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INTRODUCTION

In 1955 Buchcbaum shoved that an additive category in which exact
sequences heheve reasonably, enjoys many of the same proparties as the
category of abelian groups [1] and [2] . 1In particuler, he showed that a
theory of derived functors could be established for such "Exact" categories.
Since thet time, a great amcunt of empirical evidence has been accurulated
that virtwlly any statement about exact diagrams true for abelian groups is
true in erbitrary exact categories. It became natural to ask whe‘t;her this
fact could be formalized into a metatheorem, The advantages of Bsuch a
metatheorem are clear: first, it would eliminate the need for the many
laborous categorical proofs that seemingly bear no relation to the eclazsical
elemental lproofs; and secondly, it would establish in advence an unending
supply of lemmes as they become needed,

| \In Chepter One of this work, we prepare the ground for proving such
a metatheorem, We prove that it suffices to construct a group-valued :E*u\nctor '
from a given categoiy which will carry exact sequences into exact sequences
anl carry non-exact sequences into non-exact sequences, Severél metetheorems
for categories which adinit sueh funetors are prcved, the last of which applies
to certain existential theorems, There 1s considerable overlap bectween the
moterial in Chepter One and that of Grothendicek [3].

In Chepter Two we prove that every smull exsct category ( cre in
vhich ‘the objects form a set) admits the desired type of functor. The proct
is reminiscent of the Murewicz-Wallman proof that finite diwmensional spaces
can be esbedded in Euclidean spece [ 8] . Recall that they considered

n + 1

the space of maps from an n~dimensional X +to E?' s metrized in such

a way as to produce a couplete space, They then used the Baire theoren to
a5
. O -
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2
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prove that the subset cf embeddings is dense, in particuler, non-empty.,

, v Here, we will coneider the categoxy cof functors from a given category to the

j category oi groups. The objects are the covariant functors, the maps between
the objeets are the natural transformaticns between the functors. We prove
thet this cst gory is exact and iz "complete", that is, every system has a
direct and :!.nv;ars.e 1imdit, Next w2 prove that the functor categery has a
"arojective generator", a projective object with e non-zero map to every
object, We are then in a position to apply Grothendiek'!s proof of the
existence of injective resolutions, and we show that the injective envelope
of the projective generator is the desired functor,

| '_L‘lie tecimiques of Chapter Two will be seen to suggest very strongly

that a functor category can be viewed as a categéry of modules ovar a ring.-

Ve find ourseclves, for example, working with certain functors in the
game vay we work with torsion-free modules, One purpose of the remaining
two clmp’céz‘s is to determine just how similar a functor category is to a
category of mcdules,

In Chaptér TMree we stuly complete categories and the behavior of
functors which preserve linits - i.e, those which have bezn called continuous
funchors, We find here a striking similarity with Hilbert space theory.
Recall that a Hilbert space is a complete space with an additive structure
and a canonicel bilinear continuous function to the real nurbers. In
corplete sdditive categories we also have a canonical bilinear continuous
function - the "hom functor"., Given a closed subspace II' of a Hilbert
epace H , and an elemmt x € I we define the projection & of x into II!
a3 the elemert in H' closest to x, We can then verify that for all

X' ¢ W' it is true that (%x')=(%,x'), where ( , ) is the imner
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roduet, The analoguz in categories to closed subspaces is what we have
P

"

U4
termed "vefieetive! subcategeories, If cA is a reflective subcalegory of

3

A end A is an object in @A then it has a "rerlection” A in GA,

wbich, in & sense thot will be made eleer in Chapter Three, is the closect

chjeet to A in oA . We shall find that for any A'coA that (n,41) 5

is coronically iscmormhic to (A,A'()d\’ where (A,A') N is the group of
C.

waps from A to A' which are in QA' . We show that compactifications,
ccrmleteions, end tensor products can all be viewed as reflections, After
" chavacterizing reflective subcategorises and using it to give new proofs o £

the existance of the etove mentioned examples, we define, after Kan [ 4 ],

i
i
i
1
i
i
1
1

adjoinf functors, end characterize functors which have left~adjoints, Ve use
this result to derive enother striking analogue to IHilbert space theory:
if T is a left-conbinuous (commutes with left-limits), left-exact functor
Trom & complete catégo:cy»CA onto a reflective subcategory of abeliesn groups,
then thore exlets an object A e CVQS such that T is naturally equivalent
“to the hom ‘fﬁnc‘201* (4,-) « We use adjoints to define a generalized tensor
product: given an gbzllian group GE % an object A e G/\ s, C®A will
be an object in C’A « And again EA pleys 2 role smong complete additive
categories analogous to the role fhe space of real numbers play among Hilbert
spaces:" If T is right-continuous, right exact functor from é& to 0/4
then there exists an object A eM such that -T is naturally equivelent to
_ the functor - @A . Ve return to functor categorles at the end of Chepter
‘Three to prove thzt if a complete category (’/ﬁ nas a projective generator then
go does the category of functors frem an erbitrary small category QA to Gﬁ,

Tae full significance of this fact becomes apparent in the fourth chapter

i

. B i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IT

vhere we nrove that a complete exact category with a projective generator

and in ghich direct sums are naturally erbedded in direct products is

representable as a cabtegory of modules over a "super~ring", that is, a

1 ring in vhich certain infinite sums are defined. A module over s super-ring

inherdts a super-structure from the ring, and the maps we consider between

such modules are those which presexve the designated infinite sums, Our

-final theorem is that the category of n-variable functors from & given set
\

of n smell categories to a category of modules over a super-ring is itself

representable as a category of modules over a super-ring,

j

h -
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Conventions

A femiliarity with the fundamentals of categoriles and functors
will be assumad, Dy an EXACT CATEGCRY is meant a category as defined by

Buchsbaum [1] , axioms I through V (direct sums), A SMAIL category is a

assume that the class of subobjects and the ’class of image objects of any
object are both sets,

If A and D are two objects in an additive category, we shall
denote the group of homomorphisms from A to B by "(4,B)". If we hold
E the first varieble fixed we obtain what we shall call a COVARIANT HOM FUNCTOR
; and shall denocte as " mt " . To facilitate the description of diagroms,
to DI, If the second varisble of - (A,B) is held fixed, we obtain a
| CONTRAVARTANT TIOM FUNCTOR =~ I, o (A,B) is isomorphic to A, . A

Functor unless qualified as contravariant will be assumed to be covariant,

3
i
A
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category in which the class of objects is a set, For all categories we shall

we shaell consistantly write operators on the right., Ilence (4,B) is isomorphic



i | CHAPTER ONT

Section 1. Preliminaries

Given an exact sequence O — A' — A - A'' in an exac* category

n ; .
/%, and an object B Er:-A it is easily proved that the induced sequence

0 - (B,A') = (B,A'!)

is exact. This property is traditionally described by stating that the co-
varient hom functor HB is LEFT EXACT. We can equally well describe this
property by saying that the functor HB preserves kernals ___ if A' -» A

is a kernal of A - A'' then A'HB ->AHB is a kernal of AHB - A' 'HB.

As all additive functors, HB preserves finite direct products.
But unlike all additive functors H:B also preserves infinite direct products.
In fact, as is proved in [2], HJ3 preserves inverse limits, and hence is

whqt has been called a IEFD-CONTINUOUS functor.

The left-exactness and left-continuity of the covariant hom functor
are, in a sense vhich we will make clear, very similar properties. To be
precise, kernals and direct products are both special cases of a larger con-
cept:

/7

Definition. Given a subcategorygy(\ of a category(yq we say that

a family (X - A')} AMeok is a LEFT-COMPATABLE FAMILY from X over (y[\

1f for every (A]'_ - Aé) € QA the maps from the family yield a commutative

triengle X _ ¥ .

4
A LEFT-ROOT of w/4 is a left-compatable family through which every
- 3 cYa) . 1
other left-compatable family uniquely factors: If (R - A'} Ale (,JA\/ is & lefte

root and  {X "’A']A'e OA' is an arbitrary left-compatable family, then there

|

S —
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exlsts a unlque X -»R such that corresponding maps from the two families
: X.
yield commitative triangles ¢ ™A',

R
g We can study the left compateble femilies from an object X by

d
studying the maps from X to R, and conversely. Hence if CA consists of
V'
e set of objects witk .o maps between them, then & left-root of 0/4 is

i ”
; precisely the direct product of*all the objects in eA . The maps from Il‘A"

"Atgoh
; ’ PA_'
'z into ¢A  are the projections: Mg' > A . A map
Aleel
- Ppy
X - TIA! is completely identified by the set of maps (X — TA' —~Z>A1)

A's&’ A'EM

We shall spesk of these as the coordinate maps of the map X -1 A!,

It fyl\ consists of two objects A and A'' and two maps A %A"
and the zero-mep A S A"?

' then its left-root is the kernal of «. In non-additive categories it is con-

venient to work with DIFFERENCE KERNAIS. Given two maps Q, B: A - A'' the
difference kernal is the left-root of the sub category consisting of A %A”
and A gA“. Without Cenger of confusion we cen label this Ker(a - B).

Interzections may be viewed as left-roots. Given a family of sub-

objects of an object A, that is, monomorphisms [Ai —)A}iaI where T 1is an
indexing set, the intersection can be constructed by taking the left-root of

; the subcategory [Ai - A} ie7* It 1s easily verified that this construction

will agree with the lattice theoretic definition of intersection.

