimodule map o™ F* — G". Clearly these definitions

will Tespect composition, so we have in fact defined functors

(0.14) ( )a:V-Cat(4,B)* — V-Mod(4,B)
(0.15) O ():V-Cai(4,B) - V-Mod(B,A).

 We now twrn to composition of enrichéd bimodules. Cormposition of ordinary
bimodules is defined through the operation of tensor product over a ring, which is
expressed in Categorical terms as the coéqua.]izer in diagram (0.11). Since we are
working over a cocomplete base, a similar construction is possible for enriched
bimodules. Consider V bimodules M: A ~» B and N: B —+— C. We define their
composite N o M by specifying IV o M(A4, C) as a coequalizer in V of the diagram
T (N(B1,C) ® B(By, B)) ® M(A,By) T3 5 N(B.C)® M(4,B)
By,B168 BeB

where the parallel arrows are obtained from the B actions on M and N. Explicitly,

&

by

2

4



_T)' one of these arrows is defined by the commuting diagram
) -®1 .
i (N(B1,C) ® B(B:, By)) ® M(4, B)) — 25 N(B,,C) ® M(4, By)

_l | i{Bl,Bz)i " liB

> (M(8,,C) @ B(By, BY) ® M(4,B)) —> 3" N(B,C) & M(A, B)
B, B2¢eB Beg

-

where the the arrows labelled by i are coproduct injections. The other arrow is

given by a similar commuting diagram which also involves the isomorphism

T —

_
s

(NtBls C) @ B(Bg,B;)) @ M(A: BE) = N(Blr C) @ (B(B2a Bl) ® M(ArBZ)) .

With this definition, N o M clearly inherits an A action from M and a C action
. from N and is thus a bimodule A-» C. This composite is sometimes also written
as N ®p M. We will also write N o M(A,C) = N(B,C)®p M(A, B).

Like the tensor product of ordinary bimodules, the composition law for en-

S e i

-’i' .

i

riched bimodules is associative up to isomorphism. For any V-category C, the
hom-objects C(C, C") clearly define a module C —+ ¢ which we denote by
le. These bimodules serve as identities for composition of bimodules, since

lgo M = M = M o1, for any bimodule M: A — B. We refer again to Chap-

-

ter 1 where this composition law for bimodules is seen to yield a “bicategory”.
In this chapter we have already been using the coherencé result of Theorem 1.3
in the context of monoidal categories. Henceforth we shall also be applying it to

Tk cmedks

composition of bimodules: we will not label any bimodule isomorphisms built up

from associativity and identity isomorphisms.

We have already described the bimodules associated to an enrxiched functor.

J;‘h .‘? .

The relationship between composition of such bimodules and composition of the

—t

correéponding functors is a.nticipa.ted by the notation ( ). and ( )™ it can
be shown that for V-functors F: 4 — B and G:B — C there are bimodule

_'_—"k:—_'

isomorphisms

(0.16) | (GF). = G.oF,
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(0.17) (GF) = F* oG~

Recalling diagrams (0.14) and (0.15), there is clearly 2 sense in which ( ). is
covarié.nt on V-functors and contravariant on V-natural transformations, while
for { )* the reverse in true. This assertion will be made precise in Chapter 1.

Composition of bimodules can also be defined in terms of the V-functor for-
mulation of bimodules. Kelly [28] does this in terms of “indexed colimits” and
although indexed colimits will not be discussed in detail, it is worth noting here
that they can in twrn be defined in terms of composition of bimodules. An index
is a V—functor F: K¢ — V, which we interpret as & bimodule X —— 7, and given
a V-functor G: X — B, the colimit of G indeze& by F consists of an object FaG
of B which is characterised by 2 condﬁiqn which amounts to an isomorphism of
bimodules -

(FQG)=2F®zG"

where the object F @ G is treated here as a V-functer 7 — B2 “Indexed limits"

can also be described in terms of bimodules in a similar manner. Much of the

theory of enriched categories can be developed either in terms of bimodules and -

their composition law or in terms of functors and indexed limits and colimits.

0.3.3 Adjoints, Density and the Yoneda Embedding

A concept central to the treatment of Cauchy completeness given in the next
section is that of “adjoint bimodules”. Adjunction can be defined in general for
arrows in a bicategory, but here we phrase the definition in terms of bimodules.
An adjunction M -1 N between bimodules #: A ~— B and N: B -+ A consists

of 2 unit-q:14 — No M and a counit eMolN — 13' such. that the following:

8Note that Kelly [28] writes F x G in place of F @ G.
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adjunction triangles commute:

NoM)oN = No( .MON)

AON N > N = Nolg

MO(NGM)‘*-’(MON)OM

Mol &M — M 2 1g0 M.

We say that M is a left adjoint of N, a.m:I N is a right adjoint of B. Here we are,
of course, appealing to coherence for bicategories. We have already encountered
one important source of bimodule adjunctions, namely the bimodules associated
to enriched functors.

Proposition 0.1 IfF: A - B is V-functor, then there is an adjunction F, 4 F*
between the bimodules induced by F.

Another feature of the bimodules induced by enriched functors is that they
can be used to cha.ra.ctense or define properties of the functor. A V-functor
F: A — B is said to be fully faithful if the arrows F, ar A(A, A") — B(FA,FA)
are isomorphisms in V. This property is characterised in terms of the bimodules

associated to F" by the following result,

Proposition 0.2 4 V-funcior F: A — B is fully faithful if and only if there is

a bimodule isomorphism F* o F, 21 A-
Proof. This follows immediately from the observation that

F* o F.(A, A') = B(FA, FA").
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A V-functor F: A — B is dense if F, 0 F™ 2 15. The most important example
of a dense V-functor is given by the “Yoneda embedding”, but before describing

this embedding, we must construct the enriched category of bimodules A —+— 5.

We first construct enriched functor categories.
For V-categories A and B we define a V-category {A, B] whose objects are

V-functors A — B and the hom-object [A, B|(F, G) for V-functors F, G: A — B

is an equalizer of the diagram

T 8FA,GA) 2 TI [A4A),B(FAGAY]

AgA AATeA

for which one of the parallel arrows is characierised as the top arrow of the

commuting diagram

HB(F-‘A, G4) — [ [A4.4),
AAdeA

AcA
'II.'A!']/ . L‘ITA‘AJ
B(FA', GA") ———> [A(4, A'), B(FA,GAN]

where arrows labelled m are product projections and the bottom arrow corre-

B(FA,GA")]

sponds under the internal hom adjunction to the arrow

1QF
BIFA', GA) @ A(A, &) —2"5 BIF A", GA') ® B(FA, FA') 2> B(FA,GA').

The other arrow in diagram (0.3.3) is obtained in a similar manner using G

Given V-functors F, G and H: A — B3, the arrow
[4, BI(G, H) ® (A, B(F,G) — [[(FA, HA)
A
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with A-component given by the composite

(4, B|(G, H) ® [4,B)(F, G)

|

[18G4  HAD ® []B(F4,,GAy)
Ay

Ay
T4 DTy

v
- B(GA,HA) ® B(F4,GA)

m

Y
B(FA, HA)

equalizes the appropriate arrows in the definition of [A, B](F, H) and thus yields

an arrow (A, B(G, H)Q[A, B|(F,G} — |4, B|(F, H}, which gives the bomposition

law for [A, B]. The collection of all identity elements 14: ] — B (FA,FA) gives
an arrow I — [], B(FA, FA) which in twn yields an arrow [ — [A, B|(F, F)
which gives the idéntity element for F in [A4, B|. That these definitions of com-
position and identity elements satisfy the enriched category associativity and
identity laws follows directly from the corrgsponding axioms for B.

Note that the arrows F — G in the underlying category U[A, B] are of
the form I — [A, B(F, G) 2nd thus correspond to arrows I — [], B(FA, GA)
subject to a condition which mean that the conesponding families of arrows
I'— B(FA,GA) constitute V-natural transformations. Thus the underlying cat-
egory of [A, B] is V-Cat(A, B).

The key property of enriched functor categories is that they provide a right
adjoint for the tensor product of énriched ca.ﬁegories in the sense that there isa
bijection

(0.18) AB — ¢

A — [BC]
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We now define the enriched category sMod, of bimodules A —— B to be the
enriched functor category {A? ® B, V]. Of course this enriched category can also
be defined directly in terms of the action formulation of bimodules. Of particular
interest is the enriched category of modules A —+— V' which we denote by Modx.

The bijection (0.18) becomes in this instance a bijection

A+ B
(0.19) | B S Moda,

Therefore, there is a V—_fuuctor i: A — Mod, which corresponds under this bi-
jection to 14:.4 —— A. This functor is referred to as the Yoneda embedding.

The importa.ﬁce of the Yoneda embedding hinges on the follow result, which

generalizes the classical deeda Lemma.

Proposition 0.3 (Yoneda Lemma) For any enriched category A and right

A-module N € Mod, there i5 ¢ module isomorphism
N & d,(~, N).

Proof. Proving that _
NA 2 Mods (A(—, A), N)

for each object A of A is simply a matter of disgram chasing to confirm that VA |
is a coequalizer of the appropriate diagram from the definition of hom-objects for
Mod,. The result then foﬂows by checking that these isomorphisms respect the
A action. ' a

Our main application of the Yoneda Lemma is in the proof of the following result.
Theorem 0.4 The Yoneda embedding is dense and fully foithful.
Proof. Setting N = A(~, A") in Yoneda Lemma, we obtain

A(A, A7) 2 Mod 1 (A(—, A), A(—, A7)

30




::f...-“- -

. I .
- — - -
| a—

.

e —

and hence 3 is fully faithful. To Prove that ¢ is dense, we first observe that the

Yoneda Lemma also implies that

Moda (A(—, A), N) ©4 Mods (M, A(~, ) % NA®, Mod, (M, A(~, A))
and then chase diagrams to confirm that this is isomorphic to Mod (M, N). O

We row retwn to the bijection (0..19). Consider M: A — B and F: B — Mod 4
which cortespond under this bijection, so that M (A, B) = F(B)(A). Using the
fact that the Yoneda embedding is dense as well as the Yoneda Lemma, we deduce

F*(N,B) = Mods(N,M(~,B))
= Moda(A(=, A), M(~, B)) @4 Mods (N, A(~, 4))
¥ MA®4 Moda(N, A(~,A))
= Moi*(N,B).

We conclude that for every V-bimodule M: 4 - B there exists a corresponding
V-functor F: B — Mod, such that

(0.20) F*2 Mo,

This characterisation of bimodules will be nseful in our treatment of Cauchy

completeness.

0.4 Cauchy Completeness

Cauchy completeness for enriched categories is very ciosely related to the usu_a.l
notioﬁ of Cauchy completeness for metric spaces. To see this connection we first
describe a base for enriched categories which has not arisen in previous examﬁles.

We denote by R. the category whose objects are noﬁ-negative extended real
numbers (this includes o0), an arrow & — b is a relation a > b and tensor

product is given by the operation of addition. The unit for this tensor product
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i 0. Consider truncated subtraction, defined by

b—-a b
o= 5 b2

where we use the definitions

v
o 8

(0.22) -6 = & if @ # o0
(0.23) b—oo = 0.

We denote also deriote [a, b] by b—a. This truncated subtraction gives an internal-

hom for R, since there is a donble implication

at+b > ¢
a 2> ¢—b

R is complete and cocomplete with limits given by suprema and colimits given

- by infima.

A category X enriched over R consists of a collection of ob;ects which we
call points, together with an asmg‘nment to each ordered paur a, b of points of an

element X (a,b) of R. This assignment is subject to the conditions

(0.24) X(be)+ X(a,b) > X{a,c)
(0.25) . 0 = X{aa).

Note that the second condition asises from 0 > X({a,a). I X (a,b) is thought
of as the distance from the point a to b then to some extent X resembles a
metric space. Certmnly any metric space can be considered to be an R-category,
however in general the conditions imposed on categories enriched over R are
weaker than the axioms for a metric space. More specifically, distances may be
infinite, distance need not be symmetnc and distances between distinct points
may be zero. Lawvere {32] calls R-categories generalized metric spdces and cites
as an example “X(a,b) = work required to get from & to b in a mountainous

region X".
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An epriched functor between R-categories is a distance-decreasing function,
that is a function f: X — Y satisfying
X(z,z") 2 Y(fz, fz")

for all z, z' € X. An R-bimodule X' —~ X is therefore a function X x ¥ — R
which is distance-increasing in the first variable and distance decreasing in the’
second. The importance of R-bimodules lies in the following result concerning
adjoint bimodules which appears in Lawvere [32].

Proposition 0.5 A metric spece ¥ is Ceuchy complete if and only if every ad-
Junction M - M* of R-bimodules M: X ~— Y and M*:Y —— X is induced by
en R-functor f: X =Y. y

.Prooﬁ For R-b:lmodules, the definition of an adjunction .M ~ M™ becomes

K20+ M)

inf (M{z,y) + M*(y,2)) 2 Y (3,).
In particular, for .a. fixed 7 € X,
0 = inf (M*(y, ) + M(z,3))
M(z,y') + M*(y,2) 2 Y(3,¢).

