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INTRODUCTION

The standard definition of what “universal algebra" should mean
was given in the 1930's by G. D. Birkhoff who, realizing that certain
theorems about groups, rings and lattices have a common proof, studied
the category of algebras that such examples suggest: clgebras are sets
‘with a set of finitary operations satisfying a set of equations and
homomorphisms are functions that commute with the operations., Such
Acategories of algebras have been much studied. See the recent book of
P, M. Cohn ([5]) and the bibliography there.

In much of the literature cited above, one senses a strong feeling
that anything "algebraic" should be "finitary". In [27], Stomifski
generalized Birkhoff's schema and considered sets with a set of
infinitary operations satisfying a set of equations. (These are the
"equationally defineable classes” we define in 1.1,7.,) Stomifiski's
paper has been largely ignored. In this paper we will study universal
algebra in a language that makes no mention of “operations" (see the
paragraph after next) and for which Stomifiski's categories of algebras
are models as valid as Birkhoff's. We hope that Stomifiski's importance
in the history of universal algebra will become more apparent because
of our work here.

It has long been known how to construct a free algebra functor

S _F _,€ from the category, gS, of sets to an equationally
defineable class & whose operations are finitary (see 1,1,7). ‘It
was known, too, that the class of algebras free on finitely many gen-

erators contains all the information, Lawvere ([20]) developed
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"algebraic theories" in order to abstract the "free part" of a category
of algebras; we describe them briefly (introducing some inessential
modifications for the sake of clarity.) Starting with F as above, the
induced functor so——y_.; f'ﬂ"\’ where §° is the category of finite
sets and rTT‘ is the full subcategory of & generated by algebras

free on finitely many generators, is called the algebraic theory of

9 X
EE . T is recovered as the category of ‘functors 'II'"P____—————+é;
op FoP op X . '
' r b the homo-
such that ggo N P 2 S 1is rep e:enta le, the hom
morphisms being natural transformatiomns. ?30.____—+‘[|‘ preserves

coproducts and establishes a bijection between the objects of §§o and
the objects of f[['; conversely, any functor 230___5__+rTT‘ with
these properties is the algebraic theory of some equationally defineable
class whose operations are finitary. Stomitfiski ([27]) established

free functors for equationa;ly defineable classes with infinitary
operations. Linton combined and generalized the works of Lawvere and
Stomifiski in [23]. An algebraic theory there is (essentially) the

same as above bui repiacing sL with Eg. This leads to the following
gradation of universal algebra: "“finitary" (Birkhof£;~L§wvere); “with
‘a rank" (Skomidski); “without a rank" (Linton). In a sense, a theory
without a rank corresponds to an equationally defineable class whose
class of operations has umbounded arity,_but additional conditions are
required to prove the converse since the faﬁous theorem of Gaifmann
shows that there is no free functor for complete Boolean algebras. A
discussion of rank (but not in the language of theories) appears in

2.2,5 - 2,2,6. We will not discuss algebraic theories further in this
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iii
paper, preferring to use instead the equivalent notion of algebras over
a triple.

. T X
T = (Tyn,w) is a triple in a category ) if H——A,

1K-————2f—+T, TT-——E——+T such that Tnep = 1, = nT,u and Tu.u = uT.u.

-T
A rTT‘-algebra is a pair (X,£) with X a K -object and XI-Eex a }{-
morphism such that Xn.& = lx and Xu.& = ET.&, A {Tijﬁgggggsggigg
fxom (X,£) to (Y,0) is a }(—nmrphism X-——f——eY such that £.f = £fT.0.
It has only recently been realized that the category of algebras over
a triple provides an excellent setting for universal algebra. Linton
has shown (unpublished, but see [23]) how to define "algebraic theofy
over" .%{ so that theories over }{ are coextensive with triples in
}{ e« In pérticular, the categqries that arise as the algebras over a
theory over sets (as -in- the preceding paragraph) are the categories
that arise as the algebras over a triple in sets. A systematic study
of "algebras over a triple" (in which we do not include triple cohom-
ology) has not yet been made. This paper is an attempt to begin such
a study.

Chapter 1 contains a large ffacfion of the current folklore if
“"folklore" can be defined to be what the author has learned in seminar
and conversations with Michael Barr, Jon Beck, Bill Lawvere and Fred
Linton during the past year; needless to say, the author is deeply
indebted to these men, Triples in a category were invented by Godement
([32]) under the name "standard construction"; the motivation for the
definition was not 1,1.2, Indeed, algebras over a triple first appear
in Eilenberg and Moore ([6]), where special cases of 1.,2.1 and 1.2.7

are proved, The relationship between triples and pairs of Adjoint
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iv
functors has been studied by Eilemberg-Moore ([61), Huber ([16]),
Kleisli ([19]) and Maranda ([25]). Maranda obtained for triples what
Lawvere called "structure-semantics" theory in [20]. We generalize
Maranda's result using more general algebraic functors which compare
categories of algebras over triples im differeﬁé,éQCegories (see 1.4.3).
These more general algebraic functors were considered by Appelgate in
[1]. Appelgate defined morphisms of triples that correspond contra-
variantly to his algebraic functors; we introduce "intrastructures"
which yield a covariant correspondence (see l.4.4, 1.,4.5). A version
of Jon Beck's tripleability theorem ([3]) appears in 1.2,9., Linton's
conditions for a category of algebras to have lim's are given in 1.3,
The temaining parts of 1,1 - 1,5 are folklore. We introduce the notiom
of "regular triple“ (1.2.5) to abstract certain properties of triples
in the category of sets. Many well-known theorems in universal algebra
are true for the category of algebras over a regular triple, For
instance, a triple~theoretic version of Birkhoff's characterization of
varieties in an equationally defingable class ({4], or [5, IV.3.,1]) is
true in such a situation, seel.6.6. In.l.7, we consider conditions on
triples (T,n,u), (T',n',u') in K such that (TT',nn', ?) may be
completed to a “composite" triple, In [2], Barr defined "distributive
laws” to do this, We prove a converse and obtgin four equivalent
conditions in 1,7.2., We also characterize the composite algebra; in
terms of the original algebras in 1.7.6,

In Chapter 2 we specialize to triples in the category of sets,
This comes close to being ordingny universal algebra, but we emphasize

the "infinitary" and "no rank" cases. We discuss "operations" in the
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language of triples in 2.2, We prove by a direct construction in.
2.3.3 that compact T2 spaces is a category of algebras. A corollary
is that the usual category of compact algebras induced by a category
of algebras (operations are continuous) is itself a category of algebras
(2.3.4), In particular, compact topological dynamics is algebraic; this
is proved in 2,3.6 with a Birkhoff subcategory argument. For much
recent research in topological dynamics it has been assumed that the
phase space is compact T2; we can prove theorems of [7], [8] and [9]
algebraicly (see 2.4, 2.5), which might help to explain this. The
search for examples of non trivial minimal orbit closures should perhaps
be conducted in wider spheres that topological dynamics, In 2,6 we gen~
eralize Lawvere's characterization of abelian categories of algebras
([20]1) to the "no raﬁk".case with the corollary that any additive

| algebraic category is abelian (2.6.3).

In Chapter 2 we make crucial use of the fact that, in Sg, a model
for the cartesian power Xp is the set of functions from n ;o X In )
Chapter 3 we study a class of categories of "sets with structure"
called lattice fiberings over S. If & is a lattice fibering over
E;, $§ sits as a subcafegory of <€ in such a way that for each
€ -object X and for each set n, the set of E'-morphisms fromn to X
has a canonical E;—structure which is a model for X" in é;. Each
triple 'TP in § and each lattice fibering € over S induces, by
a Birkhoff subcategory argument (3.4.5), a regular triple fTT‘ in &
whose algebras may be thought of as sets together with & =structure
and rTT\-algebra structure "compatible" in the sense that rTT‘-operations

~

are g:-morphisms. In this way, the study of fTT\ generalizés to rTTW.

E = topological spaces is a lattice fibering over g;. If rTT\-alge-
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vi
~
bras = groups that 'TT\-algebras = topological groups; implicit in
this is the construction of the free topological group:over a topolog-
ical space (3.4.8). By a Birkhoff subcategory argument, we prove (3.4.9)
that [topological linear spaces] is the category of algebras over a
triple in topological spaces.

The author is grateful to the National Science Foundation for
financial support during the preparation of this paper, as well as to
the Forschungsinstitut fiir Mathematik of the Eidgen8ssische Technische
Hochschule in Ziirich, Switzerland for providing an office.

The author expresses his heartfelt thanks to Fred Linton for
help mathematical and non-mathematical without which this paper could

not have been written.
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CHAPTER O, CATEGORY THEORY

The language of this paper is that of "naive category theory", but
all that we do can be interpreted in a category of categories satisfy-
ing Lawvere's axioms; for the formalities involved see [21]; this just-
ifies our fearless use of certain "large" subcategories of "the" cate-
gory of categories and functors. We assume the reader is conversant
with elementary category theory at the level of, say, the first five
chapters of [26]., The main requirements here are listed in 0.1 - 0.3,
0.4 - 0.8 deal with elementary topics that are not, as far as we know,
easily found in the literature., More specialized topics are reviewed

at various points throughout the paper,

"§0,1 Preliminaries.

T S A a—

If f,g are morphisms in a category, we compose first on the left

£ g '
so that fg = > y. Other notations in lieu of fg are f.g

and fog, If f is a function and if x is an element of the domain of
f, x evaluated under f is denoted "xf" or "<x,f>", We go as far as
to write "(X,Y)}{ " for the class of ) -morphisms from X to Y and
"(4,H")n.t," for the class of natural transformations from H to H',
but it would seem too stilted to write ~Ai \/E’ let alomne iA\I[ , for
(JQ Ai and we violate our conventions on such accounts. We.sometimes

use gdf" for "is defined to mean" and "=_ " for "is denoted to be",

dn

devices we learned from Gottschalk, [14]. The symbol [] is used for
Yend of proof", A function is bijective =q¢ it is 1-to-1 and onto,

f .
We write " »——" to assert that the morphism f is mono; !’__JE_» "
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2
for epi; ("mono" and "epi" are defined in 0.4.1). Let K be a category.
Either obj )‘( ot H’{ | =dn the class of K -objects.' For every X in
obj K 1y =4y the identity morphism of X; we also write "X —L X",

)»{ op =4p the dual category of )‘{ . S =4qn the category of sets and
functions., H is legitimate =4¢ for every X, Y in obj ){ , (X, 1)K
is a set; in this case )’{ induces a set=valued functor )’{ OP x ){ —
(’0')){ s S . K ¥ = dn the category whose objects are ){-morphisms
and such that a M “-morphism from X — Y to X'._.L)Y' is a
pair of K -morphisms (X —2 X', Y_P ,y') with af’' = fb, XK is
small =3 obj )'{-' is a set., A class C} of K—morphisms has a rep-
resentative set =,. there exists a set R of )‘{ -morphisms such that
for every f in 637 there exists r in R such that f is isomorphic to
r in )‘{ >
If D is a H =valued functor, the inverse limit of D (determined
only within isomorphism if one exists at all) = dn ljm D, or more pre-
cisely lim D——D. We estabiish notation for some special lim's
The ith pfojection of a product =, Tr Xi —-—Eri-e Xi' The equalizer
of a pair (f,g) of )_‘{'—morphisms =in ©4(f,8). The (dual of the)
standard construction of ljm's from products and equalizers is recorded
in 0.6.2. The ljm of a family of form (X, "1 ,X : i € I) =y its
collective pullback, =4, pulibaék (£,); we.reserve the term "pullback"
©  for the case crd 1= 2, 1fx—f 5y 1sa K ~morphism, the kernel
pair of £, *in ker pair £, =4f the pullback of f with itself. Note
that terminal object = empty product = emp‘ty 1(i;m. Dually we have
ing

D———>1_:i;m D, X, —-————)_LL Xi’ coeq (f,g), collective pushout, cok

pair f and initial object = empty lim, In S, products are as usual,
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eq(f,g) = subset on which f and g agree, pullback (fi) = [(x;) : for
all i, j xifi = xjfj], terminal object = l-point set, coproducts =
disjoint unions, coeq(f,g) is obtained by dividing out by the equival-
ence relation generated by [(xf,xg) : x € domain f = domain g], pushout
(f i) is defined similarly as a quotient of _I_L range f; and the empty
set is the initial object. In the category of categories, ljm's are
essentially the same as in the category of sets, but l_;m's are very
complicated to describe, If A is a category, ){ has lim's of type A
=4f every functor A ——D——>K has a 1jm; special cases are " K has
equalizers", etc.. K has ljm's =;¢ )»{ has 1ljm's of type A whenever
A is a small category., Make similar definitions for lim's.

Let }{ — i, Oﬁ be a functor, H is faithful =q¢ for every pair
(£,g) ¢ X » X' in K s fH = gH dimplies f = g, If H is faithful and
if f is a )’{ -morphism then fH mono implies f mono and fH epi implies
f epi. If L B M\ Gieh BH' faithful then H is faithful. H is
full =4¢ for every J;-morphism of form XH —f—yx'H there exists a
K-morphism X—f0 .X' such that foH = f. H is an isomorphism of
categories iff H is full, faithful and bijective on objects., We con=~
clude this section with Godement's "cing réglés" found in [12] very
heavy use of which will be implicitly made throughout this paper.
Suppqse that W, X, Y, Z are functors and that a is a natural transfor-

mation from X to Y, Natural transformations WX ——wf—>WY and XZ—

aZ
————YZ are induced by defining K(Wa) = (KW)a and K(aZ) = (Ka)z
for every object K, The five rules concerning these operations are

(WX)a = W(Xa) : WXY > WXZ; a(¥2) = (aY)z : WYZ » XYZ; WaZ =43¢ (Wa)Z

=W(aZ) ¢ WXZ » WYZ; V(a.b)Z = VazZ.,VbZ : VWZ » VYZ; ab =af aY.Xb =
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Wb,aZ : WY » XZ.

§0,2 The Yoneda Lemma,

Let K———H—MS be a set-valued functor, and let X be a ){— '

object such that (X,-)){ is set-valued, Then the passages

((x,=) X ,H)n.t. —> Xd, XH > ((%,~) K ,D)n.t.
a b <lx,Xa> X fp— (X,-)){ —j——+H
Ya
(X, )k ————— YH

f — <x,fH>

are mutually inverse. Im particular, ((X.-)K J,H)n.t. is a set, For
a proof see [10, pp. 112-114], or [26, pp. 97-99], A set-valued functor

is representable =,  there exists a K—object X such that (X,-)K is

daf

set-valued and naturally equivalent to Hj in this case X is the repre-

senting object of H.

80,3 Adjoint functors.

Let j\>——1——>){ be a (not necessarily full) sicategory of K ,
and let X be a )‘{-object. A reflection of X in of- =4f 2 )’{-morphism
X ——X-"———>X I3 such that X 4 E obj Qt and such that whsnever X ———£—>L
€ K with L € obj aﬁ. then there exists unique X‘L—f—>L e L such
that Xn% = f, 1If every K—object has a reflection in £ then c{ is

a reflective subcategory of K and there is a reflector functor

K -—R—-> J; defined so as to make 1 — " ,Ri natural, R is
determined within natural equivalence. j» is full iff R may be chosen

with iR=1 4. The definition of reflectors requires a suitable
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axiom of choice. If ot is a full reflective subcategory and if
D a aR
A —2d with Di— > 1mDi in K then D—"— (1jm DI)R =

l_i’m D in i . Dually, define coreflection, coreflective subcategory,

coreflector; full coreflective subcategories imherit lj._m's.
A left adjointness consists of functors H ——de), ﬁ ——H—-—>}{

and natural transformations UF —° 1 ’ l){__”_._,FU (called ad-

e Fe
junctions) subject to the adjointness axioms F_nF_'__) FUF —— T

= lF’ U ~—ED—> UFU —EP--:) U = 1;. We demote this by "F —| U", read
"F is left adjoint to U" and let ¢, n be understood. U has a left

adjoint =4¢ there exists F —-I U, If K is legitimate, U has a left
adjoint iff f§r every K ~object X the functor (X, (-)U)){ is repre-
sentable, If both }’{ and ‘Q ére legitimate Ithen a left adjointness
may be expressed in terms of a ﬁatural equivalence ( (-)F,-)‘/Q ___i._,

(=, (DNK ~ where <f, (X,A)o> = Xn.fU, <g, (X,A)a"l> = gF.Ac and

conversely Xn = <l ., (X,XF)o>, Ae = <luy, (AU,A)a™ 1>,

T
&1

©®

t F—| U. U preserves monos and lim's (for the definition of
“preserve" see 0,8)., U is faithful iff ¢ is pointwise R -epi, and
.U is full and faithful iff ¢ is a natural equivalence. If f'—-l U then
F and ;‘ are- naturally equivaletit. The .suhcategory generated by the
image of U is a reflective subcategory of )’{ » X .-.)9-—->XFU being the
reflection. Conversely, a subcategory is reflective iff its inclusion
functor has a left adjoint. Notice that a subcategory inclusion i is
a full reflective subcategory iff there ex‘isits R~ i with iR-S51
a natural equivalence. . |

If X—| Y and X' | Y' then X'X —| YY'; the adjunctions

X'nY' Y€'X €

L ;
are 1 X'y’ SX'XYY' and YY'X'X > YX L1,
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Consider a not necessarily commutative diagram of functors

et
e

N
4

7

with F —-l U, Then T, r~! and f‘, ™! are respectively mutually inverse

pairs, defined by

T ' r-i
(XF'Y)n.t.-————‘)(X,YU)ngt.’ (X,YU)n.t. ———‘——‘a(XF’Y)n.tC -
Y
XF—9. 7 — x Pxro By xYovw — r¥aer ity
- T oo~ - N =1 - -
(UX,Y)n.t. —— (X,FY)n.t., (X,FY)n.t. ———_—’(UX,Y)n.tI
~ § - ~nX _~ F§ _-~ ~ P~ ~ Uy~ €Y -
UX 2% s x M rux 20wy iV = ux e iy

This form of the theorem appears in [22, p. 321].
Finally, we state the adjoint functor theorem first proved by

U =
Freyd, Let R ——-))'{ be a functor, U satisfies the solution set

condition if for every K € obj }{ the class [f ¢ K : K——E-a,KU-\:ﬁor
some A in obj R ] has a representative set. (Such a representative
set is called a solution set for K). Let H‘, K ve legitimate and
assume A has lim's. The adjoinf functor theorem says: there exists

F ....| U iff U preserves lim's and satisfies the solution set condition.

For the rest of Chapter 0 fix a category )’{ .
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80.4 Epimorphisms.

0,4,1 Definition. Let A-—f—-aB be a )‘{-morphism. f is a split

epimorphism if there exists B—-—f——)A ¢ H with £f = lB. f is a
coegﬁalizer if there exist g,h in %{ with £ = coeq(g,h). Define
ng_&f_)_ =(A—8 ,v¢ )’{ ¢ for every (a,b) ¢ X + A, af = bf implies
ag - bgl. f is a regular epimorphism if for every g in reg(f) there
exists a unique é in ){ with fg = g, f is an epimorphism if for every
(a,b) : B> X in )‘{, fa = fb implies a = b, Dually, we have split

monomoxrphism, equalizer, regular monomorphism, monomorphism,

0.4.2 Proposition., Let f : A>Be K « Then f split epi implies
f coequalizer implies f regular epi implies f epi.

Proof. If £f = 1z, £ = coeq(l,, £f). 1If there exists (a,b)
whose coequalizer is f then for every g in reg(f) we have ag = bg so
that the coequalizer property induces unique g with fg = g. Finally,
suppose f' is regular epi and that fa = fb, Defining g =4; fa, g € reg(f)

so there exists unique é with fé = g, and a = é = b. []

, 0.4.3 Proposition, let f 3t A+>B ¢ )’{ o If ker pair (f) exists then
f coequalizer iff f regular epi.
Proof. If (a,b) = ker pair (f) and, if f regular epi, it is not

hard to show that f = coeq(a,b). [}

0.4.4 Proposition, Let A fA,B E ,C ¢ )’{. f {split}’ epi and

g {split} epi implies fg {split} epi. fg {split} epi implies g
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split epi. []

0.4,5 ProgoSition;{ Let £ ¢ A->Bc¢ }{. f iso iff f regular epi
and mono.

Proof, [Iso] implies [split epi and mono] implies [regular epi
and mono}. Conversely, if f is regular epi and mono, 1, is in reg(f)
and so induces f with ff = 1,, As fff = f and f is epi, ff = 1y [

0.,4,6 Definition, Let f : A+ B¢ }{. A regular coimage factori-

zation of f is a factorization f = A __E__»Q,__i__+B with p regular

epi and i mono, K  has regular coimage factorizations if evéyu ){-‘
morphism admits a regular coimage factorization. The dual notion is

regular image factorization.

0.4,7 Proposition. Regular coimage factorizations are unique within
isomorphism,

Proof. Suppose p,p' are regular epis and i,i' are monos with pi
= p'i', p' is in reg(p) as i’ is mono, so h is uniquely induced with

ph = p'. hi' = i because p is epi. h~! is induced similarly. []

0.4.8 Progogition. Assume P{ has regular coimage factorizatioms.
Let A———g—» B-——§—9 C € ){. Then f,g regulér epi implies fg regular
epi. fg regular epi implies g regular ‘epi, The hypothesis on }{ is
necessary in both cases,

Proof, Suppose fg is regular epi. Factoring first g, then fp,

we have from 0.4.7 that ji is an isomorphism:
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—> B g > C
\ 4
P i
3 Y ,////
> 1

Hence i is mono and split epi and therefore an isomorphism, which proves

LGE——

T

g is regular epi. Novsuppose f,g are regular epi, and factor fg:

A f 4 4g; IC

S

As i is mono, p is in reg(f) inducing p such that fp = p. As just

P i

o S

proved above, i is regular epi; as i is also mono, i is iso and fg is
regular epi. The four object category

a
) — f B &

———-—————5*.) 7 (\C

with a # b, af = bf is such that fg = coeq(a,b) but g is not regular
epi. Using similar constructions one can show that the composition of
a spit epi and a coequalizer (in either order) need not be regular

epi. []
§0.5 Regular categories.

0.5.1 Definition., The category P{ is regular if it satisfies the
following four axioms.
REG 1, F{ has regular coimage factorizatioms,
" REG 2. f{ has lém's.

REG 3, K is legitimate,
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REG 4. For every X in obj ){ the class of regular epimorphisms

with domain X has a representative set,

0.5.2 Proposition. Let ),{ be regular, Then K has coequalizers,

Proof, The proof will not require REG 3. Let (f,g) : X~»Ye
K s and let (R be a representative set of regular epimorphisms with
domain Y. Define a category € with objects [Y —2,A¢ (R : fa
= ga], and such that a morphism from a to b is a K-morphism u with au
= b, With the evident composition, g is » small category and

K

E

A A
Y u — l/u
B

4
>4
S

=

. 4
is a functor. Comnstruct lim E=1 -2 . Ay As ¥ ;A is natural

there exists unique Yt .1 with tg, = a for every a ¢ obj € « We

construct the regular coimage factorization t =Y q» Q, J , L, and
show q = coeq(f,g). For each a, fqjz, = ftr, = fa = ga = gqjz,.

Therefore fqj = gqj and then fq = gq as j is mono. Now suppose

£ T

—_—
X Y—mMm > @ >——1L

g z\m /ca/
A

Z

fz = gz, There exists a regular coimage factorization z = ak with a

in obj g . q(j?;ak) = t?;ak = ak = z, Since q is epi, jl;ak is unique
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with this property. []

§0,6 Reflexive pairs.

0.6.1 Definition. Let (f£,g) : A> B be a pair of K—morphismso
(f,g) is reflexive if there exists B——-d—->A K with df = lB = dg.
(The origin of the terminology lies in the fact that when K = S,
(f,g) is reflexive iff the image of the induced map A __(_f:gl_’ B xB

contains the diagonal of B.)

0.6.2 Proposition. If K has coproducts and if every reflexive pair
of K -morphisms has a coequalizer, then K has all 1_i)m's.

Proof. We recall the classical construction of lim's from coprod-
ucts and coequalizers, Let A —D——-> K « If i-‘-s-ej € & write Di""
___]?is__, Dj instead of 1D ﬂ_) jD (we often do this fqr diagrams

D) and define maps ¢,y,q by

Dg
D, >D
1 h
inigj,” mj
'LL Di ¢ ~> Dj a > C°eq(¢.¢)
6 q‘ N S
i*jed jela]
in
185
ini
P

i
in
Then Di i aj_i__l_MDj ! ,coeq(diy) = lim D. We only observe

that (6,¥) is a reflexive pair., Define d by in

j.c.'1=:i.n L. Itis

3+3
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trivial to check that d¢ = 1 = dy,

50,7 Contractible pairs,

'0.7.1 Definition, Let (f,g) : A>B, x ¢ B~>C be ){-morphisms.

(f,g) is contractible if there exists d : B + A such that df = 1,

. f
and fdg = gdg. (f,g,x) is a contractible coequalizer if g _L'_}f.)_, X

S —

d
is a split epimorphism in )’{", that is if there exists ¢ —% B,

B _i!__,A such that

l -
| d £ v
x lg [x
d
c ¢ B * _c
L 1 1

commutes, The theory of this section is due to Jon Beck, see (3],

0.,7.2 Proposition, Let (f,g) : A>B, x : B >C be K-morphisms.

The following statements are equivalent,

a. (f,g,x) is a contractible coequalizer,

b. (f,g) is contractible and x = coeq(f,g)

Proof. a implies b, By hypothesis fx = gx and there exists (dg,d;)
with d;g = xd;, d,f = 1. As fd;g = fxd, = gxdo = fd, g, (£,g) is con=-

tractible, Now suppose y : B + Y with fy = gy. y =4¢ d,y. Then
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x§ = xdoy = d)gy = d,fy = y. ¥ is unique with this property as x is epi,
b_implies a. By hypothesis there exists B.__El__,A with d;f = 1
and fdlg.= gd,g, and x = coeq(f,g). We have at once that there exists
c __EE__,B with x?o = djg. As x is epi and xd;x = dlgx = dlfx = x,

dox = 1, [1

0,7.3 Corollary, Every functor preserves coequalizers of contractible

pairs. [}

0.7.4 Proposition, If ){f has equalizers then every contractible pair

of )ﬂf-motphisms has a coequalizer,

Proof. Let B ~ﬁ._, A;—:z—;s with d\f = 1, fd)g = gd;g. Set
C——:ﬂ;—;B =af eq(lB, dg). As dlg.dlg = d,f.d;g = d,g there exists
unique B %X ,C with xd; = dyg. As d; is mono and fxd, = fdg =
gd,g = gxd,, fx = gX. As d; is mono and doxdo = dodlg =dg, xd, = 1,

It follows from 0.7.2 that x = coeq(f,g). []

0.7.5 Propogsition., If P{ has kernel pairs then every split epi in

%{ is a contractible coequalizer,

d0 £
Proof., Let Y > X >Y =1, (a,b) :t K»X =i ker pair (f).
As fd,f = f, there exists d,:
X~ _
~ 4 Iy
f ~ - \,\
S
K > X

Y a

~4p lb Lf

\ X £ v []
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§0,8 Creation of constructions,

Let R —-U——> }{ be a functor and let F be a class of R —valued
functors, U {weakly} preserves 1lim's of elements of F =45 DE F and
D-X,4A= l_i;m D {and 1im DU exists} implies kU = lim DU, U detects
]._i).m's of elements of F =qg D € F and 1im DU exists implies lim D
exists, U reflects lg.;m's of elements of F =4 D € F and D—-K—->A
natural with A € obj R (we identify A with the appropriate constant

| functor) such that kU = l_i;m DU implies k = l_:i;m D. U constructs l_i;m's
of elements of %: =q¢ D € F and DU 55X = l_i’m DU implies j:here

exists D —LA with kU = x and ¥

im D, U creates lim's of elements
of OF =qg D € %E and DU-X5X = l_im DU implies there exists unique
D—K,A¢e A with domain D such that %U = K; moreover K = lim D,
Observe that "creates" implies all of the others, U creates isomorphisms
=4f A € obj ﬁ and AU——X a K—isomofphism implies there exists
t;zique A—'—E—-yB ¢ A with domain A such that xU = K3 ﬁoreover k is an
isomorphism, (Observe that U creates iscmorphisms iff U creates l_i)m's
of elements of Hl s wWhere ]1 is the one-morphism category). An
observation of Linton is: U creates lim's of elements of ?‘7 iff U
weakly preserves, detects and reflects 1im's of elements of %F and U
creates isomorphisms., An important definition for Chapter 1 is "U
creates coequalizers of U-contractible pairs" which arises from ¥ - daf
all U-contractible 'pz'ivirs, that is all functors from - : c to A U
of which are contractible. We let the reader formulate "U reflects

epis", "U creates regular coimage factorizations," etc..
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CBAPTER 1, TRIPLES IN A CATEGORY

§1,1 Algebras over a triple (cf. {3 6 25

1,1.1 Definitions. Let )’{ be a category. rl—P = (T,n,n) is a triple
. . T .

in K with unit nand multiplication u if K — K is a functor
and if 1___“_,1', IT —% T are natural transformationms subject to

the three axioms:

T
fTP-unitary axzioms. T —————————— IT ¢

f-associativity axiom, TTT T s TT
l Tu lu
‘TT H T

Let T = (T,n,n) be a triple in K . A '-algebra =, a pair (X,£)

with X ¢ obj K ’ XT—iex € )’{ subject to the two axioms:

X T
X M xT XTT s XT

\\Jf Jf“ )

g~unitary axiom, E-associativity axiom.