A category is said to be LEFT-COMPLETE if every small subcategory

has a left root.

Proposition l;If a category has infinite direct products and intera

sections then it is left-complete.

A
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Lesna, If a category has finite direct products and intersections
then it has difference kernals.

Proof of lemns, Let A %B and A E)B be two maps, A gglg-)bA X B

the map whose first coordinate is the identity map A e—)A and whose second

coordinate is @, and similerly let A £§5@2_> A X B be deftned., The inter- -
‘ section of the two monamorphisms A -(E!-g-)--> AxB and A gE;Q_,> A X B vhen

viewved as a subobject of A is the difference kernal of & sand B.

Lemme. If a category has difference kernals s infinite direct products

and intersections, then it is left-complete.

’
Proof of lemma, Iet c}\ be a small subcategory, P -the direct
product of all its cbjects.

7/
For every (A]'_ %Aé) EOA we let
. P o P
Ka - P be the difference kernal of the two maps . P ->Ai —>Aé and P "’Aé'

Let R - P be the intersection of [Ka —)P]ascA’ . Then it is easy to

4
verify that (R »P Dar),, of 188 left root of A,

Proposition 2.

If an exact category has infinite direct products
r then it is left-complete.

i Proof. By the above proposition we must verify that an exact

category with infinite direct products has infinite intersections. We con-

slder a femily of moncmorrhisms {A:'t —>A]I. For each i e I we define

A ->A:'L' to be the cokernsl of Ai - A, Let (AT Ai'} be the map defined by
I

+ Then the kernal of A - I A't ig easily seen

I

£ o
the family (A - A }I

to be the intersection of [Ai - A},
Proposition 3. If QA is a left-complete category C‘B an arbitrary

i
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category, then a functor T: c/‘\ - 0/9 is a left-root preserving iff T
preserves dlirect products and intersections. The proof follows quickly from

the proof of proposition 1.

Proposition 4, If (-/4 is en exact left-complete category, C’B
an arbitrary category, then a functor T: 0,4 - 913 is left-root preserving

iff it is left-exact, and preserves direct products.
‘ , (! :
7 Proposition 5. If e/ﬁ is an exact category, Q'B an additive

} category, then a functor T: @4 - 06 preserves left-roots of finite sub-

categories ( 1s finitely left-root preserving) iff it is left-exact and
sdditive,

Proof. Additivity cen quickly be seen to be equivalent with the
property of preserving finite direct products. The remainder of the proof
| follow frcm the proof of proposition 2.

i'he dual concept of RIGHT-ROOT wil; not be separately defined., Ve
point out only that cokernels, direct sums, and direct limits are exemples of

right-roots., Note that in en exact category finite direct products are

isomorphic to finite direct sums.

Proposition 6. If OA is an exact category, "'B an additive cate-

gory, vthen 8 functor T o/] - ‘9/13 1s finitely root-preserving (both left

and right) iff it is exact and additive.

We shall freguently use the following:

i P, A
Definition. A rectangle &l { 1is said to be a PULLBACK diagram
B -P
2

if the maps from Pl constitute a left-root for the maps between A, B and

i

i
1
{

J
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P2 ; 1% 1s & PUSHOUT dilagrem if the maps into P2 constitute & right-root
for the maps between Pl s A, and B, Given 4, B, P‘2 and the maps
between them, we can construct the pullback by first taking the direct sum

A# B and then the difference kernal of the two maps from A®RB to P

Pl = A 2
Proposition 7. I 4 is a pullback diegram in an exact
B - P2
category ang. B - 1?2 is an epimorphism, then Pl - A is an epimorphism,

Dually if the diesgram is a pushout and Pl - A is a monomorphism then B —» ]:"2

1s & monomorphism,

. Proof. Ve prove the second part directly., Letting o = Pl ~» A and

B=1I —-DB we consider the diagram
(? where il 12, Pl are the
; T
B i cannonical map assoclated
(ozil-ﬁie) | 2
0- Pl e A@B —— P2 -0 with direct sums
e P
| }\‘j. X 1
g b
; 0

The Vertical sequence is exact, and the horizontal sequence, by construction
of P2 s 1s right-exact., Since the diagonal map is a monomorphism, (ozil - Biz)

is & monomorphism and the horizontal sequence is exmct, Considering Pl

and B as subobjects of A@B we note that their intersection must ve

trivial, again because the diagonal map is monomorphic, Hence

i
B35 APDB - P2 is monomorphic which is precisely what we wished to prove.

A number of similar theorems mey he easily proven for pullback and

Fushout dlagrams, . The above seems to be the most used and the most difficult,

eproduced with .permission of the copyright owner. Further reproduction prohibited without permission.
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1
4"
- P

&« g

Proposition 8, If is a pullback diagram and B - P, 1is

2

- A
2

an epimorphism then the disgrem is also a pushout diagram, and dvally
Proof. Vie conslder the dlagram

Ko~
i \"Pl - A
W4
‘, B - P2

Where K —-B is a kernal of B - P

2 K - A is the zero mep and K,—>Pl is

P. »A :
the induced pullback map., If ,}l J \ commutes, then K-+38 -X 1is
; B - P2 \
5 X
the zero msp and there exists a unique factorization through the cokernal

of K-, i,e, through B->P, . The coomutativity of the triengle from

2

A 1s forced by the epimorphism P; — A

?

; Section 2. Imbeddings

Definiticn, An EMBEDDING functor is one which takes non-zero maps
into non-zero maps, Note that it need not be one-to-one on the class of
objects,
Theorem 9, If cA and Q’B are exact categories and T is an additive
funetor from M to @B then the following conditions are equivalent
() T is an embedding functor
(b) The naturel map from (A,B) +to (AT,BT) is monomorphic
(¢) T carries non-commutative diagrams into non-commitative
diagrams
() T carries non-exact sequences into non-exact sequences

7
b ”
; . (e) If QA is & finite subcategory of el and (R - A'?A,e £
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-T =

is not a left-root of oA , then {RT _)A'TA"Te( oA T
is not & left-root of ( EA” )T, and duslly,

Proof: The equivalence of (&), (b) and (e¢) is clear. To prove that
o4
(a) implies (a) we consider & non-zero map A -»B . The sequence

e e (a)T
A - A ->B is not exact, hence by (d) the sequence AT — AT —»'BT is not
"exact and (@)T is non-zero.

In proving that (a) implies (&) we consider the two ways in which
a B '
A' 5 A -5 A'Y can fall to be exact:

()T ()T
> AT —+AU'D 1g

First ap#£0 Then (a){B)T# 0 and A'T
not exact.
Second o p =0 but Im(x) is properly contained in Ker(p). Letting
‘ K—-A=ZKer(g) and A - P = Cok(c) we can restate the failure of

(o 20NN
A' 5 A > A'' to be exact 88 K-> A -F # 0, Applylng T we have

The disgonal maps are zero because T, as do all additive funclfors, takes
zero maps into zero maps, Wence  Im(KT - A’.[‘)(Ker( )T and
! Im(oz)TC Ker(AT - FT), Now if the horizontal sequence were exact then
{ Ker(B)T = Tm(c)T and
In(KT - AT)  Ker(B)T = Tn(e)TC Kex(4AT - FT)
irhich implies that the vertical mep is zero which contradicts the assumption

of (a),

L
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It 1s clear that (e) implies (d). We shall use (a), (b), (c) to
imply (e). Suppose that (R — A! bie C/q , 18 not a left-root of finite
M’ » There are three ways in which it can fail to be the left-root:

First, {R — A! A'e oA is not a compatable family over QA, .

7/
Condition (c) insures that (RT — A'T} is not a compateble family over ( QA )T,

Second, there exists a compatable family (X - A'}_,e A’
vhich factors through (R - A'A,e A but not uniquely., Condition (b)
implies that (XT -—;A'TA,Té( (ﬂ’ )T also has two distinet factorizations
through {RT —aA"I'A,Te( oA )T

Third, {ﬁ - A'A'e A’ 1s a compateble family, and for any other
compatable family 'bhére exists at most one factorization through R, but
for at least one (X ——}A'A,e Lvﬁ’ there 1s no factorization, We consider the

finite ddirect sum ZA and themaps R EZA' and X-Z A'

AlecA
defined by the families (R - A')} and {X - A') « The uniqueness

of the factorizations 1s equivelent to R - I A! being monomorphic, The
non-existence of a factorization for X is thus equivalent to the nap
X->ZA' 5>F #0, vhere F 1s the cokernal of R - X A' , The functor T
presexves finite direct sums; if XT can be factored through RT then the
Image of X'I‘.—é ZA'T would be in the imege of RT —-'% A!'T which is in
the kernal of £ A'T - FT proving that XT -5 EZ A'T->TFP =0 & contra-
diction,
s
Theorem 10; It oA 1s a subecategory of an additive catepory OA 3
/7
Al , - -3 1
- then (R preeq” 18 @ eft-zoot of e 12 (RIP (a )IIB}A,HBG( oA )i
| 18 a left-root of ( A’ )HB for every Be &§ .
Proof. = The proof is very similar to the preceeding, It will be

noticed in the preceeding proof that we could restrict the use of the fact

i
{

e R e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




=9 -

' Q
()P ;é 0 to single map o . Glven any non-zero map A - A''  we can

choose a D such that (oz)nB # 0, namely by letting B = A,

An o‘ojéct G e e/% is a GENERATOR if;f for every' non-zero mep
A-A'! there exists amep G- A such that G - A - A'! is non-zero.
Equivalently, G is a generator 1ff the functor IIG is an embedding.