We can, therefore choose a sequence (y,) of points in ¥ such that
02) M(z,30) + M"(3m,2) <
and thez.'eforel _
¥ (Yo ¥m) < % + %

so that (y,) is a Cauchy sequence. If (v.,) is another sequence satisfying (0.26)
then

-y 2
Y(yﬂl yn) S ;:
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so (ya) and (yy,) are equivalent Cauchy sequences. Thus, associated to each point
¢ € X there is an equivalence class of Cauchy sequences. If Y is Cauchy complete
and lilipmeo Y = f(x) then (0.26) implies that M(z, f(z)) = M *(f(z),z) = 0.
Thus the adjunction condition yields M(z,y) < Y(f(z),y) and the fact that M
s distance-decreasing in its second variable implies that M(z,y) 2 Y(f(z),¥)-
Hence M(:r,y) = Y (f(z),) and similarly M*(y,z) = Y (3, f(z)), in other words,
M = f. and M* = f~. '

Conversely, given any Cauchy sequence, {y»), the definitions

Mly) = lm¥Y(yy)
M'(y) = lim Y(y,9)

yield an adjunction M - M* where M:Z-+ ¥ and M*: Y -+— I. Ifthis a.djun;:tion
is induced by f:Z — Y, then f(0) is the limit of the Cauchy sequence, so if every
adjunction is induced by a R-functor then Y is Cauchy complete. a

Prompted by the above result, we say that a V-category is Cauchy complete if
every adjunction M - M* of V-bimodules where M:C +— As induced by an V-
functor f:C — A. Recall that associated to any metric space 1" there is 2 Ca.uéhy
complete metric space Y called the “Cauchy completion” of ¥ whose points are
equivalence classes of Cauchy sequences. In the above proof we observed that
Cauchy sequences in Y amounted to adjunctions M + M™ where M:T ——Y
and this prompts the following definition. Given a V-category A, its Cauchy
completion A is the full enriched sub-category of Mod, determined by those
bimodules M: T+ A with a left adjoint. If A is Cauchy complete then clearly A
is equivalent to A, so Cauchy 6ompletion is a closure operation up to equivalence,

and most importantly, we can prove

Proposition 0.6 The Cauchy complation of an enriched category 18 Cauchy

complete.
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FProof.  First observe the Yoneda embedding factors through 7: A — 4 which
is also dense and fully faithful. Moreover, we can say further to equation (0.20)
that if M: A ~— 5 has a left adjoint, then the associated functor 4 —s Mod,
factors through A, thus _

Fre2Moj

Now consider an adjunction N, - N where N: 4 —— B. The composite IV o Te

has a left adjoint, namely j* o N, and thus there exists a V-functor F: B — A
such that

F*=(Naj)oj*

and therefore

F*2N
and so A is Cauchy complete. ' | )
We now interpret Cauchy completeness for base categories Set and Ab.

Proposition 0.7 An ordinary category is Couchy complete if and only if all
idempotents split. '

Proof. Since the tensor product for Set is Car’césian product, to establish the

Cauchy completeness of a category C, it suffices to consider adjunctions M, 4 M
where M: C ~— 1. Now

MoM, = (ZM(C)-X M.(O)) [~
c
and
M. o M(C,C") = M(C") x M(C)

where ~ is the equivalence relation generated by (y- f, A) ~ (y, -2} fory € M(C),
A& MA(C) and £:€ = C'in C. We denote the équivaience class of (z, A) by
[z,A]. The data for an adjunction M, 4 M is thus an equivalence class [zg, Ag),
where 2, € M(Cy) and Ao € M.(C)y) for some object Cy of C, and functions

“eget M(C) x M(C) — C(C,C')
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which respect the C actions and satisfy the conditions

(0.27) z = Ty €A, T)
(0.28) A = €(A To) - Ao

for all z € M(C) and A € M,(C). Since ¢ respects the C actions we conclude

that
(0.29) e(;kq,:r:) = 5().5,:1:0,)5(/\0,:1:)
(0.30) z)) = € Zo)e(ha, To)

and therefore e = &(Xo,%o): Co — Co is an idempotent and furthermore, the

assignments 7 — (Ao, @) and A — (A, 2o) give module isomorphisms
MC = {ef | £:C — Co}

M.C={fe| f:Co—C}.

If the idempotent e splits, these modules are isornorphic to C(C, C1) and C{Cy, )
respectwely for some C;. Conversely, for an arbitrary idempotent e in G, the
right-hand sides of the above lSO]IlGI'phlS]IJ.S define adjoint modules, and if these

are to be induced by an object of C then e must split. a

Proposition 0.8 The Canchy completion of an cdditive category A éoﬁéists of

finitely generated projective modules over A.

Proof. Examining Ab-bimodule adjunctions M - M where M:Z — A proceeds
in a sirmilar fashion to the proof of the prevmus proposition. Elements of Moo M
are written as finite sums of terms of the form z® A which satisfy (z - f) QA=
z®(f-2). The data for the adjunction gives an element Yo % ® A where
;& MAg and A\ € M A for some object Aq of A and group homomorphlsms

ean: M(A) Q@ M(A) — A(A, Al
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which satisfy the conditions

T = 235 (A ® z)

A = Z.e(}k ® ;) - A
forallz € MAand A € M.A. Thus 3 is finitely generated by z,, 25, ..., T,. Now
consider a module mai) f:M — Ny and a surjective module map ¢g: Ny — N,.

We can deﬁ_ne hi M - Ny by
Mz) = 3 - (@ )
; _
where y; is chosen such that ¢(y;) = f(z:) and then -
Ma) = o) eh®)
= Zf(xi) (A ® 7)

= f (Zs;-e(&@:c))

H

= f(z).

Thus f factors through g and so M is projective. a
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Chapter 1

Bicategories

Viewing the operation of “gluing” of cobordisms along common boundaries as a
composition law is central to the study of topclogu:a.l qua.nt:um field theories. The
fact that this composition law i is only associative up to dxﬂ:'eomorph.lsm means
that n-Cobord is not & category but a higher dimensional structure. It is in
fact a “bicategory”. Bicategories were first defined almost thirty years ago in
Bénabou [4] but have only relatively recently gained widespread attention from
researchers outside category theory. As well as being used directly in -the study
of topological quantum field theories, bicategories have surfaced in the study of
Zamolodchikov tetrahedra equations, which are of course closely related to field
theories. The work of Kapranov and Voevodsky [22] is a good example of this
‘tendency. We begin this chapter with a discussion of a framework for higher-

dimensional algebra and then review some of the Basic theory of bicategories.

1.1 Multiplicative Gréphs

When attempting to generalize the notion of a category to higher dimensions,
the basic data requirements (n-cells, composition, identities) are fairly clear, but
the axioms these data should satisfy are mere elusive and indeed there is no

unique choice. At the two-dimensional level, varying the strictness of associativity
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results in the definition of either 2-categories' or bicategories and moving to three
dimensions, 3-categories, Gray-enriched categories and tricategories? have all
been studied. In this chapter we only consider 2-categories, bicategories and one-

object tricategories (tensor bicategories). Nevertheless is is useful to introduce

—— . Ja— e b__;ﬂ”;

a framework within which to speak of the data of higher dimensional categories
and to this end we intrpduce the notion of “multiplicative graphs” of arbitrary

dimension.

:'rq_k_-ﬁ;ﬁl-:q -

PSR,

1.1.1 The Definition of a Multiplicative Graph

A multiplicative gré.ph consists of the same data as a category, but with Do

L

associativity and identity laws imposed on the composition. More precisely, a

multiplicative graph (G,, Gy, ¢, d, 1, m) consists of a set Gy of objects, a set G, of

arrows, domain and codomain functions

dIIG]_ -t G{}

.CZ Gl‘ — Gg |
respectively, an identily funciion
i Go — Gj_

and a composition law

ol i R N

m: G Xg, Gy — Gy

where G; xg, G1 = {(f,g9) | &(f) - ¢{g)}. These data are subject to the condi-

tions

e

di(e) =a=ci(a)
d(f  g) = d(g)
e(f eg) =c(f),

'For the basic theory of 2-categories see Kelly and Street [30].
2See Gordon, Power and Street [15] on Gray-enriched categories and tricategories.

b

e,
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where we write f o g for m(f, q).

The notion of multiplicative graph éppears in Ehresmann {11] under the name
“graphe multiplicatif”. We can associate a {directed, reflexive) graph to any
multiplicative graph by forgetting the composition law. A homomorphism of
multiplicative graphs is a morphism of the associated underlying graphs while 2
strict homomorphism of multiplicative graphs preserves composition and identi-
ties. Multiplicative graphs and bomomorphisms form 2 caﬁegorsr, which we denote
by uGraphb®. |

A multiplicative 2-graph G consists of sets Gy, Gy and Ga and multiplicative
graphs (Ga, G1, to, do; fo, Ta) 20d (G1, Gz, 6o, d1,%1,7) together with an addi-
tional composition law | ‘ |
) o m: Gy Xg, G2 — G2
where G2 X¢, G2 = {(v,3) | dody () = coca(y)}. We will write me(fig) =fog,
my(z,7') = % -z’ and mfz,y) = z oy and adopt the usual practice of i'eferring
to o as horizontal composition and to - a3 vertical composition. These data are

subject to the conditions

dgdl - ducl

Loty = cady

and

di(yoz) = di(y)edi(a)

ci{yez) = cl(y)ocl(:r:).

Elements of Gq are called objects or 0-cells, elements of G, are arrows or 1-cells
and elements of G, are 2-cells. A (strict) homomaorphism of multiplicative 2-graphs
G — G maps objects to objects, arrows to arrows and 2-cells to 2-cells in such

a way as to give (strict) homomorphisms of the two camstituent multiplicative

IWe chose not to call this category M@Graph to avoid confusion with the very different
notion of “multi-graph”. ' _
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graphs. We denote the category of mﬁltiplica.tive 2-graphs and their homomor-
phisms by 2-uGraph. |

A multiplicative r-greph consists of a sequence G;, Gy, . .. y G of sets together
with muli.;iplichative graph structures (Gi, G4, Cx, di, %) for k = 0,. .. 7= 1,
and for k=0,...7 - 2, multip]icativéﬁ-gra.ph structures on (G, Gis1, Ck, d, ix)
and (G, Giy2; Crt1, dk41,tke1). The elements of G, are referred to as n-cells or
cells of dimension n. Cells of dimension n in a multiplicative r-graph are said to
have codimension (r —n). A (strict) homomorphism of multiplicative r-graphs
maps n-cells to n-cells so as to give (strict) multiplicative 2-graph morphisms
at each dimension. We denote the category of multiplicative r-gfaphs and their
homomeorphisms by r-uGraph.

A multiplicative w-graph consists of a sequence of sets {(G)ren together.'with
multiplicative graph structurés (Gx, G4y, ¢k, di, %) for all k > 0, and multiplica-
tive 2-graph structures on (G, Gx.1, Ck, di, ix) and (G, Graa, Cets Ay, th41). A
(strict) homomorphism of multiplicative w-graphs maps n-cells to n-cells so as
to give (strict) multiplicative 2-graph morphisms at each dimension. We denote
the category of multiplicative w-grapbs and their homomorphisms by w-uGraph.
Note that there is a functor

w-pGraph — r-uGraph

obtained by “forgetting” cells of dimension higher than . This functor has a left
adjoint D and a right adjoint C. These are the usual “discrete” and “chaotic”
constructions: given a multiplicative r-graph G, the only n-cells that DG has
for n > r ere identity cells, while CG has a single n-cell between each pair of
(n—1)-cells. Henceforth, when we introduce pfopert;ies in termas of multiplicative
w-graphs, we will understand a multiplicative r-graph G to have that properj:y if

~ and only if DG does.

Any r-dimensional analogue of a category, however one chooses to define it,

will necessarily have associated to it an underlying multiplicative r-graph. For

41




example, we will be able to associate an underlying multiplicative 2-graph to
a bicategory. In the mext section we define higher order equivalences. These
and other concepts are meaningful in a “higher-dimensional category” and are
| interpreted in the underlying multiplicative graph. This should go some way to
indicate the value of the notion of multiplicative grapk. |

An important example of a multiplicative w-graph arises when one consid-

ers topological spaces, continuous functions between spaces, bomotopies between

functions, homotopies between these homotopies, and so om. Motivated by this.

example, we define a category of homotopies to be a multiplicative w-graph for
which the O-cells é.nd 1~cells are the objects and arrows of a category. Note that
we could equivalently define™a category of homotopies to be a category enriched
over w-pGraph. |

1.1.2 Higher Order Equivalences

One use of the notion of multiplicative w-graphs is to subsume the notions of
equality, isomorph.ism and equivalence into the general notion of “r—equix}alence".
Our definition of r-equivalence is an inductive one, and is based on a similar
definition for w-categories in Street [45]. Two cells a and b of a multiplicative
w-graph are 0 equivalent if they are equal. They are r-equivalent if there exist
cells fra — b and ¢:b — a such that go f is {r — 1)-equivalent to 1, and fogis
(r — 1)-equivalent to lpand we write a._é b. We call f an r-equivalence and g the
inverse up to r-equivalence of f or simply the inverse of f ﬁvhen r-equivalence is
clear from the context. '

A natural question to ask at this pciat is whether r-equivalence is an equw—
alence relation. In genera.l it is not. Con31der a Zpand b e, exhlblted by
r-equwalences f a — b and f':b — ¢ with inverses g and ¢ respectively. To
establish @ = ¢, the only possible candidate for an r-equivalence @ — ¢ is ffof,
with inverse go ¢’. However, to show that (gog’)o(f o f) was (r — 1)-equivalent
_ta 1o and (7o f)o(gog) was (r — 1)-equivalent to 1, would require associativity
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and identity laws at least up to (r — 1)-equivalence, which we do not have in

general. As a example, consider objects in a bicategory (see Section 1.2). It is

'perfectly possible to define both isomorphism and equivalence of objects, but it

turns out that equivalence yields an equivalence relation while isomorphism need
not. Iu general, r-equivalence is the appropriate notion for comparing n-cells in
a multiplicative (r 4 n)-graph and any reasonable associativity and identity law
axioms will ensure it is an equivalence relation!. Isomorphism is 1-equivalence
and equivalence is 2-equivalence, while 3-equivalence is usually referred to as
biequivalence (being the appropriate notion for comparing bicategories).

Another curious feature of r-equivalence is that a "= b does not iniply a=b
In the case r = 1, this means that an object need not be isomorphic to itself.
Although perhaps counter-intuitive at first, this is a basic feature of higher dimen-
sional algebra. It is quite possible, for example, to construct a bicategorj} with
an object A which is not isomorphic to itself. Of course, A will be eqﬁivalent to
itself.

1.2 Bicategories

Fifteen years ago, Street [44] obsefved that “since the paper Bénabou [4] in which
bicategories were introduced, little has been published on them explicitly.” The
same observation could be made today and indeed as yet no one publication
brings together the definitions of bicategories, morphisms, transformations and
modifications. Perhaps the forthcoming book by Kapranov and Voevodsky [21]
will do so. In the meantime, we present all the definitions here. Bénabou [4} and
Street {44] and, to a lesser extent, Mac Lane and Paré [35] and Gray [16] all had
2 part to play in shaping our treatment of the subject.