7
S
7

X is the underlying K —object of (X,£) and & is the structure map of

(X,8). If (X,£) and (Y,0) are ([['-algebras, a /| ~homomorphism,
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£ £
(X,8) ———(Y,0), from (X,&) to (Y,0) is a K-morphism X——>Y

subject to the

£T

‘ ] | ' chomomorphism axiom., T

XT Y
f
X Y

5
7

LN
?

d

underlying ){—object functor ' .

4]
A functor .Q —-———)K is tripleable if there exists a triple

T
H =in the resulting category of ’TP-algebras. U'Tr = in the faithful
I

(TP in )'{ and an isomorphism of categories J:} __f_,){qr such that
ou" = U,

™
1;1;2 Hetristics in K . In the course of this paper it will become
clear that categories of algebras that exist in nature are tripleable,
Right now, we show that, conversely, the category of algebras over a
triple has certain properties expected of a "real" category of algebras,

Fix a triple 'TP = (Tyn,u) in a category K. There are free rlT‘-
T oo FE T
algebras, U has a.canonical left adjoint K ——— K s defined by

& —f L 0FT = (xr,x0) —fL 5 (¥T,Yu). That F" is well-defined follows

from the diagrams:

X7 X0 x7p xr7T XML xrr xrr _ T ypr
\1 lXu J/ XTu J/Xu lXu lYn
\ Xu fT
XT XIT — 4 XT XT— VT

and we prove below that F']r--l u¥ with adjunctions 1, 2T, v

T . ’
___e___ﬁlh,qn where (X,£) e.nl =af (XT,Xu) —E—-—> (X,8) « Thinking of
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X.__m‘_> XT as "inclusion of the generators"”, the axioms defining a
rlT‘-algebra say that a structure map is a homomorphic extension of
the identity map on generators, Hence K T parodies classical univer-
sal algebra in the sense that algebras are camonically quotients of
frees, This model is entirely satisfactory once we point out that free

algebras are literally free in the usual sense, Suppose (Y,6) is a

’TP-algebra and suppose X——-f——->Y £ K » The diagram

0
XT T, vr 5

]Xn | ]Yn l/
X ,\Y/

shows that there exists (XT,Xu) —-f——> (Y,0) ¢ }—{T with Xn'.f = f,

namely f= df fT.6, Moreover, f is unique with this property; if

(XT,Xp) _.l_, (¥,0) ¢ )’{T with Xn,h = f then the diagram

an > XTT bT. > YT

S,

shows that h = XnT.hT.8 = (Xn.h)T.0 = £T.6.= £, ‘(This argument is most
of the promised proof that P .....I U“; the reader may complete the veri-
fication,)

A reasonable definition of “subalgebra" is "monomorphism in HM Tu,
This is equivalent to the definition we will introduce in 1.2.2 below,
We observe now that the generators "generate" (XT,Xu), i.e. whenever
(A,E) >——i———> (XT,Xu) is a subalgebra and A "contains" the generators

in the sense that there exists X —2 LA ¢ K with Xn = a.i, tha i is

&
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an -isomorphism. To prove it,

x — ¥ xr

SN
~4

A, , XT

‘Tr i L4 ~
3 is induced in K with Xn.a = a. lXT' a.i are ’Tp-homomorphisms
agreeing on generators, and hence are equal. Applying 0.4.5, i is

mono and split epi, and therefore iso.

1.1.3 The triple induced by a pair of adjoint functors. As was first

pointed out in [16], if R _‘_].._.> ){ _E_>ﬁ with F —| U via adjunc-
tions 1){——1—>FU, UF-——e—alﬁ y then (FU,n,Fel) is a triple in ){ .

The proof is easy:

FeUTU
FU FUn . pupy "9 py FUFUFU | FUFU
1 Fel 1 J( FUFeU l FelU
A F
FU FUFU — 5 FU

It is equally easy to check that if {TP is a triple in )‘{ , then the
triple induced by an. --I UTF is just fTP itself; all triples arise
in this way. A more complete study of this construction will appear

in 1,4,

1.1,4 Example; closure operators, Let the category K be a quasi-

ordered class, that is if X,Y € obj K there is at most one morphism
from X to Y (in which case we write "X < Y"), All diagrams in K are

commutative, and hence a triple in ){ is an object function
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)’{ ———T-——>)< such that X <Y implies XT < YT (T is a functor),
X < XT (Xn) and XIT = XT (XTn and Xu); said differemtly, a triple
in K 1is just a closure operator T, For such a triple T, the algebras

are precisely the T-closed elements, as is easy to show,

1,1.5 Example; full reflective subcategories. Let K be a category.
There is at least one triple in K , namely the identity triple fTP
= (1,1,1), with UFH‘= lK. Less trivially and more generally let

ﬂ>—u~—>){ be a full reflective subcategory with reflector F such

that UF = 1, . The adjunctions are 1 — —FU and UF —1 51, X being

the reflection X + Xpe The induced triple, r]T‘ » is (FU, I—LFU,

FU—A‘-—)FU). (X,&) is a r.ﬂ_\--algebr:a iff Xn.E = lx;

Xn.£.Xn = Xn so that £.,Xn = lXFU by the uniqueness of reflection-induced

in that case,

maps, Hence K'n‘ is the full subcategory generated by all objects
isomorphic in )’{ to some object in J:). In particular, if obj K is

a union of X -isomorphism classes, U is tripleable,

1,1,6 Example; triples vs, monoid objects. ( ){ »A,*) 1s a category
with multiplication if K is a category, A is a K -object and

){ X K — * )‘f is a functor satisfying the axioms: * x 1 , *
=1x % , % (¥ is associative) and A *= = _lG = % A ( is a *-unit),
1f (K ,Ay *) is a category with multiplication, (G,e,m) is a ( K ,A,*)=
monoid if G is a K-object, _ A__e_—>G, G*G —s G are }{—mor,-
phisms satisfying the akioms: n*l ,  m=1%m,n, 1*e,m="

1G =e %1, m (Note: if Cat is the category of categories, if 1 is

the one~morphism category (so that for any category H s Obj ){ =
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functors ﬂ > )‘{ ) and if Cat x Cat ——x—> Cat is cartesian produét
of categories the (Cat,]l sX) is a category with multiplication whose
monoids are precisely the categories with multiplication.)

Let K be a category. ){ 5 =in the usual functor category of
functors from X to X and natural transformations. Let
K " x ){K_____,° }{K be composition. Then ( Y d s 1y o)
is a category with multiplication whose monoids are precisely the
triples in K.

Turning in énéther direction, let (G,e,m) be a (K o, *)-monoid.,
Define a triple fTP = (Tyn,P in K by T =4¢ ~*G, Xn =4f ¥ Jﬁ-—)X*G,
Xu =4¢ X*G*G ——llm—ex*c. It is easy to check that ‘TP is a triple,
1f }{ = S s crd A = 1 and * = x then (G,e,m) is an ordinary monoid
and S T, G-sets, If K = topological spaces, crd A = 1 and * = x
then Top’n‘ = topological transformation semigroups with topological
phase semigroup G. If K = abelian groups, A = Z and * =®z then
G is a ring and AbY = G-modules, If )’{ = A-modules (for A a commut-

AT

ative ring), A = A and * =), thenG is a A-algebra and A-mod” =

G-modules,

1.1.7 Example; equationally defineable classes. Let Q be a set and
let @ —2 50bj S be a function (called arity). An Q-algebra = ”
a set X together with an wa—-ary operation x*2_Y__.x for every
wef, and an Q-homomorphism is a function X ——-f—>Y such thatw .f =
fma.m. for all w, Classically, (dating back to G. D, Birkhoff ca. 1930
but equally so in the recent book_of Cohn, [5]), one assumes further

that each wa is finite. In this case the free Q-algebra XF on a set
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X is constructed recursively as a word algebra: (x) is a word for
every x ¢ X; if w € @ and if W;, ... , Wwa are words, so is WjW,...

Wma-lwwaw' The w's induce operations on XF via concatenation, An

' 'equation is then defined to mean a pair of elements in the underlying
set of some free Q-algebra, If E is a set of equations, the category
of (9,E)-algebras is the full subcategory of those Q-algebras X such
that whenever (e,f) ¢ El(‘\YF2 and whenever YF ——E——+X is an Q~homo-
morphism, then eh = fh., A category arising as (Q,E)-algebras for some
(Q,E) is an equationally defineable clasc, Four facts ((1), (ii) by
[27]), (iii), (iv) by Linton unpublished) are: (i) Foregoing the re-
quirement that wa be finite, the underlying set functor U from Q=-algebras
still has a left adjoint, namely X P»(Ux, U)n.t.. ("UX" is defined in
2.2.1 below), (ii) Using (i), (Q,E)-algebras can still be defined, and
then the underlying set functor Uy from (Q,E)-algebras has a left
adjoint, (iii) UE is tripleable, (iv) The triples rising from (iii)
are exactly those that have a rank (as in 2,2.6 below), We will not

prove these theorems here,

1,1,8 FExample; sets with base point. XT =4¢ X ll_{w} . Xn =af

i
X___:EL_;XI. Xp =2z XIT -+ XT via collapsing two ='s to one., The

algebras are sets with base point,

1,1,9 Example; abelian pgroups. Let Ab be the category of abelian

groups and let F, U be the usual free and underlying functors. The

adjunctions are "inclusion of the generators" X -—391—>XFU and "add-

" (X’-}-)E
ition (X,+) UF _— (X,'i') Py (xl) soe (xn) > X1+ see +xno De~
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fining {TP =45 (FU,n,Fub) it is not hard to see directly that
g“ = Ab via an underlying-respecting isomorphism of categories. If
(X,8) is a (T -algebra, "+" may be recovered by x+y = ag ¥ (y)€. This
approach to abelian groups is "presentation"” invariant. For example,
an abelian group could be defined as é set X with binary operation
X x X — > X satisfying the equation x - ((y=z) - (y=x)) = z

(due to Higman and Neumann, see [5, p. 165, ex. 6],

1,1,10 Example; complete semilattices. By a complete semilattice we

mean a partially ordered set X in which every subset A C X has a
supremum sup A in X. In particular, sup ¢ is the least element. Notice
that the map Zx_i“__P___, X complétely determines the structure since
x < y iff sup [x,y] = y. We will construct a triple M = (Tyn,u)

in § with UTF isomorphic to A—Y .S uhere R is the category
of complete semilattices and sup-preserving maps and U is the under=-
lying set functér; the structure maps will indeed be the sup maps. Let
T be the power-set functor, sending X to 2X, and defined on morphisms
via direct images. Xn sends x to [x] and Xp assigns to a family its
union, If X is a complete semilattice let X¢ =4¢ (X, sup). The veri-
fication that [[' is a triple and that ¢ is well-defined on objects
may be safely left to the reader., I1f X,Y‘ are complete semilattices

and if X———f—>Y is a function then f is a ’TP-homomorphism from

(X, sup) to (Y, sup) iff sup.f = fT.sup iff f is sup-preserving, Hence
¢ is full and faithful and @UT = U, As we argued earlier, ¢ is I-to-1l

on objects, We prove in detail that ¢ is onto on objects. Let (X,£)

be a rﬂ-‘-algebrg. For x,y in X, define x <y =4 [x,y]E = y. As
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x=[x]§, x<x, If x<y andy<x then x = [y,x]§ = [x,5]¢ =y,
Suppose x <y and y < z, Then [x,2]§ = [[x]§, [y,z]E]€ =
[(x), [y,z]1&T.& = [[x], [y,z])Xu.& = [x,y,2]€ = [[x,y], [2]]Xu.g
A[[x,y]&, [z]€1€ = [y,2]€ = z, and x < z. Now observe that AC 3B
implies AE < BE; for [Af, BE]JE = [A, BIET.E = [A, BlXu.§ = (A UB)g
= BE, Let AC X, For every a € A, a = [a]f < AE because [a] C A.

To see Af is minimal with this property, suppose x € X and a < X < Af
for every a € A. Then [AE, x]§ = [A, [x]]ET.E = (AU [x])E =
(U fa,xe = [layx] ¢ a e Al = [[a,x]e + a ¢ AlE = [x]E = x
thus proving A{ < x as desired, The proof that ¢ is an isomorphism
is complete,
Notice that if T were redefined by XT =1f [AC X : A finite] then,
since a finite union of finite sets is finite, the above argument
works verbatim to produce partially ordered sets with finite sups, A
similar discussion holds for "countable", Hence, while the original
F|T\ has no rank (seen easily from the free algebras), (TP admits
"truncations" with a rank. In fact all triples in S admit truncations
of rank H if ‘rY is a regular cardinal, see [23], (For the definition
of rank see 2,2,6).
Also, we should point out that the category of complete lattices.
_ is not the same as the category of complete semilattices; in the former,
homomorphisms must also preserve infs, If X is a topological space,
the inclusion of the open sets in Zx is a sup-preserving inf-destroying

map.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

§1.2 Properties of U']Tv_.;

Fix a triple ]’ = (T,n,u) in a category K.

1,2,1 Proposition, Ul creates ljzm's.

Proof. Suppose A _L.ﬂ{'n' is a functor and L --—1_> i is a

model for lim DU'H'. For every 1 8 j € A we have

T.T X,T &1 —

/i/) i xl
LT £.T f
T~r T J 8 £ j/ §
j \X.T j . X
h 73
which induces a unique )’{ -morphism & such that T iT.g 1 = g.ri for all i.
We have
Xn
Xi _;Xi'l‘ :
\\
X
I‘i | r i'r 4
Ln
L >LT

IT—— L

where all commutes except possibly the front faces which then commute
since they do so followed by each T je This proves (L,£) is a {TP-al-

gebra, and each T i is a 'H‘-homomorphism. The same sort of argument

shows that if (Y,08) is a rrp-algebra and if Y——f——>L is a }'{ ~morphism
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then f is a rﬂ_\-homomorphism iff f.T; is a ‘Tp—homomorphism for all
T
i, from which it follows that (L,g)—£—>D = 1im Din K . To com-

plete the proof, suppose (E,E) _f_._,D is a natural transformation with

f‘lfn‘é I, and show I = (L,F,)—L—»D. As U'm is faithful it is enough to

show E = g, But this is clear from the definition of { and the fact

that (L,Z) —L is a ([ -homomorphism for all i, []

i

1.,2.2 Subalgebras, Let (X,£) be a ([['-algebra and let a—E x
be a K -monomorphism. Say that i (or by abuse of language, A) is a
subalgebra of (X, ) if there exists a K-morphism AT——F’-Q—-—yA such
that £,.1i = iT.{, and denote this by "(A,go) < (X,6)". Clearly such
E;o is unique when it exists, To prove that (A,go) is a (TP-algebra,
and hence that i is a rT]_‘-h‘omomorph:i.sm, use the same diagrams as in
T

1.2.1 replacing L by i. As U 1is faithful, UT reflects monomorphisms;
as UT has a left adjoint, U'H‘ preserves monomorphisms; therefore a

subalgebra is precisely a KT-monomOrphism.

1,2,3 Quotient algebras, If (X,g)——p—e (1,6) is a (][ -homomorphism,
say that p (or by abuse of language (Y,0)) is a quotient of (X,f) if
X-—p——-»Y is a )‘(-eﬁimorpi'lism. This implies that (X,£) —'—g—»(Y,e)
is a HT-epimorphism, but the converse is false; indeed the inclusion
map of the natural numbers in the integers is an epimorphism in the
category of monoids, as is easy to show, Various classifications of
K-epimorphisms induce corresponding notions of quotient algebras such
as "regular quotient", "'Split quotient", etc..

Given (X,Z) in obj }'('n,, and X —P2 Y W -epi, we cannot in
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general say that p is or is not a quotient accordingly as there exists
£ such that pT.E0 = £,p, For one thing, it is not clear that £% would
be unique, although it would be clear if pT were epi. If such £0 does

exist, then we have from the diagrams

[ X 1 . l XTT
X N XT 5X e//jgg;//// Xn
: YTT ~ Yu ET XT
—
P pT P pT
Y Y
I

that (X,£0) is a rTT‘-algebra providing pIT is epi, Hence the situation
for quotients is as well behaved as for subalgebras providing T pre-

serves epimorphisms.

1,2.4 Proposition. Let T preserve regular coimage factorizationms,

T
Then U creates regular coimage factorizatioms,

£
Proof. Let (X,g)—(Y,8) be a rT_P-homomorphism, and sup-

£ .
pose X———Y has regular coimage factorization f = x—E 1, Ly,

iT
By hypothesis, fT = XT-——BEL» IT »—— YT is a regular coimage fact=-

orization,

T T
XT —————jl——~—9> IT F-—~1Lﬂr————9YT

3 8, 0
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Since £,f = £fT.6 and i is mono, £.p is in reg(pT) which induces unique
90 with pT.6, = E.p. '6j.1 = iT,8 as pT is epi. We have (X,E)p—>
(I,eo) —i——>(Y,e) and that eo is unique with this property. To com-
plete the proof we have only to show that (X,g)_p_g. (1,65) 1is regular
in KT. Let (X,E)——a—>(A,K) ereg,m(p). Suppose (g,Xx) ¢ B—X
are K—morphisms with z.,p = x.p. Let E,;( be the induced homomorphic
extensions§ Since Zop, ;(.p are homomorphisms agreeing on generators,
E.p = ;(.p. By the hypothesis on a, E.a = ;(.a, 80 [.a = Bn.i.a =
Bh.i.a = y,a., This proves a ¢ regK (p). 4As X—2 51 isa regular
epimorphism in }’{ there exists unique )’( -morphism 3 with p.:a = a,

Consulting the diagram,

X > I S A

since a is a r]T‘--homomorphism and pT is epi, & is a ‘H'-—homomorphism.

1.2,5 Definition. (TP is a regular triple if K is a regular
category and if T preserves regular coimage factorizations,

Most of the triples that we consider in this paper are regular.

1,2,6 Proposition, If rI_P is a regular triple then )’{ T is & regular
category. |
Proof. For REG 1, use 1.2,4; for REG 2 use 1l.2.1; for REG 3, UT

is faithful; since T preserves regular epis, the reasoning of 1.2,3
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induces an injection [regular quotients of (X,&)] —— [regular

quotients of X], which takes care of REG 4. (]

'1.2.7 Proposition. Let F be a class of K Tr-valued functors such
' F o " :
that T preserves 1_1).m s of elements of « Then U’ creates lim s

of elements of ?‘v.

™ r
Proof, Let A _E_., K € c}' . Suppose Xi___i__, L= 1lim Dl?r.
T — ->

ryT
By hypothesis, X;T

LT = l_J';m DI?TT. For every i (] j € A we have

which induces a2 unique K -morphism £ such that T i'f.g = g i.I‘ i for all
i. The proof that (L,¢) is a W—algebra uses the same reasoning as
"(X,£0) is a rlT‘-algebra" in 1.2.,3. That ¢ is the only structure map
making each T 12 q_]"-homomorphism is clear, To complete the proof we
must show (xi,gi) ——rj—'———i-(L,g) = l_i;m D. A natural transformation up=-
stairs induces a map downstairs which is a rﬂ-‘-homomorphism using the

same reasoning as "a is a [||'-homomorphism" in 1.2.4, []

1,2,8 Proposition., Let X € obj }’{, XT-—-E-—:,X € )’{ + The following

statements are pairwise equivalent.
a. (X,£) is a /[['-algebra.
b. (Xu, £T,§) is a contractible coequalizer in )’{ .

ce & = coeq(Xu, &T) in )'{.
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Proof, a implies b,

l 1 3
XT XIn___ ,x1T X xr
\5 &T [ (3
Xn
l 1 i

b _implies ¢, This follows from 0.7.2.
c implies a. Xu.f = £T.E by hypothesis., We have all of the diagram

of "a implies b" except Xn.£ = 1 which then follows because £ is epi. []

1,2,9 Precise tripleability theorem (Jom Beck, [3]). Let J:}——E—ﬂ‘{
be a f"unct'oi". The following statements are equivalent.

a. U is tripleable,

b. U has a left adjoint and U creates coequalizers of U-contract-
ible pairs.

‘g_r.p_g_f_._ a_implies b, We may assume without loss of generality
that U = UTP. T has left adjoint ™, It is immediate that T cre#tes
coequalizers of lilr—contractible pairs from 0.7,3 and 1,2,7,

b _implies a, There exists F ——| U with adjunctions ll{ —-n——,»FU,
FU——E——elﬁ » and induced triple FIT‘ 2 (T, n,u) = (FU,n,FeU), Define
a functor A —2 K Tpy (a—f ,BYe =g (AU,AcD) LN (BU,BeU).,
That ¢ is a weil-defined functor such that éﬁT = U, follows from the

three diagrams:

~
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AUFeU AU

AUFUFU ——°~__, AUFU avry —FY, Buru AU =" AUFU
AeUFU AeU AcU BeU \\ AcelU

AUFU_— AU ap aw— 8w o

-
Define }{Tr———g;—;ﬁ as follows. Let (X,£) € obj KT. We

have
XFe Xu
(XFUF ——'———’; F)U = XIT—— > XT
EF ET

so that by 1.2,8, (XFe,EF) is a U-contractible pair, U of which has

as coequalizer XFU—E—> X. By the hypothesis on U there exists a unique

-~

R -morphism XF -——E—»(x,ﬁ)cb-l, U of which is £; moreover, £ = coeq(XFe,

EF). Before defining ¢ ! on morphisms, we verify that ¢ 1 is indeed
inverse to ¢ on objects. If A ¢ obj S, the fact that AUF-—A-€—>A is
an A -morphism U of which is auru -2 Ay proves that A¢¢ ! = A,
Now let (X,&)e )'{T . Because U" = U we have (xpi,(x,g)qn'l)cp =
(X’I‘,Xu)-—a—-y (X, (X,£)¢ leU), But as (XT,Xu)—E—)(X,g) is a created
coequalizer (by 1,2.8 and "a implies b") we must have (X,£)¢ leU =¢ ,
and - (X,E)¢ !¢ = (X,£). Now we define ¢! on morphisms, Let

(X,8) £, (Y,6) be a [[[-homomorphism.

XFe . ;; -
XFUF - IXF——— 5 (X,£)¢

gF

£F £¢ 1

~

YF—— 5 (Y,0)¢71

£T.6 = £.f, and therefore (XFe.fF.6)U = XuofTeB = Xpofof = ET(ELf =

ET.fT.0 = (EF.fF.0)U. Now in the proof that ¢! = 1 on objects we
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. Ae R
in fact proved that AUF ——— A = coeq(AUFe,AcUF) in for all
€
R -objects A, In particular the adjunction UF—— 1, is pointwise
R -epi, or equivalently, U is faithful, Hence it follows that XFe fF.6
= EF,fF.0, fo¢~! is then induced by the coequalizer property, and this

clearly makes %=1 into a functor. The fact that € is natural:

Ae
AUF : s A
£UF \ £
€
BUF B }B

proves d¢~1 = lﬂ on morphisms, Summarizing, we have so far proved
that ¢ is bijective on objects, full and that QUT = U, Since U is

faithful so is ¢, and this completes the proof. []
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Aiy
§1.3 1im's in u.

Fix a triple rﬂ“ = (T,n,u) in K.

1,3,1 Proposition (Linton), Let )’{ have coproducts and let every

- reflexive pair in K T have a coequalizer, Then H T has 1_;m's.
Proof. By 0.6.2 it is sufficient to show H T has coproducts.
If ¢ is an initial object in }{, then (¢T,¢n) is initial in M" with
no assumptions needed; this takes care of the empty coproduct. Now let
[(Xi!Ei) ¢t i ¢ I] be a non-empty set of r]_P-algebras. Define a

}’{ -morphism u and '_]—P-homomorphisms TsX by

U &on-- T (xpT g = {_L]_(xi'r)]'r_‘ii(_l_l_xi)m (-I-in)"i‘s (Uxp)T
in
i in T x = [LLxDIT __ (o)t =1 Ll
X.T
1

It is easy to see that _U_(X n)eu = (]JX,)n and then that (z,x) is a

reflexive pair with d =4¢ (J_]_Xi)'l‘ [-I-L(Xin It — [ _U_(Xi'l‘)]'l‘. By

hypothesis, let ((_LLXi)T, (_]_I_Xi)u) _ % ,(Q,8) = coeq(z,x) in )’{T.
We will show (Q,8) = _LL(Xi,g i) with injections

(_Lin) n

ini

X > Lx

s (Uxpr 2 e

Consider the diagrams:

_._(.I.L’ﬂ_, (_U_xi) T

\//
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in, T | 1 (Ux)nT T
xT— L (|xpT s (UxpT—— 5 (xprr-san
! (L% m
| (Ux)T
q
q 2o
- .
X T * X
l i in./
ni ' h 8
, 1le /
LD ‘ L%,
(L& DIn
\ X ay
u (& miT
uT 5
4 (}x,)Tn (LIx,u
i i
(UxpT > (Ux)TT > (Ux)T ——a

\ ) ]

The second diagram proves that the injections are, in fact, ‘||‘-homo-

a
morphisms, Now suppose given rrP-homomorphisms ((xi,g i)___i_>(A,p)
: ieI), and refer to the first diagram., A unique )’{—morphism is

induced with in .a = a; for all i, Let ; be the homomorphic extension
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of a, To complete the proof we have only to show T.a = Yo Noting
that ini.u.a = in,T,aTep = a;Tp = £j.a; for all i, this follows at

once from the third diagram. []

'1.3,2 Corollary., If )’{ has l_im's and if T preserves coequalizers of

T
reflexive pairs, then )’{ has lim's.

Proof., Use 1.2,7 and 1,3.1. []

1.3.3 Corollary. If f‘[‘P is a regular triple and if )’( has coproducts,

T
then )'{ has l_;m's.

Proof. Use 1,2,6, 0,5,2 and 1,3,1. []

D e
1.,3.4 Proposition, Let A ———?)’{ be a diagram with X, —i, L
e, T

ar
= 1lim D, Then (XiT,Xiu) —i (LT,Ly) = 1lim DF ,

T
Proof, F preserves l_i)m's because it has U'n‘ for a right adjoint., []
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§1,4 Algebraic functors and morphisms of triples,

In this section we generalize the "structure-semantics' theorems

of [20], [25] using the triple maps of [1].