Co~generators are defined dually,

An object P ee/‘ is PROJECTIVE 1ff for every epimorphism A — A'!
A ‘
and every P — A!'' there is e map P - A such that P i»}r comutes,
> ALt

Equivalently P is projective if:f‘ the functor HP 1s exact,

An object Q £cA is IWECTIVE iff for every monomorphism A' — A

A :
end every A' - Q there is a map A - Q such thst +:~r‘ Q commutes
A
Bquivalently @ 41s injective iff the functor H. is exmact,

Q
Imbedlings and Exact functors are in a sense converses of each

other: given a sequence O - A' - A - A'' -0 and a functor T, then
if T is an embedding
0 - (AT 5> (A)T - (A'')T >0 exact implies that
0-A" 5A - A" 50 18 exact
if T dis exact
0 A" 5A->A'" 50 exact implies that
0-»(A")T o (A)T - (A'"')T -0 is exact
This conversal relation is also epparent between projectives and generators,

most clearly seen in:

Proposition 11, In the category of left R modules, an cbject
A is a
Projective iff A sappears as a direct sumand of & direct sum of

coples of R

L
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Generator 1ff R appears es a direct summend of e direct sum of
coples of A

Proposition 12, An exact functor T is an embedding 1ff T

carries non-zero objects into non-zero objects.
Proof. For non-zero A ix-)IB we consider the factorization
A ZB =A->I-3B where A —» I i1s epimoyphic end I - B ie monomorphic.
Herce .M‘ - IT is epimorphic and IT - BT is monomoxphic and IT is not
ZeY0a |
Tus ()P = AT - IT BT £0 .
Corollary 13. A projective objJect is & generator i1ff it hes a

non~trivial Image in every object,

- Section 3. METATHEOREMS
The great majority of categories that have been studied to date
possess a projective generator or its dusl, an injective cogenerator. In
A category of modules over a ring, the ring itself is a projective generator,
Grothendieck hes shown that his categories of sheaves possess an Injective
co-generator, Such categories thus have exact group~valued enbeddings,
In this section we shall prove three metatheorems for exact categories
vhich admit exect group-valued embeddings. In the next chepter, we prove
that all small exect categories admit exact group-valued embeddings, whether
or not they possess projective generators or their duals, ‘ For the purposes
of this section we shall define a VERY EXACT ?:ategow as an exact ca.tegory .
which edmits an exsct group-valued embedding,

Metatheorem 14, If a theorem is of the form "P implies "

where P states that a certain diagram is commutative and exact in certain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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'piac'es end Q states that the same disgram is commutative and exact in certain
other places, and 1f the theorem is provable In the category of groups, then
the theorem is true in every very exact category.

Metaproof: We shall prove the contrapositive, Suppose that in
a very exact category ('A there 1s a diagram that satisfies P but not @Q
i,e, P does not imply @ in QA o Applying the exact group-valued
enbedding we would obtain a dlagram in g that satisfies P but not Q
since the exact enbedding will preserve the exactnesses and commutativities
specified in P, and the failures of exactness, commutativity, and
| rootedness as specified by Q Ilence P does not imply Q in % . ¥
We can Immediately elaborate the metatheorem as follows: .,

Definltion: A statement ebout a dlagram is CATEGORICAL if it states
that the diagram is commutative, and exact in certaln places and that certain
perts are left or right roots of certaln other finite parts of the diegram,
or negatively, that the diagram 1s not commtative or examct in certsin places,
and 't;hat certain perts are not left or right rocots of certain other finite
prarts of the diegram, or any combinatlion of such positive and negative
assertions,

Metatheorem 15. If a theorem is of the form "P implies @'

where P and Q ai'e categorical statements gbout the same dlagrem, and if
the theorem is true in the category of abelian groups then it is true in
every very exact category, #

Frequently in homological algebra a diegram is gliven and a map
is constructed from the disgram, The most noteble example is the connecting

homomoxrphism;

E: =
PSRN
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e If the following disgram of abelian groups is exact and commutative

0 0 0

i ¥ ¥

K'—> X ~—=% K'

ihl + {’ll —
b b o

0—% At ——b & = g1
\ 2 \ g {

Ft—— F ——-) P!
+ v v
0 0 0

then there exdsts a map K!'' - F! such that the sequence
Kt 5K K'"" 5 F' 5 F ->F'"' is exact, The map K'' - F' is defined as
Ktt - A'J'_ followed by the inverse of Al - A'i followed by Al - A
Pollowed by the inverse of A' - A <followed by A! -»F!, It is proved that
this composition of relatlons is & function (that it 1s everywhere defined,
and thet it is well defined) » that the function 1s a homomorphism, and finally
that K-K'' 5 F!' 2 F is exact,
The existance of a mep with the desired properties was insured by
the exactness and commubativity of the diagram, Our question is whether_j;‘l_}e”
same disgram in a category admitting an exact group-valued enbedding insures
the existance of such a map, We can rephrase the question, We define an
EXACT GROUP CATEGORY as & subcategory of the category of groups closed under
the operations of teking roots of finite subcategories, that is, one for
which the inclusion mep is exact. The question then becomes whether the
dlagram being in an exect group subcategory implies that the map constructed
from the dlagram is still in that seme subecategory, Ve need a few definitions,
Definition. ILet ¢l ve a subcategory o & . A and Be e

An QA'RHATION from A to B dis a relation from the set of elements of A

0 T
25 R
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to the sg‘t: of»‘ elements of B that can be represented as a compos:!.tion of
(‘A"MPS and inverses of M— msps, An @4 FUNCTION is an. @4 ~-relation
'bhé.t is & function. The questions in the above paragraph axe affirmatively
answered by |
Theorem 16, For M an exact group category, all @4 -functions
‘are @4 ~MaDPE,
To prove the theorem we need one more definition: A LEFT-SIMPLE
(3/4 ~relation is an @4-relation that can be represented as the inverse
of an @4 -mep followed by an 04 =TEP,
Lem, ALl @4-relations are left-simple - relations,

Proof of lemma, It is clear that all relatlions are compositions of

Miéfﬁ;s:f.mple relations. Hence by induction we need only prove thet the

‘composition of two left-simple relations is left~simple, We have the following

sltuation

a left~simple relation from A to D followed by a left-simple relation

from D 0 B,
q

P
Ve let + be & pullback diagranm,
g

Oe—Q

-3
Then the left-simple relation given by

PosC-A

e [

B

is the same as the above relation., Indeed, the left-simple relatlon given by
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P-C 1s the same as that glven by
’I"g . E -

o< o

Lemma 2, If a left-simple M relation ia an @A function then

it is an QA map.

Proof of lemma 2, Tet a left-simple relation be given by C-A .

¥
B

Tts being defined everywhere is equivalent to C - A being epimorphic, let

K- C = Kex(C »4) . That the left-simple relation is well defined is
equiva.ien'b to K=C—>Bw=0, Inparticuler for k eK(C , we note that

0 in A is related to the image of k in B, hence image of k iIn B 1is
0 . Dy the exsctness of the inclusion map of M into 'é , and the fact
thet C - A dis a cokernal of K —» C there exists a map from A to B

such that Z - A commites, Since € —» A i1s onto in the set theoretic
¥4
‘sense, the map A - B is equal to the relation,

The +two lermas immediately prove the theorem, #

TP we define CONSTRUCTION BY DIAGRAM CHASING as the process of
defining a map by composing the maps end inverses of the maps of a diegram,
we can state the following, the proof of ”whi'ch follows quickly from the
precéeding

Metatheorem 17. If a theorem is of the form "P implies Q' where

P gtates that a certain diaegrem is commtetive and exact in certain places
and Q states that certain edditionsl maps exist between designated objects
such that the resulting diagram is exact and commtetive in certain places,
and 1f in the category of groups the theorem can be proved by constructing the

maps through disgram chasing, then the theorem is true for very exact

categories,
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OHAPTER ‘WO
Funetor Categories
Section 1. Preliminaries
Given two additive categorieseA and 0/13 s ( (»4 )943 ) shall denote
the CATIGORY OF COVARIANT FUNGTORS from @/ to o3 . me cbjects of
( d,%) are the covarient additive functors from eA to ef3 » and the
maps sxe the natural transformations between the functors,
| We recall that a natural transformation betiween two functors
M -v, T C,A - Q’B is & function n from the objects of @4 to the maps
of 3 such that g s € (AT', AT) and all rectangles of the form
(a)m
Al'l" e AET'

oot @ 4 "a, commute,
AT = AT 5

A natural equivelence is a nstural transformation with an inverse, hence
one for which Ny 1s an isomorphiem for every A ee/\ . @4 will be
assumed to be small,

I 3{3 1s an exact category then so is ( oA ,eb )s Gilven a
natural transformetion 'q:Tl - T2 we cen define its kernal X - T, by

(A)X - (A)T = Ker ('qA)

ote thet a natural trensformstion n 1s a monomorphism es s mep in (eA/@ﬁ )
iff Ny is a monomorphism for every A 60/4 + In general, a diegram in

(34 ,e'fs ) is exact or commrtative iff it is pointwise éxact and commtetive,
that is, 1f en exact or commutative dlagrem results when the functors and

Datural transformations are evalusted throughout for any A, Ve can formalize
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this by introducing the EVALUATION FUNCTORS E,: (eA JQB),-»QJB .

