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Preface

This paper constitutes a second part to "Lokal pridsentierbare Katego-
rien"” by P.Gabriel and the author (Lecture Notes vol. 221), The reader
need only be familiar with the basic facts about locally presentable

categories. The relevant material is collected in § 2.

The starting point was marked by unsolved problems in the first part,
They were successfully tackled step by step in Eaij, [32], [33] and
IBH]. In the process the notion of a bialgebra - generalizing bialge-
bras overa commutative ring - emerged as a unifying concept. We give
here a systematic treatment of bialgebras in locally presentable ca-
tegories and themn apply the results to the above mentioned problems
and to problems in other areas as well, in particular to Hopfalgebras,

bialgebras, coalgebras over a commutative ring and to descent data,etc.

This material was first presented in seminars of H.Schubert in the
summer semesters 1975 and 1976. I profited a great deal from the
lively discussions with the participants. I also would like to thank
A.Kock and W.Wischnewsky for discussions in Amiens about Hopfalgebras,
bialgebras, coalkebras, comodules etc. over a commutative ring. With-
out their disbelieve I would not have tried to prove that these cate-
gories are locally presentable. T am indebéed to M.Barr and T.Fox for
discussions later on in Zurich about problems associated with Props.
This put me on the track to look for something better (namely bialge-
bras). Finally M.Tieruney raised at the AMS meeting in Toronto the
question of the relationship between bialgebras and sections (resp.
cartesian closed sections) of a fibration. This turned out to be very

fruitful.

I am particularly indebted to Christa Becker and Heidi Paulus for
typing a difficult manuscript and to Lothar Schumacher for proof read-

ing. I am grateful to the vice chancellor of the University of
= }



.Wuppertal Walter Liesenhoff for providing secretarial help and I am
less grateful to the chancellor Klaus Peters for taking it away when
it was mot needed. In order to get the whole manuscript typed I had
to extend the sectretary's contract on my own., The chancelloy prevented
the mathematics department from doing so with one of its vacant secre-
tarial positions. His ingenuity in makiné life difficult at a universi=-

ty with plenty of jobs and funds is only exceeded by his endurance in

doing so.
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Introduction

The methods developped in "Lokal pr#sentierbare Kategorien" (L.N. vol.
221) were not sufficient to decide whether any of the following cate-
gories were locally presentable: the category of functors on a small
category U with values in a locally presentable category which pre-
serve a given class of colimits in U , the category of cosheaves on

a site with values in a locally presentable category, the categories
of coalgebras, bialgebras, Hopfalgebras ... over a commutative ring A
and likewise the category of comodules (resp. bimodules) over a A-co
algebra (resp. ﬂ-bialgebra}, the category éG of G-coalgebras, where
€ is a cotriple with rank in a locally presentable category A , the
category Adj(A,B) of adjoint functors between two locally presentable
categories A and B , etc., These questions were solved affirmatively
in  [34], [32], [33] and [3Y] by new techniques. In the process the
notion of a bialgebra in a category - generalizing the notion of a bi-
algebra over a commutative ring -~ emerged as the unifying concept from
the point of view of the constructions on which the prodfs were based.
The basic problem in all cases involved the construction of gemerators
in the category under consideration which in turn lead to the follow~

ing general question: Given an object A in a category A equipped

with a structure }{ and given a subobject U of A in A . How

does one construct a subobject, U' with structure }(' containing U

such that the inclusion U'=sa is compatible with the structures }'

and and such that U' is not much bigger than U ? The complexity
of this problem is perhaps best illustrated by two seemingly unrelatad
examples: Given a Hopfalgebra H over a commutative ring A and a
A-submodule U of H . Find a sub-Hopfalgebra U' of H containing
U such that the underlying A-module of U' is not muoh bigger than
U ; or more specifically, that the size of U' depends only on U

but not on H. Clearly U"' is - if it exists = not unique because



there is no such thing as "the" sub-Hopfalgebra "generated" by U.
(For coalgebras over a commutative ring the corresponding problem was
investigated by M.Barr [I ] using purity.) On the other hand consider
an object A equipped with a descent datum ?A and a subobject U
of A . Find a subobject U' containing U and a descent datum @,
on U' such that Py is compatible with @, and U' is not much

bigger than U . A construction of (U’

Y U') was given by Grothendieck

and Verdier in 8GA 4 (p. 138-178) in a more general context. But the

proof has a gap and their size estimate of U' is false.

Qur main results consist in 1) making precise what an object with
structure is - this is done by the notion of a bialgebra in a category
2) solving the above mentioned problem for bialgebras in locally pre-
sentable categories under appropridte conditions and 3) establishing
size estimates for the constructed sub-bialgebras which in most cases
are the best possible (cf. 3.1, 3.8,3.22). With the exception of §5

all our results in §3 - §6 are applications of this.