1.,4,1 Definitions. The category of adjoint pairs, demoted "AD", has

as its objects functors R ——U——-)){ together with specified left

F n €
adjointnesses K~ LR ’ lH —FU, UF ——--—-3'1‘H » whereas a

U ' U! L
map from Q__~_._9)'{ to R )2t (the remaining data

being understood) is a pair of functors (H,ﬁ) yielding a commutative

square: HU' = UH. With the evident composition, AD is a category.

The category of algebraic categories, denoted "AL", is the full subcat-
egory of AD generated by objects of form )‘{ ){ ol —-———»){
l}{ T, UF——E——-;IH'W for some triple fTP in some category )‘f .

1f M is a category, AD( H) =, the subcategory of AD whose

df
morphisms are of form (lK o,H), and then AL( Ky = ag the subcategory
AL N AD( H). Loosely speaking, AD( X{ ) is the fiber over H in AD,
and AL( ) similarly, IF (4,H) is an AL-morphism, H is called an
H-algebraic functor, If (l){ ,i{-) is a morphism in AL( K). H is called
an algebraic functor,
U
Let A ——  Heobj AD, and let ] = (T,n,u) = (FU,n,Fel)

be the induced triple. We have the functor ¢:

/\

\ A = (AU,Acl)
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used in the proof of 1,2,9; it was proved there that ¢ is well-defined
and that (quT = Uy it is obvious in fact that F¢ = Fﬂ. The AD-morphism

(lH »?) from U to " is called the camonical reflection of U in /AL,

We will prove that it is a reflection in 1.4,3.

1,4,2 Proposition. Suppose given a commutative diagram of functors

P
K im F
N 5
i
A-eo o E- K
rnu'
U U

X G
with F | U in obj AD, U“' in obj AL and im f r—}——) A the fund
subcategory of ﬁ generated by objects [XF § X € | )»{ |}. Then there
exists a unique functor H such that EUT' = UH and {H = J,
Proof, Let M = (T,n,u) = (FU,n,Fel) be the triple in }{ in-
duced by F —l U. Let A € obj R . Ssince (AU,A€U) is a (Tp-algebra,

and in view of 1.2.8,

¢ Ae AUFeU AeU
(AUFUF 3 AUF ———A)U = AUIT S AUT——— AU
AEUF AeUT
is a contractible coequalizer in K . By 0,7,2, 0,7.3 and the fact
TP A€UH
that iUH = JU we have that AUTH —— AUH is the coequalizer of
fig AUFgJ
the U =~contractible pair AUFUpJ — ") AUpJ. It follows from 1,2.9
v AeUpJ

that there exists a unique rﬂ-‘ ~homomorphism AUpJ —2 L, AH with
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! AsUH :
all = AUTH ————— AUH; moreover, a = coeq(AUFeJ,AcUpJ). If

A-—f——)B is an R -morphism, because € is natural and a,b are coequal-
izers (see the diagram below) there exists unique fH with a.fH = fUpJ.b,

which makes H a well-defined functor,

AUFeJ a -
AUFUpJ , AUpJ ————————— AH
AcUpJ :
l —
fUFUpJ £UpJ ' f
]
BUFeJ b v

_—
BUFUpJ ;
BelpJ

.o
Since aUl = A¢UH is epi and both of the diagrams

AeUH AeUH
AUFUH —— AUH AUFUR ———— AUH
K Tl" -
fUFUH = £UpJU: fHU fUFUH fUH
BeUH BeUH
BUFUH ———— BUH BUFUH ———— BUR

- T f . =T
commute, fHU = fUH for arbitraxry A —B =& J‘), that is HU = UH,

Let X € obj M. XFUpJ ——"-—)XFE is the unique rrr‘-homomc.\rph:!.sm with

e XFeUH XuH
domain XFUpJ such that xU = XFUFUH ——— XFUH = XFUFUH ————— XFUH,

So in particular, XFJ = XFH, This proves iK = J on objects. Since
' ' '

iﬁuﬂ =JU and U is faithful, it follows that ii = J, This com-

pletes the proof of existence, To prove uniqueness, suppose iﬁ =J,
)

UH = HU and show H = ﬁ. As in the preceding paragraph, we need only

— -~ - Aeﬂ -~
show H = H on objects, Let A € obj f. Then (AUFH ———)AH)U'Ir =

AcUH ~ ~ =
AUFUH — 5" , AUH, But AUFH = AUpJ, and therefore AH = AH, []
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The next proposition is the main idea of "structure-semantics"
theory, In our context, the inclusion AL * AD is the "semantics” functor
and the reflector functor AD + AL resulting from passing to the

canonical reflection is the "structure" functor,.

U
1,4,3 Proposition. Let A ——— XK« obj AD with induced triple

1, ,9) T
{TP and canonical reflection ¢ Then U ——— 5 U is indeed a

reflection of U in AL,

' H H) T
Proof. Suppose UTr e obj AL, U (H, U

¢ AD, We must

prove there exists unique H such that

ﬁ
R S
x// —

commutes., The existence proof is much like that of 1.4.2. Let (X,£) be

a rrP-algebra. (Xu,ET,&) is a comtractible coequalizer in K , and
t

hence (XuH,ETH,fH) is a contractible coequalizer in )‘{ , and so

H ™*
XTH——E————»XH is the coequalizer of the U -—contractible pair

'H ' ]
XFUFH T —XEE, XFH, and there exists unique ~homomorphism
G P

— ~ — 1]
XFH ——5—>(X,§)H with domain XFH and such that xU']T = gH; further,

x = coeq(XFeH,EF) so that each rﬂ‘-homomorphism (X,E):———f—-'(Y,e)

-~

induces unique fH such that x.fH = fm..y, as in the prove of 1.4,2;
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]
also use the reasoning of 1,4.2 to prove that ﬁUW = UTEH. Now comsider:

T i T
im F 1 s K
4
1
1
i
| @ ¢
'
| o
. i
imF ’ﬂ

' T
Since XF.¢ = (XT,Xu) for every X € obj K, % maps im F into im F ,
Therefore, ¢H and § agree on im F and, by 1.4.2, indeed ¢H = H, This

~ —~— ~ 'II'
proves existence. To prove uniqueness, suppose ¢H = H, HU = UHH. Then

Qoiwﬁ = ¢oiﬂﬁ. As ¢, is onto on objects, iTrﬁ = iWH on objects. But

-~ ] A‘]r' ] - ~
T = iTRU" and U is faithful, so i'fi = i'H, and by 1.4.2 we

~

. have that H = H, [}

1,4,4 Definitions, Let rI_P, rﬂ'\' be triples in )’{, )‘f'.

(H,2) rﬂ-" — MM 1s a triple map (or A dis an H-triple map) from
? ]
M to MP it B : X + X' is a functor and BT' —2— TH is a

natural transformation satisfying TM1, TM2:

ST A
HT' HT'T' —  STHT'— 3 TTH
Hn

__* om
™1
' nH Hy! ™2 pH
A
H

HT' > TH

]
(H,T) ¢ 'H" — l I‘ is an intrastructure (or T is an H-intrastruc-
* ‘ '
ture) from ' to ifHt{ — A 1is a functor and

r
THT'———— TH is a natural transformation satisfying IN1l, IN2, IN3:
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THn' THu' MHT'
TH ———> THT' THT'T' ———— THT' TTHT' ——— » THT'
IN1
1 r rT' IN2 T Tr IN3 r
r uH
TH THT' ——— 3 TH TTH ————— TH

1 \J
(that is, (XTH,XT) is a (||’ -algebra and XuH is a M ~homemorphism) .
The category of triples and triple maps, denoted "OPTR" ("OP" because

maps go backwards, cf, 1.4.5 below), has triples for objects, triple

" (EN ')
maps for morphisms, and composition rlT‘ _— ('ﬂ'\ __,(TP

H * m'
> Lwre' — 2, THE'). The category of triples

= L T tmit
¢ (HH', HE'T
and intrastructures, denoted "TR", has triples for objects, intrastruc-
: H,T) v (8',T") "
tures for morphisms and composition qT\ E — q_P ®- 3 fl'T\
THnH'T" THI" ]

TH .
=4f (g*, THH'T" — _  THT'H'T" S THT'H' — _, THH'").

1f H isa category, the subcategories OPTR( H s TR(){ ) are defined
by considering only morphisms of form (l;{ Y (1){ o)

"QO" of the following proposition can be found in [11.

l.4s5 Proposition. TR, OPIR are, in fact, categories. The passages

Q
(oPTR)°P__ 0, AL

- s ﬁl ;I["
(H. A) — (H’HA) where )/( ;}i
(x,8) (XH, X\ ,EH)
l f ' " l fH
Q
AL 1 3 TR -
(H,H) — (H,I‘ﬁ_) where (xTH,xPﬁ_) =1t (XT,Xw)H
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Q2
TR 5 (0PTR) P

- 4
(4,T) s (H_,Ar) where AL =1t nHT'.T,

are cyclically-inverse (meaning all cycles = id) isomorphisms of cate-
gories, For each category )’{ the Qi's establish, by restriction,
isomorphisms OPTR(}{ ) °P = aL(H ) = TR( X).

Proof, The program for the proof is:

(a2) Prove that the Q i's are well-defined in the sense that
(H;'EA) e |AL|, (H,I‘_ﬁ) e [TR[, (HAp) € |oPTR|;

-(b) prove QiQi+1Qi+2 = id;

(c) prove (HH',HE') Q, = (§,I_) (H',F_) and (H,5) (H',I_)0
H H' B H'
= (H',A (HyA )
rﬁ") "
for the remaining details are clear,
Qo well-defined.
XHn' XHy'
XH ————— XHT' XHT'T' — XHT'
™1
™2 '
\ XnH X\ T’ X\
4 { XTA XuH v
XTHT' > XITH ——————— XTH
EHT' £ETH EH
v xA gH v
XHT® > XITH ———————> X1
£T X\ EH
XT —————— 5 YT XHT' — XTH > XH
J £ 6 [ implies
£
X >Y fHT" fTH fH
YA oH
YHT' > YTH >YH
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£ - fTH -
Q; well-defined, If X——Y X, T, xE ————s (YT,Y)E

is in M'T, that is FTHT'YI = XI-.£TH, and'ni is natural, 1IN1, IN2 and
/
IN3 are clear (for IN3, notice that XuHU'HI = XuH),

Q 2 well-defined.

Hn'...- nHT'T! rT* TnHT' T
H.- __SHT' HT'T' ———— THT'T' —— THT' —— 3 TTHT' — > TTH
1
nHT' uHT?!
y Hy'! THyp' IN3 vl
nH THT' IN2 THT '\
/ T
THn' T v pHT! . T \ v
L / HT' ——— THT' s TH
1 4
T™H ———TH

Q;Q,Qp = id. Let (H,H) & obj AL and let X ¢ obj ){ o <(XT,Xu), E"I'n?

= (XTH, XTARR.XuH) = (XTH, XTnHT'.XTI‘-ﬁ.XuH). But we have

TnhHT' Trﬁ-
THT® — TTHT' —TTH

\\\\\\ IN3
1»\\\\\\& pHT' uH
g

THT' »>TH

therefore <(XT,Xu), E"I‘ > = (XTH, XI‘..I:I.) = (XT,Xu)H, It follows from
"
1.4.2 that H Q,Q,Q,= H.

Q,040; = id. Let (H,T) ¢ obj TR, and let X e obj . (xr,xuiﬁ;r =

(STH, XA, XuH) = (XTH, XInHT'.XIT.XuH) so that Iy

= TRHT',TT.pH =
Ap

(as just shown above) T,
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QQ;Q; .=.id. Let (H,)) € obj OPTR, (X'm,xrTrI ) = (XT,Xu).HA:=
A

(XTH, XTA.XuH) so that

Ta

‘ }
H
nHT' TA u
HT® - THT' — TTH — TH

? T L \j I, = ,X ﬁ[—T’ =
(se', HA')Q, = (H, rﬁ) (u*, rﬁ_,). (XTHH', erH,) (XT ,Xu)

o XTH') o

(m, Xr_)H' = (XTHH', KTHp 'H' T XTHI
i

= ' .
(H, rﬁ) (', rlT'.) Q, = (', )‘r}?) (H, Arﬁ)
HH'T" THn'H'T"
HH'T" n. . s > THH'T“ > THT'B'T“
B _ Mo TH T
g i
. nHT'H' J: '
HT'H' > THT'H
)\1., H' g I'ﬁH'
H T~ .
\ v
THH'
[l
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‘81,5 "Adjoints ‘of algebraic functors.

T
'1.5.1 Proposition, Let /[[! be a triple in K such that K has

coequalizers of reflexive pairs. Let )'{ ———5—4 K ' be a functor
having a left adjoint i with adjunctions 1){, £ fH, HAR — 1K°
Let TP ' be a triple in }{ ' and let H be an H-algebraic functor. The
following statements are valid, |

a., H has a left adjoint,

b. 1If UWH is tripleable, H is tripleable,

Proof, a. Fix a rH-"—algebz'a (X',£'). We must show that
x',e", (-)ﬁ))’{m' : )’{TE—-—)S is representable, Let ) be the
H-triple map corresponding to H via the isomorphisms of l.4.5. Define
)’{-morphisms ZyXs by

» ] " A -~ '“ A ~ ~ " ~
g = x'r'E XeT'H poupp X'EAR pepup X BTe gy

- 'ﬁ a X'ﬁl’] ~
X = X"T'H d - X'H > X'HT

Let 2.;(: X'T'HT + X'HT be the corresponding homomorphic extensions,

-~ : ']P ~ d ~
(5,x) is a reflexive pair in K. To prove it, let X"HT —— X'T'BT

- (% 151 -
be the homomorphic extension of X'H _XnHn | X'T'HT, The commut=

ativity of the diagram

. 1 - .
le - X'H
/

\ A R
Rlei | on %V
a . P l -~ \ ~
X'n'H X'HHn'H  X'HnHH .
X"Hn ) . X'Hn
. X'eT'H , XHA\H
X'n\H

X'T'ff —— 5 X'"HHT'H — 5 X"HTHHE
n\Hn ~ 1
v
a

x'aT -2, X'T'HT 7_ ' > YHT
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proves that dz = lx'ﬁ'r" Similarly,

x'fin ey i

X'T X'fin
L J/ X'T'Hn L
d - 3
X"HT > X'T'AT X 5 X"HT

proves that dx = lovfpe Let X'HT — 1 4 q =1 coeq(Z,X) in ){Tf" We
will show Q is the representing object. Let (X,£) € )’{ T, and let
(x',&") _—fl—;(x,&)ﬁ' be a rH-\—homomv:arph:lsm. We have that

L E'ATXETE = X .f'AT.XeT.E., To prove this, first observe that (X,g)ﬁ

X EH
= (XH, XHT'—}A XTH ——XH) by 1,4.5, and then use the diagram:

X'eT'H . . XM X'ATe X
X'T'H > X'BHT A ———— X "Bl ——— xfir
\f'T'ﬁ f'ﬁHTlﬁ N f'ﬁTHﬁ X f'ﬁT

& XHer'R 4 - XERAR 4 . xuATe Y.

XET'H —— XHRHT'H _____,XHHTHH — > XHH

N I |
adje  xeHT'H XeTHA XeT
A & ~ XAH &a XTE
g'i ' XHT'H — 5 XTHH
, —

{
—3 XT
£' ] =hom.
¢EHH
v » £'0 . /
X'»H > XHH Xe E
~ Py \ X
U . 1
X'Hn XHHn l xn 1
/u £'AT - XeT " £
X'HT > XHHT Y XT 5X

yiy
Therefore, each (X,£) in obj )‘{ induces a function
' \J
— T T
@,e, o) T EB (o, X, sending

' -
(x',8") —E——) (X,E)H to the unique W—homomorphism from Q to (X,&)

which when preceded by q equals f'ﬁT.XeT.E. (To do this, notice that

f 'ﬁT.XST.E is a rﬂ_‘-homomorphism). We will show that ¢ is a natural

w
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. g T
equivalence, To see ¢ is natural, let (X,8) — (Y,0) ¢ )’{ »
]

' -~ I
(X',¢") £, (X, ¢ X "', The diagram on the right follows from

the diagram on the left because q.<f°', -?g-ﬁ. (Y,6)a> = q.<f'.gﬁ, (Y,0)a>

. XeT 3 - a (¥,8)a T
XHAT —— XT X (X ED, &ODH 5 (@, (X,e)K
| . —
gHHT gT[ >4 l l -ogh L o8
Y ST 1y
YHAT ———— YT— > ¥ (X', (1,00 K —————(Q,(Y,0) X
YeT e (Y,0)

bl f'ﬁT.éﬁﬁT.YeT.e = f'ﬁT.XaT.E.g = q.<f'.(X,§)u>.g = qc<f',(x.g)do'og>f

To see that (X,£)a is l-to-1, the diagram:

f'
X' — —> XH
1
X'e XHe
, £'EH "
X' ——— — xHfH Xel > XH
~ N 1
X'HnH XHHNH XnH
.~ gfm Y. XETH £H
X'HTH —— 5 XHH y XTH s XH

recovers f' from <f',(X,&)a>,

Finally, let X'ﬁT——§—> (X,8) be a rl_l_‘--homomorl;»h:i.sm with g =

X'en’ X'H) gh

Xg. Define £' =, x' = °' xuwmr' """  xim_% xH. To
complete the proof of (a) we show that (X',%') __f-'-_) (X,E)H is a
rl'_r‘!f-homomor:ph:l.sm, and that g = £ 'HT,X€T,E, The first statement follows
from the diagram at the top of the next page, and the second statement
follows from the diagram at the bottom of the next page (which says

that g, f'HT.XeT, agree on the generators).
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X'en'T' . XHAT' gHT' '
X'T’ s X"BET'T' —— XHTHT' — > XHT
X'eT’ X'HHn'T" X'HTA X\
\’. / X'HEy! J» gTH y
X'HHT' ™2  X'HTTH , XTH
X'T'e \ X X"HuH
\ X'HA v g T ~hom,

X'HHT' —  , X"ATH

g’ X X 1 2
X'HHT!e X'HTHe
X'eT'fH J X'indm l X'HTeH

X'T'HE —— X'HHT'HH —— X' ATHEH ——— X'"HTH

I .
g'HH \ \\

¥
KB — . tg = Xg gh

X'e ~. . X'"HnH

J X'Hin' ™1 \ 1
X'en' N X'HA . gH

X" - > X'HHT' —— X"HTH > XH

X'y . X'en'st ., . x'afir . . gHET X
X'H — X"HT ———— x HHT'HT ——— X"HTHHT . > XHHT

A
\ . X'n'HT  XeT'HT \ X
X'n'H / X'HHT'Hn z
A " XHHn
X'"T'HT X'HTHHR
/‘,. XeT
X'T'Hn
1 /, X'eT'H X'HAl ghH
X'T'H > X'BHT'E —— X" Tmﬂ —— xHH
X'HTe Xe
A A . tg = x8 J: g Xn v
g'H : X'HT >X —> XT
LA X'ﬁn R g

X'H > X'HT 50X
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'be We use 1.2.9. Let (f,g) : (X,£) —(¥,6) be rﬂ_\-homomorphisms

with
. fH X - q
(X8)H , (Y,0)H > (Q,8 1)
gH

a contractible coequalizer in )2t e . Therefore (f,g) is a U,IPH-contract-
ible pair with coequalizer YH—O‘—aQ. By hypothesis, there exists
unique (Y,e)——-g—»ﬁ in K 'II" with domain (Y,8) such that QU'HH =

v —3 ,Q; further, q = coeq(f,g). Since &TI'U'H = YH—LQ and U"

is tripleable, necessarily qi = (Y,e)ﬁ _q__.)(Q,g'). Suppose also

(Y,0) ——i——aﬁ is a ([[)=algebra with qh = (Y,e)-ﬁ——q—r(Q.iE'). Then

~T[ -~ ~
UH=YH—2 50, and s0 q = §. []

1.5.2 Corollary. If H e AL( K)

T H

K KT

- .
and if H~ has coequalizers of reflexive pairs, then H is tripleable. []

1,5.3 Corollary. Let ﬁ be a category with coequalizers of reflexive
pairs, let rI_P be a triple in H and let ﬂ ——-—1-1-—-9 }{'n‘ be a functor,
Then H has a left adjoint iff HUT has a left adjoint,

Proof, Since UTr has a left adjoint, H has amleft acijoint implies
HUTF has a left adjoint on general principles. Converéely, observe that

1
.R ——9}2 is tripleable, and apply 1l.5.1 to the diagram
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U
1,5.4 Corollary. Let R —— K € obj AD, and let R have
coequalizers of reflexive pairs., Then the canonical reflection of U

in AL (as defined in 1.4.1) has a left adjoint, []

¢
1,5.5 The algebraic dimension of an adjoint pair. Let R ——-"—1———9){
€ obj AD, and let R have coequalizers of reflexive pairs. 1l.5.4

To

yields a sequence §,,%, 4 +.. of canonical reflections, ¢_, = &,.U

-1
= @i.Uﬂl.UTO = ,,. Which suggests the definition: dim <l>_1. m =g &
is an isomorphism, or equivalently Pn—q is tripleable,

L is tripleable iff dim ¢y = 0. The demension of a reflective
subcategory of a tripleable functor is < l. The dimension of the
lattice fiberings to be studied in Chapter 3 is infinite.

Often objects in a category induce pairs of adjoint functors; e.g.
if X is a topological space, the set-valued functor "continuous maps
from X" has a left adjoint, We could define dim X = af the algebraic
dimension of this adjoint pair.

Apart from these suggestive remarks, we will not study algebraic

dimension in this paper.
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§1,6 'Birkhoff subcategories for repular triples,

1l,6,1 Definitions, Let )’( be a category and let B be a full sub-
i
category of )‘( with inclusion functor 6 —_— )’{. B 1is closed

under products if every model for a product in )’{ of a set of B -ob-

jects lies in B. @ is closed under subobjects if every monomorphism
in )’{ with range in B 1ies in 8 . Let @ be any subcategory of

—

)’{ « Define (f =4f the intersection of all full subcategories of H
containing ¢ and closed under products and subobjects, Clearly E
is the smallest full subcategory containing C that is closed under
products and subobjects,

We could easily formulate the above definitioms without using full
subcategories but the gain in generality would be negligible because
of the observation that if H has finite products every ){ -morphism
factors as a mono followed by a projection: f = (l,f).prz. Note, too,
that if é cartesian product of K -monos is mono then @ = the full
subcategorSV generated by the class of monomorphisms into products of
elements of obj C .

Evidently " " is a closure operator on the (large) lattice

of subcategories of )’(, and Cp = (¢ iff C is closed under

products and gubob jects,

1.6.2 Proposition, Let )’{ be a regular category, @ >—-Z"-—>)'{ a

full subcategory. The following statements are equivalent,

~~

a. B8 = B

b, B is a reflective subcategory of )’{ in such a way that for
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X
every )’{-object X the reflection x——l—> X

8 of X in @ is a regular
epimorphism; also obj 8 is a union of )’{-isomorphism classes,

Proof, a implies b, Since an isomorphism may be viewed either

as a monomorphism or as a unary product, obj (B is a union of }'{ -iso=-
morphism classes, Let X € obj )’{ and let Q be a representative set

of regular quotients of X, If X——fHB € )’{ with B ¢ I(B |, there

exists a regular coimage factorization £ =X—-p—->> R >——j——> B with

Re IR. Aéj is mono and as B eobj@ , Re:‘;}r@. Hence i satis-
fies the solution set condition, But clearly (B has lj._m's and i
preserves them, It follows from the adjoint functor theorem that i
has a left adjoint, that is @ is a reflective subcategory. Now let

X
X ¢ obj )’{, and let x—-—"—-—>x8 be a reflection of X in B. Form

a regular coimage factorization of Xn,

Ln

> X

=

P _-" % tl
s X

ﬁ@

>

- &——

<« k
\,
d

Xn = p.ke Since I ¢ obj (8 s X is induced with Xn.x = p. As p is
epi so is x. As Xn.x.k = p.,k = Xn it follows by the uniqueness of
reflection~induced maps that x.k = 1, So x is epi and split mono,
hence iso, and Xn is a regular epimorphism because p is.

b_implies a. Let X be a product in )’{ of a set of @ ~-objects,
Each projection factors through Xn inducing a map X(B —i—>x such
that Xn.a = 1'}4{. Hence Xn is split mono; since we assume Xn is epi,

Xn is an isomorphism, Now suppose X is a )’{ -object admitting a

monomorphism i to some object in @ « Then i factors through Xn, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52
hence Xn is mono. But then Xn is mono and regular epi and hence iso.

(]

For 1,6,3 - 1,6.6 fix a regular triple /[ = (T,n,u) in a (regular)

category )'{ .

1,6.3 Proposition, Let T —L»'I‘ be a pointwise regular epimorphic
natural transformation, and suppose further that for every object X
in obj }’{ there exists a M -morphism Xj such that XAA.Xji = Xu.Xhs
Then {ﬁ_\ =if ('},ﬁ,ﬁ)f (where # =3f ni) 1is a triple in )‘L/ and
TP—2 P e oemr(K).

Proof. The fact that X\ is epi yields the unitary axioms. It is
also so that XA)\ and X)\\)A are epi, e.,g. XaAr = XATT.X'}AT.XE"}A so use
0.4,8 and the fact that T preserves regular epi's. XA\ epi implies

fi is natural, and XAAX epi implies the associativity axiom. The reader

can provide the requisite diagrams, []

1,6.4 The regular quotient triple induced by a —-closed subcategory.
T S T
Let (B C )‘{ be a subcategory such that @ = @ . By 1.2.6 )’{

is a regular category, so that by 1.6.2 (B is a full reflective sub-
category with regular epimorphic reflections. Imn particular, for each
X € obj )’{ let (XT,Xu) —L-) (X},EX) be a regular epimorphic re-
flection of (XT,Xu) in (B « By the reflection property, each

)’{ ~-morphism X —f——% Y induces unique £T -guch .that’ XAgfi'zz.i-‘;r-ﬂ':,{ﬂ;k which
establishes a functor M ——i-—-’ }{ and a pointwise regular epimorphic

. P
natural transformation T —T,
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For every X €;ob] )/{, the fact that EX is a rﬂ_‘-homomorphism

and the reflection property induce Xii:

l ~ XTA ~
XTT X1 > XTT ; > XTT
e - Ex Xii
XT > XT

~ . A ~
By 1.6.3, [’ = (T,n\,it) is a triple in K ana TP —— D s
an OPTR( )*{ )-morphism, (']T\ is called the regular quotient triple in-
duced by @ .

(B T

1.6.5 Definitions. A full subcategory of )’{ is closed under
T T

U -contractible coequalizers =4¢ €very )‘{ -morphism expressible as

the coequalizer of a pair of @ -morphisms, tTof which is contractible

~

in K , lies in ®. For each subcategory 6 of )’( 'II" define C) =df
the intersection of all subcategories of )’{ T containing e and closed
under products, subalgebras (= ¢ subobjects in )’{T) and Uw-contractible
coequalizers. A ~ -closed subcategory of HT is called a Birkhoff
subcategory of ){T.

In an equationally defineable ciass, Birkhoff subcategories arise
by imposing new equations and converseiy; this was proved by G. D,
Birkhoff [4], hence the terminology. The next proposition isﬁ ti'xVe

triple-theoretic version of this theorem,

: T
- 14646 Proposition, 'Let-ﬁ be a subcategory of )‘( .« Set

~

A ~/
M —=—5 (T to be the regular quotient triple induced by R, and
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and define B to be the image (literaliy) of the induced algebraic
functor M T2 <™ 1n aL( ). Define C to be the full
Et\xbcategory generated by all coequalizers of UT-contractiblve pairs of
H ~morphisms. Then the following conclusions are valid.

a. @ is a subcategory and ﬁ = 8 = G.

be Ao= is an isomorphism onto (B s hence the restriction of ‘UT
to any Birkhoff subcategory is tripleable. .

co If (B,8) —3,(Q,0) ¢ ){ T with (B,8) ¢ [ﬁ| and B —3 ¢
split epi in )‘{, then (Q,a) ¢ [.ﬁl.