(T)EA = (A)T (n)EA =1, A diagran in (@A) GB ) is exsct or commirtative

4£f 1ts image under all evaluation functors 1s exact or commutative, )
Allowing ourselves e little set theoreticel license, we can say

y _' thet the evaluation functors provide a cononlcal embedding

£3

mod A3, M) WE=F  for aAsD  (A)E, for

o s functor T 4s equal to ()T,

" gection 2. Iet R be a ring with identity, It may be considered & cetegory
with one object (the ring of endomorphisms of that object-is R). (R, % )
for 9 the category of abellan groups is then equal to the category of right

- modules over R: Every functor from R to &/& , sends the unique object of
R to an abelian group, and the endomorphisms of that object into the endo-
morphisms of the chosen group, Hence the objects of (R, % ) ean be viewed
as ordered pairs (G, R - End(G)) where G is an sbelian group and

- R-End(G) dise unitary ring homomorphism from R ‘to the ring of endo-
morphisms of G, A mep from (G, R - End(G)) to (G',R - End(G')) is a

 growp homomorphism G —» G' which commutes with designated endomorphisms,
or more conventionally, with ring multiplications. This ls precisely the
category of right R modules, I;z this and certain other cascs, we shall
weite (R, 85) us %sR.

Note that (R, (R, g )) 1is equal to (R, GJR,, g ) eand

G vt (m@Ry D) tseqmlto (R, P )@y P )

it _ R, ,
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fion 3. A contravar:lant functor T from QA to QB can be fectored
——f-“-‘—'_—
un:lq,uely through QAX' eA"*Q‘ﬁ = QA-)M* ->e43where D if the
contravariant functor from @ A to its dusl, and T° 4s a covarlent functor.
‘ ,A”natural transformation from T to T ylelds a natural transformation

| o from '.PD to mP Hence the category of contravariant functors from QJ’
%0 Cﬁ is cenonically isomorphic to (M* CB) |

A con‘bravaria.nt ﬁmutor T may also be uniquely factored through

| de . (’/1 ef3 = CA P GB*D 3,3 T, 1s agein & covariant

S ,:functor. A natural transformation from T to ™ yilelds a natiwal transe

"}forma'bion from TD to TD The twist arises from the twisting of the
meps of QB + Since the natural transformations are functions from objects
of @A to mays of C"»‘S the process of duslizing affects the pointwise
direction of the natural transformations only when the range 1s twlsted.

""ff}:I‘enc'e, the category of contravariant functors from @4 to Q’B 1s dsomorphic

:"fto (cASef3) end auat to (ed, of3%).
| (M*(*S) 1sdﬁalto(QAA,p'ﬁ%
| i‘”»sRepbrasing. (A, O/fB ) = ( GA* QB‘.) -we obtaln immediately

Proposition 1, The dual of % = (R, % ) is equal to

:':f_r; .,R*’ g *#)y  Since %* is representable as the category of compact

‘_f’-fabelian groups the latter can be interpreted as the left compact

; R modules : Compact abelian groups on which the ring operates continuously
 from the left, ¢

g .eetion L, Group valued functors
' Yoneda has proved that the group of natural transformations Prom HA '

" '1'.151=0 T 1s isomorphic to AT , [5] The covarient hom functoxs yield a
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canonice‘l contfava.ria.nt embedding of (\A into ( (’A,%) - an object is
aent into the functor H*, If we repeat this process we f£ind a covarient
;':‘i:"enﬂ)ed.ding Oa-—t( GJ %) - (( @‘ c‘gﬁ ) %95 ) which turns out to be
| 'k‘;'(r,_,ne.txrally equivalent to E, the evalustion embedding membion in §1 ..
| For an epimorphic natural transformation T — ™! we have
¢ - (r®, ') = AT - AT'!  epimoxphic, hence I is projective in
¢ Q,A Qéb ) and X HA is a projective generator, This is destined
 tobe confused with tﬁgdsepa.rate fact that I, reo I 15 an embedding of o4
‘ i'iﬁto Q)}, .
(4o T
Theorem 2, If T is an injective object of ( QA R % ), then
T 15 right exact. _ |
| ?mof- Given a right exact sequence A' 2A - A'"" 50 we consider
-’ the left~exact sequence of flmctors 0 -)HA” -oHA IIA » If T 1s
| "v.f,'inJective, ‘then the sequence (HA T) - (I-IA 7) - (H "y 20 ds right
'exnc'b. But this last sequence i1s equivelent to AT -a AT - AV'T -0 ,

henee T ds rlght exect,

Since ( (y{ R Qg> ) satisfies Grothendieck's axiom AB5 and has

E aflgenerator, every ébject can be embedded in an injective object. [31. Using
| the methods of Eckmemn [6] we can construct an in‘,j‘ective envelope for any

| fﬂ_'object, thet is, en embedding T-—Q @ injective, such that if Q'CQ

a.nd Q meets T -trivielly, then Q' is trivial, Mitchell has refined

: amethod which constructs the .’LnJeci::ive envelope directly without first con-
L g{gructing injectives [7] . _

o '.'Lhe‘orem orem 3, Ifo]{ 15 & small exmct category, the injective

envelope of E ol HA is an exact embedding, hence the netetheorems of
chap’cer one hold for Q/q
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Proof, If Q i1is an injective envelope of IIA then 1t is.

Aed

right exact, and an embedding since it contains an embedding, We must prove

o thet 1% cerries monomorphisms into monomorphisms, thet is, is & MONO FUNCTOR.
| Note that in the case (R, Cgb ) & monofunctor is a torsion-free
- :vvmoa.ule‘ for R a domain, We can construct the torsilon~free imege of a module
by faetoriﬁg out the torsion module, In essence, we repeat this process
:_‘-for ((/4 %) B
2 Given T e ( @4 A ) we define AKC AT as the elements of
A’l‘ wh ch are killed by (a)T for monomorphie a, AK = {X ¢ AT ; there

exists monomorphic A - B such that x(@)T = o.}

Lemms 1. AK 1s carried into BK by (B)T for eny A —-B.,

' 7
Proof of lemma 1, Iet xe AKX and A - C a monomorphism such

that x(7)T = 0. We construct the pushout diagrem which

E-
rE %7

Qe >
Wiy o

-

eccording to Proposition T is such that % is mwonomoxphie, Applying

_‘T ve obtain ‘_:T = _lf » Starting with x in the northeast corner, we
CT - PT '
arrlve at 0 ¢ PT travelling counter-clockwise, Hence x( B)T is killed

by (7)m
| Lemma 2, AK 1is a subgroup of AT,

‘ g
Proof of Lemma 2, Given x, y in AK , monomorphisms A -3,

7
~A->C such that x(B)T =0, y(7)I'= 0, we repeat the sabove proof:

B
0 A-B
N 2R TR VR is a pushout diagram in which all the maps are monomorphisms,
c ->P
B 67

- Heuce the monomorphism A->P is such that (x + y){B7)T = O.
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K 1s therefore & subfunctor of T, trivial iff T 1s mono,

- Bvery non-trivial subfunctor of K falls to be a monofunctor. Hence if

IS

:’,'1' - Q is an injective envelope of a monofunctor s then Q 1s a mono-
"'fimctor, since the K defined from Q must meet T trivially (every
’ srhfunCtar of g monofunoi-br is mnn)’ hence X is trivial, heace Q i=s

' @ monofunctor.

i
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CHAPTER THREE
8ection 1. Reflectlons
X 4
, Ve consider a category QA a subcetegory Q/( and an’ object
~ ’

Ae @4 o A REFLECTION of A in (.M ‘is an object Ae gA together wlth a
mep A= 2 such that every map from A +to an cbject in QA' uniquely factors
‘through A - A, 1.e, with the property that for every Ate @A’ and every

N A
mep A - A! there exists a unigque map (4 — A! )eo4’ such that A:\-L
Al

commutes, Ve can study the mesps from A into '..}’,‘,/ simply by studyiné the
meps in @4 from A, et 1s, (4,A¢ L4 18 sext isomorphicelly onto
‘(K, A'&A by‘ A -3, vheve ( s )@4, indicates the maps from A
to A' which are in of’ .
Some examples of reflections are
the following:
I We consider ‘gthe category of topological spaces, G the
subcategory of compact spaces, If A is & A'I'ychono:t‘f space, then
" its reflection in (o is its Stone-Ceck compactification,
II Let CM be the category of metric spaces and distance de~
creasing maps (weakly decreasing), G the subcategory of complete
spaces, Then the reflection of & mebric space A in 6 is its
complefetion. ,
IIT Let 06 be the category of ordered nalrs and singletons of
abelian groups, An object of OBis elther & group G or an
ordered pair of groups (G,XI). The maps will be linear and bilinenr:
& map between two singletons is linear, a map from a pair to a
singleton is bilinear, there ere no meps into pairs. lLet %:\ be the

subcategory or singletons and linear maps, The reflection of a
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palr in g 1s then its tensor product,

v Let Q be the category of R modules and R' homcuorphisms,
vwhere R! is & subring of R, ILet %R ‘be the subca.tegbry of R
homomoyphisms., The reflection of A in 9 R is what has been

called its covariant extension,

e If J’ is such that every object in QA has a reflection in c/( ’ s
we say that OA’ is a REFLECTIVE SUBCATEGORY. Such subcategories plaey a
ce;mtral role in this peper, A functor RieA ""‘*@A'C cA which sends
each object into 1ts reflection, and for which there exists a natural trans-
formation ’

Ir: I-R "2\
vhere I 1s the identity functor on C'A s such that A - AR is the
_canonical map, is called a REFLECTOR of M into d ‘.