4Thus, for example, 2-equivalence is an equivalence relation on objects of both 2-categories
and bicategories.
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1.2.1 The Definition of a Bicategory

A bicategory B consists of a collection of objects (or zero-cells) 4, B,C, ... and for
each pair of objects, A and B, a hom-caiegory B(4, B). The objects f,g,h, ... of
B(A, B) are the arrows (or one-cells) of B.and we write f: A — B. The arrows
of B(A, B) are the two-cells of 5. The collection of objects of B is denoted by
By, and the oriented graph with vertices the objects and edges the arrows of B
is denoted by B;. For any three objects A,B,C, there is given a cam;ibsitz’an
functor
masc:B(B,C)x B(A,B) = B(4,C)

the effect of which will be denoted by o, as in mapc(g, f) = go f. It follows

immediately from functoriality that for all arrows f and g we have the equality

lgolp=1lgr
and for all 2-cells oy, &z, f1, f2 we have

(aa01) © (B261) = (ag o Ba) (a0 By)

whenever these composites are defined. The second of these equalities is called the
interchange low. Composition is further required to be unitary and associative
up to coherent isomorphisms. Explicitly, the associativity means that there are

specified associativily isomorphisms

angr(hoglof—ho (go fF)

which are natural in f, g and A, and te say m is unitery meens that for each
object A there is a specified arrow 14: A — A and for each arrow f: A - B, there
are identity law isomorphisms

!filaof—f, Tf:folA—r.f

which are natural in f. When it is clear which object is referred to, we often write

1 for 14. These isomorphisms are subject to the condition that for all arrows f,
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g, h and k, the diagrams,

Qkoh,g.f

((koh)og)of > (koh)o(gof)
Oikhg @1y
W
(1.1) (ke(hog))of - Tk hgof
Qg hog, f
Vi W
ko ((hog)o f) > ko(ho(gof))
lpoan,s
and a
|1B:
(golp)of 2o >goe(lgof)
(1.2)
‘rgolf 15,01;
gof,

cornmute. whenever the appropriate composites are defined. We %ill refer to
the first of these commuting diagrams as the pentagon condition. The obvious
underlying multiplicative 2-graph of 5 is denoted by B;.

The following is a simple extension to bicategories of a result due to Kelly [23]
on monoidal categories. The proof given here is closely based on the treaﬁmént

of Kelly’s result which appears in Joyal and Street {19).
Proposition 1.1 For every object A of a bicategory B,
I}_’l == Tld_

and for all arrows f: A — B and ¢: B — C, the following diagrams in B(4,C)

comrnute: _ "a.
g 1a
{goflol, }gogfolA)

(1.3)
Tgaf lyo07y

gof
45




Ll"f
(lgoglef o2 > lco(go f

(1.4) \ /
lgoly lgor

Proof. First note that naturality and mvertlbﬂ,lty of v ensures that’ to establish

the equality of 2-cells &, B:h — k where hk: A — B, it suffices to check that

aoly, = Boly,ihols — kola To prove the commutativity of the first triangle

(1.3) of the proposition it is thus enough to show that the region ma.rked (%)

in the diagram below commutes. This is indeed the case as all the arrows are

invertible, and naturality of a along with (1. 2) ensure that all the other reglons

commute.
(gof)e(laola)

T

{{goflola)ela go(fo(lacin))

N

acl (=} (S“’f)"l-ﬁ ”‘—"—“"_'9' go{felal

‘ (lor)ol la(rel}

{ga{fora))ota —:—3 go((foladeln)

A similar argument proves the commutativity of the second triangle (1.4).

Since T is natural, the following diagram commutes:

(1AO IA) olg ‘—r""}' laoly
rali. T
la0l, ——> Ly,
T
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But 7 is invertible, so r = ro 1:'(1,4 ola)oly = 1401, (or in full subscript
glory, Tiaets = e © 1,). Now take g = f = 1, in the first triangle (1.3) and
compate the result to (1.2) to obtain _(1 ol)a=(lor)a and hence 1ol = lor by

juvertibility of a. Using naturality and invertibility of { we finally obtain vy, = [ a

as required. O

1.2.2 Morphisms, Transformations and Modifications

Given bicategories B and C, a morphism of bicategories, ®: B - C takes the form

® = (F,¢), where F' consists of maps for each of the three levels of structure

and ¢ specifies the extent to which F' respects composition. More precisely, a

morphism of bicategories consists of:

(i) a map on objects F: By — Cq;

(ii) a coliection of functors Fy p: B(A, B) — C(FA, FB), also denoted by F;
(iil) a collection of two-cells qb,a:: lrs = Flu

{iv) a collection of two-cells ¢g.5: Fgo Ff — F(go f), né.tural in f and g.

These data are required to satisfy the following coherence conditions. For all
arrows f, g and h in B, the diagram

CFnFoFf

(Fho Fg)e Ff > Fho(FgoFf)
Prg o Lry  {lraodyy
R Y
.F(hog)OFf. | - FhaoF(gof)
.‘ﬁhcg,f : ¢h=9°f
oy . ¥
F({hog)o f) - > F(ho(gof))

Oh.g.f
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commutes whenever the composites are defined and for f: 4 — B in B the fol-
lowing diagrams commute:

ﬂb}'.h

FfOFlA-——"'%F(fO].A)

1Ff°¢A FT‘;

Ff°1FA—-———9'Ff
TFf '

and

F].BOFf—(—p'I—B—';F(].BOf)

dpolpy : [ F

ipgo Ff ————> FFf.
lpf

If all the two-cells specified by ¢ are isomorphisms (respectively identities), @
is called a homomorphism (respectively a strict homomorphism) of bicategories.
When composition of morphisms is defined in the obvicus way, it can be shown
using the coherence conditions that bicategories and their morphisms form a cat-
egory. Also, the composite of two homomorphisms i 2 homomorphism, s¢ we
have a subcategory of bicategories and homomorphisms, which is denoted by Bi-
cat. We denote by Bicat, the category of bicategories and sirict homomorphisms.
Clearly Bicat, is a subcategory of Bical.

It should be noted at this point that bicategories are essentially algebraic

structures, in the sense that they can be thought of as models for 2 finite limit

theory. The “global definition” of bicategories in Bénabou {4] amounts to 2
description of the appropriate theory. Taking this finite limit theory perspective,
the morphisms which arjse between bicategories are strict homomorphisms. Since

bicategories are essentially algebraic, we can conclude® that the category Bicat,

SThe general result for categories of models of finite limit theories appear on p.147 of Barr
and Wells [3].
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has arbitrary limits and filtered colimits and furthermdre, the inclusion functor
of Bicat, in Bicat commutes with limits and filtered colimits. This result also
appeais in Bénabou [4] (at least for limits). Of particular importance for our
purposes is the special case of products. Given bicategories B and C, there is a

category B X C with objects By x C and hom-categories
B x C ((B1,C1), (B2, Ca)) = B(B1, Bp) x C(C), Cy)

which is the categorical prodﬁct of B and C in Bicat. The projection homomor-
phisms are strict. Binary products of bicategories will be used in the definition
of “monoidal bicategories” in the next chapter.

When the bicategories involved are in fact 2-categories, these notions carre-
spond to standard 2-categorical ones: a morphism corresponds to a lax functor,
a homomorphism corresponds to a pseudo-functor and a strict homomorphism
corresponds to a 2-functor.

We usually refer to a homomorphism @ = (F,¢) simply as F. This prac-
tice is justified by the coherence results of section 1.2.6. A (strict) homomor-
phism F': B «— C of bicategories has an obvious underlying (strict) homomorphism
F3: By — C;y of multiplicative Eegraphs.

A iransformation n: ' — G between morphisms F, G:B — C of bicategories,

consists of the data in the diagrams

Ff
F4 «—uu2 FB

|

nal L Nf N8

|

GA ———> GB
Gf
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as f: A — B varies over the arrows in B. These data are subject to the condition
that |

L0 Fa
npo Ff ———>mngcFy

nf g

Gfony —————> Ggomy
Gaoly,

comrutes for each two-cell o f — g in B. If 9 is an isomorphism, then we say
7 is a strong transformation or pseudo-netural tmnsform&tion., A strong trans-
formation which is an equivalence is often called a pseudo-natural equivalence. A
maodification p:n ~ ¢ of transformations 7, ¢ . F —'G consists of a collection of
two-cells p4: 14 — Ca, subject o the condition that

.05015-:
ngo Ff ————> (go Ff

i Cr
Gfomg ———> Gfola
lgropa
commutes for each arrow f: A — B. When composition of transformations and
modifications is defined in the obvious way, and for each homomoi'phism F,a
modification 17 is defined by

Ff
F4A ——> FB
I

l .
]-FA‘L Uraie; Il
FA —— FB,
the coherence conditions ensure that the result is a bicategory Bicat(B,C) of

homomorphisms, strong transformations and modifications® . If C is a 2-category

8Clearly there is also a bicategory of morphisms from B to C, tra.nsforma.tmus and modifi-
cations, but this seems to be of less interast in applications.
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then so is Bicat(5,C).
' 1.2.3 Examples of Bicategories
_J _ (i) Monoidal Categories. Consider a monoidal category C with tensor product
®. We define a bicategory B with one object * by B(x,*) = C. We set
g M uw = ® and a, { and 7 respectively are given by the associativity and left
g and right unit law isomorphisms for @. Clearly the definition of a monoidal
R category ensures that 5 is indeed a bicategory. Conversely any such one-
F]E object bicategory yields a monoidal category, indeed for any object 4 of a
o bicategory B, ma .4 gives B(A, A) the structure of a monoidal category.
' ! This phenomenon should be compared to the connection between monoids
- -
N ‘and one-object categories and is referred to as suspension by Baez and Dolan
. .[2]. In terms of this correspondence between one-object bicategories and
(g
monoidal categories, a morphism of bicategories corresponds to the usual
R
:' notion of monoidal functor, while a homomorphism corresponds to what is
. often called a “strong monoidal functor””.
il .
. (i) Spans and Cospans. We describe bicategories of cospans, which. are related
_ | to n-Cobord. Given objects A and B of a category C, a cospan (f, X, g)
h].,..
| from A to B is a diagram

B A > X < g B

. "Joyal and Street {19] use the term “tensor functor” rather than “strong monoidal functor”.
a :

-

i

JJ
e
l.i .
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and a morphism of spans (f, X,q) — (f', X', ¢'} is an arrow X — X'in

N
A

C such that the diagram
X

/

A
PN
v

commutes. This clearly defines a category Cospan C(A, B) of cospans from
A to B. If C has pushouts and for each diagram

X < B——=>7Y

we make a choice of pushout

N
NS

X+g¥Y
then we can define a composition law

B

Cospan C(B,C) x Cospan C(4, B) — Cospan C(4,C)

using pushouts. Explicitly, i (u, Y, v) is a cospan from B to C and (f, X, 9)
is 2 cospan from A to B, then their composite, denoted (v, Y, %) o (f, X, g)
is given by (ixf, X +g Y,iyv). Furtber, if h:(f, X,9) — (f,X"¢') and
k: (u,Y,v) — (v, Y",v) are cospan morphismms, then

ixrhg = ixag’ = T:yr‘ur =iy ku
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and so there is a unique arrow ko s X +8Y¥ — X’ 45 Y’ such that

(1.5) (kohYix = ixh
(1.6) | (ke h)iy = ipk

since X 45 Y is a pushout. It then follows that

(17)  (BoR)ixf =ix S
(1.8) (k o h)iy = iy

Thus koh: (ix, X +5Y,iy) = (ix, X' +5Y", iy+} is 2 morphism of cospans.
If we call (14,4,1,) the identity span on A, then isomorphisms arising
from the properties of pushouts ensure that the composition defined here
is associative and unitary up to coherent isomorphisms. Thus Cospan C
becomes a bicategory, called the bicategory of cospans in C. The bicategory
of spans in C is easily defined as the dual notion, using pullbacks instead

of pushouts.

(iif) Reversing the arrows of B yields a bicategory denoted by B°P, reversing
- the two-cells yields a bicategory 5%, and reversing both one and two-cells

yields a bicategory B=°r.

(iv) A 2-category is an example of a bicategory in which the isomorphjsi:ns a,l,r
 are all identities. Note that if Bis a 2-category, then the composition in B

- gives By the structure of 2 category.

(v) In Chapter we defined enriched bimodules. Recall that given bimodules
M: A~ B and N: B C we defined their composite N o M by declanng
that N o M(4,C) be a coequaliser in V of a diagram

> (N(Bl,c') ® B(By, B1)) ® M(A B) 2 Z N(B,C)® M(A, B).
8,82
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If R:C -+ D, then the associativity isomorphism for the tensor product in

V yields an isomorphism
T 5.c(RC.DIBN(BC))OM(AB) —> Lz o R(C.D)S(N(B.CI@M(A,B))

and routine diagram chasing will verify that this arrow equalises the parallel
arrows in the diagram defining (R o V) o M{A, D) and we therefore have a
module isomorphism -

arvu:(RoeN)o M(A D) — Ro (N o M)A, D).