Proof, Let (X,E), (Y,0) € obj }»{F,vg and let X ——f——}Y £ )’{.

Consider:
XA ~ £
XT > XT 5 X
£T ' £T [f
Ya ~ 8
YT — — YT > Y

If f is a '”'-homomorphism then the outer rectangle commutes so that

f is a r-IT‘-homomorphi.sm as XA is epi. Therefore, Ao- is a full

functor. That XA is epi also clearly implies that Ae- is l-to-1 on

objects, Ao- is faithful as are all algebraic functors, This proves
B i T

that is a full subcategory of )’{ and that Ao~ is an isomorphism

—

onto @. Next we establish that (B = B .« Let [(Xi'éi) : 1€ 1] be

a set of ’TP-algebras, and set (X,E) =4f Tr(Xi,Ei), (X,8) =4¢

T‘T (Xis xi)"gi)‘ Consider the diagram:
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pr.T
i
> XiT
X A
i
) pr.T v
- XT : — X,T
[ defn, £ Ei
i
X ,Xi

The outer square commutes for all i by the definition of (X,£). Hence
gopr; = XA.E.pry for all i and £= X.E, that is (X,£) ¢ obj . this
~

shows that @ is closed under products, Let (B,é) be a r[T‘-algebra, :

and let (A,e)»——}-—> (B,BA.E) be a subalgebra.

: 6
2> AT > A
iT - i
iT
BA 'é
BT —» BT 5> B

If a.A) = BAA then 0.6 = B.6 since i is mono. Therefore 6 & reg(A))
which induces unique ;’0 such that A)\.EO = g, As A) is epi, (A,;;o) A
(B,€). This proves (B is closed under subalgebras. More general
than showing that B is closed under Uqr-contractible coequalizers, we
show that (B is closed under U'W-split epimorphisms, which will also
take care of (c). Let (B, E) be a rl_P-algebra and let (B, BA, E)———-p—>
(Q,9) be a {']—P-homomorphism such that there exists Q —>—>B ¢ )’{

with s.p = IQ' In the diagram at the top of the next page, all commutes

(including the outer figure) except possibly (*¥), But as B) is epi,
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(*) then commutes., Since pT and OA are epi, so is_pi‘; similarly, pﬁ‘
is epi. By 1.2,3, (0, sT.Z.p) is a ([['-algebra, That (Q,8) =
(Q, Qr.sT,E.p) is also clear from the above diagram., Hence (Q,0) ¢

obj B,and@ =@.

Now suppose (X,£) ¢ obj ﬁ « The reflection property induces E

~~

with XA.E = £, It is not hard to show that (X,E) is a ’TP-algebra;
use the facts that XAA,A = X'L‘A.X).TI, aml\ is epi, We have proved so far
that ﬁ C8 = CB, so in fact ﬁ - @. To see that B C @
observe that if (X,E) is a {T-P-algebra then £ is the coeq'ualizer of
the UTP-contractible pair of Hw-morphisms (Xﬁ,ET) and hence that

(XT, XTA.Xii) —5——>(x, XA.E) is the coequalizer of the U ~contractible

pair of 8 -morphisms (XTj, £T), That & C UQ is obvious. []

1.6,7 LF-Birkhoff subcategories. There are certain categories K in

which the regular monomorphisms are the natural "subobjects", For
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instance ifw)”{ = topological spaces, the regular monomorphisms are
the relative subspaces (we prove a generalization in 3.1+9) whereas
the identity function of a set X from discrete X to indiscrete X is
a just plain monomorphism that is surely no subspace. In 3.4.3 we will
show that the category of topologized groups, whose objects are sets
with both group and topological structures but no relations between
these structures and whose morphisms are continuous group homomorphisms,
is tripleable over spaces via a regular triple., The full subcategory
of topological groups, where now the group operations are continuous,
is closed under products, ﬁHLcontractible coequalizers and the usual
topological subgroups whose inclusion is a relative subspace and not
just l-to~1 continuous; it is not, however, a Birkhoff subcategory in
the sense of 1,6.5. The question arises whether we can obtain a theory
of Birkhoff subcategories under the tramsition "subalgebra with mono
underlying" —— "subalgebra with regular mono underlying" by modifying
the notion of "regular triple'"., The answer is in the affirmative and the
modification required is slight, as we shall now see. We will use this
technique to prove that [topological groups] is tripleable over [topolog-
ical spaces] in 3.%.4; the level of generality there will allow an
arbitrary lattice fibering in place of topological spaces, hence the

"LF" in the definition;.wé now establish,

1,6,7A Definitions. Paralleling 0,5.1, a category ){ is LF-regular

if it satisfies the following four axioms,

LFR1, P{ has regular image factorizations.

LFR2, f{ has 1im's
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LFR3, }’< is legitimate,

LFR4, For each K-object A, the class of epimorphisms with
domain A has a representative set,

A triple (I} in K is LF-regular if }{ is LF-regular and T
preserves epimorphisms, For the rest of this section, fix an LF-regular
triple (] in K. An LF-Birkhoff subcategory of M T is a full sub-
category of K T which is closed under products, relative subalgebrés
(=4¢ subalgebras whose ﬁnderlying K -morphism is a regular mono) and
UT-contractible coequalizers.

Define the LF-modification of a statement by substituting "LF-
regular txiple" for "regular triple", "epi" for "regular epi" and
'regular mono” for "mono". For example, the definition of LF-regular
category is the LF-modification of 0.5:..1.

The following proposition generaiizes [18, Theorem C] where it

is proved for topological spaces,

1,6,7B Proposition. Let @ be a full subcategory of )'{. Then
is closed under products and regular monomorphisms iff 8 is a reflec-
tive subcategory with epimorphic reflections and obj ® is a union of

}’{ ~isomorphism classes,

Proof., Use the LF-modification of the proof of 1.6.2. []

Note: Clearly (8 is closed under llm's if it is closed under
products and regular monomorphisms, but the converse is false. For

instance the subcategory {P} C 5 consisting of the l-point set, P,

is closed under lim's but ¢ + P is a regular mono,

z
¥
s
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1,6,7C Proposition, The LF-modification of 1,6,3 is true,

“Proof, Use 0,4.,4 instead of 0.4.8. []
1,6,7D Proposition, The LF-modification of 1,6.4 is valid. {1

1,6,7E Proposition. The LF-modification of 1.6.6 is valid, Hence
the theory of LF-Birkhoff subcategories for LF-regular triples is as
good as the theory of Birkhoff subcategories for regular triples,
Proof. The only part of fhe proof that is not immediate via
LF-modification is, in the language of the proof of 1,6.6, the argument
that 03 is closed under relative subalgebras., Consulting the corres~-
ponding diagram, we have that AX is epi and i is regular mono. Hence
iT.E ¢ reg(i) inducing unique E, with Eo.i = iT,E. AA.EO =0 as i is

mono, []
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"§1,7 Composite triples.

For this section let '[]" = (T,n,w), ||-| = (H,e,m) be triples in

a category }’{ .

1,7.1 Definitions, An ||—|-distributive law on /[['is an H~triple map

s _ @ ] satisfying axioms

(A A
HT——>TH HHT H—)H'I’I*l —-—H—>THH
\ / mT D2 Tm
A
HT > TH

A lifting of ||—| over v is a triple J-| = (H,2,m) in M T such that
T T ™
HUT = U H and such that for every (X,z) € H » (X,8)8 = Xe and

T
(X,E)fU = Xm, 4An ||—|-intrastructure on ‘H‘ is an H=-intrastructure

: T
(TP____(E_’_)_,W also satisfying

TeT THT TmT
T ——————THT THTHT ————— THHT ——————— THT
u N4 r THT INS T
Te
T ————"———3 TH ™ —— > THH ——+——— TH

M
A rlT‘- ||-| composite triple is a natural transformation THTH——TH
such that ’ﬂ‘ ||—| =4f (TH,ne,M) is a triple in )’{, such that

Te nH

m - MM - ————— 11+

are OPTR( )’{ )-morphisms and such that Cl and C2 commute:
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™

THTHH TTHTH = - TTH

5
7

MH
THTm Cl
M M

THH
l Tm yHTH c2 pH
TH THTH > TH

THTH >

The respective classes of all such =, [)], (l1-l1, [r1, [Ml. Rgl of

the following proposition is found in {2].

1.7,2 Proposition, Define correspondences

Q -— Q Q
[r] ___0__;. [ ”-—I] 1‘;[1'] 2 s [A]
as in 1,4,5, Also define
R, R,
(r] — , M, ] » [l
r _TH Tm M nHTe M
THT ~TH — THTH — THH — TH THTH —TH + HT —— THTH —> TH

Then QO’_QI’ QZ’ RZ, R3 are all well-defined; further, 15 R3 = Q, and

the system

Q
N SN W

[M] >[T]

consists of cyclically~inverse bijectionms,
Proof., We build on the proof of 1.4.5.

QO well-defined,
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XeT XH) XAH EHH

XT ———— > XHT XHHT —— XHTH —— XTHH ——> XiH
D1
XA
XTe
4 .
3 XTH XmT D2 XTm Xm
EH
v . J v v EH M
X
X _—-—-—xe—————-) XH XHT > XTH > XH

XTe -
- Qy well-defined, (XT,Xu) ——— (XT,Xu)H is a ([_P-homomorphism, that

is XTeT.XI = Xu.XTe which is IN4, Fix X in obj )’{ and define £ by
(XTHH,E) =4¢ (XTH,XT)H = (xT,xp)fAH. As (XTHT,XTHu) —x£—>(xm,xr) is
a ‘Tp-homomorphism, so is (XTHTH,XTHT) ——}E}i——}(XTHH,E), yielding
XTHT,§ = XTHT,XTH, On the other hand, (XTHH,E) __)_(311_} (XTH,XT) is

a rlT‘--hmnoumrph:i.sm by hypothesis so that XTmT.XI' = £.XTm. Pasting

together along £ proves INS.

R, well-defined.

THne _ neTH
> THTH TH > TRTH
/' \
/THTe nTH \ TeTH
TH: ‘TTH TH
ING
THe 4 TeH \Jr
™H— mH TH ———  THH

\1 l Tm \1' l'rm

TH TH
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TH Te TH
THTHTH — 08, THRTH o THTH T ﬁf{ ¢ H
l THTH INS TH
i
THTH _ T THEH T, THE n ne je
l THTm lTHm Tm
3
Tm

THTH rH - THH >TH 1

TeTe nknH
T — THTH ¢ HH

\TeT / THTe \ THnH\ A
u \)mT TH IN THH
ING !
T m
a 7 THe- 1 1
T i > TH S sTHH
1 Tm J
v ’ /
TH « i R

‘- THH TmH
THTHH ————> THHH ——— > THH

[ THm J Tm
T'H

THTH ————— THE ———— TH

[mrm

R3 well-defined,
nHTe

HT > THTH —— TH
A AT 4 1 F

\Te /nHTH nH e

HTH OPTR
Hn
\ nHnH nH
HnH

H He N HH n 5

TTH TTm
TTHTH ———— TTHH ——— > TTH

[ yHTH J{ uHH }/NH
TH Tm

THTH - THH >
HTe
HT n L THTH — O,
T\ /’ A N
nHT THTe Te €
(PTR
Te .
TeTe
eT
T L - T
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HnHTe HM nHTeH MH
HHT />’HTHTH S HTH —— %/',I‘HTHH-————->THH
I
HnH }THTe nHTHTH - nHTH T/HTeH
HTHTH THTH THTm
nHpHT Cl
\ NHTHT 1
v THM
THTHT THTHTH ————————THTH
mnT H e
OPTR MT M
/THT MTH
nHT THTe
v nHTe ' M '
HT — THTH > TH
MT THT. ™
) THTHT 5 THT — < o TTHTH —_,TTH
THTe TnHTH
v 7
THTHTe THTH WHTH
1
Y W
MTH
HTHTH ————— THTHTH > THTH
M
THM
) u |
> THTH _y TH

R,Ry = Q,e let T ¢ [T]. That nhTe.,TH,Tm = nHT.T follows from:

T ————

nHT
HT » THT

nn'rel THTe/ 1 r
mm < .

TH L /'I‘He ll
THH > TH

Tm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

RyQqQ;R, = ide Let M e [M]. If T =, MR3QqQ then (XTH,XT) =

(XTH,XTAMchH) = (XTH, XTnHTe.XTM.XyH). Consulting

(XT,Xu) H"M

the diagram:

TNHTeH
THTH y TTHTHH

TTHTeH
TnHTH
TTHTm
\ TTHTH ————— TTH THH

pHTH c2 :uH Tm
y \
THTH > TH

we have MR3QOQ1R2 = TnHTe.TMH.uHH.Tm = M, []

1.7.3 Definition.:: We define a new functor U('H"[H) by fé.rr'nj.ng‘.:the'.

(usual model of the) pullback in the category of categories

o, (TJH) "
K™K
NN
N €141

: U o

| ~

L4 -Ti\\ s .

iy T {f

Hence obj }{( » ) = [(X,E,a) ¢ (X,E) ¢ | H 7| and (X,0) ¢ l){ [1,
a H m' ‘H)-morphism (X,€,a) S (x',£',a") 1is a K -morphism

X ——f——-> X' which is both a rﬂ—‘- and an ||—|-homomorphism and Um’ 1)

is the obvious underlying )’{ -object functor,

The proof of the following proposition may be safely left to the

reader,
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1,74 Proposition, The following statements are valid.

. U(Tr’ 1H) creates lim's,
b. Um’ ) creates coequalizers of Um' lH)—cv.uu.:ract:iblei pairs,
Ce Um’ ) is tripleable iff U(Tr’ ) has a left adjoint,
d. If ', ||-| are regular then y{m ) creates regular coimage
factorizations and J{ , B is reguiar. [)

1,7.5 Definition, It is perfectly clear what "subalgebra" and "co-

(T, H)

(r, M)
equalizer of U -contractible pair" mean in }'{ (indeed we

have already used the latter); define the notion of ™ _closed subcat=

egory accordingly. The term "Birkhoff subcategory" will be reserved
il

for the regular triple case, Note that if (B - )’l/ | is

= T

"™ -closed and that if U = daf the restriction of U( IR to B , then

it is obvious that U creates coequalizers of U-contractible pairs, Hence

U is tripleable iff U has a left adjoint.

1,7,6 Proposition, Let M ¢ [M] be a /[['=||~| composite triple, and
let 3, |_|_—|,r correspond to M under the bijections of 1.7.2. Let
be the full subcategory of )‘{ (T, 1) generated by those objects (X,f,a)

satisfying the composite law:

XHT of 5 XT

XA .

CL 3

v
XTH

EH
v o v
XH s X
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U : H
and let \Q ————>}’{ be the restriction of U('n.’l ) to Jq. Define
T H . T
B _‘_"_‘_‘_)V K =df (),("ﬂ')lﬂ u! ;)’{TP UA,K. Define

@ LI K =4¢ the underlying K ~object functor from (TH,ne,M)-

algebras, Then U, V, W are isomorphic objects in AD( )*{), with W in

AL( )/{). Moreover, ﬂ is a ~ -closed subcategory of )’{(ﬂ' !H).
Proof. Noting that (x,6)H = (¥H,X).gH), it is trivial to check

that ((X,£),0) — (X,£,a) establishes an isomorphism of U with V. To

see that LQ is a 7 -closed subcategory, let (X,E,a) ——f———>(Y,e,B)

T, .
be a morphism in )’{ (T, #) and consider the diagram:

fH YHT.
XBT// l YA\BT\)
Xxl Tt //ZL’/“’F//YTEL/ YT
XTH—”""’\“ XT JGH

___——YH

£l l [ 8 6

|

All commutes except possibly the left and right faces, If f is mono,
right implies left, If f is split epi, so is fHT and left implies
right, If f is a typical pl;ojection from a product, right's imply
left. We turn now to the proof that U is isomorphic with W, Define

H————T——a@ by (X,£,a)¥ =if (X,gH.a). The diagrams

X Xne , XTH XTH fTH . X"TH

N /xwe/’

XT l X _,X'H
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XM
by 1 . 7 . 2
'
AR XpM
XTHTH A 5 XTTHH ia , XTH
gnm/ XyHH
L XTHH XTHH

CL \ XHH J

oTH ,
oH
u - .
Y
prove that U——W is an AD( )*{)-morphism. The fact that Te, nH

o
XTH  XH

- X)‘H / \ ,
XHTH — EHH EH Yo XH
S X

are OPTR-morphisms induces algebraic functors

h,‘][‘ Te g . G . nHo= }{IH

¥ (70, 1K) o
and hence a functor C’———!——)){ ’ defined by (X,w)¥ =df

~ - T
(X, Te.w, nHew), ¥ is defined on morphisms by imposing g B) = g,

The first thing to observe is that (XTH,XM)¥ = (XTH,XT,XTm) as follows

from the diagram:

XT
XTHT X1HTe > XTHTH « Hntl XTHH

\,, Dl —

XTHeT XTHA XTH IN1
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The same diagram proves that XTHA XTH.XTm = X'_]:mT.Xr which show.s. that
| (XTH,XM)¥ ¢ obj R. Civen arbitrary (X,») ¢ obj C ,
(XTH,XM):P 2 (X,m)@ is a },{(Tf, IH)-mor:pl'x:lsm with XTH ———X
split epi in )’{, so since ﬁ is a é =closed subcategory, (X,m)‘;l’ €
obj R . Hence redefine C' -L ﬂ , and Y is well-defined. Noting
that (XTH,XM)¥Y = (XTH,XT,XTm)¥ = (XTH,XTH,XTm) = (XTH,XM), it follows
from 1,4,2 that ¥¢ = 1@' Hence Y is full and onto on objects,
Clearly VY is faithful. To complete the proof we show that ¥ is l-to-1
on objects. Let (X,£,0)¥ = (Y,£,R)¥. Clearly X =Y and (X,gH.a)-—l—>
(X, 6H.,B) is a homomorphism, As ¥ is full, (X,£) —l—>_(x,e) and

1l
(X,0) ——(X,B8) are homomorphisms so that £ = 6, a = B, []

1,7,7 Proposition. Let ([[', ||| be regular triples, let M e [M]}
and let B be a T -closed subcategory of H @ IH). Then ] ||=|-

H
is regular and 6 ﬂ ),{'IPI is tripleable, []
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§1.8 Subalgebras for regular triples,

f
1,8.1 Definitions, Let K be a category., If X——Y 1is a )’{ -mor=-
phism and if f = X_f._,, I, Y is a regular coimage factorization

of f, we introduce the notations coim f = dn X —2 »I and im f = d
i f
1 ,.__i_,Y. If Ay 5> X >Y we also denote im i.f by "Af,— Y".

If X —.f_> Y &j__*« B, we denote the pullback of j along f by "Bf !, X",

n

That Bf ! —, X is a monomorphism is easily verified, Depending on )’{ ’
~such construétions may not exist; if )’( = S the ordinary images and
inverse images work, If A ,_i___, X <_§__<B in )’{ » ACB =4 1 factors
‘(necessarily uniquely and by a mono) through B, Given any family of
monomorphisms into an object, the collective pullback is called the
intersection of the family, and we use the symbol "M ". Again, it is
easily verifies that the intersection is a subobject. When )’{ = 5
this conétruction is the ordinary intersection of subsets.,

Let rﬂ_‘ be a triple in K, let (X,£) be a fTP-algebra and let
A >-i—>x € )’{. The subalgebra of (X,f) generated by &, =,

<A> »— (X,£), is defined to be the intersection :

(1,0 < (X&) ¢ ACD] —— (X,8)

When <A> exists it is in fact the smallest subalgebra of (X,f) containing
A,
For the rest of this section, let ([[', ||—| be regular triples

in a category )’{ .

1,8.2 Proposition, Let (X,f) be a r[—I”\-alge'nra, and let A »—1—;}{.
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The following statements are valid.
ae <A> = im iT.g.
£ ™
be If (X,E) ——(¥,8) € { , <ASE = <Af>,
" 'Proof, a, The diagram
An
A
!
Xn

AT
X > XT
X

swim iT.E

proves that A C im iT.£, and hence <A> C im iT.§. Conversely, consider

T
AT . - <A>T kT s XT

p 3
J, o g

DR v

j 3 k X
[ . ]

jTe Ey € reg(p) because k is mono., Therefore, im iT.f C <A>,

bs
AT iT 5 XT |
w \fT
T
S (AD)T 3 s YT
13
i s
A > s X 0
0 Ny
\J j ]
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<Af> = im jT.8 = im pT.iT.6 = im iT.E.f = <A>f. []

Note: Observe, in the above, that iT. is the homomorphic
extension of i.
(T, H) .
1,8.3 Definition. (X,E,a) € obj K is a ([ -||+| quasicomposite
i
algebra if for every K -monomorphism A —— X, the K a, lH)—subalgebra

generated by A is <<A>,]'1,>|“. (What we mean by "subalgebra generated by"

here is clear.) Equivalently, if A is a (|[)-subalgebra, so is <A>y.

1,8.4 Proposition, Let ([] ||-| be a (T['- ||~| composite triple and
let (X,£,a) € obj K']T!H. Then (X,f,e) is a ([~ |[~| quasicomposite

algebra,

Proof. By 1.7.6, (X,f,a) qua algebra over the triple (TH,ne,M)
i

is (X,¢H.a). Let A»>——1X. By l.8.2, <A>11[H = im iTH.{H.a. Similarly,
we construct <A>,Ir from the coimage factorization iT.& = AT _‘E—»<A>'lr

k| pH jH 0
y——>X, Hence we have ATH "_—_»<A>'H’H — XH yX, so that

<<A>tnl>m = im jHoa = im pHojH.a = im iTH.EHca = <‘A>ml' []

PN T, H
1.8,5 Proposition. Let 6 be a 7 -closed subcategory of )‘(( » 1)

U('rr, H)

consisting of rﬂ-‘- ”-—l i quasicomposite algebras, Then U "éf

restricted to B is tx"ipleable.

‘Proof, By l.7.4, 1l.7,5 we need only show U has a left adjoint.
Since @ is closed under ljm's, (B has and U preserves lim's, Since
)’{ @, ¥) is legitimate, the adjoint functor theorem applies. We need

only show U satisfies the solution set condition., Let K € obj )’( '.:
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Let ,8 1 be a représentative set of regular epimorphisms with domain K,
Let -’ ,82 be a representative set of split epimorphisms with domain of
form LT for some L in )zgl. Let 933 be a representative set of split

epimorphisms with domain of form LH for some L in 32. Now suppose

(T H}
(X,E,a) € obj K and K —f—->X € )’{. There exists L € .,31 with
f=K __p__»E y— >X, There exists a model for <L>, such that the

T
canonical split epimorphism LT —e——» <L>’Il‘ is in 2%2; (we can always

transport a structure map through a K-isomorphism). Similarly there

exists a split epimorphism <L>‘]PH —? <<L> 'Il‘>fﬂ £ )33. Hence we have

<L>’II‘ —_—— <<L>‘]‘£‘>fH

P 7L/
/ £

K > X

proved that f factors through a set of objects [<<L>'II'>IH]' The crucial

point is our. hypothesis which says that <L o isin [B]. [

1,8.5 will be used to construct compact algebras in 2,3.4.
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" 'CHAPTER 2,  TRIPLES IN SETS

§2,1 Some properties of g“.

2,1.1 Proposition. In the category of sets, S , the following notions

are equivalent: contractible coequalizer, split epimorphism, coequalizer,
reguiar epimorphism, onto function.

Proof, Fix X —i—) Y ¢ s « First suppose f is an epimorphism.
If there exists y ¢ Y - im £ it is clear how to define (a,b) : Y + {0,1}
with f.a = f,b but a # b; hence f is onto, If f is onto, then for
every vy ¢ Y there exists yd ¢ X with <yd,f> = y, so that f is split

epi. Equivalently, f is a contractible coequalizer by 0.7.5. []

2,1.2 Proposition. Every triple in sets is regular,

Proof, That S is a regular category is well-known; ordinary
image factorizations provide the regular coimage factorizatioms by.
2,1,1; they are also, in fact, regular image factorizations. Now let
’TP = (T,n,u) be a triple in S . Clearly T preserves all epimorphisms
and all monomorphisms with non~empty domain since these are split, To
complete the proof we must show (¢ >——i——+ X)T is mono., If ¢T = ¢ this
is clear, Otherwise, there exists a function X ——f—-> ¢ T, Since
(9T,-) 55’“ = (¢,(-)U1T) S =p (from now on we will use "P" to denote
the l-point set), ¢T is an initial object in g'II'. Therefore,

it £T ¢
¢T s XT > OTT s > 9T = 1¢T and iT is mono, []
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Ty

2.1.3  Proposition, Define functors 55) —_— S (i =1,2) by
XL onr = Lo amd XL, e s e WEX=0 =),
¢ +P (if X=¢#Y) or P>P (if X # ¢ # V). Let ([[) = (T,n,u) be 2
triple in S. The following statements are equivalent.

a, T is faithful,

b, T is not naturally equivalent to either T, or TZ.

T
c. There exists (X,£) € obj S with cxd X > 1,

d, n is pointwise mono,

Proof, a implies b. Clear, as T;, T, are not faithful,

b implies c. As lg = (P,-)S and n e (1¢g,T)n.t., it follows

from the Yoneda leﬁma that PT # ¢. For each set X, observe X # ¢ implies
XT # ¢, Since we assume T is not naturally equivalent to T; or Tzﬂt‘here
exists a set X with crd XT > 1, But then (XT,Xy) is a (][)-algebra.

‘c implies d. Let Y be a set, By taking sufficiently large powers,
the hypothesis guarantees that there is a rﬂ"-alg_ebra (X,z) and a
monomorphism Y »——i-—->x. As Xn.§ = lx, Xn is mono, so i.,Xn = Yn.iT is
mono and then Yy is mono,

d implies a, If (f,g) : X+ Y, ané if £fT = gT then f.Yn = g.¥

by naturality and then f = g as Yn is mono, []

2.1,4 Definition. Let [} be a triple in S. say that T is con-
sistent if r[_P satisfies any of the equivalent conditions of 2,1.3.
(This terminology goes back to Lawvere, [20].,) In view of (c¢) in 2.1.3,

the inconsistent case is not interesting.

Whenever X,I' are sets we will always choose as a model for the
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T
cartesian power X the set of all functions from I to X together
with the various y-evaluation maps. Of course we must invoke special

properties of the category of sets to do this,

For the balance of this section fix a triple rTP = (Tn,u) in g,.

2,1,5 Proposition, The following statements are valid.

a. Let (X,g) be a r-I_I-‘—algebra and let T _p____>1£ be a function,
Then XA _P°7 [ xT 45 a rTP-homomorphism.

b. Let (X,8) —P ,(Y,8) be a rrp-homomorphism and let I' be
a set, Then XF—=F [yl isa rw-homomorphism.

Proof.