Section 2. :
Characterization of reflective subcategories, In order to facllitate the

characterization of reflective subcategories we introciuce the notion of an
object in the larger category GENERATING an object in the smaller category.
For AeoA and Mg @4’ » A is sald to generate A' if there exista a
mep A - A' such that there exist no non-trivial monomorphisms
" (a. »aneeA” through which A - Al cen be factored, Ve say that the
‘mep A-A' is e GENERATING MAP. Glven eny map A - A!, where Ale of”
we define 1ts MiﬂVIAGE as an object Ie dr together with maps A - I
end (T A')e @A such that A -1 is a generating mp.
Ve note that if Ml is a reflective subcategory of 0/4 then
every ovJject of GA generates at most a set of objects in e;4’ . Indeed,

A s

if A in M generates A' in QA  then A' is an imsge of A .
Ve say that a subcategory CA’ 1s CLOSED ON THE LEFT or LEFT-CLOSED

. 3 L4
1f 211 left roots definable #rom subcategories ofe)( are in @/4 . We
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sha.ll prove later that a reflective subcatefory of a complete category is
left~closed,
| Theorem 1, A subcsategory (’A ’ of @4 1s reflective if
| (1) Tt is left-complete and left-closed,
(é) Every object in cf\ generates at most & set of distinct
objects in QA/ R
FProofs The proof will be in two parts. Flrst we shall show
under the hypotheses that for every Ae (—A there exists a NEAR-REFLECTION
in QA’ s that-is, an object Ne QA' together with a map A - N such that
“ . every mep from A Into O/A\ fectors through A - N, but not necessarily
uniquely. Then secondly, that 1f an object has a near-reflect:lon in a left-
closed subcategory that it has a reflection,
Preliminary Lemma: If A - A' is a.ny map,. Ale cy( and Q,Al

is left-closed, then it has an @4'—image.

Proof: We intersect all the @4  ~subobjects of A' through
yrhich A - &' can be factored, Since C-Al is left~closed, thé intersection
’ I s in d, » Hence we have themaps A—~I and (I-A')e ed’ , ‘the
v";pmposition of which 1s A -A' , The first map clearly is a generating map,
Hear-Reflection Lemms: If Ac @A , then there exists an object

‘Ye e/\ together with a msp A - N such that for every Ale 0/4 and A - A!
N
~ ‘there exists a map (N - A”)e ¢A” such that the triangle A;-L commutes,
; o

/
Proof of Lemma: Let 8 be a complete set of distinct M ~objects

: ‘g'enerajbed by A, (That such a set exists is a consequence of condition 2

of the hypothesis ,) We define N =1 I S and observe that con-

. 8e§(4,8)
dition 1 of the hypothesis insures that Neeh . Let Aol TS=m

: SeS (A,s)

9 - (]
3 be the map whose (S,a) coordinate iz A — S,
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To prove that N is a near-reflection we consider an arbltrary

_ ¢ ¢

‘map A-Al, A'ecﬂl » By the preliminery lemma it has ar 94 ~image,
That 48 A -9A' = AT - A' where AT is e generating map and I — A

’

ig 4n &4 « Hence there exists an Se¢ S which is isomorphic

%o I, l.e. there exists an isomorphism (5 - Ieeh” .

Let'bing G=2A-+TI-8 wehave that A-A' = A N=I T S-85I-A,

. Se3(A,8)
.Final Lemma: If A has & near-reflection in C’/{ s and (ﬂ is
left-closed, then A has a reflection in 0/4 .
Proof: Suppose that A - N is a Aze'aerflection. Ve let R be its
0A'-tmege, A oNaASRoN. Ten R is still o near reflection, We

prove the uniqueness of the inducad maps by considering the case

A-R iA' alA-R E)A' where both o and B s.z;e in 0/4' o Since @4’

is left-closed we can teke the difference kernal K of o and PBs

K-R iA' = K->R -B->A' vhere A-R=A-K-R for some suiteble A - K,

The important point is that (K - R)e A ,, which when combined with the

fact that A - R is a generating mep, yilelds the fact that K-> R is

epiniorphic, hence that @ =g, ;4

In application we generaily show the second condition of the above

theorem to be satisfied by & two sbep program: first we find a function from
_ the objects of 04 to the class of cerdnal numbers thet has the property that
' there are at most & set of non-isomorphic objects in GA wilth the same

éardinal velue, Such would be called & ‘Cardinality functor. gecondly, we

verlfy that there is an upper bound on the cardinalities of the objects in
‘M, generated by a given object in M .

| Thus we prove the existence of the reflections exemplified in

section 2
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I, We take bhe obvious cardinality function in the category of
topological spaces réj = the number of elements of a
space, We can count the different topologies that can be put on
a set S by observing that a famlly of open sets is a subset of
the fa.mily of subsets of S, Hence there are no more than 22S
different topologles on S, If a space T is the same cardinality
as S, there is a one~to~-one c;orrespondence S - T which we use to
put a topology on S, Hence T 41s homomorphic to one of 22
spaces,
If monomorphic S — T generates compact T +then the image
of ST is dense in T and for every pair of points in the
compliment of the image there is a filter in S thet wenversess
to oue but not the other, If this lest condition were not true, we
could adjoin to S one point from each class of points in T which
ere limits of the seme nets in S, and obtain a cormpact subset, Hence
the cardinality ~f T is ngt more than the number of filters in S
which is not more than 22: That G 1s left-closed is a direct
consequehce of the ‘lychoanf Product theorem,
1%, Ve change the problem by introducing
base points, C'){ shall be the category of metric spaces with base
rointes end ddstence decreassing maps that take base points into base
voints, The cardinality of a metric space shall be 1ts number of
elements, The number of metrics that can be put on a set M is
not more than the number of functions from M x M +to the real nunbers,
Hence, as sbove there is at most a set of noﬁ-isomorphic metric
spaces of a givencawdimaliity. Since metric spaces are also topo-

logical spaces, we can use the same arguement as above to prove
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that & space generates at most & set of non-isomorphic complete

spaces,

“

The left-closure of the subcategory of complete spaces requires
verifibation. f‘irst we must examine the construction of products
in the category e,/\( + Given a.set of metric spaces {Mi]I R ‘
with 0, the base point of M, , and fxey] ; The distance between

" two points in M, , we define I M, as
I

{fgxengil(ﬁfe% for a1l i e I, and such that
I

there is an upper bound for

U(2)m0,| 1} 4 o ]

The distance between two elements, £ and g in I M, 1s defined
as  sup [I(i)f-(i)gli] . The ith projection from IM; to My
is def:{ned by (f)p:L = (1)f , That this construction yields the
proper mappiig propefbies, and that the product of complete spaces

is complete, is straigh'b-fr;rward.

III, TFor GB the category of linear and bilinear maps, cartiinality
is again taken as the mumber of elements of a singleton, and the
nuiber of elements of the cartesian product of ‘the groups in & pair,

“That this cardinality - function has the ‘desired properties, and that

a finite set genemtéé only countable groups, and infinite sets
have. theeseme:;cardinality as the groups they generate is straight-
forvard, .

Section 3. ADJOINT FUNCTORS

We shall speak of natural transformetions between bifunctors of two

jira_.riables. The definition is the obvious generalization of thet for functors
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of one variable, Let '.[‘l s T2 be functors from OA P 0'(3 to 6 .

A natural trensformation n from Tl to f[‘2 is a function from pairs of

" objects (A,B) Ae @4 s Be 943 , tomaps in (3 such that all diagrams

of the form ( )
a, )T :
(a1,)7 F—— (&0
nh!,e! g ¥ A, B
(a1,B')T, s (4,D)T,
@a}ﬁ)Te

commrte, To verify naturality it suffices to consider the cases where either
¢ or B is the identity rsp,

Throughout this section the categories will be assumed to be additive
and complete,

A pair of functors IB: GA -> 3{3 and TL : 9’13 - (’/4 are
se1d to be ADJOINT if the bitwnctors (T, -): @A x43 - ef em
(= TB) QA G{S (’é are naturally equivalent, n'.llhat is, for every
peir (A,B)e ()/‘ % there is an isomorphism (ATI‘ B) - (A,B'IB) which
setlsfies the conditions of naturallity. 'J.’L i1s sald to be the left-adjoint
of TR. A palr éf contravarient functors T: @4 - Q«(B and T¥: 9—‘3-—» @4
are sald to beADJOINT ON THE RIGHT if the contravariant bifunctors
(=12 e’ﬁ x eA - QG)) and (-, T*): QA‘ :»:Q’B - % are
neturally equivelent, They are said to be ADJOINT ON TIE LEFT if the co-
variant bifunctors (T,-): Q/{XGB - % and (T¥,-): @BXC’/“ - %
ere naturally equivalent. | '