The isomorphisms ag gy are natural in R, ¥ and M and satisfy equa-
tion (1.1), the pentagon condition. In a similar fashion, the left and right

unit isomorphisms
I®M(A,B)—+M(.A,B), M(A,B)® I — M(A, B)
yield module isomorphisms | | |
I,\;:IBOM—rM, rarMoly— M

whick are natural in M and satisfy equation (1.2). Thus, V-Mod is 2 bicat-

egory, as promised in Chapter . -

1.2.4 Bicategories of Cobordisms.

In this section we make the structure of n-Cobord precise and confirm that it
is indeed a bicategory. If we were only to comsider topologicel manifolds, n-
Cobord could be defined as a sub-bicategory of the bicategory of cospans in the
category of topological manifolds. Since we are dealing with smooth ma.nifoldé,
the situation is a little more complicated but n-Coberd is nevertheless close in |
spirit to a bicategory of cospans. c '

Civen a smooth manifold M with boundary 6M, a collar on M is an embed-
ding

c:OM x [0,00) = M
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such that ¢(z,0) = z. For our purposes, it is convemient to reformulate this
deﬁnition slightly. Given a diffeomorphism ¢:S — M, a ¢-coliar on M is an
embedding

cSx[0,c0)—= M

or
e S x (-;00,0] - M
such that c(z,0) = ¢(z). A standard result says that every smooth manifold with
boundary has a collar®. - A smooth manifold together with a collar is referred to
as a collared manifold.
If M and N are collared manifolds with diffeomorphic boundaries, one can

“glue” ’them together along their common boundary as follows. Consider diffeo-

merphisms c,é;w: S — 8M and ¢y: 5 — ON and collars

s S X (—-O0,0] — M

en: S X [0,00) - N

where ca (7, 0) = ¢u(z) and ey(z, 0) = dy. Thinking of M, N and S simply as
topological manifolds, there is a topological manifold W = M +g N such that

s L w

is a pushout diagram in the category of topological minifolds. We therefore have

maps

dM-;-_-_iM'CM':SX(—O0,0l - W

dysz'CNzSX[0,00) - W

%See Hirsch [17] for 2 proof of this result.
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such that dy(z,0) =iy - ulz) = iy - pv(z) = dy(z,0), and hence a map
d:§ x (—co,00) = W

such that d |sx(—oo0= dar a0d d |sxjoeq)= dv. We now define the result of
“gluing” M and IV along S to be the smooth manifold obtained by giving W the
unique differential structure which makes iy, in and d diffeomorphisms. Different
choices of collars for M and N may or may not result in the same differential
* structure on W. It is possible to define tk;e “germ of a collar” and then two
different collars for M will yvield the same differential structure for W if and only
if they have the same germ. This discussion of gluing carries through to oriented
manifolds Iif ¢ is an orientation-reversing diffeomorphism and all the other maps
are orientation preserving. - | |

If ppe:S — M and ¢y:S —> N are d.iﬁ'eomorph.isw_;as, and ¢y and cy are
éue and ¢y-collars respectively, then a smooth map f: M — IV i3 said to respect

the collars cpy and ¢y if the diagram

M
Pt
3 f
P
Vv
v

commutes and the map 1 +g f is a diffeomorphism. Here 1 denotes the identity
map on the manifold S x (—oo, 0], equipped with the obvious collar, and 1+g f is
the unique map in the category of topological manifolds suck that the following
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AR

s

i s i O

diagram commutes:

in

Sx(~c0,0l +s M «—m— M
18§ (—c0,0]
/ |
S % (-OO, U] 145 f f
i.s'x(-ca,oj N
v

S x (—-00,0] +s N e N.
iv

We can now define the bicategory n-Cobord. The objects of n~Cobord are
compact (n — '1)-di.mensional smooth oriented manifolds. An object of the cat-
egory n— Cobord(Sy, Sg) is ';a. compact n-dimensional smooth oriented manifold
M equipped with diffeomorphism éz:35) + S — M and a @ar-collaring on M,
which we will denote by cp. Here + denotes disjoint union and S, is the man-
ifold obtained from S, by reversing the ofientation. This manifold M is called
2 cobordism from S, to Sp. An arrow M — N in n—Cobord(S:, Sp) is a diffeo-
morphism M — N which respects the collars cp; and cpy. If M is an object of
n—Cobord(S5;, S;) and IV an object of n—Cobord(S,, S} then we can obviously
extend our notion of gluing to allow M and N to be glued along S, and as a

simple consequence of the definition of respecting collars, this gluing operation

~ ¥ields a fimetor

n—Cobord(Ss, Sa) X n—Cobord(Sy, S2) — n— Cobord(S;, Ss).

Given an object § in n—Cobord, we define 1 to be the manifold § x [0, 1],
equipped wiﬁh the obvious collar. It is straightforward to identify the associativity
and identity isomorphisms and verify that these data do constitute a bicategory
n—_Cobord. | .
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1.2.5 A Remark on Notation

A shorthand notation commonly used in category theory is to refer to the identity
ArTow éf an object A simply as -4 rather than 1,. If a functor F is introduced
then F(ly) =1 }A and so this arrow may safely be called FA. However, when
moving to higher dimensions, the situation changes. If A is now an object of 2
bicategory and F is a bicategory homomorphism then F (14) is only isomorphic
to 174 but were the shoftha.nd to be employed, both arrows would be denoted by
FA. Exactly this ambiguity appears iu Gordon, Power and Street {15] in which @
is a bomomorphism and u ®v is used to denote both 1, ® 1, and l,g.. Although
the coherence theorems of the next section do away with the need to give such
isomorphisms explicit names, it nevertheless seems dangerous to use a notation
which fails to distinguish distinct arTows. Using the language of multiplicative
graphs, given a cell A of a multiplicative r-graph, it is safe to refer its identity cell
as A only if A has codimension one (in other words, A must be an (r — 1)-ce11)-.
Other common practices, such as referring to the identitjr arrow 14 simply as
1, which has already been done in this dissertation, do not create difficulties in
higher dimensions. As a rule of thumb, a labelling convention is “safe” if the
label attached to a cell together with the domain and codomain data for that
cell are sufficient to identify th;a cell uniquely. In later sections, we will be using

shorthand devices which are safe in this sense.

1.2.6 Coherence for Bicategories

The coherence theorems given in this section assert that certain diagrams in-
volving the constraint isomorphisms of bicategories and homomorphis}:as of bi-
categories will always commute. These theorems a.voici the necessity of explic-
itly naming lthes_e constraints {which is particularly useful in later sections on
monoidal bicategories and enriched bicategories) and also ensure that the past-

ing diagrams commonly used in working with 2-categories can also be used for
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bicategories. Modifying the approach of Joyal and Street [19], as suggested in
Gordon, Power and Street [15], much of the content of the coherence theorems is

in fact concentrated in a bicategorical genefalization of the Yoneda Lemma.

Proposition 1.2 (Yoneda Lemma) Given o homomorphism F: B — Cat and

an object A of B, evaluation at the identily provides an equivalence of categonlés
" Bicat (B, Cat) (B(A, =), F) — FA.
From this lemma, one is able to prove the following standard coherence results:

Theorem 1.3 (Coherence for Bicategories) In a bicategory, every 2-cell di-

agram made up of expanded instances of a, I, v end their inverses must commute.

Theorem 1.4 {Coherence for Homomorphisms) If F:8 — C.is a homo-

* morphism of bicategories, then every 2-cell diagram in C made up of ezpanded

instances of a, |, T and their inverses, Fa, Fl, F'r® and their inverses and the

constraints ¢ and their tnverses must commute.

For more on “expanded instances”, see MacLane [33]. In outlining the proof
of these results, Gordon, Power and Street [15] appeal to the notion of 2 “category
enriched graph”, the details of which would take us too far afield from the domain
of this dissertation. We will continue to make repeated (usually implicit) appeals

to these coherence theorems.

Notice that we are using the same symbols to denote the constraints of both B 2ad C. This
should not cause any confusion.
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Chapter 2

Monoidal BiCategories and
Enriched Bicategories

Tn Chapter we intro&uced monoidal categories, which are categories equipped
with a tensor product. Many bica.tegories are also very naturally equipped with
a tensor p'roduct;. For example, the temsor product of abelian groups provides
a tensor product for the bica'tegory.of ordinary bimodules. While the notion of
~ monoidal bicategory has been well-known in principle for a long time in category
theory circles, no explicit definition had been published uptil vez‘:y'rlec'ently. A
definition of monoidal bicategory does appear in Carboni and Walters {8], but
only for the special case of locally posetal bicategories'. Gordon, Power and
Street [15] define “tricategories” anci observe that 2 monoidal bicategory can be
defined to be a one-object tricategory. Kapranov and Voevodsky [22] also give
a definition of monoidal bicategories, however their treatment of the subject is
fawed. We discuss some of their ervors in Appendix A. In this chapter we give
our own.detailed definition of a monoidal bicategory.

In Chapter we also introduced enriched categories, which have hom-ohjects
rather than hom-sets. Once again, there is 2 corresponding notion for bicat-
egories. Instead of hom-categories, an enriched bicategory should have hom-

" objects. For example, we have already seen how to construct enriched categories

14 locally posetal bicategory is a bicategory in which all the hom-categories are posetal.
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pMod, and these can be considered to be hom-objects for V-Mod. We can there-
fore think of V-Mod as being enriched over V—-Cat. If we are to generalise

bicategories in this way, we also need to have a composition law
B(B,C) x B(A,B) — B(4,C)

and associativity and identity law isomorphisms, and so'the base for enrichment
must be two-dimensional._ Of course, it must also be monoidal. The natural choice
for a base is therefore 2 moncidal bicategory, and in this chapter we wﬂl give the
definition of a bicategory enriched over & monoidal bicategory. ‘The notion of
enriched bicategory is new, and should be carefully distinguished from that of
a “category enriched ina bicategory”, which was introduced by Betti, Carboni,
Stregt and _Waltefs (3]. Throughout this section W will be used to denote a given
monoidal bica.tegory.

2.1 Monoidal Bi'categories.

A monoidal bicategory is a bicategory W equipped with a tensor product which
is a homomorphism of bicategories, is coherently associative and has an identity

object . Explicitly, a monoidal bicategory W ¢onsists of the following data:

(1) an underlying bicategory, also denoted by W,
(2) a homomorphism @ W x W — W,

(3) ahomomorphism I:1 ~+ W, , where 1 denotes a bicategory with one object,
one arrow and one 2-cell, so that I amounts to an object of W, which is
also denoted by I and is known as the “unit”, and an arrow I — [ which

is isomorﬁhic to 1y and can in fact be assumed to be 1; without loss of

generality,
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(4) a pseudo-natural equivalence a:

1
'Wﬁjﬁievw

1x® Ia ®

W ———> W,
®

(5) pseudo-natural equivalences ! and r:

o Ixl 1x/7

=
v
<

W <

rn-.w

=y



4
F'
4
) (7) and invertible modifications p, L and R:
®@x1
] WJ_._,—J,..WQ WJ ®xl w2
1xIxl ‘ xIxl AT | 1
_, b /
P | I T - S P
i MY W W
Is : Wi
A
:_;:% ’ -
e Ix1x1 :xm/ \9’“
1%@ " \.".
i we ’ wi L w3 4
i | s
M ® = ® '
W
£ w. — L v W“_"_"_"
g |
i.}
B

w2

_.:h -
[
x
@
4:

Jp w

; lxIxI 1xr

ST

i} yv’-—-——m——éh w

Before presenting the axioms these data satisfy, we should observe that the mod-

ﬂ&~ -

ification # could be considered to have components (1@ a)oa)o(a®1) —+aoea
or(l@a)o{ao(a®1)) — aoa. The coherence theorsm for bicategories ensures

that it does not matter which choice we make. We are also appealing to the

i

coherence theorem when we present the axioms as pasting diagrams, which are

~ only uniquely defined up to a choice of bracketing of the 1-cell composites. We

[T
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sow list the axioms, using the terminology of Gordon, Power and Street (15] 2.

(1) (mon-abelian 4.cocycle condition)

(A@(%(C@D)J)@s

(l&z)@l/

Ag((BRC)@D E
(A%((88C)8D))® Aattaaccau))@m

@(GGIJ
/ A@(((B'SG'}@D)@E}
1@a
. | 1@

{({AQ({BRC))®D)RE
AR(BB((C8D)QE)]

AG((BBC)(DGE))
(a@1)®L \ -
’ -l} a 12{1®a}
(Ag(Fecl)e(DaE)] .

{{{A®B)C)RD)IQE .
*B(181) AQ(B0(CR(DEE)))

a®l

({A®B)8C)R(DRE) — > (AGH)R(CI(DOE))

23ee Joyal and Street [19] p.46 f for an idea of how this terminology arises fcom important
parallels with cohomology. See also Street {4a]. '
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is equal to

(A®(Bg( C@D)}}@E

(1@::)@1
{A® B@C}@D])@E
{¢ ‘ A@({Bafc:‘@m}@a)
a®1
{(A
(A6(38G)8D)05 ( @8)e(CeD))eE
.w &1 \ A@(B@((C@D)@E})
{(s@1)@1 (188)8((CeD)oE) / 1@(18a)
- y
(((4®B)eC)eD)oF A8(Be(Ce(Dez)))
: 2 l0enes

((4eB)eC)e (Do s

(2) (left normalization)

(AR(I®B))QC

w8l ' b (19081
4@l Q]r

((A®NSE)&C == (A9B)eC

(rel)e1
\ *@(101) /
m

{AGHQ(BQC) ~—-—-———3— Ag(BaC)

85

—>- (A®P)Q(C@(DSE))

(A@(I@B})@G‘

[A@I)@BJW A@((r@B)ecj {} (A@BMG

' 12(1®1)
A@([I@B)@C)
al 18 IQL
R4

[A@I)@(B@C] o> 48(Bec)



N

(3) (right normalization)

(A@B)2([eC)

/ p
((A®B)e 8T (

191}@‘/

There is a coherence theorem for monoidal bic

(A@B)ac

™)

el

> AS(B8{I8C))} {Ae8)8([’C) S A®(5@(r®cn

\(mn

1@# .
A@((B@nac] .1} L3({1al)
1@(:-@1.]\

(A@(B@I])@G

A®{B8C) ((A@H]@I}@G' AS(88C)

(IV

{ADE)QC

ategories, but it is beyond the

scope of this dissertation. We refer instead to Gordon, Power. and Street [15]

where a coherence theorem for tricategories is proved, which includes monoidal

bicategories as a special case. We also refer to Gordon, Power and Street for

a definition of homomorphism of monoidal bicat

notion of tricategorical homomerphism.

egories as a special case of the ' .

Note that Gordon, Power and Street point out that I and R are uniquely

determined by the remaining data and axioms.

A straightforward example of a monoidal bicategory is n-Cobord with the

tensor product given by disjoint union of manifolds. The bicategory V-Mod is

also a monoidal bmategor:y Just as we defined the tensor praduct of enriched

categories using the temsor product in V¥, we can also define the tensor product
of enriched bimodules. Given bimodules M: A -— B and N: A -+ B, we define
MON:AQ@A —— BRD by setting M@ N ((A,A“),(B,B‘)) = M(A,B) &

M(A4', B').