2,1.6 Proposition. Let (A, &) ,.i_,; (X, & be a subalgebra in S,‘II"

and let ,__:_“_,1" be a 1-to-1 function {= mono in S), F =

[r—f ,x:AfCAl. ThenF <x%

daf

T

K v
Proof, The inclusion map F ,__ X arises as the pullback:

F - = = = - « - = ——>'.AA-?\

]

]

Pk

! -oj

, °

1

|

’ , \
lo— A

xF y X []
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2.,1.7 Proposition. Let (X,£) be a rﬂ\--algebra and let T,A be sets,

The following statements are valid.

a. X ——— &Y s PP =op, is 2 rTT\--mormmc1:ph:f.sm.

b, Let F C I‘A, let G < ¥} and define E =qf fp:pe Xr and
Fp C Gl. Then H g X,

Prxoof, . The commutativity of each diagram:

A
xF z &y ™)

14

PT j

X

-~

shows that ¢ is a rﬂ‘—homomorphism. Let A —Y _.T be the constant
function induced by v for each vy ¢ I's If p,q are in xF with -op = =oq,
then for all y € T'we have Yp = ‘}.p = Yoq = Yq so that P = q¢ (The case
I' = § requires separate proof, but is trivial,)

be M=y irh £ . xh s FE Coel, N =g (TP P xh 2 p e 1T,
Then M g (XA) rh) by 2.1,6, N < (XA) rh) by (a). The function
MON —— X, =op — p is the restriction of ™! to M NN, Its

image is H, so H< X . []

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

§2,2 Operations,

2,2,1 Definition. Let n be a set, "Raising to the nth power" is a

s » 8

£ n
X ——Y — x¢_f7 ,yn

functor

More generally, if vﬁ ——U-—> S is any set-valued functor, define

LQ _____U_ﬂ_____> g =df Uln.

For this sectiom, fix a triple mm = (T,n,u) in S. For sim=-

. T T T
plicity write U =4, U, F = F 2€%n € o

2,2,2 Proposition., Let mn be a set, The following four classes are
sets and are isomorphic by the indicated correspondences (in terms of

the first set,)

a, (1%,T)n.t, 1™ _8& ;7

b.  (UP,U)n.t. w8 g % Ly
co (1PF,F)n.t., wr & o I Ly
d, aT <1, n" P& om>

Proof, Use the diagrams

X
;
/e
/
\l

F 1"
S5 e

and the lemma of 0.3 to check (b) = (a) = (¢)., (a) = (d) is just the

Yoneda Lemma. []
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'2.2.,3 Definition. Any of the four sorts of thing in 2.2.2 deserve to
be called an n-ary operation of ([[', For definiteness, define a7 (n)
for each set n by [['(n) =if (1*,T)n,t.. If (X,£) is a [[['-algebra
and if g € q—P(n) define é;g =4f the function X® ——LXT —-E—._;X,
that is &8 is the (X, g)th component of the natural transformation from
U™ to U corresponding to g. &8 is called an n-ary operation of (X,&)
and the set of all such is denoted by ,"'on(x, .
2,2,4 Proposition. Let (X,§), (Y,6) be ([['-algebras, and let X —f—aY
be a function, The following statements are equivalent,

a, f is a q—P-homomorphism.

b. For every set n and for every g ¢ r[_P(n) the diagram

n
Xt £ - Y8
&8 ' (*) Jeg
g
X £ > Y

commutes,
Ce (*)g commutes for every g ¢ ([['(X).
Proof. a implies b,

Xg > XT -

X
£ £T jf
Y 9
8 Y

Ve —5 YT

0

A 4

b_implies c. obvious
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c_implies a. Consider the diagram of "a implies b" with n = X,
Let x € XT. By the Yoneda Lemma there exists g € (TP (X) with <lyx,Xg>

= X. We have <x,§.f> = <1X,£g.f> = <1X,fx.eg> = <1X,Xg.fT.6> = <x,fT:6>, []

2,2,5 Proposition. For each set n defime nTj =, nT = [im nn], and
define ‘Tpo(n) =af the subset of r[T‘ (n) corresponding to nTg; (if

i € n, the (X,&;)tt‘l component of the corresponding g is the jth project-
ion)., Let H be a cardinal number. The fcllowing statements are

equivalent,

a, For every [[[V-algebra (X,t), set n and g ¢ ([[} (n) there
i

exists a subset m = n and there exists h e [ (m) with crd m <
- h
AN anaxm 88 ,x-xp_d°= gm ET g,

b, If n is a set and if x ¢ nT then there exists a subset
m>-—:-l-——>n with crd m < H and x € 1m(m'r__j'_1."_¢n'r).

c. For every fTN-a1gebra (X,8), subset A ~—X and x € <A> - A,
there exists a subset F C A with cxd F < ¥ and x ¢ <F>,

Proof., a implies b. Let n be a set, x € nT;. There exists
unique g € Wo(ﬁ) with <l ,ng> = x, By hypothesis, there exists =
m>_.£_>n and h € rTP(m) with crd m < (r{“and nTg.nyu = ic=,nTh.ny.

We have the diagram at the top of the next page which shows x =

<l,,mh.iT> as desired,

b implies c. We use 1,8,2, Let (X,£) be a 'rﬂ_‘-algebra, let

A)——i—-—ax and let x € <A> - A, Consider

T
Fr. - XL _ At 3 ,<A>T iT XT
An <A>n(| &, J g
F____k———)A 3 > <A> 1 >X
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nnT
nT - nTT
I ag /
nlg
n
L @n)
ny
nTn
m n
mm h R N nm (nn) , nTm 1
mh l nh l/ nTh
v
nnT
wr _ T ar , nTT "M aT

(diagram for "a implies b")

As <A> = im jT,iT. there exists y € AT with <y,jT.iT.{> = X, By
hypothesis there exists F)—L-) A with crd F < 77 and y ¢ im kT,
Therefore, x € im kT.jT.iT.§ = <F>,
c implies a. Let (X,£) be a ([[)~-algebra, let n be a set and let
ge MMPym. setx =4¢ <1p.mg> € 0Ty, As nT = <im nn>, we have by
i

hypothesis that there exists m>———n with crd m < % and x ¢

<m(nn)>. From the diagram:

iT T
ml — _ y T n » nIT

we have <m(nn)> = im iT.anT.ny = im iT, Hence there exists y ¢ nT with
<y,iT> = x. There exists unique h ¢ {TP (m) with <1m,mh> = %, Using

the Yoneda Lemma, we check that Xg = io-=,Xh:
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T
2t ,x — <x, o 1~ XT>
' I 1t
m i;n fAx > <y, mT j'TA,n'I.‘ fTAXT>

In particular, &B = Xg.i = io-.ﬁh. i}

2.2,6 Definition, fﬂ‘* has a rank =,. there exists a cardinal number
H wick; either of the three equivalent properties of 2,2.5. In this
case we also say "mnk(/[') < 4", If ] has a rank then there
exists a least {regular} ¥ with mk(T) < s it is called the
{regular} rank of M, and is written "{rlenk(TP)". rrak(TP) <
Ho is classical universal algebra, 2.2.5 (a) says that operations are
finitary, (a) iff (c) is a classical theorem for H = ‘r{o which.

may be found in [5]). For perspective on "rank" see [23].

2,2.7 Example; G-sets, Let G be a monoid, € =q¢ (-xG,e,m) the

resulting triple in sets as in 1,1,6. Let n be a set and let (i,g) e

nXG, The resulting natural transformation ; ¢ (7 (n) has Xth component

n Xz

X + X%XG
£ - £x1
a—X ———> <(d,8), nxG ——— XxG>

that is C= X0 __ PFi A,:x 2 (1'8?4; ¥*G, It follows at once that rnk( ()
= 2, The only important operations-of a G-set X x G % , X are the

* G~indexed unary operations @& = X __(.Ei)_, Xx 6 _* X, Notice,
too, that the symbol e may be not-too-ambiguously used as the monoid
unit, for they correspond under the Yoneda correspondence; nor are the

symbols g ambiguous.
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2.2.8 Proposition, Let (X,£) be a rlT‘-algebra, and let n be a
set. The following statements are valid,

a, @n(x,g) is the subalgebra of X(¥") generated by the evaluation
maps [x“_f"_i_,x :1ienl.

b, nT __C;O’n(x,t;) is a (T]'-homomorphism onto. -

<1n.ng> — B

n
Proof., Consider the function n __3'__) X(x ) sending i to ev;.

For all f ¢ X*, g ¢ 'TP (n) we have the diagram:

n
a® ev? > [xX¥D 0 i 5 X"
n
ng | x& ) g Xg
xp ‘ pxT
T evT , [X( )]T £ , XT
n defn,
v E(x ) J
(xm) pr !
X £ ¢
"

Since <1, ev'.pr,"> = f this shows that T = evT.£'~ °, and hence ¢ is

0]

a 'q-P-homomorphism. Using 1.8.2 we have On(x,g) = imz = im (evT.g )

= <im ev> = '<{evi]>. []

2,2,9 Proposition, Let (X,£) be a T’ -algebra, and let A>—-i—-=*x.

The following statements are valid.

a. <A> =1 CyA(xpg)o

. A g
b. A = <A> iff for every g in ([[V(4), AR 1 > xA 2 5%

factors through i.
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A
x )_._Ei_'_> X> = a, Hence using

Proof, a, If ae A, <ev_, X
2,2,8 we have <A> = <[ev, : a e A] pry> = <[eva]>pri = OA(x,g) pry
= 1 G,(x,8).

b, If (A,Eo) < (X,&) the desired factorization is Eg. Conversely,

g
A 3 , X
Ii"‘ 11
A o A

suppose iA.E.g factors through A for all g ¢ rIT‘ (A). Evaluating at

1& we have i OA(X,E) = <A> C A, []

' i
2,2,10 Proposition. Let (X,&) be a W-algebra, let (A,Eo) > (X,E)

be a subalgebra and let n be a set, Then

Tp(Xs8) BN XUW S
8 e
is a (] -homomorphism onto.

Proof, Let g ¢ ‘IHn). 2,1,5 and the diagram on the left produce '

’ n
AR A8 %0 s o, (A,E ) — A4
—oi
ke 4
X n i Qe n
X' = T 0, (x5 — xT) =, x4

the image factorization of qT‘-homomorphisms on the right., (]

2.2.11 Proposition, Let (Y,6) be a quotient algebra of (X,£). Then
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O &e —= 5 (1,0
n

8 g
g P 0

is a fﬂ\ ~homomorphism onto,

Proof., There exists Y 1 .x £ »Y with i.f = lY and with f

a TP -homomorphism, Let g € (T (n) and consider the diagram:

X
" - X g s XT 5 X
1“] if“ lfT l £
Y , 6 .
bl 8 5> YT - >Y

i®£8,f = i®,fM,6% = (1.f)%e8 = 68, Therefore ¢ is well-defined and

in fact ¢ = i®o-of which is a ||)-homomorphism by 2.1.5. []

2.2.12 Proposition, Let [(Xi,t;i) ¢ iecl] be a set of fTP-algebras
L

and let n be a set. Then @n(ﬂxifg) ____>'|T(3n(xi,gi) defined by

£8 1— 'IT«‘;ig is a (|| -monomorphism,

Proof, Let g ¢ [['(n). The commutativity of the diagram:

X qx)e £ .
n n :
Ty ——» (5 1 s (TpT _~ S TIX
n
127 pr iT PY i
Pri
X
n 18 Bi

i
for all i (wvhere X is the canonical bijection) proves that £8z = ng,
and hence that ¢ is l-to-1. Since each (X;,£;) is a quotient algebra

of (TTxi.a). it follows from 2,2,11 that each Zpr i is a homomorphism,

so that in fact ¥ is a homomorphism. []
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~s

Fix another triple /[[} = ("'l‘,ﬁ,_f:) in g .

- T,
2.2,13 Proposition, Let (X,§,§) € obj Sb’( ,'I['). The following

statements are equivalent,
a. €% is a ([P -homomorphism for all g ¢ ([]'(n); for all m,

b. gh is a rﬂ-‘-homomorphism for all h ¢ ‘TP (m), for all m,

" Proof., This follows from 2,2.,4, 2,2,12 and the symmetry of:

Cerrm
-~
&™? -h
\Eh)“ £
g
Xt 5 X . (]

S
rd

. T,T ~
2,2.14 Definitions, (X,£,£) € obj g‘ o™ is a ([]'=/]]" bialgebra

‘ if it satisfies either of the equivalent conditions of 2.2,13., The

= : 0,1
full subcategory of /[[=f]]’ bialgebras will be denoted " S{ ar

and the restriction of U(TF,TT)

[T,

to bialgebras will be denoted nglT, 1] F

IfU m is tripleable, the resulting triple is called the temsor

-— ~
product of (|} and (]’ and is denoted "([[* ® [[*". It is an open.
question whether or not /[’ ® (]} always exists, A comstructive
proof can be given if both ([[ and (T]} have a rank by generalizing

Freyd's proof in [11].

2,2,15 Proposition., The following statements are valid.
ae SJ [Tr"ﬁ'] ’Tr)o

be [u¢T™

~ T
is a “-closed subcategory of S (

satisfies the soluticn set condition] iff [Um"m

[, ';I']

is tripleable] implies [U is tripleable] iff [U[“'m satisfies
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the solution set condition],
Proof, The diagram used in 2.2,12 shows “closed under products",

Consider the diagram:

. £°7 -
X7 - X0
$m) €8T 5(0)
o=
e®T
xn fn A,-Yn /
1.' £T -
XT > YT
g
£
£ g 8
v f ‘lle
5Y

If (X,E,é) —£—>(Y,6,§), all commutes except possibly the left and

right sides, Hence if f is mono then right implies left; if f is epi
then so is f°T so left implies right, This proves (a). To prove (b),
the adjoint functorem and 1,6.6 apply, so this is summing up the theory

of 107.4’ 107.5. []

2.2,16 Proposition, Monoids act algebraically on algebras. More
precisely, let G be a monoid with associated triple @ = (= x G,e,m).
Then there exists a Gr-fﬂ'\ composite triple @- !'[T\ with S’Gﬂ =

| S [G,Tl']. In particular, (G ® [’ always exists.

Proof, We comstruct a lifting of ([ over 1%, If (X,0) ¢ S¢,
define (X,a)i‘ =4f (XT, @) where XT x G ___§__) XT sends (x,g) to
<x,ugT>. Since .&e = o°T = le = lXT and agh = aghT = agah‘r = agTuhT
= %8G, (XT,3) is a Geset, If (X,%) —i-a(Y,B) is a (7 -homomorphism,

that is if £g% = oBf for all g, then we have fT x 1,8 = @.fT and so T
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is a functor such that TUG = UGT. As n 1is natural, Xn x l.a = ad.Xn;

also, as p is natural, Xp x 1,a = & Xu. Hence we have a lifting /[]) =
(T,7,u) over %, Now remembering that, in the language of 1.4,5,
(x,g)}'{ = (XH, X)\.gH), we have from 1,7.6 that gGT is the full sub=

category of (X,a,£)'s in g (€,m satisfying CL in the diagram below:

a8 = of1

E-1]

(1,2)
» XT x G

{
XT
(*) CL
}E £x1
X

(1,2) Q

,
4
S X %G >

14
XT
lg
X

¢ T
Suppose (X,a,£) € =1 . Then (*) U CL commutes for every g € G, that

is each a® is a rr[-‘-hommnox.';"ah:i.sm. It follows from 2.2.7 that every
G’-operation is a [[])~homomorphism, and (X,a;§) € S [G,'ﬂ']. Con~
versely, let (X,0,&) € obj g[G,'TT]. Then (%) U cL and (*) commute
for every g in G, But clearly every element of XT x G is in the image

of some (1l,g). Therefore CL commutes, []

T
2,2,17 Definition. Let (X,%) ¢ S » and let A be a subset of X, Look
A

A
at the factorization A >._i__> <A>>_._;']._._, X, Because <A> ,_j____, XA < xA
we have a factorization
k A
AA —_— <AA> >—m—> <A>A>j—ﬁ XA

o]

T
Say that subalgebras commute with powers in & if m is always an

isomorphism, for all (X,%), A.
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2.2.18 Proposition. Suppose that subalgebras commute with powers in
S’n‘. Then every r]"l“--rﬁj bialgebra is a rl_l-‘-’ﬁ-‘ quasicomposite
algeﬁra, and hence f]"P@ @exists.

Proof, Let (X,E,E) e S [ﬂ’m, and let (A,e‘,o)>—i—>(x,£) be

a subalgebra, For eath g in T (A) consider the diagram:

. A
A £°/ <A>.n.
<A>p ¢
A
i £8/ah
ri AA

A
By 2.2.9, Eg/AA factors through A, Applying our hypothesis, <A>’II’
is generated as a ([[lalgebra by i* and £8 is a rlT‘-homomorphism. Hence
im(Eg/<A>,mA) C <A>z by i.8.2. It follows from 2,2,9 (b) that <A>’I[‘ is

a subalgebra. That ) ® /]’ exists now follows from 1.8.5. []
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§2,3 Compact algebras,

"2,3,1 Filter theory. Let X be a set, ? C ZX. 3‘_ ¢ " 4f [ACX:
(o
there exists F ¢ F with F C Al. F is a filter on X if J # ¢,

[ep %2

6¢ F,aBe F implies ANBe F and F = FC, an ultrafilter
on X is an inclusion maximal filter on X, XB =4f [‘L( : CU. is an

ultrafilter on Xj. If A C X, SL‘\/\ A =af [FMNA:Fe ?]. If ?
is a filter on X, it is trivial to verify that A ¢ F iff F /A A' is
a filter on A' iff (G}'/\ A")C is a filter on X (where A’ =4 the com-

plement in X of A,)

o
2.1,3A Lemma, Let ? be a filter on X. Then / ¢ XB iff for every
G~
subset A of X, A € ? or A' ¢ S,
Ci— O~ e "
Proof. If A ¢ J, ( F/\ AY)C is a filter finer, hence equal to,

O~ [

.7L‘ . Therefore A' ¢ /. Conversely, let ;ﬂ be a filter containing
Cy O~

c?ﬂ\'. IfGeﬁ,G't.}'sothatGeJ‘. []

2,1.38  Lemma. Let ? be a filter on X, Then GJ'\‘_ = n { Ue e :
T CUN.

Proof. Let A C X, A ¢ fc'\. (?/\ AYC is a filter on X, By
Zorn's Lemma {(a nested union of filters is a filter) every filter is

contained in an ultrafilter. Hence there exists CU. € XB with
(?’/\ A')c C u. We have ?:C CM,Aé ‘2,{ proving A ¢
NiVexe: TCVI I

2,3.2 Topological lemmas. Let (X, kg) be a topological space,
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o~ X ”F :
let J C 2” and let x € X. Recall that converges to X =;.
cg?c ‘J%x (where ‘)’\x =in the neighborhood filter of x), ’d;l
o~ G~
j’\ ~—— X, More generally, if A C X, F — A =4p there exists
x € Awith I ——— %, 1If X——>Y is a function, Jl’f =3f the
filter [Ff : F e F 1° C 2°,
2.3.2A Lemma., This is due to Ellis and Gottschalk; see (7], Lemma 7,

£

Let (X, ,3), (X', .&") be topological spaces, let X —— Y be a function
and let x € X. Then f is continuous at x iff for every U e X8,
M——ﬁ x implies uf — xf,

Proof, Let ‘M e X8, u———;x. Let V ¢ Ihxf. There exists
We hx with WE CV, As W e U, v ¢ UE, Now the converse. For
every U — x we have Us D ﬂxf’ U D Use? D, hxff'l.
By 23,18, V= NI U : U—x1 DN _ £ O

2,3.2B  lLemma, Let (X, 3f) be a topological space, and let A C X.

Then A is open iff for every U e X8, U ——a implies A ¢ ?/(..
. A AN -0 00U . NU.
Proof is open 1iff A ¢ xeAT\x xeA Uox Uoh (]
f
2.3.2C Lemma, Let (X,d) be a topological space, X — X' an onto
function, Let g}' be the quotient topology induced by f., Then if

(X, ) is compact T2 and if (X, ) __f__> (X', &') is closed then

(X', A") is compact T2,

Proof, This is standard. See [17], chapter 5, theorem 20, p. 148. [}

2,3.3 Proposition, Let @ be the category of compact T2 spaces with
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underlying set functor @ ——U-—> g « Then U is tripleable,

Proof. A fairly short proof can be given using 1.2,9. We offer
instead a direct construction which makes the triple very explicit and
thereby offers an independent definition of a compact T2 space.

If X is a set and if x ¢ X, A C X, define x =5 [B C X : x ¢ B],
A=y [U X824 e UL, It is trivial to verify the following:

% ¢ XB, {x} = {x}, ANE =2 f% B, A' = A.', $ = ¢. Define B = (B,n,sun)

by S b > S

£8 Xn

X—Y — X —— Y8, X—>XB
U — U s X — X
X
X88 a s X8

¥ — [Acx:hed]

We will show that //9 is a triple in S with U‘3 = U,

Functoriality of 8. Let U ¢ X8, X —— ¥, If A8 ¢ U,
Af ) BE D (A B)f, so it is clear that UE is a filter on Y., If
A C Y, either Af™! or (Af~1)' ¢ U by 2.3.1A, If aAf~! ¢ U then
AD A7 ¢ Ut implies A ¢ UE; otherwise Af™1'e U and &' D A'fl¢
= (Af"1 't D Ut implies A' ¢ UE., By 2.3.14, Uf e Y8, If

X £ ;Y —8 .7 in g, and if G.]"T C Zx then ?(fg)=(?f)g

is immediate, a fact we use implicitly from now on.

Naturalitx‘ of n, This reduces to the assertion that for each

x € X and each function X -—f—-—aY we have [Af ¢ x ¢ A]c = [B : xf ¢ B],
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which is clear.

Naturality of p. Let ¥ e xgp. If A,B C X with A,I.S e H then

ANB=ANteH. 1£AC Xwithhe X thena’ =4 ¢ ¥, This

proves Xu is well-defined. Now let X £ .Y bea function, & ¢ Xg8.

<M, teeyp = [ S8 Le H 1w
scy:Beldes: Le M 1%

Bcy:lh M.l CB

[BCY.]ieWch e kB UeEni

1de Y UedTaelUU.s Da

[BCY

<H, XufB>=[AC X:Aecd] £8
=[AfE:ACX&he HIC

=BCY: JAacCxde¥H &B D af]

Let B ¢ < }‘P, Xu.f8>, There exists A C X with A € H and B D Af,
3\ =4f A, TFor every CM el Ace U and B D Af. Therefore B ¢
< H, f88.Yp>, Two maximal filters are equal if one is contained in

the other., Therefore £8B.Yu = Xy.fB, that is u is natural,

Unitary axioms, Let Q/{ e XB.

<U, XnB.Xy> = [AXn : A e U xp

BCX:JaeU.B D [k:xeall

BC X: ]Aecz/{.xaAimpliesst]

- U
<U, xenxws = (o xe: U &z
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= [AC X CUEZ\]

- U

Associativity axiom. Let Q ¢ Xgg8.

[ A xu
aAcx: JAeo. Axu CcAl

[ACX: Jﬂen V}Feﬂ .Aea’?]

c
<Q, XuB.Xu> Real xu

<Q, XBu.Xu> [ C x8: Lealx

[AC X:Aeﬂ]

Let A € <@, XBueXu>, A =4f zi. Then A €  and é’p-e F implies
) H. Hence A € <@, XuB.Xu>» Therefore pBey = Bpeu., This completes
the a-rgumehf that ﬁ is a triple,

Define a functor C __i_)gﬁ by - [(X, &) —E—a(x', A1 @
;df (X.gé) IR (X',Ex‘sl), where X8 _E’%_.;X is the convergence
map sending each ultrafilter to the unique point to which it converges,
Xnegy =1 because % —— x in all topologies. Now let (X, of) €
obj C, and let M e Xp8. x =, <X .5y Bugg>=[dey ¢
j\_ € H’]c gx. We must show that <Jf , Xpu> = [A C X:Ae M1
—— Xs Let poPen - )’\x. There exists i € c)‘p such that
{?/(5:8 : U ¢ i] C B, Therefore ?/( € & implies QXF,’X € B
implies théré exists b e. B such that ?/{ ——bs. As B ¢ hb' B e ‘u,
so “L{ € 1.3. Therefore B ) ie H and 13 € )—-P, as we wished to show,
Thus far ¢ is well-defined on objects. Now suppose (X, ), (X', JS")

f
- € ob] C » and let X —— X' be a function, f is a //B ~homomorphism

iff f8°€«;8’ = 5,3 .£ 1iff for every U e Xg and for every x ¢ X,
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U ——x implies Uf —xf iff (by 2.3.24) .f is continuous.
Therefore ¢ is well~defined on morphisms and full, It is also clearly

faithful and satisfies @U'B

= U, Moreover it is immediate from 2,3,2B
that ¢ is l-to~l on objects. To complete the proof we show that ¢ is
onto on objects. Let X be a set, and define a topology 23}( on X8 by
taking [:\ : A C X] as a basej we may do this .since the Z\'s are closed
under finite intersections; explicitly, every open set is a union of

A's and conversely, Let M ¢ Xgg. & M Xy, because if

Hiy=[ACxXx:AeHlecBthenBe[AC X:4¢e H], that is

1.3 € }P. Moreover if U e XB and 9'? ——7‘2/{ it follows that - ‘2,( =

W xu. ForifAe(U,thencue:i.e MandhenceAe[BCX:ﬁerH’]
= qu. This proves that (X8, _ng) € obj ®  and (X8, JX)(P = (XB,Xu).

Let XL )——i—«>XB, and consider the diagram

g 18 5> X88

Xy

- — - —

Jd — > XB

One sees immediately that dp\ is a subalgebra of (XB8,Xu) iff every
ﬁltrafilter on i converges in i iff i. is closed.

Now let (X,&) be any ﬁ ~algebra. (XB,Xu) —é——» (X,£) is a homo-
morphism onto, Let é be the quotient topology induced by £ on X,
tet 3. cxe. L closed 1ff L < (XB,Xp) implies L& < (X,)
implies ( Jdee? < (X8,Xy) iff ( Le)e™! is closed in (X8, Jx) iff
J\g is closed in (X, Ex). Therefore £ is a closed mapping. By 2.3.2C,

(X,€) € obj C + Finally, let ?/( ¢ XB and show ?/( —— U, Let
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Ueg e Ae xg . ‘There exists B C Xwith UeB C AEl, TFor all b
€

€B, b = bg ¢ A" 1f = A, Therefore A D B ¢ U andre U. T[]

'2,3.4 Proposition., For every triple (T:Pin sets, every (TP-/B bial-
gebra is a fTP- /B quasicomposite algebra, In particular (TP @ /P
always exists,

Proof., Subalgebras = closed sets in ng [the argument we used
for free algebras in 2,3.3 is general], A well known topological theorem

is "product of the closures = closure of the product"., Now use 2.2.18, (]

MmMm® ﬁ-algebras are called compact rﬂ_\-algebras.

2,3.5 Example; discrete actions with compact phase space., Let G be
a discrete monoid, with associated triple G. The category of compact

B

T2 transformation semigroups with phase semigroup G is S We
a
have only to observe that since G is discrete, X x ¢ —— X 1is con-

tinuous iff each X ——‘5——»x is continuous,

2.3.6 Progosition. Compact topological dynamics is tripleable., More

precisely, let G be a monoid with associated triple GT + Let 328 be

any topology on the underliying set of G. @ = _ _ the full subcategory

df

of S G@)’Bgenel:'at:ed by objects (X,a,Z) such that (X,£) x (G, J)

a
~———(X,£) is continuous, Then B is a Birkhoff subcategory of

c®B |
S , and in particular is tripleable, (Compact topological dy-
namics is recovered by insisting that rz be compatible with G; in this

case @ =dn tsG or tgG accordingly as G is a monoid or a group.)
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Proof. Consider a product of E;-objects, (X,0,8) =-TTYXi,ai,£i).
Using 1.7.4 it is clear that (X,a) = T[(X;,e;) and (X,8) = T[(¥X;,€;).

Hence at the level of sets we have

X x G

X
1 pry x 1 thi

i
Xi x G N Xi

By the tychonoff theorem, (X,£) = TTIXi,gi) in the category of all top-

ological spaces. Hence o is continuous as each a.pr; is, and (X,q,%)
g P i ’

. cB
e obj é% . Next, let (A,qo,go) >—i£—9 (X,0,8) in S ® with (X,q,£)
in obj dg + We have
o
AxG 0 , A
ix1l Ii
X xG ¢ ¢ .