The best known pair of adjoint functors are II % g and

-~-®G: % = c&)> . Tote that H, 1s adjoint to iteelf on the

right, | L

The reflector of a subcategory is adjoin'b. to ‘the inclusion functor

~of the subcategory., Given a reflective subcategory CA’ of 04 , and a
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reflector R: 0,4 - ()/4, together swith the natural transformation r from
' the Identity functor to R s V@ constgcuct the natural transformation 7 from
(AR,A'&, to (A’A')CA by letting LI be the map induced by A"A AR, H
We know this to be an isomorphism. Its naturality is easily verified.
Theorem 2. A functor T: Qy( - 6{3 has a left edjoint 1ff
T 1is left root preserving and has s reflective subcategory as an image..
Proof: Sufficiency, Suppose ™ : 6{3 - G/( is a left adjoint of
T end n is the natural equivalence from (T:-) to (-,T) , For fixed
Be U3 the functor H‘BTL if left-root preserving, IPTL is naturally
equivalent through n to the functor (B,(-)T) which is therefore left-root
- -preserving, and hence by Theorem 1,10 T is left-root preserving,
‘ We shell prove that ( G/A\ )T 1s a reflective subcategory by
proving that for any Be @13 ,Btg;i‘ DT'T 1s its reflection in ( (J,/! )T,

Ny
We consider the map (B'.tI',BTL) -

X

B, 7M7)
(B,T'T) ana gerine Ty = (EBTL)“B,B oL
Lemma 1, Given B — AT there exists a unlque (y)T ¢ (@4 )T,

Bs:
such that the triangle B B ]“:"’TLT (y)T  commutes, (y e (B‘II' A) .
AT

Proof of Lemms 1. Consider the commutative dilagram

(QBIL )y )
(o™, pT) > (3T, A) |
¥ g,pr" Y B, A
(3, BTJT) g (B’.AT)
(eB, yT)
L IP we‘ start with the element eMJZ. in the northwest corner and travel

“clockwise we obtein the element Yy A in the southeast coxrner, if we
~travel counterclockwise we obtain (rB)(y‘I'). Hence we have Equation one:

M o= (2 )(¥T)e  Since g is an isomoxphism there exists one and
ByA B B, A
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only one ¥ e (BT , A) such that x =y = (rp) o).
Lemmna 2, 'I‘I"I' QB—)( @4 )T is a reflector of ( @A )T end

the tré.nsfomation r:Il - '1‘1' T defined es above is wwbtural,

Proof, We wish to prove that the rectangle

x
B! - o
i r L T, X
BT BTD
T .

| is commtative, That is that xry, = (r )(:dI'I’I') Dy equation one sbove, the
right hend side of this equetion is eq_ual to (x’l‘L)n:B ool Hence we wish
to show that xrp, = (xT" )nB, i e |

To that end we consilder the commutative rectangle

| (37" ,B7") e > (BrT ;BTL)
g, pr J, l, gt BT
(3,00°7) > (B',B7T)
(2 oL )T)

| Again starting with epnl, in the northwest corner and traveling clockwise

| we obtai TL
- obtain (x )nB',DTL » traveling counterclockwise we obtain (Jﬁ eprl, Iy, 'IL)
it~ Hence Equation two:

QCI‘.‘:B = (XTL) ‘I]D',BTL
wh;gh when: combined with equation one yields

e =( 0 )(xTT)
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Necessi‘cy'
VWle suppose that T is s left-root preserving functor and hes a

refleétive image, We let R: UB - ( Qﬂ )T be a reflector
" We shall construect ™ as follows: for Be QB we let Ac 9/‘ be such
~tha1; AT = BR , Next we intersect all subobJects {A'} of A such that

T BLIR  factors through A'T AT . Simee T 1s lefberoo presexving

| ‘ﬁhis intersection still is such that vy factors through it. We shall

- -define pr™ to be this intersection, and cbserve that BILT is still o
reflection of B, BTL has the property that if B’I'L - A is any non-zero-
map then ()T 1s nonezero, since °nx K - Br* the kernal of o, our

éonstruction of BI" insures thet KT 1s a proper subobject of BI'T .

Glven B! -EB‘ we conslder the map between their reflections

(B".I.‘L’I “’J.'L..,e\ w"!‘ )T and define (5)TL to be the pre-image under T,

1 "‘"Sinc.e Bt has the property described above, there is only one pre-image,

That this definition behaves well with compesition follows from
- the uniqueness of raps induced through reflections, The natural trapsforma:bion
needed ‘to complete the proof is defined aé the composition
(B%,A) - (BTLT,AT%{F (B,AT) . The first msp, which is induced by T,
is one~to~one beea.;.zse of the special choice of BTT" o The second map is the

natural equivalence that arises from reflectors,

o 4'.Ihere are three more theorems that can be obtained from this one
by applying duality.
v Theorem 3. A contravariant functor T c-y4 - "/B has an adjoint
von the right 1ff 1t carries right roots into left-roots and its image is
reflective,

Proof: We transform the problem into s problem sbout covarient
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functors by replecing T: with DP: A~ 2 cA - of3

By using the dual of °f3 we obtatn

Theorem L. A contraveriant functor T: QA - (‘)6 has ean
adjolnt on the left 1f£f it carries left-roots into right-roots end its imags
. 18 co-reflective. And by using the duals of both @A mnd €43 we obtain

Theorem 5. A coverient functor T: e}l - QJ&B has a right

_' . adjoint 1ff it is right-root preserving and its image is co-reflective.

Section 4. Transformation sdjoints

Theorem 6. Tf T, end T, are functors from cA to QB with
left-adjointa TLl and 2 respectively, and a 18 a natural transformatio.

» there exist a unigue transformation OtL from TI'

2to

;  from Tl to Te

T', such that ell rectangles of the form

(B2%,8) RN (BIE,4)

lnl Lng
(B,AT) ) ~——> (B,AT,)
e,0y

.-are commutative.

Proof. For B € Gﬁwe define ocg by considering the rectengle

gy (BTS,BIT)
l M ‘L Mo

(B.oBTLT aB l (B,B’ILI'
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gtarting with e 1in the northwest cormer we obtain

e of

l“l T"a

1B > Tuferd

~ vhere the northeast element is defined as (ryp° aBTi')n;l'

We prove the commutativity of the rectangle of the theorem by superimposing it

on the gbove rectangle. let x e (BI{' sA). Consider

(aL:e)
(B ,BTV) B > (T2 ,BTM) .
1 L0 2 1 \(g&_)\

N () (o) | % 5 (el ,a)

| 2
1' EX R R— > (550 1) 2
~. (e,aBTL) fe\
| S 1 SN
>%\ ej =l
- (B:ATl) > (B:ATa)
| ~- @)

h ,'.}D'he top face is clearly commtetive, the bottom face 1s commutative because o
is a natural transformetion, the two side faces are commutetive since N, and
Ny 6&re natural transformetions. The back face is commutative as fer as the
B element e ¢ (BT{‘ 3 BT}'.) is concerned. Hence the front face is commutative

28 far as the element x ¢ (BTI:E s A) 1is concerned.

That «Q 1is a natural transformetion follows from the defining ioentts:

i i o~ (o] .
: dentity (ag)qa = Tap aBTi' and the two equations in the proof of theorem 2

1) (¥)a = rBo(}'Tl)
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2 wn = (aPn

‘plus one more derived from equasion 2

3) "‘(yf'ye)n = (v o (3,7

We have established a dnality between functors with left-adjoints

from CA to @B and functors with right-adjoints from @13 to e/} .

Set theoreticel difficulties prevent us from formalizing it as a functor.

- Theorem 7. et Tl’ 3 and '1'3 be three functors from 0/4 to
G/rj with left adjolnts Tri, Tle:‘, and Ig' respectively. Then

L

- o-»trl‘-’-‘amaé»w3 1s exact 1£? Tg?» T’é‘i‘ffi—»o 1s exact.

Proof. The theorem follows quickly from the commutative diagram and

Theorem .10

0 » (o, a) @0) (BT, 54) L8%8) 5 (ark L)
lﬂl \L Mo ‘ l ﬂ3
MO - (B, AT) G (B,AT) '“(3767"’ (B,A@

Section 5. Cherscterization of functors naturally equivalent to
- & covariant hom functor.
Theorem 8. A group-velued functor T: C‘/‘\ - QGA is naturally
:e,q_uivalent to Hc for some C 1ff it 1s left-root presrving and has a

 reflective image.

_ Proof. If T: QA % 1s leftercot presxrving and hes &
'reflective image, we let TI‘ be its adjoint. Then for Z the group of
" integers in Oés , We C = ZTV_therld, ) - (7,70} - A%
: AR = (Z’I'L,A) = (Z,A‘l‘) a AT
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Coaversely, to show that HA has a reflective imege, we - °
let Ge '36& and (A,B) an obJect in ( M )HA generated

by G (2,B). Using the set of elements of G &s an indexing set, we con-

;f sider the map ZA-B vhose g'th coordinate is gF. Ietting 'B'(B be
G
:lts image, we note that G 5 (A,B) factors through (A,B') - (AyB), hence

-B' = B, and the number of distinct objects in ( eA )HA that G cen generate

G
"f‘characterize.tion of reflective subcategories, ( ejh )HA is reflective.

Cord.u.a;ry,Q- A group-valued contraveriant functor 1s naturally

“equivalent to HA

- hes a reflective imsge.

The above theorems suggest the definition of —DA: % ->0J\

o E @ _,eA as the adjoints of K and H,. G@®A is
called the tensor product ¢ and A, and . G'ﬁA . the symbolic hom

functor {G,A). The two are related through duality
¢®A = G,A' %

{GA) - (c®a*)*.