We can continue the analogy with monoidal categories and make the following

definition. A breiding for a manoidal cahegory W consists of pseudo-natural braid

equivalences

cap:A®B —+B@A
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[ =
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and invertible modifications R, and Rg with components

(B® A) ®C——>B®(A®C)

7

(A®B)®C | B®(C® A)

N

A®(B®C)-——->(B®C)

/
T

and
A®(C®B) ——-—-——>(A®C)

/. 6

A®(B®C) bR, (C2A)& B

N

(A® B)® C ~—> C® (AQ B),
c

\/

where a™' denotes the inverse equivalence of a. These data are subject to 2

ccherence condition which we omit here. A special case of this condition appears

in Kapranov and Voevodsky [22] for when W a 2-category.

A braided monoidal bicategory is a monoidal bicategory aquipped with a braid-
ing. As yet, no-one has proved a coberence theorem for braided monoidal bicate-
gories. A symmetry fora monoidal bicategory is a braiding ¢, such that cp 4 is the
equivalence inverse of cs p and a symmetric monoidal bicategory is a monoidal

bicategory equipped with a braiding. Note that n-Cobord and V-Mod are both

symmetric monoidal bicategories.
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2.2 Enriched Bicategbries

Throughout this section, W is used to denote a fixed monaidal bicategory and
we introduce “W-bicategories” or “bicategories enriched over the base W". A

Whacategory A counsists of the following data:
(1) a collection Ag of objects,

(2) a hom-object A(A, B) for each pair of objects of A (in the diagrams below
this is abbreviated to AB),

(3) a composition law
™m = T4 BC: A(B, C)® A(A, B) — .A(A, )

in W for each triple of objects of A,

(4) an identity element

1ard — A(A, A)

for each o‘bject of A,

(5) associativity isomorphisms & = &4, B,c,D

((ARB)RC)YRD ((A®(B@C))®D

(A®B)R(C®D) ' o A®{(BRC)8D)

1@a . e

AB(BE(COD))

" for each quadruple of objects of A
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§ {6) and identity isomorphisms A=2Aspand p=pasg
. AB @ AA

: i 191

@/“ p \

AB®I
3%
3 BE® AB
. lBV \
” _ I® AB AB

] |
g for each pair of objects of A.
F These data are subject to two compatibility conditions, we comment on the ge-
it
ometry of these conditions. In the theory of monoidal categories and enriched

T :
= categories, “pentagon conditions” abound. Moving up a dimension to monoidal
N ,

. bicategories and enriched bicategories, the key geometric figure is the Stasheff
g polytope:
i
i
d

L
i

J The coherence conditions for eariched brategones and indeed the earliexr con-
"_ chtxons for monoidal bicategories should be thought of as (posslbly degenerate)
uvr(’-'
4 69 o ¥ L’*)’
3 Wovt comp ' M i)
J AN $us

Ao

P



B

Stasheff polytopes which have been prised apart.

conditions for enriched bicategories.

(1)the Stasheff condition
-(t?\t_.l’u“ \7 N OQ\QSQMQ\ A 4‘(\
m\-"“l‘ \i \(’(J{'&"On

e

I

1@(m@1)
DEQ((CDQBCI@AEB) » DEQ(BDQAB)

e N

{DEQ(CD®BC))BAL > (DE§BD)RAB DEQAD

(1em)el

a1 ) m@1 .u‘ ®
oo

((DEQCD)QBC)QAB

(CEQBC)QAR
=
(DEQCD)®(BCRAB) a
CE@AC
m@(181)
18m
CE®(BCSAB)
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il Gl

| [

e
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s

is equal to

19(m@1)

DEQ((CDHEC)QAB) - DEQ(BRDOAB)

18m

{L 19} NS ' / /

DEQAD
(DE@(CDREC))®AB o

DE@(CDAC)

* 18(1@m)
a@l 'U /"'z" m " O-f C?)

DEQ(CDR(BCAR))

((DE@CD)8BC)RAB ¥ a1 s = AE
(DEQCD)®AC . m
e VAR , meL -
; (1@1)@m
5 )
Cnsecm@wcm) ) o CEQAC X
ol
CE®({BC®AB)

(2) the degenerate Stasheff condition

BBa(ABRAA)
1p®181,) 1@m
18(aB0) e BE®AD
A . .
(BBBAB)@AA M,
' \@1 T e
AA - )
" AB@ \m Y \_}. @0 ,f(',\ fj ~—
AB N ™
F ) ;\ i
L 181y, V S , A o
1@t - _
' TR /,xJ
. ABe! ‘ |
P g 7
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is equal to

BBR(ABRAA)

15@(1@/ \
190 _

18(ABQI) 888A8

U

1&r
sl R PR m
S
/

It is possible to go on and define enriched homomorphisms, yielding a cat-

AB

(feAB)el / 4~
N
AB

eI

egory YV-Bicat, and also enrichied transformations and madifications. Enriched
homomorphisms A — 5 are then the objects of a bicategory, which we denote by
© W-Bicat(A, B). If we define an enriched bicategory T With a single o‘bjecf 0, and
set Z(0,0) = I, then we can associate to any enriched category A a bicategory
W—Bzcat(l' A), which we call the underlying bicategory of A

" When W is Cat, which is a monoidal bicategory (in fact 2 2-categary) with
tensor product given by Cartesian product, we recover the usual notion of bicat-
egory. A more substantial example of an enriched bicategory is V-Mod, which
is enriched over the monoidal 2-category V-Cat. Anather example is n-Cobord,
which is enriched over the monoidal 2-category of categories of homotopies. Al-
though we will not be developing the theory of enriched bicategories any fuxther,
we believe many of the structures of higher dimensional algebra can be expressed
in terms of enriched bicategories. One such structure is a “2-vector space”.

The notion 2-vector spaces arose first in the study of the Zamolodchikov
tetrahedra equations and was subsequently adopted as an ideal codomain for

complicated topological quantum feld theories. Freed [13] only gives a “heuristic
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treatment” of 2-vector spaces, arguing by analogy to suggest some of the features
they should have rather than giving an explicit definition. This approach is
typical and only Kapranov and Voevodsky {22] attempt greater precision. In
their initial definition, 2-vector spaces are “co-ordinatised”, in the same sense
that a “co-ordinatised” approach to vector spaces and linear maps is to work
with spaces of column vectors and matrices. Kapranov and Voevodsky then.
seek a2 “co-ordinate-free” definition in terms of the notion of “riﬁg category”
developed by Kelly [26] and Laplaza [31] and modules over ring categories. In
the same spirit as thinking of a ring as a one-object Ab-category, we cornjecture
that a ring-category can be thought of as a one-object bicategory enriched m-rer
the 2-category of symmetric monoidal categories, mc;noidal functors and natural
transformations. Taking a cue from terminolegy now in vogue, we might call the

Jatter 2-category 2-Ab, and then suggest that a 2-vector space be thought of as

an enriched homomorphism from a ring category into 2-Ab.
Although the theory of enriched bicategories is a potentially powerful tool
for handling such higher-dimensional structures as 2-vector spaces, such consid-

erations are beyond the intended scope of this thesis. The study of topolegical

quantum field theories in later chapters in firmly rooted in the simpler setting of

'jvector spaces. It is crucial to develop a rigourous treatment of the simpler, more

familiar theories before pursuing more ambitious ends.
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Chapter 3

Compact Closed Bicategories

Many important monoidal categories have the property that each object has a
¢dual”’. The canomical example is, of course, finite dimensional vector spaces.
Joyal and Street {19] call such monoidal categories “autonomous”’. Autonomous
symmetric monoidal categories are usually called “compact closed categories”. In

this chapter we generalize, introducing “compact closed bicategories”.

3.1 Compact Closed Categories

The description of compact closed categories given in this section is based on

Kelly and Laplaza [29] and Joyal and Street [19].

3:1.1 The Definition of a Compact Closed Category

An adjunction B 4 A between objects A and B of a monoidal category C consists
of aunitn: I — A®B and a counite: BQA — I such that the following adjunction

triangles commute:

IMore precisely, they introduce l2ft autonnmous categories, in which every object has a lef
dual, and similarly right autonomous categories, while in an actonomous category every object
has both a left and a right dual . ' '
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QA=A >A=ARQ]
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B®(A®B)2{BRA)®B

1z®7 | ; E@lgv

B®I=B _ >B2]gB.
'13

We say that B is a left adjoint or left dual of A, and A is a right edjoint or right
dual of B. Thinking of a monoidal category as a one-object bicategory, this is in
fact a special case of the notion of adjunction for arrows in & bicategory.

An arrow ¢ B ® A — I is kuown as a pairing. A pairing induces a function
C(X,BQY)— ClA® X,Y)
which is natural in X and Y and fakes f: X — B® Y to the composite

19 , 1
A@X——~J-;A®(B®Y}E(A®B)®YE—®+I®Y%K

If this function is an isomorphism, we call the pairing ezact. It is straightforward

to prove

Proposttion 3.1 The following conditions on objects A and B of a monoidal

category are equivalent:
1. there is an edjunction B - A
2. there is an ezact patring B@ A — I

3. there is an edjunction of functers B ®—-14AQ -
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4. there is an adjunction of functors —® A4~ ® B.

Note that if we bave a natural isomorphism —-®B = —®B’, then the I-component
of this "tr.ansformal;ion yields 2 canonical isomorphism B = B’ As any two right
adjoints to A‘® — are canoni_ca.lly isomorphic, it follows that any two left duals
of A are canonically isomorphic. The same clearly holds for right duals.

It is easy to verify that if F is a strong monoidal functer and e B&® A — [ is

an exact pairing then the composite

FEQFA =5 F(B® A) —t—> FI ——> I

is also an exact pairing. Thus strong monoidal functors preserve duals.

A compact closed category is a symmetric monoidal category in which every
object A has a left dual (and hence, using the symmetry, & right dual). Note
that left adjoints are only unique up to isomorphism, while for our purposes it l.S
preferable that compact closed categories are models of a finite limit theory. To
achieve this we henceforth insist that each object A has an assigned left adjoint A*
with unit 77, and counit €4. Since streng monoidal functors preserve duals, there

is no need for an additional notion of “morphism of compact closed categories”.

3.1.2 Examples of Compact Closed Categories

(i) As already mectioned, the archetypal example of a compact closed category
is given by finite dimensional vector spaces over a field k. The gpecified
dual of a vector space V is the space of linear functionals. Given a basis

(e1,..-,ea) for ¥, if we denote the corresponding dual basis for V* by

(e3,...,€;) then the unit (also known as insertion of coordinates) is given

by:

(3.1) . k- VeV

(3.2) 1 Zei Qe;.
. i=l
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Note that this map is independent of the choice of basis. The counit V* @

V' — k corresponds to the bilinear evaluation map V* x V' — k which takes

(A v) to Av).

(ii) A direct generalization of the previous example is the category of finitely

generated projective modules over a commutative ring R.

(iii) The category Rel of sets and relations is a symmetric monoidal category

with the fensor product given by Cartesian product. The unit for this

tensor product is the set 1 which has a single element, denoted by . The

category Rel is also compact closed with each object its own-dual. For 2

3.1.3 Contravariant and Covariant Dual Functors

relation on X.

set X, the unit nx: 1 —+— X x X is the relation given by (z,y)nx * if and
only if z =y, and the counit ex: X x X —— 1 is given by e ex (z,v) if and
only if T = y. In other words, both nx and ex are essentially the diagonal

In a compact closed category C, there is a bijection between arrows f: A — B and

f*: B* — A* which is determined by any one of the following four commutative

diagrams:

(3.3)

(3.4)
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15 ® 1 : '
A=IQA > (B@B)®A

f 1ef)e1

B < Bl <«— BQA®A)X(BRAT)®A
1@ ea

I -
B Bol M > B"@(A® A")

f* - 19 (fo1)

At T@A é—--(B’@B)@A“%B‘@(B@A*).
1@é¢p .

Clearly any one of these diagrams ensures that the definition of f* yields a functer
4« C% — C. Note that (3.3) and (3.4) also ensure that defining * in this way
makes 7 and ¢ “natural transformations” in the generalized sense of Eilenberg
and Kelly {12]. The functorial calculus developed in this pﬁper is taken further
in Kelly {25].

We have thus established that any compact closed category is equipped with
a canonica.l contravariant endofunctor whose value at an object is its duel. Note
that we will refer to any endofunctor whose value at an object is its-dua.l as a
dual funcior. We now turn to covariant dual functors. Consider the category of

finite dimensional Hilbert spaces. The inner product on V' gives an exact pairing
{, VeV -=C,

where V has the same elements and and abelian group structure as V, but con-
jugate scalar multiplication. Thus ¥ is a dual of V. The importance of this
dual is that it is readily extended to a covariant endofunctor. Authors such as
Baez and Dolan {2} do not speak of covariant dual endofunctors, but introduce 2
contravariant functor T which is the identity on objects. It is possible to tra.nsla.te'
this into our terminology by rleﬁning'—}E = (f), which yields the desired covariant
dﬁa.l functor. |
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3.1.4 Traces, Feedback and Inner Products

There are a number of category theoretic definitions of “trace” which generalise
the cla.s;sical trace of endomorphisms of finite dimensional vector spaces. The
following definition is taken from Kélly and Laplaza [29]. A trace T for a category
C which takes values in a set X consists of a collection of functions 74: End(4) —
X, indexed by objects of C, such that 75(fg) = TA(gf) for any f:A — B and
9:B — Ain C. Every compact closed category is equipped with a canonical
trace, as we will now demonstfate.

Given fi1A - Band g:B —+ Ain a compé.ct closed category C, we define
6{f,g) as the composite

. ® *
s aea 18 popapept

I

‘The key property of & is given by the following
Proposition 3.2 Given f, g and 6(f, g) as above, we have §(f, ) = 6{g, f).