Now all monomorphisms in S'B become relative subspaces when viewed
in the category of all topological spaces because every algebraic mono=-
morphism is an isomorphism into. Therefore e, is continuous because
ix l.a is.

To show that 43 is closed under quotients'it suffices to prove

the following topological lemma: consider the situation

X x H a > X
l f x1 lf .
YxH b : Y

where X, H, Y are topological spaces with X compact and Y T2 and where
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a is continuous and f is continuous onto, Then b is continuous.’. To
prove it, we use 2,3.2A., Let U be an ultrafilter on Y x H such that
= "1 filter on
u____,(y,h) e Y x H, o\f = df u(fXI) . Y is a filte
X xH, If A C X x H such that A(f x 1) ¢ U then as £ x 1 is onto,
A'(f x 1) D [A(f x1)]' € (U. Therefore v is an ultrafilter on
X x H, As X is compact there exists x ¢ X such that aYprx —— X
Also, Vpr, = Vi x Dopry = Upry — (rohdpry = be 1€V, W
that
€ CV ’ Vprx x Wpry O (Vf)W)prx x (VnW)er D VNVWe Y so tha
v D) 6\/px‘x x GVer — (x,h) . Therefore Yt x 1) pry =
CZ/(f.pt converges both to y and to xf; since Y is T2, xf = y. Hence
X

Ub = V(£ x 1)ib = Vaf —; (x,h)a.f = (y,h)b as desired. []
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§2,4 The enveloping semigroup of an algebra,

Let G be a topological group, and let (X,a,£) € obj tgG. The
enveloping semigroup, E, of (X,a,&) is defined in [7] to be the point-

X
wise closure in (X,£) of the transition group [o® : g € G]l+ Recalling

G®B
S

that subalgebras in tgG are computed in , (X,0,8) is a (5-—AB

uasicomposite algebra and E = <<1_> > >. ..
1 P g X'G B X tgg

suggests that we can always define the enveloping semigroup of an alge-

= <]l « This observation
T
bra, In the next two sections we enlarge to S the analysis of tgG
of [7], [8] and [9].
For this section fix a consistent triple rﬂ" = (T,n,u) in g.

T . T - T
U=dnU,F-an,e=dne.

2.4,1 Definition and propositionm, G’H‘ (or simply G) =4f ‘TP(P) =

(1,Tn.t. Also define

GxG

*_;G

h u
(8.1’!) I—-———-——) g-h gdf 1 & > IT — T,

w ‘
Then (G,*) is a monoid with unit n, and, letting G —— (U,U)n.t.,
]

G .—q’-—-—a (F,F)n.t. be the bijections of 2.2.2, y is a monoid isomorphism

and ' is a monoid antiisomorphism,

Proof, TFor (X,) ¢ Ig’niand g,h ¢ G we have

X > XT > X > XT — X
Xg 3 Xh . &
XTh ET
‘ XTT
3
Xy
XT
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which proves (g*h)¥ = gy,hy, and we have Xn.§ = lx which proves ny =

1 o Therefore (G,*) is a monoid and ¢ is a monoid isomorphism, We have

XhT Xu
XT XeT , XIT W xr > XTT 5 XT
\ i
1
X(heg)T F

Theréfore U of the equations XgF,XFe XhF,XFe = (X(h*g)F.XFe, XnF.XFe =
1XF are valid, and then the equationes themselves are valid because U is

N
faithful, Therefore y' is a monoid antiisomorphism, []

2,4.2 Proposition and definition. Let (X,E) be a 'TP-algebra. Then

X
Op(%,8) = [E8 : g € 6] = <L> C(%,8)". This subset of X', both a
rT[“-subalgebrr:x and a monoid under composition, is called the enveloping

semigroup of (X,t) and is denoted "E x g)"’ "EX"’ or "E",
9

E "blends” PT and G in the following sense: in the commutat-
(PT,Pu)

ive diagram:

g
PT 5> E p P8 . pT > B

\ Aﬁ'(}'{’a \\/ /

G g

z is a ([])~homomorphism and yis a monoid homomorphism and if (X,£)
= (PT,Pu) then g,y are isomorphisms,
Proof. That O’P(X,g) = <ly> and that Pg B t€ is a rﬂ-‘-homc-

morphism were proved in 2.,2,8, Two arguments that E is a submonoid of Xx:
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(i) [p e E s Ep C E] is a subalgebra of E (by 2.1.7 (b)) contain~-
ing 1X so that EE = E; more precisely,
(ii) gg is the (X,E),th component of the natural transformation
U + U corresponding to g, so by 2.4.1, £2eh = g8°h, |
It follows immediately from (ii) that y is a monoid homomorphism,

To complete the proof we must show that ¢ — E(PT Pu) is 1-to-1l, But
9

Py
PT PTg s PTT 5> PT
T Pn [Pr/
P g > PT 1

expresses Pg in terms of (Pu)8 = PTg.Pu. []

2.4.3 Proposition., Every rﬂ_‘_-algebra may be interpreted as a G ,n,-set
with algebraic structure, More precisely, there is a forgetful functor
g'n'__g_) SG which is tripleable, where o= af the triple associated

with G = G‘H'.

Proof. Define (X,£)¢ = (X,ag) where X x G —ig————>x is defined
by (x,g)mg =4f <x,£g>. 1t follows from 2,4,2 that (X,ag) is a G~set,
If (X,8) -——f—-—>(Y,e) is a r|T‘--homomorph:lsm, thén in particular f
commutes with unary operatioms (by 2,2.4) and hence (X,ag) ———f———b(Y,ue)
is equivariant (we sometimes call G-set homomorphisms "equivariant"),

T
Hence ¢ is a well-defined functor and ¢UG =7, It follows from 1,5,2

that ¢ is tripleable, [}

2,4,4 Proposition. Let (X,E) be a r-IT‘-algebr:a,'Ll.et: A be a set and

-~

let (A,Eo) < (XA,E). Then for every g in G, 508:"A + A = =-o£8,
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‘Proof., Denoting pr

A "dn prA/A, we have
g
A Ae > AT 0 A
ptl pr)‘T pr}\
£
X Xg 5 XT X .

For every x € A, @ € A and g € G ve have a, a2§> = <a,£§.pr)‘> =

<a,prA.Eg> = <Aa.€g> = ,<,l.a‘€g>. []

2.4.5 Progosition. Let (Y,0) be a quotient algebra of (X,£). Then the

following statements are valid.,

14 gl
-
a. Eg (EysEy) S
p
P — Ex > Ey
3 — p.08

is a well-defined bijection,

b. Every G-equivariant map Ex ——§——> EY is a rm—homomomhism;

indeed f = ch’f’. N

c. If X is singly generated, X is a quotient of EX'

de X ¢ EX > By £8 o -otf is a ‘TP-monoid isomorphism,
X

Proof, a,b. r,lY is a ‘TP-homomorphism by 2.2.11. Hence gp =

>

C -
Ex ly N EY pe 5 ‘x':‘.Y is a rI-P-homomoph:lsm by 2.1.5. Hence
z is well-defined, p = <1x, cp> proves that ¢ is l-to-1., WNow let
EX ——t:—-->EY be equivariant (in particular f might be a r]—P-homomorphism.)

Using 2,4.4, we have, for each g ¢ G, the diagram:
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E > E
X Y

-ogg -Oeg

and therefore <gg,f> = <lx.£g,f> = <1X’ (-o‘c,’.g).f> = <1X’ f.(-oeg)> =

<1,,£>.6% = <8, ¢

>
X? 1yf
X T.

p
c. We assume there exists Xq € X with X = <Xg>e Then EX —-ﬁ—-)X

is onto because x; = <lx, prx0>,
de ¥ 1is a well-defined bijection by 2,4.4. In view of (c) we can
apply 2,2.11 to insure that y ! is a ‘Tp-isomorphism. But X ! is a

monoid isomorphism because (-ogg).(-oﬁh) = -°EgEh. (1

2,4,6 Definitions, Let (X,£) be a [['-algebra. The least subalgebra

of X (=) [A : A <X] = <¢>) will be denoted "0 " or "0," or "0",

(x,8) X
If A < X, A is a minimal subalgebra of X if A is an atom in the complete

lattice of r'IT‘--subalgebr:as of X If A is éither a minimal subalgebra
of X or Oys say that A is a preminimal subalgebra of X. X is itself

minimal or preminimal = df it has such a property qua subalgebra of it-
self, Clearly a subalgebra is minimal or preminimal iff it has such a

property qua algebra,

2.4.7 P‘rogosition. The following étatements are wvalid.
gis
a, ($T,¢u) is an initial object in S and for every ‘”'-algebra

(x,8), 0 = im (T + (X,€)).

(X,8)

b. If (X,£) ——f——-> (Y,8) is a rIFP-homomorph:i.sm then Oxf = Oy
In particular, if A < X then 0, = Oy
c. If (X,8) is a ’TP-algebra and if A is a non-empty set then
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OXA = [A X ,Xx:ixce 0x and x is constantly x], and hence each proj-
pr
ection XA___}‘_) X establishes an isomorphism of OXA witj,h OX’ Ele-

ments of OxA are said to be constantly zero.

d. Let X be a rlT‘-algebra and let A < X, Then A is preminimal

iff for every x ¢ A ~ 0, A = <x>,

e. Let X—L .Y be a (J])-homomorphism and let A < X, Then

A preminimal implies Af preminimal.

f, Let X be a "[|)~algebra, let x ¢ X, and let I < E Then

X.
1 preminimal implies xI preminimal.

Proof. a. For each /[|'-algebra (X,£) the unique ¢ ——i—-,»x has
iT £

unique homomorphic extension ¢T + XT > X whose image is <¢>

by 1.8.2.
be If B < Xf then B = Bf"1f, Hence f induces an order-preserving

_ f , .
surjection [A $ A <X] —— [B ¢ B < Bf]. In particular, Oxf = OXf'

S XE < ¥, 0, < Xf s0 that

Astf_Y,OYf_stothatOXfioY. AsOX

f

v0X£ = Oy.

Y

c. For each element x of X denote A —’i—-»x to be the induced
constant function; There exists A € A by hypothesis, [;: ! X € OX]
=[x:xe XN Oy prl-l-. But [x : x ¢ X] < x! since it is the col-
lective equalizér of all the projections, Therefore OXA < [;< t Xe OX]
< XA. Conversely, OXA°prh = 0X by (b), proving every % with x in 0X
is in Oxf\.

d. If A is preminimal and if x ¢ A - O then 0 g <x> C A which
implies that <x> = A, Conversely, if x ¢ A - 0 implies <x> = A and if
0 # B < A, then there exists x ¢ B - 0, whence A = <x> C B C A,

es Use the order-preserving surjection of (b).
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£, pryis a homomorphism, so use (e). []

2,4.8 Proposition., The following statements are valid,
a. (i) ¢T = ¢ iff (ii) there exists an algebra structure on ¢ iff
(1ii) for every ’-[T‘-algebra (X,8), 0y = ¢ iff (iv) there exists a
' -algebra (X,£) with Oy = 4.
b. PT = P implies ¢T = ¢.
co ¢T = ¢ and (X,&) e obj S T implies Ey 2 Oy
d. If ¢T # ¢ and if (X,£) € obj ST then E; = 0y iff X = P,
Proof, a. (i) implies (ii). If ¢T = ¢ then (¢,1¢) is a ([]-

algebra, (ii) implies (iii)., For every fTP-algebra X, OX is a quot-

ient of ¢T so that [there exists ¢T + ¢] implies 0X = ¢, [(iii) imglies

(iv). This is obvious as there exists at least ome ([|'-algebra,

(P, PT » P) for instance, (iv) implies (i), If (X,£) is a ([[)-algebra
and if 0X =¢ then ¢ -+ OX extends to a homomorphism ¢T +» Oy = ¢, 8o
¢T = ¢.

b. ¢ »> P induces a monomorphism @TS——-)PT by 2.1.2, so crd ¢T < 1.
Suppose crd ¢T = 1, Then ($T,¢u) = (P, PT + P) and for every ([['-al-
gebra (X,£), crd X = ¢rd (P,X)s = crd (¢T,XT) 5’!1' < 1, which contra-
dicts our standing hypothesis that ('ﬂ'\ be consistent,

c. This is clear from (a) as EX is never empty.

d. Suppose ¢T # ¢ and X is a ([['-algebra. By (a), X # ¢, so we
have from 2,4.7 (c) that Ey = 0 implies 1X is constant implies X = P,

Conversely, E_ = P is obvions, so we must show ¢T # ¢ implies P = O,

P
This is clear as ¢T + P is onto, ([]
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2.4.9 ‘Definitions, Let M be an abstract monoid. A right ideal in M

=4qf @ non-empty subset I C M such that IM C I, An abstract constant
of M =;¢ an element p € M such that for every q e M, qp = p. If I is
a right ideal in M then
I is ¢-minimal = af the set of right ideals contained in I = {I};
I is AC-minimal =4f the set of right ideals contained in I =
{[p € M : p abstract constant], I};
Iis ([['-minimal =, 1 is ¢-minimal (4T = ¢)

I is AC-minimal (4T # ¢)

2,4.10 Proposition, Let M be an abstract monoid and set I =df

[p e M : p abstract constant], Then I = ¢ or I is a ¢~minimal right ideal,
Proof., Suppose p e I, q € M, For every r ¢ M we have r(pg) = (rp)q

= pqg so I C M, Now suppose ¢ # J C I, JM C J. Let j € J, Then for

every 1 € I, i = ji € J proves I C J. []

2,4,11 Proposition, Let (X,£) be a ([['~algebra, E =if E(X,E)' x e X,
pe E, I C E, The following statements are valid,

as <x> = xE,

be <p> = pE,

c. I a right ideal implies pI a right ideal,

de ¢ # 1 < E implies I is a right ideal,

Proof. a, <x> = <:I.X pr> = <1x> pr, = E pr_ = xE.

be By (a), <p> = pEg = [p (~o£B) : g € €] = [pe® : g ¢ G] = pE,

cs pIE C pI; I # ¢ 1mpiies pL # .

de [qeE :Iq C I] <E and contains 1x. [1
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'2,4,12 Proposition. Suppose ¢T # ¢, Let X be a rTl_\-algebra, E =
Ex. Define 1 =4f [p € E : p abstract constant], J =4f [peE:p
constant function]. Then I = 0E = J,

Proof. X # ¢ by 2.4.8 (a) so by 2,4,7 (c) 0p C J. J C1is
clear, Now suppose pe I, ¢ ¥ A C E, There exists a ¢ A and, as A is

a right ideal (by 2.4.11(d)), we have p = ap ¢ A. Therefore I C N

[A<X: A# ¢] vhich by 2.4,8 (a) is equal to Mia : A<X]= OE‘ [1

2,4,13 Proposition, Let X be a ([-algebra, E = E» 1 C E, The
following statements are equivalent,

a. 1 is a minimal subalgebra of E,

b, Iis a q_P-minimal right ideal in the abstract monoid E.

ce I is a right ideal properly containing 0E and is minimal with
this property.

Proof, By 2.4.8 (a) and 2,4.12 we have OE = ¢ (¢T = ¢), OE =

- [abstract constants] (¢T # ¢). In view of 2.4.10, (b) iff (c) is clear,

a implies ¢ 0 $ I C E so0 I is a right ideal by 2.4,11 (d), and
I properly contains 0. Suppose O C.j. JCI withJE C J. Let pe
J-0, Then 0 & pE CJ and pE < J (by 2.4.11 (b)) so that I = pE
CcJCl1.

c dmplies a, As 1 ¢E,I=TE= " pE, As 0 § I there exists

X pel
pelwithO % pE C I, Since pE is a right ideal, pE = I, By 2,4,11

(b), therefore I < E, Now suppose 0 § J < E. J is a right ideal by

2,4,11 (d), and hence J = I, []

2,4,14 Proposition, If ¢T = ¢ then the following are equivalent,
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a, Every non-empty r!—P-algebra contains a minimal subalgebra,
b. Every right ideal in G'II‘ = G contains a ¢-minimal right ideal,

c. G contains a ¢-minimal right ideal,

Proof, a implies b, By 2.,4,2, G = Epp qua monoid., Let I be a

right ideal in EP Let pe I, pEPT cC 1, As pEPT < E . there exists

PT
By 2.4,13, A is a ¢-minimal right ideal,

T.
a minimal subalgebra A < pEPT.

and clearly A C I,

b implies c. Obvious, as G # ¢.

c implies a., As G = E o qua monoid, EPT has a ¢-minimal right

)4
ideal, and hence (by 2.4,13) a minimal subalgebra. Let ¢ ¥ (X,E) €

T f T
obj S . Then there exists PT ——(X,6) ¢ & . AsPT =E, qua
algebra (by 2.4.2) there exists a minimal subalgebra 4 < PT. Af is
non-empty and preminimal (by 2.4,7 (e)). Since ¢T = ¢, "0" means "empty”,

so indeed Af is minimal., {]

Note: 2.4,14 (c implies b) is true for any abstract monoid M. To
prove it, observe M = G for [} = M x -, , ) (the discussion of 2.2.7

essentially proves this) and ¢ x M = ¢ so that 2.4,14 applies to (],

The following proposition generalizes the main existence theorem

for minimal orbit closures in topological dynamics, namely [13, 2,22],

T® B
2.4,15 Proposition, If ¢T = ¢ and if ¢ # (X,0,E) € obj S then
there exists a minimal (TP ® ﬁ -subalgebra of X.
Proof. Since (X,0,£) is a rﬂ'\- ﬁ quasicomposite algebra (by

2.3.4), 0x = <<¢>‘H'>B = <¢>B = ¢, There exists a non~empty subalgebra,
!

“«
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namely X. Every inclusion nest of non-empty subalgebras has non—empty
intersection by compactness, By Zorn's Lemma, there exists a minimal

subalgebra., []

2,4,16 Definition., Let X be a rﬂ_‘-algebra. X is distal if Eg - 0
is a subgroup of bijections of X, The full subcategory of distal

T} -algebras will be denoted " @ "or " ".
T

2,4,17 Proposition. If ¢T = ¢, @ is a Birkhoff subcategory of S’FH’.
Proof, Let X = T|'xi with each X; ¢ obj D. For every g ¢ G, £5
= TTE? by the proof of 2.,2,12 with n = 1, Since "non-zero" means 'mon-
empty"”, each (gi-)-1 exists in Exi so that (£8)7! = 'ﬂ—(z‘-;i)-l exists in
Ex. Hence X is distal, The argument for subalgebras is clear from
2.2,10, The argument for quotients is clear from 2,2.11 and the fact

that a monoid quotient of a group is a group. []

2,4,18 Proposition. Let X be a [['-algebra with 1, £ 0 (see 2.4.8 (d)),

and let E = EX' The following statements are equivalent,
a., X is distal,
bs E is a minimal subalgebra of Xx o
c. For every p ¢ E, p ¢ 0 implies pE = E,

Proof. a implies b, Suppose 0 g K < E, There exists p ¢ K, p ¢ O,

Therefore p~ ! exists in E and 1, € pE < E so that E=pE C K CE,

b_implies c. This is clear,

¢ implies a, Sincelxéo, [peE:péO)l #¢. LetpeE, p£o,

By hypothesis, pE = E and there exists q ¢ E with p.q =='1x. If ¢T = ¢,
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q¢ 0, If ¢T # ¢, from 2,4,8 (d) we have crd X > 1 so, since q is onto,
q is not constant and still q ¢ 0., But then qE = E and there exists r

e E with q.r = 1L, Therefore q is bijective and p~l =qeE []

'2,4,19 Definition, Let = (for “property") be a full subcategory of
S T whose objects are a union of g“-isomorphism classes. Let U ¢
obj 8“, U is a universal (7 minimal algebra =4¢ U satisfies (i)-(iii):
(i) U € obj p and U is a minimal rﬂ_‘-algebra.
(ii) Every minimal 'Tp-algebra in @ is a T -quotient of U.
(1ii) If V satisfies (i) and (ii) then U = V,

. gy
When (P = S, we say simply "universal minimal algebra",

2.4,20 Proposition, Assume ¢T = ¢, Let (B be a Birkhoff subcategory
of Sw, and set U =;: the free ® ~algebra on one generator., Then the
following statements are equivalent,

a, U is distal.

b U is minimal,

ce U is a universal (B minimal algebra,

Proof, We remark that notions such as "subalgebra", "0,", "“singly -
generated", "minimal" and "enveloping semigroup" in a Birkhoff subcate-
gory are equally computed in g'n' so that we need not specify where U
is minimal, etc,.

a implies c, Let fﬁ\ be the triple corresponding to 8. Since
¢'1‘ is a quotient of ¢i‘, 4&? = ¢, Hence 1U ¢ 0 and 2.4,18 applies to show
EU is minimal, But U = PT = EU by 2.4.2, which proves that U is minimal.

Clearly every singly-generated (B-algebra, every minimal (B ~algebra in
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particular, is a quotient of U, Now observe that if U ——f——> U is a

(B -homomorphism with non-zero image then f is an isomorphism. Clearly
f is onto, To see that f is l-to-1 let u be the free B -generator of

U, There exists x € U with xf = u, Let g be the unique B =~homomorphism

U —8 U such that ug = x, Since fg = lU on generators, fg = lU and f

is l-to-~1, If V satisfies 2.4,19 (i), (ii) then there exist epimorphisms

U 5 »V x—»U; as gy is an isomorphism, zis l-to-l and U = V.

c_implies b, This is clear,

b_implies a. If U is minimal, so is E; = PT = U. By 2.4.18, U

is distal, []

S H® B

2,4,2)1 Computations in . Let H be a monoid with associated

triple ||-|. & =3 Gm. P(H® B) = (P x H)g = Hg, so elements of G

are in bijective correspondence with ultrafilters on H. If U e HB,

th

the X" component of the corresponding natural transformation g(u €

(1, H ® B)n.t, is given by the Yoneda correspondence as

Xgu

X 4(XXH)B

P—F 4% —  <U, HB _;(x_’..]ie__;(XxH)B>

that is, 'xgu sends x to the ultrafilter [{x} x A tAae U ]c. The

interested reader may compute the monoid operation HB x HB ———.—-—>He

as UV =facu:IveVVveviveU.ww C Al Hence

GU .av 'is a canonical t_xfltrafilter containing the filter ?/(V s that

uﬁ\fis not an ultrafilter was kindly pointed out to us by Robert Ellis,
To compute the general enveloping semigroup, let. (X,a,£) ¢ obj

H
S @8 and recall that the structure map with respect to the composite
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triple ||-|/IB = ||~ ® /ﬁ is (X,0B.E). Therefore (aB.f) is de-
scribed by x P [{x} xU:Ue U 1¢ — [xU s U e U 1 —
(x 6?,()5. In words, the unary operation induced by U sends x ¢ X to
the unique point of X to which the ultrafilter xu on X converges,

. h
Notice that if U =h, x — (xU)E is just o , that is E a

(X,0) is

submonoid (though not a subalgebra) of E (X,9,6)°
It is proved in [7, lemma 4] that the usual notion of "distal" used

in topological dynamics coincides with the property that p is lofo-l

for every p ¢ Ex. That this is the séme as our definition will follow

from 2,5,18 below,

2.4.22 Open question, If H is a monoid with associated triple ||~| ,
H
then every Birkhoff subcategory, (B , of & ® . has a universal min-

imali set U, We will prove this in 2,.5.16 using methods similar to the
proof of Ellis in [9], in the case of B - 93'H® I8 . The question
arises whether a prcof more like that of 2,4,20 can be given, that is
whether one could show U were a free algebra on one generator with
respect to some triple reasonably associated with (8 « 2.4,20 (b)
shows that Birkhoff subcategory arguments are doomed to failure, for

it is known ~j:hat: in glﬂ ®B

U need not be distal, The case of groups
in semigroups shows that good tripleable subcategories need not, in
fact, be Birkhoff subcategories; that is, we can add new operations

(in this case "inverse") in addition to new equations,

2.4,23 Example; ¢T # ¢ is necessarvy in 2,4.12, Consider QH ® 8

a
where H = Z. Let S! —— sl be the homeomorphism induced by
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(0,1} > [0,1]

X — x2
and identifying 0 = 1. This induces the discrete flow

s!x / — 5l

n
(X. n) —_— <x' o >

The enveloping semigroup consists of the powers [a® : mn e Z] and

the constant function 0 = 1,
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§'2.' 5  Almost periodicity,

For this section let fTP = (T,n,n) be a triple in S).

2.5.1 Definitions. Let X, T' be sets, The discrete topology on X is
denoted " d"’ X being understood. If x e X, ,QS x) =4¢ the compact
T2 topology on X obtained by discretifying X - {x} and replacing x with
the topélogy of the l-point compactification. In the language of 2.3_,‘
(X, A(x)) = (X,£) where XB ——-§-—>X, CU;L; = y (if there exists y ¢ X
with U = y) and = x (otherwise). 1If J is any topology on X, ;ér

I‘. The fine':power topology

=dn the induced cartesian power topology on X
on Xr =4 the topology dil’. It is clear that if (,QY tyel) is
any I-indexed family of topologies on X then 'IT 'gY is coarser than
}Bdr. Observe that if A C (Xr, )52) and 1if x ¢ X then x ¢ & iff for
every finite subset F of T there exists a ¢ A with x and a agreeing on F,
M is a fine-powered triple =dn (T €p triple, =4 for every
r-[_l_‘—atil.gebr.a (X,&) and for every subset T C X and for every subalgebra
A < (X,£) , A is closed in the fine power topology on Xr. rﬂ_‘ is a
weakly fine-powered triple, =, ([|) wfp triple, =; for every (X,g)
and T as above and for every x ¢ X , <x> is closed in the 'fine power
topology on Xr.‘ Clearly ’TP fp triple implies q_P wfp triple, but

the converse is false for the identity triple.

2,5.,2 Remarks, ,j dl‘ is canonically a lim of compact T2 topologies on

T r T
X, In fact ’éd = sup| ,6( ) ¢ x ¢ X} (that supremums are l‘:gm's is
x

a typical lattice fibering property, as is seen from the proof of 3,1.6).
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If X is finite, ,di = ,8( , for all x ¢ X, Otherwise, assume X is
XJ
r
infinite, Surely ,8 C }8 for all x. Conversely, let F be a
(%) d r
finite subset of T, F—2 X a function, Then U =d4f [feX : £/F = a]
r .
is a basic open set in ,Bd +« There exists x ¢ X -~ im a. Since any
r
subset of X not containing x is open in (X, 53( )) we have U ¢ x_fﬁ(x).
X
r
This motivates our attempt to use ;8 g 282 "prototype" for topologies
T

of the form ,,2) where 2.9) is compact T2, We introduce the notion of
jointly almost periodic subset, and prove some theorems following a
pattern set by W. H, Gottschalk in [14]. The important 2.5.12 is proved
for wfp triples which, in fact, is where the fine power topology comes
in. By a method similar to that of Ellis in [9] we show that if (]
wfp triple and if ¢T = ¢, then any minimal subalgebra of PT is a univ-
ersal minimal set, The main difference in our method is that we sub~
stitute 2,5.,15 (a), (b) for compactness arguments. We begin now with

some observations that ensure the existence of enough wfp triples to

make all this worth while,

2.5.3 Remark, If PT is finite then /[]|' wfp triple. Examples include
Boolean algebras, sets, G-sets for finite G, complete semilattices and

others, Such triples are unlikely to provide interesting minimal al-

gebras, however,

2.5.4 Proposition, If there exists an algebraic functor ¢: S']r > S’n‘,
o = UF with T fp triple, then (]’ fp triple,
Proof. Let (X,£) be a {[|'-algebra, let I C X and let A < (X,g)r.