A
‘carries right—roote dato lei"t-roots, we cen prove easily

‘Since ~-@A 1is right-root ,,reserving and B, 1is a contravariant functor that

Theorem 30, If T: g @4 is right-root preserving then 1t is
naturally equivalent to ~®z7
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Theorem 1l. If e contravariant functor o C‘é) M carries
rigbt-roots into left-roots then it is naburally equivalent to HZT

‘Hence this new definition of tensor product agree with the old, where defined.
The many cenonical netural transformations between compositions of hom, sym-
'bc)lic hom, and tensor products are all provable in the generel --ecase. Us:l.ng

" »'section 4 ve can easily show the bifundtor. propertiea of tanmsor products and

symbolic hom functors.,

Section 6. Applications to functop Categories

» Theorem 12. An evaluation functor ‘E ( QA e/{f)’ ) - @43
1. where A eA ena O[3 1s complete, hes o left-adjoint EI'

Proof.. We pcinted out in chapter two that EA is root-preserving,

("ffff,hence by the characterization of functors with adjoints we need only prove that .

ta ( QA )E ~-image as follows. For Ay € (“A s et (Aa) T be tﬁ'e gub-
bJect of (A2)T generated by the images of all maps of the form B 5 (—J (Aa)tl'

for xe (A,Aa), i.e. (Aa)'[ is the image of the map &:B -+(A2)T, whos
: 4,
xvith coordinates is P (x)T. Then for eamy A YA, it fgiLOWB that (y)m

o earriea (Al)I into (AQ)I, and I is & subfunctor of T. It is clear that
B E, AT = B - AT - AT and tha.t B AT is a generating map. oOur construct:l.on

' {;for I shows that it is naturally equivalent to & functor whose image is
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. 4
' - contained in the subcategory C’JB consisting of a set of objects repressnting
- I d
the imeages of X B ifor all A,a € 0/4 . @B is a small category

. ‘j TN (A & ) d
- and thus ( jb‘a 1s smell contains a complete set of ( s B
Rl J 'A

objects generated by B.

o Note that Eﬁ has functors as values, If B ¢ 9)13 then BEI' is a functor.

A
| B L
b Theorem 13. If P is projective in @ﬁthen PEA is projective
T ( @4 ,'E‘/IS) for eny A.
Proof. We consider an epimorphism T -»T'' in ( e/ R 06 ).
,(BE‘I;,T) - (Pzi,m") is naturally equivalent to (P,AT) - (P, AT'') which

is epimorphic

Theorem 1lh, If % hes a projective generator G then ( (’A )6{3)

A

* hes a projective generator -nemely I (GEk)
: c oA |
Proof. By proposition 1.13 it suffices to prove that the proJective

functor Z (GEX) has & non-zero image in every non-zero functor.
Aeg

@),m = 1 (k) .
foef R e a TN =

—-the last is zero only 1f T 4s the zero functor.

The next theorem eliminates the necessity of the chepter two eltation

: Of Grathendieok!s: proof or the existence of injective resolutions.
Theorem 15, If "43 has as injective co-generator then so does
L (ed, 3

Proof. It is not necessary to prove directly that the evaluation
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*5_-‘functors have right adjoints. This theorem is seen to be the dual of the

""pmceeding théorem by recalling that ( M ’ (’,{3 ) is dual to

( (’/At* O/B*) It is possible to define "Ei as the functor into

( C’/‘i ’ efB ) that corresponds to Ek* into ( @4*, GB *).
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CHAPTER FOUR

Section 1. Representations

A category (’/’l is represented by a ca.tegory dﬁ 1f there exists

* functors T3 e - E/t?) 5 Tof @6 @A such that DT, and T,T,

" are both naturally equivalent to the identity functors. If Tl‘l'a and TQTJ.

are actually the jdentity functors we say tha.t @4 is isomorphic to @/(3 .

In the first case we say that T, is a representation and in the

- second, an 1somorphigm.

| (’/4, is a FULL SUBCATEGORY of QA i all 04 meps between
any two e/ “objects ave 1n @A, . It is REPRESENTATIVE SUBCATEGORY if 1t
-1s £ull and includes an object from every clase of isomorphic objects 1n 434
’It is easily verified that s full subca.tegory that contains a representative

. subcategory is a representative subcategory.

I T, QA ’3’(3 and - 2: 9{3 - @4 are representations T.T

o 12
‘ . and T2T1 neturally equivalent to the identity functors -- then both are

”w_mfembeddings and have representative subcategories as images. Tl

- 'since TITQ is en embedding, TJ. has a full imege since Tl does, and

is an embedding

. 1t contains o representative subcategory for the seme reason. These twp proper-

" tles characterize representetions:

Theorem L. If T: oA - 0'615 an embedding and has a representative
subcategory as en image then T 1is a repraesentation.

Proof: It will suffire to prove that the inclusion map of a representa-

tive subcategory i1s a representation and that an onto embedding is a representa-

" tion.

Lema 1. The inclusion map of a representative subcategory is a
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>4

representation.

: ¢
Proof of I¢ ma l. Iet QA be a representative subcategory of @4
- ' A /
. TFerievery A e QA we choose an isomorphic copy AT e e/& and an
/
isomorphism LTt A - AT. If Ace d—\ we let AT = A and Ty the identity
map. For a map A %Ag we let (O)T be the unique map such that
65 on
ﬂA]i lnAQ
(8))T = (A,)
4
commutes. Thus T @4 - @4 CM is naturally equivalent by 1 to the
© 1dentity functor, end T’QA‘ (T restricted to oA, ) is the identity

functor.
Lemme 2. An onto embedding ls a representation

Proof of lemma 2. We let T: 0’5 - @4 be an onto embedding. TFor

each A € QA we choose an inverse image AT* ¢ 943 s that is AT*T = A.
Glven a A, % A, we let (@) be the map that corresponds to O under the
natural isomorphism (Al'.l'*, AT*) (Alm,Aa'.I}*T) = (Al’Ae) known to be
monomorphic since T is an émbedding, and epimorphic since T 1s onto. That
T* commutes with composition, that is, is a.. functer, is a result of T

being an embedding. T*P i1s the identity functor on @4 « To construct the
naturally equivalence 1y <from the identity functor on 9’13 to TT#* we let
Ty be the mep in (A,ATT*) that corresponds under the natural isomorphism to

the identity map in (AT,AT).
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Note that if 0/4 is represented by 013 then they have isomorphic
representative subcategories. Virtually all categorical properties of
interest are preserved under representations. Since representations are

root-preserving embeddings the properties discussed in the metatheorems of the

0 }

chapter one are preserved, even with the finiteness conditions removed. . :.7h:

Furthermore, since representations have full images, en almost unrestricted
existential metatheorem could be proved for the theoremd true in a category,

and a category it represents.

Section 2. We shall prove thet a complete exact category with a
projective generatoi' in which direct sums are naturally embedded in direct
products is representable as a full category of modules over a ring with a
superstructure, that is, a super-ring. The triviality of the super-structure,

in cases of interest, will be found to be verifiable categorically.

Definition. A SUPER-STRUCTURE on an infinite ring R is a sub-

bimodule Q@ of NI R, where I is an indexing set with the same cardnality
I

as. R, 'jtoget_her with a bimodule homomorphism X: @ —» R satisfying the following

axioms,
SRl If (ri)I € IR, and r; =0 for all but a finite number of
ieI, then (ri) €Q and Z(ri) is equal to the sums of the non-zero

terms.

SR2 Commutativity. If (ri)I € Q then for any permutation =« on

I (ry,) eQ end | Xr,) = 2z, )
SR3 If (ri) € Q and (si) e IR, then (risi) € Q.

The coruwatativity axioms allows us to define Z r, as equal to

g
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2 (rye) y

emong other things that for IY’I we can define 2 (r,) as equal to
It 1

for £ a onto-one correspondence from I to J. SR3 implies

z(si)I where s, =1, for ieI' and 8, = 0 otherwise. Hence we cen

i

easily define I for any set J whose cardnality is not greater than that
J

of I.

SRY ASSOCIATIVITY. If & r is defined then it is equal to

Fag 97K
z[=zr,,]
g g K
SR5 If for every Jje J ( )eq a.ndif(s)eQ then 2 s,r
ij b A
IxJ
is defined.

A SUPER-MODULE is a left R-module M, together with a left R-homomorphism

EM: Q@R I M ->M (:ecall thet @ is a bimodule), with the properties:

sML If ((ri)®( )) eand ((r N (x )) in QUDN M are such that

r.X =r 3 xJ for J=1i n where x 1s a permutation of I, then ZM sends

both into the seawe element in M.

SM2 If all x,'s exe equal then Z‘M((ri) ®(xi)) = [z(r’i)] X.

In view of the above axioms we shall write & g%, for EM((ri!Xxi))

and 1if ¥y =Ty all 1 € I, then Z: Ay - for T r.x As before we define

i S A

g‘ :,r‘_j for set J whose cardnality is not greater than T.

SM3 Iff S y 1s defined then it is equal to = [Z‘K Y. .}
M ’k J- 1)J

Finally, a super-homomorphism (M* -O-‘>M) 1s a homomorphism of left

R-modules which ylelds a commutative diagram:

'I?’"‘ ; i
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SH1 Q@dm M -«Qi@ﬂ% Q@I M

1%
M' ——-65-*——-9 M

The super-ring R is itself & super-module; and right multiplications

by elements of R are all super-homoworphisms. In general, glven a super-

module M and an element x e M, the mep R -M which sends » ¢ R into

X € M, 1is easily seen to be a super-homomorphism. Thus the category of
modules over a super-ring hes a projective generator. The exactness of the
category can be verified directly.