Proof As a result of the generalized naturality of 7 (3.3), we obtain the equality

(f® g )na = (fg ® 13) np and so 6(f,g) = &(fg,15). Similady, the naturality
of € (3.4) implies that §(f, g) = 6(gf,14) and hence the required result. w

We now define functions r4: End (A) ~ End(7) by 7a(h) = 6(h, 1) for h: A — A.
The above result ensures that this defines a trace on C as desired In fact we have
that 74(gf) = 6(g, f)- It is straightforward to check that in the case of finite
dimensional vector spaces this notion coincides with the usual trace operation.
A more sophisticated definition of trace appears in Joyal, Street and Ver-
ity {20]. They define a trace for a balanced® monoidal category C as a natural -
family of fanctions

T C{B®A,C® A) — C(B,C)

*The concept of a balanced raonoidal category appears in Joyal and Street {18].
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subject to a number of axioms which we do not list here. Street and Verity prove
that for a compact closed category, a construction very similar to the one above
gives a canonical trace. We will describe that canonical trace, which we refer to

as “feedback" or “contraction”.
Given an arrow [ (A® X)®B — (C@ X)8 D, we define the feedback or
contraction of f along X to be the arrow ex(f)A® B — C®D given by the

cornposite
A8 2 (ARB)R!

1®nx
(A@B)@(K@X‘}E((A@X}@E)@X'
el
{(CeX)aD)X" 2(CRD)D(X"OX)
l@s;x

(Comyer = CeD.
Clearly the bracketing of such terms as (A® X)® B is not significant in this
definition, and so we will understand an obvious notion of feedback along X for

arrows AQ@ (B®C) - C®(X®D) and indeed arrows A@ X — C.@ X and so

on.

Feedback'genera]ises both trace and composition for a compact closed cate-
sory. For f:A — A, itiis clear that feedback along A yields the trace of f, that
- 1a(f) = calf)-

Now consider arrows f: 4 — B and ¢ B — C in a compact closed category. It

follows from the triangular equations that the composite

' ® f Re
seroa 22 beB)eB2Be (B ®BE) —>C8I=C

&0

-
.3
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is simply the composite gf: A — C. We can therefors conclude that

gf =ca(g® f).

This operation of contraction will be very useful in our later study of two-

dimensional topological quanturn field theories.

If C is a compact closed category and " C — Cis a covariant dual funcﬁor,
we can construct an operation closely related to feedback. Given f, g: A — B,

we define {f, g) as the composite

_ @7 — -
1 107 l2l peFxEeB 2 1.

We call {f, ) the inner-product of f and g. An arrow h: B — C in-C is said to
be an isometry if '

(hf, hg) = (], 9)
for all f,g: A — B. In the case of finite-dimensional Hilbert spaces, if elements
v and w of V are thought of as linear maps C — V then (v, w) clearly coincides

with the original inner-product on V, which motivates our terminology.

3.2 Compact Closed Bicategories

When giving examples of compact closed categoriés, Kelly and Laplaza [29] ob-
serve that “the ‘category’ of small categories and profunctors® fails to be a com-
pact closed bicategory only because it fails to be an honest category with asso-

ciative composition.” Examples such as these serve fo motivate a definition for

compact closed bicategories.

3In our terminclogy this is simply V-Mod.
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3.9.1 The Definition of a Compact Closed Bicategory

B - A between objects A and B of a monoidal bicategory 12%

An adjunction
ar 2-cells

consists of & unitm: [ = A® DB and a counite: B® A — [ and m(mgu[

(A®B)@ A= A® (BB A)

@/ \me

I@A=A > A~AQT

"BR(A®B)= (B@A)@B

15 V \@13

BI~B > B~I®B

subject to the following two conditions :

Ei); the 2-cell

AQ(BE(AQH)) _Z 5 A((BRA)RA)

1]

—~

4

o o v
(AgB)8(A8B) —> ((A®B19A)®D —> (A®(BRA)RE
| A 4\
!
: 78m (291 (1881
| \’
1®f rodes UJs®@1 (4sN88

i 1

-~ ~ .
—— —

: v
> AQB — AQB
m - 19t




e

E
L

Lo E—

- B B

- Ii;l.

is equal to

(A@B)®(ARE) i;, A®(BR(A®E)) —-E-Pr A@{(B@4)9B) ~i§- (A@(B@A))éB

M M
@7 1®(187) 1®(e®1) (1eeaet
. . v N
Ierf Ae(Bel) 1@z AeUeB) ———> (A’D)0E
A M ’
v
I > AR —> ARB,
n 1@1

 where all empty cells denote canonical iscmorphjsms,

(ii) the 2-cell

(Be{A0B))eA = BR((ASER®)A = Be(AQ(B®A)) = (BRA)B®A)

A
(1emel 19(n®1) » le(1@e) Qe
... ¥ \\
(BeNed — pe(lsa) | 1®s Be(den Iof
A
V v
B@A ——————> BRA > [
181 €
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is .equal to

BR{{A®BI®A) —2-—) B@{A(@B0A))

A
(BE(ARB)RA ——> ((BQA)BB)AA —> (HQA)Q(BRA)
M
(1em)el («®l)al @1
] \ W
(Benes 1 z®1 (IeB)e4 eI
A
v v
B@A ————> B@A > I.
131 3

As in the category case, we say that Bisa left adjoint or left dualof A, and Ais
a right adjoint or right dual of B. _
A compact closed bicategory is a symmetric monoidal bicategory in which

_every object has a left dual (and hence a right dual by symmetry). Once again,

our two main examples are V-Mod and n~-Cobord.
In V-Mod, the dual of a V-category A is A”. Since the definitions of ten-
sor product and opposite for enriched categories ensure that (A%)? = A and

(A® B)? = A% ® B, we have a correspondence

ARB 4+ C
A ++ BPQRC

Recalling the definition of composition of bimodules, it is relatively straightfor-
ward to see that this bijection is pseudo-natural in A, B and . The unit and
counit modules i A® A®? —— T and e4: 7 — AT @ A, which exhibit A%
as the dual of A, both correspond under this bijection to the identity module
14:A-— A. Of course we are also using the fact that T is the unit for the tensor

product in V-Med.
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The dual of an object S %of n-Cobord is S, the same manifold but with orien-
tation reversed. Since 8(S x [) =2 § + S, the manifold § x I can be thought of
as a cobordism § — § or — S+ S or §+§ — . These last two interpretations
sield the unit and counit which exhibit § as the dual of §. Intuitively, we think
of a cobordism which “bends back on itself”. The following pictures illustrate
the counit and unit for the manifold Sy in 2-Cobord (the pictures are progressive

from left to right).

€ 1
We also give pictures to illustrate the diffeomorphisms s and z. In fact, these

. pictures motivated the names “s” and “z”%.

o
;
- r
o f
A

o
-
b

N~
-
-

)

4This follows a suggestion by Peter Johnstone.
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Reversing the orientation of ma.nifolds provides duals for objects of n~ Cobord, but
one can also reverse the orientation of the cobordisms themselves. If M:S5; — 53,
then we can consider M to be a cobordism 57 — S;. This process of reversing the
odentation of cobordisms corresponds to the covariant dual functors introduced
in the context of compact closed categories. Since we have not defined momnoidal
bicategory homomorphisms, we do not make this analogy precise, but will be
content to observe that the importance of considering covariant dual functors is
precisely so as to be able to mimic orientation reversal in an algebraic setting.

With the algebraic structures we have introduced so far in this dissertation,

we are in a position to make our first excursion into topolegical quantum field

theories in the next chapter.

e

s
’ [N
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Chapter 4

Topological Quantum Field
Theories -

We have seen that n-Cobord is a compact closed bicategory. Since topological

quantum field theories are “algebrai-c representations” of naCobofd, our first ap-
proximation of a formal definition of an n-dimensional topological field theory
is that it should be a monoidal homomorphism n-Cobord — W where W is a
monoidal bicategory. In this chapter we discuss simple two-dimensional topo-
logical quantum field theories. They are simple in the sense that W is in fact
a monoidal category. The key algebraic siructure arising in this discussion is
known as a “Frobenius algebra”, so we begin with a definition of Frobenius al-
gebras. Our definition is somewhat non-standard, but is nevertheless equivalent
to the more coﬁmoﬂy seen definitions. We proceed directly to 2-dimensional
theories as 1-dimensional theories are particularly trivial, amounting simply to a

choice of object in the codomain bicategory.

4.1 TFrobenius Algebras

A Frobenius algebra over a commutative ring k is a k-module A such that Ais
both an algebra and a co-algebra over k. The algebra and co—a.lgebi:a. structures

are subject to the condition that if 4 has multiplication p and co-multiplication A
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then the diagram

1® A

A®A > AQARA

i
A
(4.1) A®l A L®1
A
W/ i ’ 7]

AQARA > AR A

l®p

commutes. In this diagram @ denotes tensor product over &k and we have omitted

the obvious associativity isomorphisms. In the words of Joyal and Street (18],
“we avoid putting brackets on n:fold tensor products when clarity is gained and
rigour preserved.” For a more conventional formula.tion of the definition of 2
Frobenius algebra, see Drozd and Kirichenko [9].

We will also give the axioms for a Frobenius algebra in terms of a diagram-

matic notation due originally to Penrose (39] and formalised for tensor categories

by Joyal and Street [18] under the name “tensor schemes”. For reasons that will

become apparent, this notation will be very useful in our discussion of topological
quantum field theories. | |

The following brief description of Pentose diagrams, while far from rigourous,
should suffice for the interpretation of the dia.gfam_s used in this chapter. Dia-
grams are to be read progressively down the page and are built up Erom'ele.n:ten-
tary diagrams, which consist either of single line or 2 node at which a number of

lines meet. A line denotes an identity axrrow, while a node denotes a particular

arrow in a monoidal category. A diagram with n lines at the top and m lines

at the bottom has domain 2n n-fold and codomain an m-fold tensor product of
A. This includes the situation when n and m can be zero, in which case the

zero-fold tensor product of A is interpreted as the unit for the tensor product.
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As an example of an elementary node, consider the following dia.gré.m which is

to represent multiplication u: A ® A — A for a Frobenius algebra:

For general tensor schemes, lines are labelled to allow for tensor products built up
from more than a single object A. The other basic dizgrams we will be using are
the co-multiplication A:A— A® A, the unit 1:k — A and the co-unit o: A — k

respectively:

as well as single lines, which denote the identity on A. More complicated diagrams
are then built up by means of juxtapesition, which corresponds to tensor product,
and concatenation, which corresponds to composition. Consider the following

diagram, constructed from the basic diagrams illusirated above: .

i

This diagram represents the arrow

(101810 (pR®cR1):ARARARARA— AB A

&9



N/
N

Joyal and Street [18] prove that any such diagram always have 2 well-defined
“yaluation” as an arrow and that this is invariant under deformation of. the dia-
gram. There is a sense in which these Penrose diagrams are planar duals of the
ordinary diagrams of category theory. ‘
The axioms for a Frobenius algebra are now given by a series of diagram

equalities. The “interaction” axiom corresponds o diagram (4.1).

Associativity

Co-associativity

Co-unit

Interaction

Note that this presentation of the definition of a Frobenius algebra can be inter-
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Dreted in any monoidal category, so we in fact have 2 notion of a Frobenius object
in a monoidal category.

Another point %rorth noting is that a Frobenius object A is its own dual. If
we define ¢ = o o 4 and 57 = A o 1, then it is easy to check that e and 7 satisfy
the triangular equalities, and are thus the co-unit and unit respectively for an
adjunction A - A. In particular, this means that if 4 is a F.rob_enius algebra, then
it must be a finitely generated, projective k-module. This observation provides a
connection with a definition of a Frobenius algebra that is perhaps a little better

known.

Proposition 4.1 A finite-dimensional algebra A equipped with a non-degenerate
bilinear form T which satisfies the “inner A-bilinearity” condition T'(z - y,2) =
T(z,y - 2), where - is used to denote the algebra multiplication, is g Frobenius

algebra.

Proof. The bilinear form T determines a linear map ¢: 4 ® A — k. Since T is
non-degenerate, there must be a linear map 7: k — A® A such that n and ¢ are
the unit and counit of an adjunction A < A. This map can be given explicitly
in terms of a basis (e;, eﬁ, .., ex) for A as follows. Non—degeneracy ensures the

existence of elements (e}, e,...,e}) such that ¢(ef ® e;) = ;1 and we then set

k
(A} = A (Z & ®e‘}) .
i=l
Omitting the obvious isomorphisms, inner A-bilinearity implies that the following

diagram comrautes:

7®1
A—————> AQARA
(4.2) 1975 - 1®u

AQAQA —> A® A.
pe1
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We denote this composite by A: A — A® A. As an example of the usefulness of
tensor scheme diagrams, we use them to prove that (4.2) commutes. We denote

¢ and 7 by the diagrams below.

VNS

Expressed in terms of these diagrams, inner A-bilinearity is given by the equality

NN

and the adjunction equations are given by the equalities

i
Il

We now deduce (4.2) using inner-A bilinearity and the adjunction equations as

~ follows.
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Similar methods can be used to show that the foliowing diagram also commutes:

1a®1

A——">AQA

(4-3) 1® 1,4 . €

AQA— k.
€

Care should be taken here not to confuse identity arrows with the unit 1. We
denote this composite by o: 4 — k. Using (4.2) and (4.3) it is now straightforward
to show that A and o give A the structure of a Frobenius algebra. -

_We now sketch the notion of a particular type of “free” category. Given a

symmetric monoidal category V, there is a category Frob(V) whose objects are
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Frobenius objects in V and whose morphisms are arrows f: 4 — A’ such that
®
AQA i—-—fa AQA

f

p B

A—— A

f

commutes as do similar diagrams involving the co-multiplication, unit and co-

anit. If A is 2 Frobenius object of V, and F:V — W is a morphism of monoidal

' categories, then FAIs a Frobenius object in the obvious way. Furthermore, given

a transformation o F* — F' and & morphism f: A — A’ in Frob(V), then cear - F f
is a morphism FA — F'A' in Frob(V). Thus, writing [V, W] for the category of
morphisms of monoidal categories and trapsformations betweern them, we have a

“somposition” operation
o: [V, W] x Frob(V) — Frob(W).