Then A < (X,g)rq? = (X,g)'q,g (noting that ¢ preserves lim's by 1.5.2) and
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r
so A is closed in Jd o []

 2.5.5: Proposition. Let fﬁ“ be another triple 1n S with B C
S (m, ™) a tripleable & —closed subcategory with triple $. Then
if either /] fp triple or fﬁ" fp triple, then D fp triple.
Proof, Let (X,E,é) be a B-algebra, and let T C X, A < (X,g,'é)r.
Then A < (X,g)r and A < (X,E)r. (]

T® B
2,5,6 Corollary. Any Birkhoff subcategory of S comes from an

fp triple.
Proof, By 2.5.5 we need only observe //3 fp triple, Indeed, if
(X,8) € 9'8, r C X, A< (X,g)r then A is closed in ,3r, where (X,§)

= (X, o)), and hence A is closed in édr. {1

2,5.7 Definition, Let (X,£) be a (TP-algebra, and let I‘>—3——>X €

S « i is a jointly almost periodic injectiom, =, i jtapi, =4f <i> is
~a minimal subalgebra of Xr. If T C X, T is a jointly almost periodic
subset, = in T jtaps, = 4f the inclusion map of I' is jtapi. We consider
the set of isomorphism classes of monomorphisms into X partially ordered
by the inclusion relation discussed in 1.8.1, Subsets of X are partially
ordered by ordinary inclusion, i mxjtapi = dn i maximaily jtapi; I mxjtaps
=4n | maximally jtaps. If x ¢ X, x is an almost periodic point of X,

=4n X 8P Pt, =4¢ {x} jtaps.

2.5.,8 Proposition., Let (X,Z) be a rIT’-alge:bra, let r>_i_>x , and
3

let A »—— X, The following statements are valid.
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a, i jtapi implies im i jtaps; conversely,
b. A jtaps implies j jtapi.
ce 1 mxjtapi implies im i mxjtaps; conversely,
d. A mxjtaps implies j mxjtapi. v
Proof., a. Factor I ° ,imi, 3 ,X =1, Then xI Pl | yimid
is an isomorphism sending <i> to <j>.

b. This is by definition,

Ceo Suppose A é: X jtaps, im i C A,

Clearly a exists, As i mxjtapi and j jtapi by (b), a is a bijection
and im 1 = A,

d. Suppose I‘)-——i——) X mxjtapi such that a exists:

Then im i jtaps by (a) and im 1 D A implies im i = A implies a is a

bijection., []

i h
2,5.9 Proposition, Let (X,£) be a [[['-algebra and let A»——T>— X

with i.j not constantly O and j jtapi. Then i,j jtapi.
- O
Proof. Consider xr—i—) XA. <i,j> = <j.(io=)> = <j>io-. Hence

<i,j> is preminimal, But i.j ¢ O implies <i.j> # 0, []
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B 1A T : £ T i
2.5.10 Proposition, Llet (X,8)———(¥,0) ¢ § , I »——X jtapi.
Then 1.f jtapi.
~of
Proof, Xr—o—-a Yr is a homomorphism sending <i> to <i.f>. If
i is not constant, neither is i.f since f is mono, Otherwise, i is a

non-zero element of X, But OYf-l = Oxff"1 = OX (both equalities because

f is mono) so that i.f £ 0. Either way, <i.f> # 0. []

2,5.11 Proposition, Let T >_i__,(x,g), 0#pec<i>C Xr. Then the

following statements are valid,
a, 1i jtapi implies p jtapi.
b, i mxjtapi implies p mxjtapi.

Proof. a. As p £0, <p> = <i>, Hence we need only show p is

l-to-~1. Suppose Yi» ¥, € r with Y P T YpePe Let {71,72}>_j__>1' be
inclusion, let D be the diagonal of X{Yl'yz}. D < X{Yliyz} on general
principles (ité inclusion map is categorically induced in S'Ir). Since
<p>jo= = <jop> and j.p € D, <p>jo= C D. On the other hand, <p>jo- =

<i>jo= = <j.i>, Therefore j.i ¢ D, and j.i is constant, As i is mono,

j is constant, and y, = Y,.

b. p jtapi by (a), Now suppose

I » P > X
A
_N /p
z

3

with ; jtapi. Consider A xz____':_> xr, Since <p>jo~ = <j.p> = <p>

= <i> there exists i € <p> with j.i = i, Clearly i is not constantly
0 and so i is not constantly O. From (a), i jtapi., Since i mxjtapi

and j.:?. = i, j is an isomorphism, as we wished to prove, []
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2.5.12 Proposition. Assume (| wfp triple. Let (X,£) be a /[['-al-

gebra, let A >__j-—+x jtaps and let I‘)——i——}X jtapi., The following
statements are valid. :

a. A extends to a mxjtaps.

b. 1i extends to a mxjtapi.

Proof, a. H =if [t C X5z jtaps & T D A). 3 # ¢. Let
i
(Za) be a chain in }'P, I =4¢ Uza, with inclusions Za % X,

r
z>-—i——>x. Consider the restriction maps Xz__i—“—a Xzot. For all o

we have <i>pra = <ia>' It follows at once that <i> # 0 (a chain is
never empty). To show <i> is minimal, let p ¢ <i> - 0 and show <p> =
<i>, Since p is not constantly 0 there exist Oy1s 0, € I with P/{“l"’z}
not constantly 0, There exists e, with {o:‘l ,02} - Zao by the nested-
ness. Therefore a > o, implies <p/2a> = <i>, Let F C I be finite,
By the nestedness there exists a > ag with F C Lye As <p>pr_ =
<p/2a> = <i > there exists q e <p> with q/):a =i, soin particular,
q/F = i/F, As F is arbitrary, this proves that i is in the fine power
closure; <p> of <p>. As [} wfp triple, <p> = <p>. Therefore, <i>
C <p> C <i>, By Zorn's Lemma, & has a maximal element,

b, We have im i jtaps by 2,5.8, so from (a) there exists A mxjtaps
with im i C A, The inclusion map of A extends i and is mxjtabi by
2.5.8. [1

. X
2,5,13 Definition. Let (X,g) be a /[['-algebra and let I C X',

I“=df lpel s:pp=pé&pé 0],

2.5.14 Proposition, Let (X,£) be a ([[Y~algebra and let I be a
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(' -winimal right ideal in Ey, Then for every p € I and u € I%,
u.p = pj said différently, elements i’n‘ I are determined on im u for
any u g I,
Proof. Suppose pe I, u e I, Asu ¢ 0 and vu =u ¢ ul, ul & 0,
As uI‘ C IE C 1 and ul is a right ideal, we conclude ul = I, Therefore

there exists q ¢ I with uq = p, We have up = uuq = ug = p. [}

2,5,15 Proposition, Assume ([]) wfp triple. Let (X,g) be a ([[V-al-

gebra, let E = Ey and let 1 be a rﬂ_‘-minimal right ideal in E, Then
the following statements are valid,

a. If XI ¢Z0y then there exists u ¢ I* with Xu ¢ IOX.

b, The passage u — im u -establishes a bijection from {u ¢ I~ ¢
Xu @ 0g] to [4 C X : A mxjtaps & A{IXI & 0,

c. If A mxjtaps with inclusion map i such that A Nx1 ¢ 0y
then I — <i> C XA, p +— p/A is a ([[)-isomorphism,

de If J is a r]_P-minimal right ideal in E and if there exists
X € XIﬂ XJ with x ap pt, then I = J qua (TP-algebras.

e. If XI ¢ Oy then every /[[)-endomorphism of I with non-zero
image is an i;omo;:phism.

Proof, If XI g= O ‘there exists x ¢ X with xI ¢ 0, By
2,4.7 (£f), x ap pt. Hence {x} extends to a mxjtaps by 2.5.12., Hence
whenever XI & 0, [A C X : A mxjtaps & A/) XI ¢ 0] is non-empty.

Now suppose A mxjtaps, A N X1 € 0. Let A >——i—-»x be inclusion,
and let 1 —°>— % be the restriction homomorphism p +— p/A. As
XX_E;A_.>X maps E = <1X> into <i>, we have Ig < <i>, By hypothesis,

there exists x € A and p ¢ I with xp ¢ O, It follows pgz = p/A is not
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constantly O, As <i> is minimal and Iz # 0, ¢ is onto. This implies
that there exists u € I with u/A = i, Clearly A C im u; we show in
fact that A = im u as followsf let x ¢ Xi If x € A, surely xu ¢ A,
Otherwise, suppose x € X = A, Consider the restriction homomorphism
Xx__x—>x(A v {x}). As A jtaps there exists y € A, ¥ £0, Asyu=y,
we have u ¢ 0, <u> = I and u/(A U {x}) ¢ 0 from which we derive 0 #
a/(s U {x}) > = <u>y = Iy which proves <u/(A U {x})> is minimal, Since
i has no proper jtap extensions, necessarily u/(a U {x}) fails to be

l-to-1l, But u/A = i is l-to-l. So there exists § ¢ A with xu = §u =

§ ¢ A. This shows im u = A, Since u/A = i we have in fact that uu

n
[
.

Therefore u ¢ I* and in particular (a) is established,

Now let u ¢ I” with Xu ¢ Oge & >—i—)X =4¢ im u. Consider

1 _C__) <i> C XA, p ~ p/A. Clearly <i> # 0., uu = u implies u/A

i and hence Iz = <u>g = <i> and <i> is minimal, which proveé A jtaps.
‘By‘ 2,5.12 there exists A mxjtaps, A C A. As proved above, there exists
Ve i‘withimv=7&. For all x ¢ X, xu ¢ A C A so that uv = u, By
2,5.14, uv = v, Therefore A = imu = im v = A and A mxjtaps. The
proof of (b) is complete.

To prove (c), let A >——i—>X mxjtaps with A 1 XI ¢< 0. We have
already observed that 15 <i> C XA, P - p:/A is onto, and that
there exists u ¢ I" with im u = A, Hence if p,q € I then p/a = q/A
iff up = uq iff p = q (by 2.5.14) and ¢ is an isomorphism. To prove
(d) extend {x}to a mxjtaps A (1: X and observe that A [) XI &= 0 and
A1 X3 & 0 so that by (c) I= <i> =J,

Finally, we prove (e). We assume XI = 0 so there exists A iC‘ X

mxjtaps with I = <i>. Let «<i> —f L d>bea (T ~endomorphism which
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has a non-zero image. Clearly f is onto. We must show f is l=-to-l,
In view of 2,4.,4, and the facts that f commutes with unary operations

and that E = [£8 : g ¢ G] we have commutative diagrams

<i> £ — <i>
L-Op l-op
<i> £ y <i>

7

for all p € I, Also there exists unique u ¢ I* with im u = A, We have
if = ({,u)f = (if).u so that im if C im u = A, Since if £ 0 it
follows from 2.5.,11 (b) and 2.5.8 (c¢) that im if = A, Let p ¢ I. By

(¢) there exists unique p € I with i,p = p. Therefore pf = (1.p)f

(if).ps 1f q € I with pf = qf then if.p = if.q. As im if = A, p

p/A = 8/a = q0 ]

2,5,16 Proposition. Assume ([} wfp triple such that ¢T = ¢. Then
if PT has a minimal subalgebra U, U is a universal minimal set.

Proof. Suppose such U exists, If M is a minimal rT-I_‘--algebra
there exists U>— PT—M which is necessarily onto since "non-zero"
means "non-empty"., PT = Epp by 2,4.2, Let i < Epy correspond to U,
Then U is a minimal subalgebra and hence a r[_P--minim.a]. right ideal by
2,4,13, Clearly (PTYU C PT # ¢ and hence it follows from 2.5.15 (e) that

every ([])-endomorphism of U is an isomorphism, The rest of the details

are clear. []

2,5,17 Definition, Say that a ([['-algebra (X,£) is weakly distal if

- for every p € EX - 0, p is l=to-1, Clearly distal implies weakly distal.
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2.5.18 Proposition. Assume (TP wfp triple., Let (X,£) be a

[T} ~algebra which is weakly distal, If there exists a (T -minimal
right ideal I C Ey with XI & OX’ then (X,£) is distal.,

Proof. Suppose such I exists. By 2.5.15 (a) there exists u e 1°,
Since u ¢ 0, u is 1l~to-1l, For every x € X, xuu = xu implies xu = x and
u= lx. . But by 2,5.15, X = im u is inxjtaps. Therefore E is minimal,

As our hypothesis on I makes 1, = 0 impossible, by 2,4,18 we are done. []
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'§2,6 Tripleable abelian categories,

2.6,1 Review of additive and abelian categories. The reader is assumed,

in this section, to be familiar with the elementary theory of additive
and abelian categories, We sketch here only a few basic definitions;
see [10] and [26] for detailed accounts., Let /A be the triple of
abelian groups over sets and let )’{ be a category. K is additive

if K is legitimate, has finite products and coproducts, and there
exists a functor )’{ oP ){ —> g"‘ whese composition with 2 s

= (-,-))’{ o The third condition says that each (X,Y)K is provided
with an abelian group structure so that composition distributes over
addition on the left and right, If K is additive it has the following
properties., K has a zero object 0, that is an object which is at the
same time initial and terminal, If X, Y € obj )’{ » the unique zero
map X—%Y =qf X 0 - Y coincides with the identity of the abelian
group (X,Y)K . That product = coproduct is true in the finite non-empty
case too; if X, Y ¢ obj K there is a direct sum system

Y Y
T, [0.11/.

\
X @ Y
/ \
/(1,0) . [1,0]
X : T~x
with X}|Y = X®Y = X x Y, Injections are defined in terms of projectioms
and vice versa as the notation indicates, If (x, y) : X > Y ¢ )’{ then

x+y= x DD yex Byl v o x &Y yey_ LI 4

-1 -1
-x = X sK > 37 = X > 3y >Y, where (-1) + 1 = o,
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Every object in /L{ is an abelian group object; that is whem X ¢ obj A
is equipped with addition X@X ﬁl—-& X, inversion X -;1->X
and zero 0 + X, then the usual diagrams commute (cf, 1.1.6).
K is abelian if )’( has a 0 object, )’{ ha;s finite products and

coproducts, every K -morphism has a kernel (=4, ker f, =4; eq(f,0))

and a cokérnel (= 4

o cok £, =;. coeq(f,0)), and every {mono}{epi} is

normal (= af {=ker £}{= cok f} for some f), Every abeliamn category is
additive.
For the rest of this section fix a triple rIT‘ in S » and let A

be the triple of abelian groups.

2,6,2 Proposition, The following statements are valid.
g m, Al

a, is an abelian category.

Sm’ Al ——V—>Q/A creates 0

b, The underlying group functor
objects, o maps, cokernels, direct sum systems, exact sequences and in
fact all lim's and finite lim's.

c¢s Epimorphisms are onto in C.SIT’ /A].

Proof, 0 =4 (P, PT > P, PA > P) is a terminal object in g™ Al,
If (X,£,a) € obj S)[ﬂ’ /A]. then 0 —-o——>(X,a) is an A-homomorphism;
it is also an /A -operation, hence a (|['-homomorphism. If 0 -—x—>(x,£,u)
is a rTP-%\ ~homomorphism it is an /A\ ~homomorphism in particular so
that x = o, That V creates 0 objects and o maps is now clear,

Let (X,£,0) —t  %,E,5 ¢ SMAl 4 e x,8) — (0,0)

a
=af cok fin S . From special knowledge of abelian groups, we may

write X —i—) Q= X —S——)i/R as the coequalizer of its kernel pair
(in S) R Pl X where R = [(x,vy) Xx Xt x im f] and pr
____,prz 2¥) € : ye p i

is the ith projection X x X —-—)5( (i =1, 2), Factoring f =
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i T
(X,8) —>»(m £, £5) > (X,8) ¢ S~ and observing that the A -oper=
ation X x X ——X is a r]_r‘—homomorphism, we have that R inherits a
unique r—l_]-‘-struct:m:e making pr,, pr, rH’\—homomorphisms because R is

just the inverse image of im f under -. The top row of the diagram

gy —E-AT > XT at , QT
— 3
R
i PT, , % q .q
Pr,. ?

T
is a coequalizer in S (by 1.3.4) which uniquely induces 6. Hence
-~ - -~ 'n‘
there exists unique 0 admitting (X,E ,a)_.__‘.l__)(Q’e’m) € 5’( ’ /A)’
T
and (Q,0,w) € obj S[ » Al by 2.2,15 (a) since q is onto. We also

have q = cok f in g[’ff’. Al g [T, Al

as foll_ows. fq =0 in because
fq = o in SB, suppose (3{,3;&);-__?3__,(6,5,59) € g['“'. Al with fq =
o. Then there exists unique (Q,w) _t @, ¢ g”‘ with qt = q. ¢
is also a ‘TP-homomorphiSm because qt is and qT is epi (cf. the third

diagram in the proof of 1.2.4). This demonstrates that V creates coker-

nels,
{T, Al
To see that V creates direct sum systems, let X, Y € obj E;
and suppose given a, b
(1,0) (0,1)

X, > X X Y ¢ » Y

c b

1
1
!
1
i
¥
Q

Then there exists unique ¢ € S/A such that (1,0).c = a and (0o,1).c = b,
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and moreover ¢ =X x Y —E—X—P——> 0xqQ —+—-> Q. Since the A-operation
+ is a (][ ~homomorphism, so is c. This shows that V creates direct
sum systems,

All remaining details in (b) will follow from standard theorems
about abelian categories (and the fact that V creates 1<i_m's and images,
reasoning as in 1,7.4), so we will go on to prove (a). We have only to
show that monos and epis are normal, Let X——f——>Y be an epimorphism
in va; /A], and let v —3, Q =4q¢ cok f in '.S‘['n’ /A]. As fq = o and
fo = 0, q = 0. Since V creates cokernels, cok f = o in S/A, and hence
applying a well-known property of the category of abelian groups we see
that £ is onto (which, in passing, proves (c)). Since V creates kernels
and cokernels, the fact that f = cok ker f in S A implies that f =

g [T, Al g ['ﬂ', A)

cok ker £ in « If X>——i——>Y is mono in

, we do not
know & priori that i is l-to-l since our usual argument irut V preserves
monos requires V to have a left adjoint. However, i is indeed l~to-l

and i = ker cok i by dualizing the argument used for epis., []

2,6.3 Proposition. The following statements are equivalent.

a. Sqﬂ‘ is abelian.
T
b. S is additive,
.. M =T eA.
d. There exists a triple ([} in S with amn = M ®A .

Proof, 2 implies b, Every abelian category is additive,

b implies c. Each rﬂ\-algebra X is an abelian group object with
1,1 -
addition X@®X —-[—'—-1—4 X, inverse X ———X and zero 0 —2 .x.

The group operations are 'H‘-homomorphisms by construction, and
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(f®£).[1,1] = [1,1].f for each r[T‘-homomorphi_.sm f. Hence we have

d .
defined a functor S T_ ¢, 9[‘]1'. Al which commutes with the underlying

]
=1 (m, A] 2 ST e the underlying gﬂ.—ObjeCt

gl™ Al

set functors, Let

functor, Clearly §¢ = ls’ﬂ‘. Now let X € obj Let

m
XxX —X, X ——]l—>X, 0 —e-—->X be the operations corresponding

to X qua abelian group., Then m, i, e are r]_P---homomo!:ph:Lsms. As O

T
is initial in O , necessarily e = o and then X -[1—'01__; X x X 1{1 X

=1X= x,_[°_i!____)x>(x_'.n__)x_ is known, Since

x _ L1s0] S X xX < [o,1] X

T
= X_LLX in g » we conclude m = {1,1], i = -1 by the fact that inverses
are unique in a group, This proves <I><~l> = 1,
¢ implies d. This is obvious,

d implies a. This follows from 2,642, []

2,6,4 Remark, If rnk(([])) < %{o, S'n' is abelian iff U is the
underlying set functor from the category of right modules over the
endomorphism ring of PT. This has been observed by Lawver [20], using

" [26, 4.,1], Hence if operations are finitary the only tripleable abélian
categories are the obvious ones, /'B ® JA = compact abelian groups.

A more exotic example is given by:

2,6.5 Example; lattice groups. Let /[]) be the triple for complete
semilattices described in 1.1.10, It is easy to show that if A C

T AT
(X,&) € obj S s <A> = [sup B ¢ B C Al. If A C (X,0,5) € obj 9’[ o)

with A < (X,0) and if B, C C A then sup B - sup C = sup(b - c :
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beB, c £:C) € <A> because "-" is a T -homomorphism, Hence all

//A\ _('H'\ bialgebras are A-’TP quasicomposite algeﬁras and hence

/A\ ® TP = MM ® /A exists. mk ([ ® A > Lf'fo’ because
)R is a [’ ® /A -algebra,

2.6.6 Remark, 2.6.,3 shows that a category which is additive but not
abelian is not t¥ipleable over any underlying set functor. For instance,
no set-valued functor from the category of torsion-free groups is

tripleable.

» . - . . ' L :
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" CHAPTER 3., _ TRIPLES IN A LATTICE FIBERING

§3,1 Lattice:fiberings over a category.

b
3.1.1 Definitions, Let 5 —-————%)’{ be a functor, An E -morphism

X—f——aY is cartesian if.the conditions:

in){

=2

He—— = —-N
H‘

fb
> Y Xb > Yb

induce unique 2 -_l—>x in g with hf = g and hb = ¢, b is a fibration
- ¢, k—Sw e K .
if for every Y £ obj s K——Yb ¢ , there exists Yo" —=—Y

f
€ 6 with fb = a and £ a cartesian morphism, Dually, X ——Y in

8 .is opcartesian if Z ¢ g x f ,vin g and fbea = gb in )'{
induce unique Y ——E——> Z in g with fh = g and hb = ¢, and b is an
opfibration if Xb __f‘__> K induces X £, Xa* opcartesian with fb =
 ae Say that b is a fibering if b is both a fibration and an opfibration.
For a comprehensive account of the theory of fibrations see the
paper of Gray [15] as well as the references cited there. The sort
of fibrations we consider in this chapter amj so much simpler than the

general case that we give an independent treatment,

3.1.2 Definitions., As noted in l.1.4, a quasi-ordered set (meaning

"<" is reflexive and transitive) may be thought of as a small category
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in which all diagrams are commutative, Hence we may ascribe functorial

properties to order-preserving maps, POS =if the category of partially

ordered sets and order-preserving maps which have a right adjoint. If

X, Y ¢ obj POS and if X-——f——aY is order-preserving, observe that an

order preserving map Y-8 5% is right adjoint to f iff for every

%€ X, yeY it is the case that x < xfg and ygf < y. CSL =af the

category of complete semilattices as described in 1.1.10,

3.1.3 Proposition, CSL is a full subcategory of POS,

Proof, Llet X, Y € obj CSL, X-——E——eY order~preserving, If f

has a right adjoint then f preserves sups since sups are coproducts,
Conversely, suppose f is sup-preserving, Define y -8 ,x by yg
=qf SUP [x ¢ xf < yl. g is clearly order-preserving, x < sup [x :
xf < xf] = x,fg and ygf = (sup [x : xf < yDf = sup [xf : xf < y]

<y ]

3.1.4 Definitions. Let EZ —-E——>}{ be a functor, and let K ¢ obj }{.

The fiber over K, =4, K  or Kb~1, =4f the subcategory of all g,-morphisms
f such that fb = 1K‘ Ky is always, in fact, a subcategory but may be
empty, If b is faithful, K, is a quasi-ordered class.
€ 2K order fibering over W
—_ is an order’ fibering cver if b satisfies the

the following three axioms,

OFl. b is a fibering,

0F2, b is faithful

OFr3, TFor every K ¢ obj )1/ the quasi-ordered class K, is, in fact,

a partially ordered set.
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In dealing with order fiberings, we think of an g -morphism as
a K—morphism which is "admissible", and use the same symbol upstairs

‘ 1
and downstairs; e.g. X <Y e K, iff X _._K—->Y € E .

3.1.5 Proposition. Let )'( be a category, Then there is a canonical

identification [order fiberings over }’{ ] e--—T-—> [functors from

H to Pos].
b
Proof., Let g _— K be an order fibering over )’{. Let
f g },{ . .
K >L >M € N, and let X € K,, Consider the diagram:
X £ Xf g X£
> > &
* s */*

X(fg)*é’ -

f
Xf*-—-g-ex(fg)* is induced because X — Xf_ is opcartesian, so

that Xf,g, -—l—> X(fg), 1is induced because Xf, — 8, Xf,g, is op~
: , . 1 .

cartesian, Therefore Xf*g* < X(fg)*. But X(fg)*———-——> Xf*g* is

induced as X _._f_g-—>x(fg)* is opcartesian, so X(fg) < Xf g .. By

OF3, Xf*g* = X(fg)*. In view of this oBservation we may define a

functor

H * 5 P0S

£ ’ fi
K——>L |

Ry —— L,

X —— Xf*

Xf, is determined uniquely, not just within isomorphism (for let g =

lL). f, is order-preserving as X < X'e K, induces:
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X > Xf*
1 1
f
| A |
X X f*
The diagrams
f f
N /
\ \ ,
AS1 £ £ /1
\,.- 7 \ /
/
* %*
Xf*f YE f*

*
prove £, —-] £, 1,=11is clear and (fg)y = f*g* has already been

proved, This defines T,

H

To define 1"}, let N POS be a functor and define

Hr~! as follows, Define a category g by obj g =af [(Kya) ¢t K g
obj K sac K] ((K,a) —ie (L,8) is an g-morphism =if

K — 5L ¢ K and <a,fi> < 8. Composition is defined at the level
K . 6 is a category and there is an obvious faithful functor

g b K. For every K ¢ obj K, (K,0) < (K,p) in K, iff

<a,lgH> < B iff o < B so that for all practical purposes K, = KH., So

f
far we have OF2, OF3; we turn now to OFl, Let K —L ¢ }{, and

U - - (K,G) € K*o 8 =df <a,fH>. Clearly. (K’a) —-—f—_, (L’B) € g‘ It
£ f
K——m—m—m—1L (K’a) > (L’B)
/ in K , and L7 in €
) h g
g ¢ &
M M,y)
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then <B,gH> = <<qa,fH>, gh> = <a,hH> < y proves (L,B) 8, M,Y) €
g. Hence b is an opfibration. Now let (L,B) € L, Let L*—-—f—>K*
be a right adjoint to fH. o =4, <B,~f>. As <o ,fH> = <B,§.£H> < By

(K,o) —f > @,8) ¢ €. 1f

K ) (Ky0) ———— (L,8)
N
in K, and N / in 5
g h g \\ h
M ‘(M,y)

then <y,gh> < <y,gH.fH.%> = <<y,hH>,%> < <B,'f> = o which proves

M,y) —i—;(K,q) € g". This completes the proof that 1

is well-
defined, While t, =} are not quite mutually inverse it is clear that
tr~1 and 1'11 differ negligibly from the respective identity functions,

which completes the proof. []

Note: <t as above is actually the object function of an equivalence
of categories, The range is the usual functdr category POS . The

corresponding morphisms of order fiberings are functors p
_ /
¢ ? — €
b b'

H

such that pb' = b and such that p preserves all cartesian and opcartesian

morphisms, See (15, 1.9].
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'3,1.6 'Proposition, Let g —b—-) l’{ be a faithful fumctor. The

following three sets of axioms are equivalent.
Set I, LFl., b is an order fibering.

LF2, K, is a complete lattice for all K ¢ obj )’{.

‘Set 1I, OF3 and

LF3. b constructs 1<i_m's and 1_1>m's (for the definition of
"construct" see 0,8),

« ->
LF4, b has left and right adjointnesses b —| b —| b

- -> 1 <« > 1
with bb = 1}{ = bb and adjunctions 1}{ ——bb, bb _——>1K'

¥ 1 1 > ) . +
bb ———-——>1€. ’ lg —=— bb:" (that is for every X € obj g » Xbb <
X <iXbB,)

Set III, LF2 and

LF5. b comstructs pullbacks and pushouts,
LF6, Every )’\/ -morphism K —f—>L has a lifting to an
€ -morphism X——f—eY.