The super-structure on a product of supermodules is the obvious: an
I-sequence of elements in I MJ is summable iff it is summable in each co-

ordinate. Before examining direct sums we define I x 3 for sets flarger than
J
I. Zx 5 is defined if there exists a one-to-one map f£: I »J such that i
J

an element J is not in its image then x,=0. 2 x,. =5 x. .
J I J I if

We now claim thet the direct sum of a family of supermodules (M J]
is the subobjeet of I M 4 generated by the images of the injection maps, that

J
is, the elements which are zero everywhere except for one coordinate. #Axioms

SR> tells us that 3 M, would thus consist precisely of all elements which

can be written in the form 3 ry X, Wi re (ri) € @ and each. X, is an

element zero everywhere except for one coordinate. @iven a collectlion of maps

{fJ:lM;j"’X] we define £ —X as the map which sends £ r.x. into

?M.j 1%

z ri(xi)f 3 € X where J is the index of the non-zero coordingte of X . Axiom

SM3 1is used in broving that £ is g super-homomorphisn.
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- SRY and SR5 together prove that I R is precisely Q, and that
I ,
for larger J, X R coansists of all elements in X R which are zero except
J J

on & set of coordinates of cerdnality I, and such that if the zero co-

ordinates were "thrown away" an element of Q would be left.

We can show, then, that the category of super-modules over a super-
ring is an exact complete category with a projective generator and such that

direct sums are naturally embedded in direct products.

There 1s a natursl super-structure on a product of super-rings: a
sequence is summeble Iif it is summable in esch coordinate. The product of an
infinite number of super-rings, even with trivial super-structures , alvays
has a non-trivial super-structure. (A super-structure will. be called trivial
if it ylelds an ordinary ring.) Given e family of sﬁper-rings Ri’ it can
be verifisd thet the product of their categories (of Modules) is isomorphic to

the category of modules over their product with the natural super-structure.

Section 3. Characterization of Categories representeble as the
category of modules over a super-ring.

Theorem 2. A category 1s representable as the category of super-
modules over a super-ring iff

1) It is exact end complete.

2) Direct sums are neturally embedded in direct products.

3) It has a projective generator.

Proof. The necessity is obvious by the previous discussion. Iet
G.A setisfy the three conditions, P ¢ QA & projective generator. We
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define R to be ring of endomorphisms of P and cbserve that for A e e}'—\\
(P,A) can be made into a left R-module irn & naturel way. Given A BB

the induced map (P,A)(P ,a)} (P,B) 1d a R-homomorphism.

Assuming R 1is infinite we define the super-structure o R by
letting Q = (P, £P), end X: Q »R the map induced by TP S P all of
I I
whose coordinates are the identity maps. Axioms SRl follows quickly, SR2

from the fact that TR DS = RI R = ¢ RS R for =« any permutetion of

I I I (r3)_ (s4)
the coordinates. SR3 follows from the fact that P— P ~ SP =
(risi) I I
P > Z P for any I-sequence (s i)' SRE and SRS are stralghtforward,
I

applications of the essociativity of direct sums.

() We ma.‘t(ce )(P,A) into a super-module by defining Z‘M((ri)®(xi))

r X

88 P+ ZP A. i.e. the composition map from (P,Z P)(ORQ(P,A) to
I I

(PyA). We can prove SM1L (:nt)i SIZI}QC )by noticing that Z’M((ri)®(xi)) is

equivelently defined as P ->i P é‘e =25 a. SM3 follows from the

I 1
associativity‘ of direct sums.

Thet the :lnduc(:ed mep {P,A) _(_l?ig)(P,B) is a super-homomorphism follows
x,) (x,0)
from the fact thet ZR & A%B = TR 5 B.

I
Hence we define ﬁP: c% - @SR s ‘the category of super-modules
over the super-ring R, as the functor that sends A e pj*;..sinto the super-module

(P,A). To prove that l_iP is a representation we show first
Letme 1 R has a full imege

Proof of Jemme 1. Iet F: (P,A) — (P,B) be a super-homomorphism.

We let L P - A be the mep whose x'th coordinate is the mep P %A
(R,4) ~
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Z P -B the mep whose x'th coordinate is (x)F. Hence for any
(P,A) A
x ¢ (P,A) we have the commutetive diagrem

P iﬁ where P -2 P is the

IPZ,. P - A (2,a)
@ (p,4) x'th injection map
4

B

The horizontal mep is onto since P 1s a generator. We let K- Z P be
, (P,4)
its kernal. If we can prove that X -» £ P -B 1s zero, then we know
(P,A)
that there 1s amap from A to B which makes the sbove diagram commutative,

apd hence, which induces the map F. For that purpose, we enlarée the indexing
set (P,A) so that it is at least as large as I; the extra coordinate

meps will all be zero.

If K-»Z P -B were not zero, then since P 18 a generator, there
(P,4) »
exists amep P ?2 P vhich when followed by the maep to B would be non-
P,A)
zero snd when followed by the map to A would be zero. The coordinates of

the mep P - I P must be zero except on & set of cardnality I. Otherwise
(P,A)
there would be an infinite set of coordinates sll of which would be the same

set of non-zero maps. This latter sltuation quickly leads to a contradiction.

Hence there is a one-to-one function g:I -» (P,A) such that

P- I P can be factored through ZP - X P and we now have a maep

(p,4) A I (p,4)
1 (%)
(P 22 P) € @ which vhen followed by I P - A 1s zero =und when followed by
I I
(x)F
&P~ B 1s non-zero X, = (1)g. But this contradicts the assumption that

I
F 1s a super-homomorphism.
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Barry Mitchell has informed the writer that the above proof correctly
modified will work with-out sssuming ¥ +to be a super-homomorphism if @/Z\

satisfies ° Grothendieck's axioms ABS.

Iemma 2. The image of 'EP includes an isomorphic copy anjr super-

module over R.

Proof of lemma 2. Given & super-module M we let ZR->ZIR-M=0
J K

be en exact sequence, J and K at least as large as I. The previous
discussion of free modules over super-rings, gives the fact that

SR= (P, ZP) . The fullness and right-exactness of T suffice to
J J

construct a copy of M.

Recealling that ﬁP is an embedding, the two lemmes prove that it

is a representatlion.

Section 4. Applications

Definition: An object A in e complete category will be sald
t0 be ABSTRACTLY FINITE if everymep A -2 A factors through a finlie
. 1
subsum: 1.e. there exists & finite I'CI and amep A—X A such that

Il

A-SA=A-SA-2A .
I ' I

Theorem 3. A category is representeble as & category of modules
over a ring 1£f 1t is
{1) exact and complete

(2) has an ebstractly finite projectlve generator
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Proof: The necessity of the two conditions is clear. In the
preceeding theorem the only use of the fact that dlrect sums were naturally
embedded in direct products was for the case Z P —->I P where P is the
chosen projective generator. If P is abstragtly f{nite, the fact follows
quickly. Hence & complete exact category OA with an ebstractly finite pro-
Jective generastor P, 1s representable as the category of super-modules
over End(P) . But the condition of sbstract finiteness insures a trivial
super-structure on End(P) , and in fact is clearly equivalent with the
trivielity of the super-structure.

Theorem U4, Any representation from a category@& to a category
of super-modules is naturally equivalent to a functor of the form 'ﬁP as
described above. The proof follows quickly from the fact that e representation
is right root preserving. P 1s defined to be such that its imege is isomor-
phic to the super-ring.

Corcllary 5. The category of super-modules over Rl is

representeble as the category of super-modules over R2 iff R2 appears
as the super-ring of endomorphisms of a projective generator over Rl .

3 ..Corcllary 6. If Two rings produce equivalent categories, they

have isomorphic centers. In particular different commutetive rings
produce different categories.
Theorems: 7 A projective generator over a ring R has trivial

super-structure in its ring of endomorphisms iff it is finltely generated.

Proof: TIf P is an image of R° the condition of theorem is

easily verified. Conversely if the ring of endomorphisms of P has trivial
(04
super-gitructure we conslder the set J of endomorphisms P —P which
o
can be factored through R P-+P=P —-R -P for sultable maps P —-R

T
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end R ~-P. Then L P -P 1s onto since P and R are generators. Since

J
P 1is projective there exists a map P — I P which when followed by Z P —»P
J J
is the identity. Since the ring of endomorphisms of P has trivial super-

structure, P - I P can be factored through a finite subsum.

J
Corocllary 8. The category of modules over a matrix ring can be

represented as the category of modules over the ground ring.

Cormlary 9. The global dimension of a matrix ring is equel to the
globel dimension of the ground ring. Mitchell has extended these techniques
and has obtained results for triangular matrices and other modifications of

the metrix rings [7].

Theorem 10. If Gﬁ is a category of modules over a super-ring,
then the category of n-varisble functors Lfrom Qf 12 (ﬂ PYIRLEY @{ n
to C’rj 1s represented by e category of modules ‘-over & super-ring.
: , Proof: We proved that ( (’A‘. ,C/fs) has & projective
generator. That ( @A‘. s 6{3) inherits the desired properties of limits
is verified through & pointwlse examination. The corollery cen be
| proved induetively by noticing that the bifunctors .f:'x'om d 19 C/{ > to

@{3 ore representsble as the functors from eAl to (QA 0 GB ) .

e
¥l
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