A symmetric monoidal category F is said to be a free symmetric monoidal cate-
gory with a Frobenius algebra if there is an object A of Frob(F) such that

— 0 A:[F, V] = Frob(V)

is an equivalence of ca.tegones This definition is & special case of the notion of
“free categories on a tensor scheme” introduced by Joyal and Street [18]. Al-
though it can also be done algebraically, Joyal and Street prove geometrically
that such an F exists and is determined up to equivalence of monoidal cate-
g_oriés. Their construction yields a strict monoidal category which we denote by
Frob. It has the objects the natural numbers and the tensor product on objects
is given by addition. There are axrows p: 2—1,1:0—1,Al—=2andc:1 = 0
which make 1 a Frobenius object.” We will refer to this structure on 1 8s the
canonical Frobenius object structure on 1. There is also an arrow ¢: 2 — 2, which

we denote by the diagram
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and satisfies conditions expressed by the following diagram equalities:

Setting cx = 141 ®c®ly—k—1, we have arrows cpin —nfor 1 <k <n-1 which

satisfy the relations

Spo85 = Iy
Sk O Sp41 08, = Sk41© 8k 0 Skl forl1<k<n~-2
Sp08 = 5105k for |k -1 > 1.

These equations are the same as the relations for a standard presentation of
the symmetric group Sy, so we in fact have arrows c,:n = 7 in Frob fer each
permutation o € Sy, such that o — ¢, is a representation of Sy in End(n).

If V is a symmetric monoidal categbry with a Frobenius object A, we say A

is commutative if

pocs=p
and co-commutative if
| Ca0 A=A,
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There is a notion of free symmetric manoidal category with o commutative and
co-commutative Frobenius algedra, defined in a similarly to the non-commutative
case. Again such a free category exits. We will denote by Frob, the free category
with objects the natural numbers and arrows labelled as in Frob. The object
1 of Frob, is a commutative, co-commutative Frobenius object, and once again
we refer to this structure as the canonical Frobenius object structure on 1. Note
also that Frob, is compact closed: each object is its own dual and 7 = Aol and
¢ = o o u are the unit and counit respectively for the adjunction 1 - 1. As before

these are represented diagrammatically as:

JoO

Units and counits for other objects are built from 7 and ¢ respectifely, as illus-
trated in the diagram below. '

\Z/
Z\

4.2 Two—Dimensionzﬂ Field Theories

In this section we describe the standard 2-dimensional topological field theories,
for which we represent coberdisms in the monoidal category Mod,. For an
example of a similar treatment of 2-dimensional thecries, without the language
of monoidal bicategories, see Freed [13] or [14]. Consider a homcmorphism of

monoidal bicategories F: 2-Cobord — Mody. Such a homomorphism associates
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a k-module to each one-dimensional manifold and k-linear maps to cobordisms
3 between one-dimensional manifolds. Because the 2-cells in Mod, are all trivial,
diffeomorphic cobordisms induce the same k-linear map. Let A4 = F(Slj and
_J consider the following cobordisms, which are progressive down the page.

F V . | @
b i
e S

e Since F(S' + §') ¢ F(S') ® F(§') and F(#) & k, the images of these manifolds
under F yield k-linear maps A @ A — A, AtA — A® A, 1k — A and

-
= o: A — k respectively. Furthermore, it is easy to check that these maps give A the
"" structure of a Frobenius algebra. For example, there is a (boundary-preserving)
- diffeomorphism
vy
H:

I,
.}é

i
[

v
" and since F maps this diffeomorphism into an equality, the multiplication g
u - a -

; must be associative. The other axioms for a Frobenius algebra follow similarly.
j In addition, A is commutative and commutative. It is commutative because there
3 is a diffeomorphism
id : .
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A similar diffeomorphism assures co-commutativity. In short, a 2-dimensional
topological field theory yields a commutative, co-commutative Frobenius glgebrzi.
The same arguments we have outlined here also show that a 2 dimensional theory
F:9-Cobord — V where V is an arbitrary braided monoidal category determines
a commutative, co-commutative Frobenius object. _
Conversely, from a commutative, co—cﬁmmutative Frobenius algebra, we can

construct & topological quantum field theory. We first prove

Proposition 4.2 There is ¢ homomaorphism of monoidal bz’categon'es'
F:2-Cobord — Frob,

such thet F(S') = 1 and the Frobenius object struciure on 1 determined by F is

the canonical one.

Proof. We inductively define iterated multiplication and co-multiplication maps
in Frob,. We define p(n)in — 1 by

py = 1
Loy = 1 |
ey = Ho (18 pm)
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Sirnilarly, we define Agny:1 — n by

wd | Am) = g
A(l) = 1
A(n-*-l) = (1 @ ﬁ(n)) o A,

y where we write 1 for 1;. Note that associativity and co-associativity respectively

} imply

” . miny = KO (Bm) ® pim)

- Dminy = (D) @ Bimy) © A

3 Commutativity and co-commutativity imply

d’ (4.4) © BmOCs = fn)

L @ cooly = Aoy

i’ .

X We also define T =poA:1 — 1 _

i Now any connected cobordism M: 5 — S in 2-Cobord is determined up to
5 (boundary preserving) diffeomorphism by the number copies of St in S, which

i we denote by n = n{M), the number of copies of 5y in §', which we Idenote by
.". m = m(M) and the genus of M, which we dencte by g = g(M). The gé:ius for

1 a manifold with boundary is simply the genus of the closed manifold obtain by

J. “oluing disks into the holes”. For example, in the case of the manifold in the

picture below, n =2, m =3 and g = 2 (the picture is to read from left to right).

Bl .
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For an object S of 2— Cobord which is diffeomorphic to copies of S*, we set
F(S} = n. For connected cobordisms M, with n and m as above, we define
F(M) = Omy 0 T9 0 pign). The most general cobordism M: § — 5 in 2—Cobord
can be obtained from a cobordism of the form M, + ...+ Mk, where Mi,..., M

are connected cobordisms, by permuting the boundary components. We define
F(ﬂ/!) Cr O (F(ﬂ«’[l) @...8 Fer)) 9Ly

where o is the permutation of the domain and T the permutation of the codomain
circles. It now remains to check that this definition of F respects composition in
2-Cobord.

Since 2-Cobord and Frob, are compact closed, composition can be expressed
in terms of feedback loops. We can apply induction over the number of connected
components in the manifolds we are composmg and over the number of boundary
circles we are “feeding back”, so we in fact only need to consider a single feedback
loop. We must distinguish two cases: a loop from a connected cobordism to itself
and a loop which joins two connected cobordisms. In the first case, the genus will
increase by one and in the second case, the genus of the new connected cobordism
is the sum of the genuses of the two original cobordisms. The following diagrams

give examples of the corresponding equalities in ¥rob, we must prove.
| g |
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We now prove the general case algebraically. As before, we set ¢ = ¢ o 12 and
7 = A o1, Assuming equations (4.4) and (4.5), the equalities we must prove,

correspording to the two cases we have identified, are

(It @ €) o (F(M)®1) 0 (1o-1 @ 71) = A(nyy © T o H(n-1)

and
(ln®e®@ L) o (F(M)@1® F(M"))o (1,1 @7 L)
= Apmam—1) 0 T o HE{ntnt=1)-
where
F(M) = AgmoT?oppm
FM) = ApwyoT? o .
Simple induction arguments, using the interaction axiom, establish the equalities

(4.6) (b ® L) o (L1 ®7) = Ao paay
(4.7) (ln-1®@p) 0 (B ® L) = Dm-yyo B

The interaction axiom also implies .

(4.9 | he(18T)= Tou =pe(Tel)
(4.9) (1@T)oA= AeT =(T®1)oA,

from which we can immediately deduce
po(TI®1)oA =T,
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Combining this with equations (4.6) and (4.7}, establishes our first result. Also
using equations (4.8) and (4.9) and the interaction axiom, we have
(19w (T81BT7)R(A81]) = (T'] (T ou)e(A®1)
= (T"9T") o (1o o (A®1)
= (T9QT¥)olop
= AoT oy,

Along with equations (4.6) and (4.7), this establishes the second result. J

‘For an alternative approach to this result in terms of Cerf theory, the study of

generib p:atl.ls‘between Morse functions, Baez and Dolan (2] refer to an unpub-
lished article by Sawin [41]. However, we have not yet seen Sawin's work.

The defining property of Frob, ensures that given a symmetric monoidal V
with a commutative and co—commutat.ive Frobenius object A, there is a monoidal
functor F: Frob, — V such that F(1} = A. Of course this functor is not uniquely
determined, as F'(n) may be any of the (canonically isomorphic) n-fold tensor
products of A. In any event, this we can now deduce the more conventional

result

Proposition 4.3 If V is a symmetric monoidal category and F:2-Cobord — V
is a 2-dimensional topological field theory, then F(S') is a commuialive, co-
cormmutative Frobenius object. Conversely, given a commutative, co-commutative
Frobenius object A of V,; there i3 o field theory F such that the Frobenius object
F(S5Y) is A. |

Once again, we point out that the field theory is not uniquely determined, but

the values it can take on any given. object are canonically isomorphic. A detailed

study of the extent to which the field theory is determined does not seem to be

of great interest.
Although compact closed bicategories have a great deal of structure, we have

not yet reached our desired definition of a coberdism category. There is one
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important aspect of n-Cobord which we have not yet mentioned that is tra-
| ditionally exploited in topalogical quantum field thecries. The objects of n-
Cobord are .(n — 1)-dimensional manifolds and as well as cobordisms between
4 (n — 1)-dimensional manifolds we can consider diffeomorphisms between them.
These two types of “morphism”, cobordism and diffeomorphism, are in some
'3 sense “orthogonal” to each other. The aim of the next chapter is to combine
both into one algebraic structure and o do so we turn to the notion of “double

structures”.

~—
.{:)..

-t

=
LI
7
T
.
Ea
h-
2

= Lk - R -

b o

e g = W

ey

.
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Chapter 5

Cobordism Categories

5.1  Double Structures

Usually finite limit thgories are modelled in Set but they can also be modelled in
any finitely complete category. In particular they can be modelled in a category
which is itself the category of models for another theory: We refer to the resulting
structures as double structures. More precisely, if S and T are finite limit theories,
then an (3, T)-model is a model of S in Lex(T, Set). Note that

Lex(S, Lex(T, Set)) 2 Lex(T, Lex(S, Set))

as both are isomorphic to Lex{S x T, Set) since limits in functor categories are
constructed pointwise. Thus (T, S)-models are essentially the same 35 (S, 7)-
models. When S and T are algebraic theories, our notion of an (S, T)-model
coincides with that of an (S, T)-bialgebra as discussed in Manes [36].

As a simple example of a double structure, consider (T, T)-madels when T is
the theory of groups. A well-known argument® shows that when a set is eqﬁpped
with two compatible? group multiplication laws, these laws coincide and are com-
mutative. Hence a (7', T)-model is simply an abelian group.

One particular type of double structure will be central to our definition of a
quantum field theory. We shall consider (S, T)-models where S is the theory of

1¥or the original, more general argument, see Eckmann and Hilton [10].
2¢Compatible” is used in the usual sense in this context, and amounts to saying that the
set is equipped with the structure of a (T, T)-model. :
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groupoids and 7' the theory of compact closed bicategories. These (5, 7)-models
admit 2 more elementary description which is given in this chapter. To motivate

this elementary description, we first discuss a double structure that is well-known

in category theory: the “double category”.
D

5.1.1 Double Categories

A double cotegory is a (T, T')-model where T is the theory of categories. In other
words, a double category is a model of the theory of categories in Cat, which
some authors refer to as a “categbr‘y object” in Cat. Double categories were
introduced by Ehresmann, although not in these terms. His approach can be
found in Ehresmann [11], while the elementary description we give here is taken
from Kelly and Street [30]. Double categories are also discussed in Gray (16} and
Palmquist {38]. A double category D consists of objects (4, B, C, ...), vertical

arrows (f, g, h,.. ), horizontal arrows (2,9, z,...) and square cells (e B1h. . 0

E{f '

o
—*%D
Y

A typical square cell « is depicted as
A—2
f

C
A square has vertical domain and codomain arrows, which will always be drawn
on the left and right hand sides respectively, and it also has horizontel domain
and codomain arrows, which will be drawn on the top and bottom respectively.

The objects and vertical axrrows form a category {D with identities |14, while the

objects and horizontal arrows form & category :5 with identities i:. The square




_cells can be composed horizontally,

oxr
I >3 Y > C A~—y————:>C
= fi foa j/h
> E > F D——> 5

' 4 ox

and they cﬁ_a.n also be composed vertically,

A—Z 5B
f @ I A——-I—-—-'B-C'
v y . ,
C ——>D - g fl Bra |g-f
g B g E—>F'
Z .

h'S W
E————>F

=

With these composition laws, the square cells form a category both horizontally

and vertically with identities respectively of the form
A
L«
B

Vertical and horizontal composition of square cells satisfy the interchange law:

_.Ji_...e; B

!

Y

by e—2—
me——-——m

1

—_— B.
(@af)-(rod)=(a-7)o(8-0)
whenever both sides are defined. A_ls'o double idenitities coincide:

11—:l = lllA'
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The connection to the abstract definition of a double category is straightforward.

The data for a model of the theory of categories in Cat consists of a diagram

d
_ ’0
(5.1) C,—>C ¥ g
—_——
dy

in Cat where C; is 2 pullback of the diagram
G,

do

C1 ———> Cu
d

and Ithes'e data are subject to the usual associativity and identity laws. In terms
of our elementary description, C, is the vertical category of square cells, while m
gives the horizontal composition law. Cq is the vertical category |D. Applying
the object f_uxictor ob: Cat — Set to (5.1} yields the data for the category D.
Functoriality of m gives the interchange law and functoriality of ¢d ensures that
double identities coincide. Of course the symmetry of (T, T')-models means that
this is only one of two possible interpretations: “horizontal” and “vertical” can
be transposed.

A 2—c;tegory is a degenerate double category in which the vertical category
is discrete. In fact some authors define 2-categories in this way.