D
Proof, I implies II, OF3 is subsumed in LFl. Let A——> £

4
be a diagram with A small, and suppose that K ___.i,., Dsb = l‘i_m Db.

% ‘ % G4
By OFl1 and LF2, define X =4f sup [Diz;i ] € K4o Since each Dit;i —
. X
Di € E y So is each X————1—>Di. If Y ————I—?Di is natural,

there exists unique Yb —-—g—-—ﬂ( € )'{ with fl;i = X3 for all i. Since

*
each Dici is cartesian, each Y —i—> Diz;i* € g -and hence Y —La X

€ g . This proves that b constructs 1p’s. That b constructs lim's
is proved dually, Lastly, we show LF4, For each )’{ ~object K let Kb

->
=af the least (resp., Kb =4¢ the greatest) element of K,. If K ——i—>L

“ 1 < “ “«
e K, B — ) —L 51b =K —L1b ¢ € so that

f ¥ f * f >
(K——L)b = Kb ——— Lb is well-defined., Dually (K —— L)b =4f
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- -> “~ >
Kb—-———f-—-—>LB is well-defined, That b, b behave as stated in LF4 is clear,

I1 implies III. LF5 is subsumed in LF3, LF6 is clear from LF4,

We show LF2. If X € K, Kg 14, X 1 >Kg € 8 by LF4, so that K,

“ >
has a least element Kb and a greatest element Kb, Let (xi tie1)

C K, be a non-empty subset, A4s (K —;—-—?K t i ¢ I) is amodel for the

-5
collective pullback of b of the Q ~diagram (Xi——l——ﬂ(b + 1i¢I),
1 .
there is a constructed pullback (s_up [Xi] —_— Xi + i¢ I). That
sup [xi] is the supremum in K, of IX{J is clear, Inf [xi] is constructed
« 1

dually as the collective pushout of (Kb ——->Xi).

111 _implies I, LF2 and OF2 are standing and OF3 is subsumed in LF2,

: £ > >

We must show OFl, Let K——L ¢ )’{, Y € L,. Define Kb, Lb to be
the greatest elements of Ky, L, which we may do by LF2, By LF6, there

exsits X1 ———f——-> X, € g « The pushout diagram

->
in }'{ of b of Kbe 1 X1 £ >X, 1is constructed in g as

> f > > f 1 2. F
Therefore Kb ———1b = Kb > Q >Lb € « Now b of

has pullback

R . . .
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PR
K y L
ll ll
14
K > L
which allows us to define Yf*—i—ﬂf by the conmstructed pullback
ve*o - _E Ly
1
I
a1 ll
Y
Kb £ . 1B

*
That Yf ———f——> Y is cartesian is clear, and b is a fibration, The

proof that b is an opfibration is dual. []

3.1.7 Definition and remarks. If a faithful functor £ —b;-e}{

satisfies any of the three equivalent sets of axioms of 3.1.6, then.b

is a lattice fibering over )'{ « b is then both a fibration and an

Opfib;ration in the sense of [15] and a "pullback stripping functor" in

the sense of Kennison [18]; (the latter is true with inessential changes,)

Our proof of "I implies LF3" in 3,1,.6 can; essentially, be found in [18],
If (K -——f-i——n(ib : i¢I) is given, define con® (K -—fl—a}{ib)

=af sup[xifi*__f_i_., Xi) € Kgo It is the smallest element of K; admitting

each f;, and a map into con®(K --—fi_-,Xib) is admissible iff it is
admissible followed by each con*(K __f_ii_,xib)__f_i___) X4+ Dually,

define cong(X;b _Bi_ 1) =4 inf[X4 -ﬁ-;)Xigi*) € Ly

The identification t of 3.,1.5 sets up an identification between
lattice fiberings over )'{ and functors from )’{ to CSL, as is immed-

iate from 3,1.3 and 3,1.6 (set I),

_
For the rest of this section fix a lattice fibering g ——-——9){.
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'3,1,8 Proposition. The following statements are valid,

a. € 1is legitimate iff M is.

b. For every small category A, € has lim's (resp., l_i;m's) of
type A iff }'{ does,

c. b preserves and reflects monos and epis,

g_@_f_;_ }’{ is a full reflective subcategory of g qith inclusion
-1; and reflector b, and a full coreflective subcategory of. g with in-
Cclusion g and reflector b,

a, If E’ is legitimate, sc is )'{ being a subcategory of g.
Conversely, )‘{ legitimate and b faithful implies g legitimate,

be f has implies }( has because full reflective subcategories
inherit lim's and full coreflective subcategories inherit l.i’m's. The
converse is clear from LF3,

ce b is faithful and has left and right adjoints. []

3,1,9: 'Progosition. Let X-——B——aY £ g « The following statements

are equivalent,
a, X—P2 Y is a regular epi.
b, X -—i—-»Y is opcartesian and Xb —P ,vb is a regular epi,

Proof, a implies b, Suppose

Xb P w h:
/
in )’{, and / in g
g h g /7 h
/
/
) Zb

h - ~
(p), there exists Y ——7Z with ph = g, and h = h as

Since g ¢ reg

d

¢
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X —P ,¥b is epi (3.1.8 (c)). Hence X —P .y is opcartesian,
To see Xb ._p___,Yb is regular epi, let g ¢ regK(p). Clearly
X -8 .xg, ¢ regé,(p) so that there exists Y __.h__>Xg* with ph = g,
"Yb ——h——> Zb is the only )'{ -morphism with this property since : Xb —p—> b

is epi (by 3.1.8 (c)).

b implies a, Let X L>Z € regé, (p). Clearly Xb 2 .
€ regK(p), so there exists unique Yb —-h—-; Zb ¢ K with rh = g.

h
Y—Z ¢ g as p is opcartesian, []

3.1.10 Proposition., The following statements are valid,

a, b constructs regular image factorizations and regular coimage

factorizations,

b, 8 is regular iff /L{ is and g is LF-regular iff }{ is,

‘Proof. a, Let X-—L—>Ye € and let Xb P 5 1 > lﬁ‘Yb

o—

= Xb L;Yb be a regular coimage factorization in K. Then

X —f—>Y = X__P_-» Xp, >—1—> Y where Xp, _i__aY € E because

x-P Xpx is opcartesian, i is mono by 3,1.8 (c) and p is regular
epi by 3.1.9. The proof that b constructs regular image factorizations
is dual. ‘

be & satisfies LFR2 1€f M does and & satisfies LFR3 iff M
does by 3.1.8. By 3.1.8 (c), 3.1.9 and (a), g satisfies LFR1 iff
)’{ does, Let X ¢ obj g , and let F be the class of epimorphisms
with domain X. As b preserves epimorphisms, GJ:b is a class:of epi-
morphisms with domain Xb, If 14 o 1s a representative set for ?b,
R =4f [Y —f—>Z € g : Yb ——f—b—-—>Zb £ ﬁol is 3" representative

(7
set for JL‘ « It is a set because @?0 is and because each K4 is a set.
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If X —f——>Y € TF there exist H ~isomorphisms «,8 and K8 ;1
€ RO with £.8 = a,g. Because X ——0-‘—>Xa* and Y —>YB, are op-
cartesian, Xo, ——a—.——-—ﬂ(, Xoy _g_+ Y8, and Y8, —611—>Y are f -
morphisms., It follows that X ——f—>Y is isomorphic in E" to
Xo, -——g—-). YBy € (R . We have shown LFR4 for )’{ implies LFR4 for g .
That REG4 for K implies REG4 for g is proved similarly, noting thatA
b preserves regular epimorphisms by 3.1.9.. Consider }’{ as a full
subcategory of € with inclusion b. )’{g is a union of g -isomorphism
classes, As gb = IK s as every K E-morphism is opcartesian and by
3.1.9,. ; preserves regular epimorphisms. ; preserves epimorphisms as
(l;b = 1K and b reflects epimorphisms, It is now easy to see that LFR4

for g implies LFR4 for }’{ and that REG4 for g implies REG4 for

)’{. The remaining details are clear. []
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'§3,2 ‘Examples of lattice fiberings.

3.2.1 Examples trivial lattice fiberings., Let K be a category and
’ £
let F be a complete lattice., The constant functor )‘{ —CSL, K—1L

+— F -l—>F induces the trivial lattice fibering with fiber F,

KXF_L))/{-

3,2.2 Example; sets and relations, Let k be a non-negative integer

and let n be a set, g(n,k) =4¢ the category whose objects are
[(X, (3:) ¢+ X ¢ obj S y F e Xnojk]’ where (Pk is the k™ iterate
of the power set operator 03. X — Zx. An’ S'( n k)-morphiém

1
(X, ?) —f->(Y, ;Zj) is a function X —£ such that ?(fn)

IS (n,k)

C vb. Composition is the obvious one, ° =df the category

such that obj s(“'k) = obj S(n K)* I;Ut & F)LE,0,dd) is
1 4
admissible if £)(£M=! C F. There are obvious underlying set
k
functors S(n'k) b(nok) S ’ S(n’k) —-Ln’-)——y g « The
1 4

proof that these are lattice fiberings is easy; we tabulate the main

constructions:
®(n,k) (1,1
&, F) < X, D) FC Y H CTF
sup [(X, F})] (X, US? (&, ﬂ‘}“i>
inf [(x, Fp] & (NF) « UF )
&, Fre, v, DM (¥, [A: AED" ¢ F D
@, e &, & MY &, &Y

For the rest of this section fix a lattice fibering € __,_b_..__.,»,){.
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'3.2.3 Proposition, Let go C é‘ be a full subcategory such that
for every K ¢. obj K » K, =4f Kx N 80 is, under the subset partial
order, a complete lattice with ieast elemgnt 0(K) and greatest element
1(K), Assume further that for every )’{ -morphism K -——f—>L we have
that 0(K) —f-4-)0(L) £ g, and that 1(K) —fﬂl(L) € f. Finally,
assume either of the two hypotheses:

a, For every K——f_>L € K and for every Y ¢ L,, Yf*—i,Y € €0.

b. For every K'—f——>L € ){ and for every X e L, X—;f—;Xf* € € 0°
ten &, 20 K = b/ € is a latrice fivering.

Proof, We prove LFl, LF2, Everything is given except OF1 which
we prove now, Let K —-sf—-—->L € K. YelLy If (a) is assumed, then

Yf*_—i—-—,Y is cartesian with respect to b because go is full, Other-

wise, assume (b). There exists a lifting X f—')Y e € o» namely

0®) —f  0(L) —1 Y. Define YO =yf supKo[X e Kyt X £ v 80].
Clearly v£° < ¥£* = sup, [X € Ky : X £ v £, s0v0 —f ,y=
e *
on lA,Yf* £ >Y ¢ E. Now suppose:
Zb Z
gl h in K, and. gll h in go.
f v ¢ f
K——— 1L Yf———Y
Consider,
z_ 8 . 7g, ______f____,Y
( 2
1 ! -
, LT f
YE

Z——g—>Zg* € Eo by hypothesis, and is opcartesian in €0 » SO that
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Zg*-v—f——aY € “CO' By the definition of on; Zg, 2 on. It follows
L ;on € 80, Hence by is a fibration. The

that 2 _& ,Zg,

proof that b, is an opfibration is dual, []

3.2.4 Applications of 3.2.3 to 3.2.2.

3... Topological spaces C S1,2)
b. Uniform spaces C g(z’z) .

c. Quasi-ordered sets (C g .
(2,1)

d. Measureable spaces (=df sets with o~ring thereon) and

measureable transformations g(l’z).

, op
'3,2.5_Proposition, E’ OP_B__Q)'{OP is a lattice fibering over

S K

. b Gy
3,2,6 Proposition, If € —_— j‘, cj_: —-—‘-:—eﬂ are lattice

fiberirigs then so is f Lﬂ. :

Proof, LF3 and that bc is faithful are clear and LF4 is easy
with (Ezf Zf,', be = cb. To show OF3, suppose Xbc = X'bc and X < X' < X,
Then X¥b < X'b < Xb in (Xbc)c~! so that Xb = X'b; then X < X' < X in

Xbb~! and so X = X's [}

: - A =0
3.2.7 Proposition, Let A be a small category. Then E ——-—b—_;}{A

is a lattice fibering over )‘f A.

Proof. LF3 is clear as limits are constructed pointwise in functor
< >
categories, LF4 is easy using =-ob, -ob, If 0, ¢ (F,G)n,t., and if

ab = gb then o = B since b is faithful; therefore =‘;b is faithful, To
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A
prove OF3, let G € obj )’{ + G, is a set because there is an injection

G, ™ s (xel| €| :
i+jed . , 4
H, H' €.G, with H < H' < H, For all i ¢ obj 4, iH < iH' < iH, so H = H'

iG] x [X € | El : Xb = jG}). Suppose

on objects. As H.,b = H',b and as b is faithful, H = H',  []

{§]
3.2.8 Proposition, Let R = K be any K -valued functor and |

construct (the usual model in the category of categories of) the pullback

-

B

b

1
|
| | s
" X
ﬂ U
Then b is a lattice fibering over dQ .

Proof. Let )’{ -—H————> CLS be the functor corresponding to b,

It is easily checked that f) is the lattice fibering corresponding

to R L > K B, cus. (1
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§3.3 Lattice fiberings over sets,

: . b
For this section let g E— S be a lattice fibering over g.

3.3.1 Proposition, € is legitimate, has l}_m's and l_i;m's and is
regular and LF~regular, Because all epis and monos in g ae regular,
for each & -morphism f, f is cartesian mono iff f is an equali_zer, and
f is opcartesian epi iff f is a coequalizer. []

i

3.3,2 Definition, If A »>—— X is a "good" subobject = _ equalizer

af
= cartesian mono in € write "A << X." Observe that if X ¢ obj £
and if A >——j-'-—>Xb then A << X canonically via Ai*-—i—-> A, Think

of relativization of subsets of a topological space,

3.3.3 Review of autonomous categories. A set-valued fun;:tor
R ___I_I___> S together with a lifted hom~functor R %P x A —-—E{Eh—'l—) R
and natural transformation (-,—)ﬁ X H(;M.U is autonomous if the
following five axioms hold:

Al, ﬂ is legitimate,

A2, U is fgithfnl ' v

A3. vy is au naturai equivalence

A4, HOM is coherent in the sense that for every A,B,C ¢ obj R
the usual bijection (AU, (BU,c0) S)$ = (8u, (aU,c) $)S in &
sets up by restriction (and through y) an R ~isomorphism
(A, (B, QHOM)HOM « (B, (A,C)HOM)HOM natural in A,B,C,

A5, TFor every A ¢ obj A , the functor A (A,-)HOM ﬁ
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has a strong left adjoint JQ —ﬂ—-—aﬂ , that is there is an

equivalence natural in B and C: ((A,B)HOM,C)HOM = (B,C ® A)HOM,

For am account of the theory and examples see [22], The only
result we mention is the sugernaturalitz lemma of [22, 3.15}, which is
as follows, Let U, S be autonomous and assume further
that U preserves lim's. Let A —L L0 pea strong functor, that
is for all A,B ¢ obj R , the function -(A,B)A _i_’B__, (AH,BH) R
induced by H lifts to (A,B)HOM __Eélg__)(AH,BH)HOM. Then for all

A ¢ obj R , the inclusion of sets (through y):
((A,=)HOM,H)n.t, — ((4,~)A ,HO)n.t.

is onto. Hence ((A,-)HOM, H)n.t. = AHU,

U
3+3.4 Discussion. Let R —— S  be a set-valued functor. Two

questions arise natually at this point, namely: if U is tripleable,
when is U autonomous? If U is a lattice fibering, when is U autonomous?

The first question has been answered by Freyd in [11] and Linton
in t24]: 6R is autonomous iff ) = P ® ]’ (These proofs are
in the language of equationally defineable classes, but, as indicated:
in [24], it is still true when (||} has no rank,)

The second question has a pleasant answer: always. We prove this
shortly. Hence a lattice fibering £ -—Jl——>53 over sets has the
following properties:
| a. € is regular,

b, £ -morphisms are, in part, functions of sets.

cs (E,F)HOM is at least a subobject of the cartesian power PP,
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d. There is a Yoneda Lemma for strong functors via supernaturality,
This indicates that a 1afge part of the work in Chapter 2 might general-
ize to certain triples in a lattice fibering over sets, We will make

some indications in this direction in the next section,

3.3.5 Proposition. The following statements are valid,

a, If Xe obj & » and if ‘I‘—Lel\ is a function of sets then
XA__.PL, X e €.

b, If X -2 .Y ¢ € and 1f T is a set then Xr.“op—rYr‘ € g.

Proof, Recall how powers are constructed and use the proof of
2,1.5. [}
'3,3.6 Proposition, f 2, S is autonomous.

Proof. If X, Ye.obj € define (X,1)HOM =, (X,1) & << ¥ib,
I x'—f %, Y_B v £, then Y _fom08 XD £ 4
3.3.5, and maps (X,Y)HOM into (X',Y')HOM so that (X,Y)HOM —ft:‘E)(X',Y')'HOM
> g . Therefore &£°P « € __HOM € 1is a well-defined functor
and in fact HOM,b = (-,-)g so that we take y to be the idemntity nat-

ural transformation. To prove coherence, let X,Y,Z ¢ obj £ and define

¥x,v,z °7

¥x,Y,2

(X, (Y,Z)HOM)HOM > (X,Z)HOMYb

Pr
y

~oDX

(X,Z)HOM .

We may do this because for every y € Yb, -°pry is an g-morphism by
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3.3.5, If X __h___) (Y,Z)HOM € € then for every x € Xb,

<h’ \JJX’Y’Z> prx

Y 3 (X,Z)HOM , Z

= <x,h> ¢ E and hence, by the definition of HOM, we have <h'wx,Y,Z>

e (Y,(X,Z)HOM)HOM, Therefore we redefine Vg v.2 by
| B

| ¥x,v,2 - ¢ . ,
(X, (Y,Z)HOM)HOM — 2 * " (Y, (X,Z)HOM)HOM ¢ . By definition,

Vg y.z is just the usual interchange bijection (Xb, (Yb,Zb) § ) S
9 .

(Yb, (Xb,Zb) g ) S at the level of sets; since the latter is natural,
the former is forced to be, ‘pX,Y,Z_l = q’Y,X,Z is clear, This demon=-

strates coherence of HOM;
Fix A g obj £ . For all X ¢ obj £ define X® A =g
con*[(x _M__)X x At acgl) U(A _(3_’_1?__.,){ x At xe X)]. Hence

f
a function X® A ———Y 1is admissible in g iff £ is separately

admissible, that is each slice _f = A D oy aa £ Ly,
foex Lo |

a X x A -f—;Y is admissible in £ ; in effect,

X® A is a "universal bilinear junction"., & is in fact a functor in
f
both variables which we may see as follows, If X —— X', A 8 A

€ 2’ then f®g=dffxge ¢ as is seen from

1,2 (x,1)
X 1,2) 5 X x A ¢ ’ A
f fxg g
X! —> X' x A' ¢ Al

and functoriality is clear,

For each X,Y € obj E" define “X,Y € € by
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o
Y
(X® A, Y)HOM Xs , (X, (A,Y)HOM)HOM
PT_
(X,l) o=
v
(A, Y)HOM

E
Clearly ay y is well-defined as an g -morphism into (A,Y)HO b. If
]

he (X®A, Y)HOM and if a ¢ Ab then indeed

<h’ aX’Y> Pra (lia)

X >(AJY)HOM —— 5 ¥ =X — X ®A ——Y

€ (c_ , and so ay y takes values in (X, (A,Y)HOM)HOM., For all X,Y
9

¢ obj gdefme BX,Y by

B
(X, (A,Y)HOM)HOM X,¥ > (X ® A,Y)HOM
prx Pr(x.a)
/ pr v
(A,Y)HOM a Y

7

X
Clearly BX v is well-defined as an € -morphism into YXb Ab. 1f
] : i

h ¢ (X, (A,Y)HOM)HOM then for all a, x we have

(1,a)

(x,1)

X

<a,h>
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where h corresponds to h under (A, (X,7)HOM)HOM = (X, (A,YjHOM)HOM
and therefore 3X,Y takes values in A(X® A,Y)HOM, That o and B are
natural and mutually inverse follows from the fact that at the level of
sets, a, B are the usual equivalences (Xb, (Ab,Yb) g )S =

(%b x Ab, YB) S . []
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§3,§ Triples in a lattice fiber{ng.

For this section fix a lattice fibering E ——]2——9}‘{ over )’{, and

fix a triple q—P = (T,n,u) in )'{.

" 3,4,1 Remark, If b is tripleable then b creates isomorphisms so that

for every K ¢ obj K . kb ——-1——> Kb 1s an isomorphism, Therefore

K, has only one element, and in all essentials b is the identity functor

of K.

p(b,T)

' b
3.4,2 Definition. )’1/ (b, T) — g =4¢ the (usual model

in the category of categories for the) pullback

),{(b,'ll')___h__ o __?),{7?
| |

U(b » D T

g —° )E -

»D

An object in }*{(b , then, is a K—object K together with an § «
structure and a /[[Vestructure, but no relations between them; a
){ (b"rr)—morphism is a )’{ -morphism which is admissible both as an
‘ T .
. ? -morphism and as a )’{ ~morphism,

g (b,

: : b
3.4,3 Proposition, }{( s > )’{ is tripleable, and

T
K(bﬁn) —_— },{ is a lattice fibering.

Proof. The second statement follows from 3,2.8., The prove the

first, we define the canonical lifting of ([[' over b to be the triple
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. —

('ﬂ'\ = (T,n,n) defifned as follows, For every X € obj ¢ ’ XT =

df
6
con*(Xth-—E—>YbT —_—sY : X —i——>Yls g & (Yb,0) € obj }'{'ﬂ‘). If
X—2,xe &€, x DxnHT =43¢ XI _hT g7,
XT Mt xr T yr 8y
(h.f)T T
' i T L
proves that hT is well-defined, Therefore E' —_— € is a functor
with T = bTs For X e obj €  define Xn =3f X ——XLXT. The diagram
£T 8
X Xon y XT — YT — Y
Ybn
f 1
Y

i - -  XbM -
proves Xn € g « Noting that TTb = bTT, define Xy =df XTT —— XT.

Xy € ¢ by the definition of (XT)T. That (] = (T,5,7) is a triple
in g is now clear. To complete the proof, observe that the passage
(X, X-——§—>X) b (X, XbT ——g———;X) is an isomorphism of Ujr

with U(b'm . []

For the balance of this section, }’{ =4f S.

f b
3,4,4 Definition, & [b,T] =4 the full subcategory of S( ™

3

generated by [(X, XbT ————X) : for every set n and for every g ¢

rﬂ—‘.(n), Xnig—ﬂ( € 8 ]. U[b’.n'] =df U(b’rnl) restricted to g[b,'n‘l'
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{b,T b
3.4.5 Proposition, S ! is an LF-Birkhoff subcategory of 97( ,’]I‘)’

[b

and hence U T is tripleable,

Proof, Fixmeobj S, ge Mn). If (X,8) = TT(X;,E) in
g[b:'ﬂ']

g(b’n), with each (Xi,gi) € obj , then
x* pry” , X1
O §

g® gig
X P > Xy

shows that £8,pr, ¢ € for all i so that ¢3¢ C . Therefore g(b,T]

is closed under products., A similar argument using the diagram

iﬂ
AR — X0
g
leo g8
i
A y— — X

» 1]

shows that S [b is closed under relative subobjects. Let

S (b,m)

(X,é) -—P——-»(Y,e) £ with p split spi in 6 » and with (X,£) €

gis
S b, ]. There exists Y-——s——->X € € with sp = ly. As sn.pn = lAn'
p” is split epi in E . It follows from 0,4,2 and 3.1.,9 that

n
Xn__p___; ¥ is qpcartesian in E. The diagram

n
' P >y
g8 0%
X P > Y
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then shows that (Y,0) e g[b'lm. []

~

‘3,4.6 Proposition, Let ‘H‘ = (~T,;1 ,u) be the triple in € corresponding

—_— A ~
to S LI the pointwise onto OPTR-moxphism ([} —— (]} of

1.6.,4, The following statements are valid,

a, T is a strong functor,

b. TFor every set n the passage (1 T Dnets — (1" Tn.t.
S s g »

defined by lS n__‘ol-—;T b lgn g A,E A LT is onto,

Proof, a.  Let X,Y ¢ obj 8 » We must show that
Tx,y

(X,Y)HOM ?(X’i‘,Y"i‘)HOM is an g-morphism. Before proving

the peneral case, assume that for some structure map 6, (Y,8) & obj

Eslb;nl'

- ~ - XA ~ -
let X ¢ XT, As XT —» XT 1is onto there exists x ¢ XT

- X
with <x,XA> = %, Let 1 g ___5__9 T be the unique natural transformation

such that <1X'Xg> = X, The diagram:

- £T

X e > YT sz —2% 7
6
£
08 Y

: v _
and the hypothesis on Y prove that YX.___E—»YT is an € -morphism.
pro} p

Y

Let k = df the restriction of Yg to (X,Y)HOM. By the Yoneda correépondence
and the fact t.hat ) is natural, ;qe have k.Y) = <x, (-)T,Y}o = <X, XAo (=) T>
= <X, (-)T>. It follows at once from the diagram at the top, left of the
next page that T %Y is ah € -morphism, The genei'al case then foll;aws

]
from the diagram at the top, right because (YT,Y}) ¢ obj g[b’m,
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Tx,y . ' T,y .
(X,Y)HOM ——2—— (XT,YT)HOM (X,Y)HOM — (XT,YT)HOM
k Pr -o¥n -oYy
- YA ” ~ T Y':[" v
YT > YT . (X,YT)HOM X, > (XT,YTT)HOM

b, Let n be a set, Clearly (1 S)n = (nb, -)HOM, By (a), we

-~ ‘-~
have the supernaturality bijection (1 gn’ T)n.t. = nbTb, The surjection

\

- nAb ~ ~
(lsn,T) = nT = ngTb - ngTb = ((lg )n, T)n.te

is easily checked to be the desired one. []

3,4.7 Discussion., Let (ﬁ_‘ .L,(ﬁ" be as in 3.4.6, Let (X,g) ¢
5bj 8“ and let X ¢ X.'i?._ There exists x ¢ XT with <x,XA> = X and there
exists IEX___g__y’f with <1y, Xg> = x. By 3.4.6 (b),
lg X 8 ,5 -—}‘——e'}: indeed has £ -morphisms for components. It
follows that there exists lg X——C—) T with <1x, X¢> = X, namely ¢ =
é.A. This crucial fact sets the stage for generalizing the theory of
~

Chapter 2 to triples of form 1”‘. A deeper analysis must wait for a

later paper,

3.,4,8 Applications of 3,5.5, The forgetful functor from topological

groups td ‘topological spacés is tripleablg. Notice that we have proved
the existence of a free topological group over a topological space.
Similarly, the forgetful functor from quasi;ordered groups to quasi-
ordered sets is tripléable, and there exists a free quasi-ordered group

over each quasi-ordered set,
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3.4,9 Example: topological linear spaces,- The category, CV, of
b,
of § (b, ],

topological linear spaces is in fact the full subcategory
for 8 = topological spaces and S T = real vector spaces, generated
by those Ve obj S (b, for which the action IR x v 2 v is
continuous with respect to the usual topology of IR « To show that
GV is closed under products and relative subobjects use the same
diagrams as in 2,3.6, Let X _P_, Q¢ S,[b,'ﬂ] with p split epi in

E , and with X an object in GV. We have the diagram:

1 xp
Rx x — IR x ©
a Y
.
X > 0 .

As 1 x p is split epi, 1 x p is opcartesian. As o is an € -morphism,

so is v, []
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