Another simple example of a double category is given by taking square celis

B
;
D

to be all commuting squares

At s

|
|
d
C-—'y—-%"
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in a category B where f and g are arrows in a given subcategory A of B. Note that
the vertical category of square cells is a subcategory of the category of arrows® of
B. When B is the category of finite dimensional Hilbert spaces and linear maps
and A is the subcategory of finite dimensional Hilbert spaces and isometries, this

example is relevant to the study of topological quantum field theories.

5 1.2 Double Multiplicative Graphs

Before procesding to a definition of cobordism category, we consider a secdnd sim-
ple example of a double structure which was also introduced by Ehresmann {11].
A double multiplicativé graph is a (T, T)-model where T is the-theory of multi-
plicative graphs. A double multiplicative graph has the same underlying structure
of objects, vertical and horizontal arrows and square cells as a double category,
however the vertical and horizontal composition laws only yield multiplicative
graphs, not categories. Vertical and horizontal composition of square cells do
satisfy the interchange law and double identities do coincide. Although it is pos-
gible to weaken these last twb conditions, the resulting structure would of course

no longer be a (T, T')-model.

5.2 Cobordism Categories

The following déﬁniti_on of 2 cobofdi.ﬁm category is the culmination of the alge-
braic structures developed so far in this dissertation. Although it comprisés a
great deal of structure, we do not expect it to be the finsl word in the char-
acterisation of the é.lgebra.ic structure of n-Cobord. A cobordism category is an
(S, T)-model where S is the theory of groupoids and T the theory of compact
closed bicategories. Here we give an elementary description of cobordism cate-
gories, which follows the approach of the previous section. A. cobordism category

C consists of objects (4,B,C,...), verticel érrows (f 9,8, --); horizontal arrows

33ee Mac Lane [34] on categories of arrows.
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ia
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ha | |
. (z,9,%,...), 2-cells (e, 3, ...) between the horizontal arrows, depicted as
x.f
1 /’\
L A oA B,
b i
i' square cells (s,t,...), depicted as
n A wmiee> B
b _ )
& i s |9 |
¢ ——> D,
| S
& and 3-cells (4,1, ...) between square cells, depicted as
.
5 '
. o N
A i B
¢ __ ¢t
i f =7 g
| e ¥
ﬁ f' .f’ /,"‘7/7 \‘\ ‘f
g C W D.
e | | |
"} The objects and vertical arrows form a groupoid 1€ with identity arrows 114,
ui'.""; while the objects, horizontal arrows and 2-cells form a compact closed bicategory
h ¢ with identity arrows 1:. As in the case of double categories and multiplica-
4 tive graphs, square-cells can be composed vertically, and form a groupoid with,
identities of the form x '
i A-wr>p
b -I-]-Al 1z llls
A ———>B.
g T
' 3-cells can be composed vertically and form a groupoid with identities of the form
b 109
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4 Ty N dm g L T@eaz Vg
/ o
f é ¢ g ¢77 £ \p - '1’043‘/;./7)5'03' h
8 A s “ ?j}fs
T T T f,"--;/-—,“u. ¥ ,"‘/-,/7 e ¥
¢ ~_ B 7D~__B D C &D

" Note that we have omitted the labels for the horizontal arrows to prevent the di-
agrams from becoming t00 cluttered. With this composition law, vertical arrows,

square cells and 3-cells form a 6omp.aci; closed bicategory with idemtity square

cells of the form

b
-

e
@é—:—*—'ﬁ-‘-

14
—
if
_—
1s

In this compa.ct closed bicategory, the dual of a vertxcal arrow f A— Bisan
arrow f*A* — B" where A" is the dual of A in C. Honzontal a.nd vertical

composition for both square-cells and 3-cells satisfy interchange laws and double

identities coincide.

(ol
‘m --l:[
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The motivating example of a cobordism category is, of course, n-Cobord.
The compact closed structure for n-Cobord which we have already described is
the horizontal compact closed bicategory of a cobordism category. The vertical
arrows are diffeomorphisms and a square cell

5 —2 s,

f s lg
S ——> 5,
N
is a diffeornorphism s: M — N such that the following diagram commutes:

?14‘32&*—)1‘4

f+g 5
| | §I'+S;-¢—N—9N
A 3-cell

2

5 _ N’
. ,f'-ﬁ‘-"m Y
51 g~ 5%

is a commuting diagram
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We have thus reached our destination: an algebraic structure which incorporates
both cobordisms and cﬁﬁeomorphisms.

Earlier we gave an example of 2 double category which is also a simple cobor-
dism category. The horizontal compact closed category is the compact clesed
category of finite-dimensional Hilbert spaces and the vertical groupoid is the sub-
category given by the isometries. Square cells are commuting squares and 3-cells
are trivial. In Chapter 3 we defined a general notion of “isometry” for any com-
pact closed category with a covariang dual. Such a category gives a cobordism
category in exactly the same way as we have just described for the category of
finite d1mens1ona.1 Hilbert spaces.

A topological quantum field theory should be a morphism of cobordism cat-
egories with codomain n-Cobord, however we will not give a general definition
of cobordism category morphisms here. We are centent to return to simple two-
dimensional field theories and for these theories not all of the data for cobordism
category morphisms is necessary. The only data required in this context are
mappings of objects to objects, horizontal arrows to horizontal arrows vertical
arrows to vertical arrows, squares to squares, 2-cells to 9-cells and 3-cells to 3-
cells whlc:h preserve the obvious incidence relations. In a more general setting
one Would consider additional data which measure the extent to which these
mappings preserve the various composition laws. One would also impose various
coherence conditions on the data. '

We can now consider a simple two-dimensional topological quantem field the-
ory to be a morphism (or at least some of the data for a morphism) F from
9-Clobord to the cobordism category of finite-dimensional Hilbert spaces outlined
above (we will denote this cobordism category by Hilbg). Consider two homo- ’
topic diffeomorphisms f, g: § — §'. Given any homoltopy H:5x I — & such
that

H(z,0) = f(z)
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Mz,1) = g(z)
and H .(_’ t) is a diffeomorphism for each ¢, we can define a diffeomorphism
| o:SxI—8xI
by setting o:(z:,.t) = (H(z,t),t). Now ti is a square cell in the cobordism category
9-Cobord and is therefore mapped by F into a commuting square:

F{S) ——> F(5)
Ff Fyg.
F(S) —> F(S),

Thus Ff = Fg. Up to homotopy there is onl}r one onentatmn-presermg diffeo- |
morphism 5T — §%; in other words up to homctopy there is only one orientation-
reversing diffeomorphism r: 8t — St and furthermore r2 is homotopic to the
ideptity. Therefore F yields a linear isometry A — A, that is an gnii-linear
isometry
cA— A
such that ¢ = 1. Such an isometry allows us to define a real structure on A in
the usual way: we set
. Agp={e€A|ca)=c}

The same arguments given in the previous chapter indicate that A has the struc-
ture of a Frobenius algebra. Now consider an orientation-reversing diffeomor-

phism of the “pair of pants” manifold



Appendix A

| Kapranoﬁr and Voevodsky

Long before it was published, Kapranov and Voevodsky’s paper 2-categories and
the Zamolodchikou tetrahedra equations {22] became very influential in the study
of higher-dimensional algebra. It is a long paper, 2 fact explained by their remark

... lax m-categories (in situations when it is possible to define them)
have a lot of structure which is not all appdrent at first glance. This is
the origin of many difficulties in the subject and the necessary length

of every “honest” exposition.

Most :authors are not “honest” in this sense, preferring “a heuristic treatment,
not a rigorous one” (Freed [13]), and refer to Kapranov and Voevodsky for the
details. Urnfortunately although “honest’.’, Kapranov and Voevodsky are not al-
ways correct or complete and in this Appendix we outline some of their erroxs
and omissions.

Before listing these errors and omissions, some general remarks should be

made. Kapranov and Voevodsky refer to bicategories as “2-categories”’, a com-

- mon practii:e amongst authors on topological quantum field theory. They also

changé the meaning of other long-standing terms from category theory. They use
“lax" to mean “pseudo” and for them a “braiding” for a monoidal category peed

not consist of isomorphisms, but if it does it is referred to as an “sobraiding”.

- Changing the meaning of existing terminology in this way is always likely to'be
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a source of confusion and ambiguity. The use of the term “n-categories to mean

“lax” n-categories is particularly dangerous, since it encourages the assumption

that such things exist, when it is not yet clear that a most general lax n-category

can be defined. Traditional category theory terminology, “category”, “bicate.
gory” and “tricategory” ouly gives names to those higher-dimensional structures
for which precise definitions have been given. This seems to be a far safer ap-
proach. ‘

Kapranov and Voevodsky do not define bicategorical homomorphisms, trans-
formations and modifications, preferring to defer that material to a forthcoming
book [21] so as to “reduce to a minimum the parts related to “pure” theory of
2-categories”. The drawback of this approach is that when it comes to defining
monoidal 2-ca.tegor.ies, the tgnsdr product cannot be introduced as a homomor-
phism of bicategories, nor can the various constraints be said to be transforma-
tions or modifications. Instead, all the structure and constraints must be given
explicitly and so definitions are made unnecessarily cumbersome. Indeed the def-
inition of monoidal Catégories appearing in 2-categories end the Zamolodchikoyv
tetrohedra eguations runs to some iwelve pages. Furthermore, without the ma-
chinery. of homomorphisms, transformations and modifications, it is harder to be
systematic and the chance of forgetting so;ne data or axioms increases.

We now turx; to specifics. In the list that follows, we refer to the section
numbering of 2-categories and the Zamolodchikou tetrahedra equations. For ease
of reference, we also use Kapranov and Voevodsky’s hieroglyphic ndtation. We
do not claim that this list is exhaustive.

(§2.2) Kapranov and Voevodsky remark that the axioms Iabellec?. (1®@e®e) and
(¢ ® e ®1) follow from (¢ ® 1® o), as shown by Kelly [23). They do not
point out that Kelly's result also gives axiom (1 ® 1) as a consequence of
(1@eRe)and (¢@e1).
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(§2.7) Expressed in their terms, the definition of a lax 2-category lacks axioms

along the lines of
(Brou) % (@xou) = (Brc)xu

and
(v o B) *1 (v %o a) = vy (0% )
Without such axioms it is impossible to derive the interchange law for the

operations *5 and #; as defined on 2-morphisms.

(§2.7) The axioms labelled (Z I ) and (I I.) are clearly incorrect and should be
replaced by the requirement that | aod 7 be natural isomorphisms. Consider
CL: I). If aru = u', then Idg %o & hé.s source Idg %o u, which is only
isomorphic to u, and target Idas*o o', which is only isomnorphic to u'. It does
not make sense to equate 2-morphisms with different sources and targets,

so instead the axiom should become
oy by = by % (I8E %0 @)-
A similar condition involving r should replace axiom (I 3)

(§2.7) Tt has been observed that naturality conditions on ! and r are omitted.

Also omitted is the requirement that Gy yw De natural in «, v and w.

(§2.7) In their earlier definition of & monoidal structure on a category, they ob-
serve that the axioms labelled (1®s®¢) and (¢@+®1) follow from (e@1®e).

They fail to observe the corresponding result for bicategories, namely that

the axioms labelled (—— I) and (I ——) follow from (— I —). This fact

is proved in Proposition {1.1) of this thesis.

(§2.8) While it is not unreasonable to igniore set-theoretic foundational com- -

plexities, it is unfortunately not the case that “the introduction of the

2-categorical structure on Cat removes these difficulties for good™!
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(§3.9) It should be emphasised that this Proposition only applies to isobraided
monoidal categories. The same is true of the coherence theorem for braided
monoidal categories, which is also mentioned in this section. The potential

ambiguity here highlights the danger of non-standard terminology.

(§4.1) To introduce isomorphisms aspc:A ® (BRC) - (A®B)® C is to
violate Kapranov and Voevodsky's “Main Principle of Category Theory”.
They should instead be equivalences. More precisely, along with tﬁe data
given in (— ® o @s), (¢8 — @+) and (¢ @ «® =), they should constitute
a pseudo-natural equivalence a: ® - (1 x ®) — @ - (® x 1).

(§4.1) The preceding remark applies equally to the morphisms li:1® A — A
and r4: A®1 — A. They should not be isomorphisms, but part of the data

for pse:udo—na.tural equivalences { and r.-

(§4.1) The iist of data for a monoidal 2-category does not include an isomor-
phism l gz & 14 ® 15. This omission is doubtless due to Ka.prs.no\} and
Voevodsky’s practice of denoting both of these 1-morphisms by A® B. This
notation trap is discussed in Section (1.2.5) of this dissertation.

(§4.1)‘ The notation trap just mentioned is'the cause of error as well as omission.
When gixr'ing the conditions that the data for a monoidal 2-category must
satisfy, l1-morphisms are not labelled, the implication being that there is
only ever one possible label for any I-morphism drawn in the diagrams. Un-
fortunately, this is not always the sase. Consider the condition expressed by
the Stasheff polytope diagram (s@e®e@e). There are two candidates for 1-
morphisms (A(BC))(DE) ~ ((AB)C)DE), namely a4 52®(1p®1z) and

. @a,8,c®1per. Both of these should appear in the diagram, with the appro-
priate isomorphism included between them. This situation also arises when
considering 1-morphisms (AB)(C(DE)) — (AB)((CD}E) in the same di-
agfam,' and 1-morphisms (14)(BC) — A(BC) in the Kelly polytope dia- -
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gram (1@ s @ ¢ @ »).

(§4.1) The proof of Propuosition 1.1 can be modified, inserting 2-cell isomorphisms
in place of commuting regious, to show the existence of a 2-isomorphism
rq — ;. The piece of data labelled (1®1) is therefore redundant, as is the
axiom labelied (1 ® 1 ® #) which it satisfies.

(§4.1) Since the axioms labelled (¢ @ 1@ ¢ @ #) and (¢ ® » ® 1 ® o) determine A
and p, as we remarked in Section 2.1 of this dissertation (using the notion

L and R), the axioms (1@ ¢® ¢ @) and (¢ @ » @ ¢ @ 1) are redundant.

{§4.1) No axioms are given which ensure that p, A and p are modifications.
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