Roughly speaking a bialgebra in a category A with respect to a
given set M of operations and a set R of relations consists of amn
object Ag A together with a structure morphism ‘uA for every M€ M
and a functorial diagramm for every ré R which commutes. In the lit-
erature so far a structure morphism My om an object A 1is a wmorph-
ism like A x A —> A, A —> A || A, A@®@A —3 A, A —A4,
A®@ A — A @® A, etc. In contrast we allow it to be a morphism
FA — F'A, where F and F' is any pair of functors with domain A

and a common codomain {(the latter can depend on /u). F is called the

domain of M and F' the codomain. Likevwise a relation is normally
given by diagrams such as Ax...x A __,-_; A, A je, A ] ... 1]A
A@...@A____>_)A,A:__'>_9A®...QA,A__)'>A,

Ag ... & A :::::3 A® ... &8 A, etc, which are built up of struc-

ture morphisms /&,ﬁAebd, and canonical morphisms (like twisting, etc.)



the e
The relevant aspect here is that diagrams are natural with respect to

those morphisms A — A' in A which are compatible with the given
operations. Therefore we defime a relation r to be a map which
assigns to every object A equipped with structure morphisms JMA ,
MEM , a diagram GA::j.G'A which is matural in the sense just ment-
ioned and where G and G6' 1is any pair of functors with domain A
and common codomain (the latter can depend on r ). An object equipp-
ed with structure morphisms is said to satisfy the relation r if the
corresponding diagram commutes. In this way one obtains the category
Bialg(A) of bialgebras in A with respect to specified operations

M and relations R . The morphisms in Bialg(A) are those morphisms

in A which are compatible with the operations in M .

The notion of a bialgebra covers a wide range of examples, e.g.
universal algebras resp. coalgebras in a category with finite products
resp. coproducts in the sense of Lawvere [2]] or Birkhoff [2'], coal-
gebras over an arbitrary commutative ring A and likewise A-~Hopfal-
gebras resp. A-bialgebras in the usual sense (more generally tensor
product preserving functors on a Prop in the sense of MacLane [2%]),
comodules over a A-coalgebra, bimodules over a A-bialgebra, algebras
over a triple, coalgebras over a cotriple, données de recollements,
descent data and more generally sections (resp. cartesian closed
sections) with respect to a fibration, functors on a small category
which preserve a given class of limits resp. colimits, sheaves and co-
sheaves on a site, pairs of adjoint functors between locally present-
able categories and more generally ZI-continuous resp. L-cocontinu-
ous functors on a small category U with respect to an arbitrary
class I of morphisms in the set valued functor category [§g§££§],
and finally ZI-closed objects in a category A with respect to a bi-
functor T : B x A ——> C and a class I of morphisms in B

(Recall that A€ A is called =I-closed with respect to T if



T(c,A) is an isomorphism for every o€ I).

A bialgebra in a category A is denoted with (A,M,R), where Ace¢ A
is the underlying object and M and R vrefer to the specified opera-
tions and relations. Given a subobject U of the underlying object A
we are concerned with the construction of sub-bialgebras (U',M,R) of
(A,M,R) containing U such that U' is "as small as possible™, in
particular the construction should provide effective size estimates for
U' in terms of U , M and R (but not A ). More generally given a
bialgebra (A,M,R) and an object U we investigate factorizations of
a morphism f :+ U ~—> A into a morphism U -—U' and a bialgebra mor-
phism (U',M,R) —> (A4,M,R) such that U' is not much bigger than
U and its size can be estimated in terms of U , M and R . It is
obvious that without conditions on M , R and on the underlying cate-
gory A no reasonable answers can be expected. In order to elaborate
on these conditions we recall a few basic facts about locally a-pre-

sentable categories.

Let a 2 QLO be a regular cardinal. A directed set is called oa-fil-
tered if every subset with less than o elements has an upper bound.
A functor F 1is said to preserve a-filtered colimits if the domain of
F  has colimits over a-directed sets and F preserves them. An object
A in a category A 1is called o-presentable (resp. a-generated) if the
hom functor [A,-]: A — §££§ preserves a-filtered colimits (resp.
preserves those a=-filtered colimits whose transition morphisms are
monomorphic). For instance, if A 1is the category of groups, rings,
modules over a ring, etc., them A€ A 1is o-presentable (resp. a-gen-
erated) iff A admits a presentation in the usual sense by less than
o generators and less than o relations (resp. less than o genera-
tors). In particular Xo—presentable {(resp. xo—generated) is equiva-
lent with finitely presentable (resp. finitely generated) and likewise

7Gl-presentable (resp. 'Xj-generated) with countably presentable (resp.



countably generated). A category A is called locally a-presentable
if it has colimits (i.e. sums and cokermels) and a set M of oa-pre-
sentable generators. (It is called locally presentable if it is locally
a~presentable for some &« .) In a locally a-presentable category A
every object is a'-presentable for some regular cardinal o' and,
roughly speaking, for B 2 « an object A€A is PB-presentable iff
it is the cokernel of two morphisms J_LU.::::3 _LLU. , where U.,U, eM
;€3 3 iel 1)
and J and I have less than B elements. Moreover A has limits
(= inverse limits), is cowellpowered and o-filtered direct limits camn -
mute with kernels and products with less than a factors. Also a functor
F between locally presentable categorigs preserves Yy—-filtered co-
limits for some ¢y provided it has either a left or right adjoint. The
class of locally presentable categories is larger than one might expect
and includes the categories of sets, groups, rings, modules and more
generally universal algebras, the category of set (group, ring ...)
valued sheaves on a small category with respect to a Grothendieck topo-
logy, the category of set (group, ring ...) valued functors on a small
category U which preserve a given set of limits in U (e.g. the cate-
gory Cat of small categories and other "universal algebras" with
partial operations), the dual category EEERO of compact spaces, etc.
In contrast the categories Comp and Top of (compact) topological

spaces and other related categories are not locally presentable.

For the above mentioned construction of sub-bialgebras of a bialgebra
containing a given subobject (resp. the decomposition of a morphism

into a morphism and a bialgebra morphism) we need the following.

1) the underlying category A and tha categories occuring in the de-

finition of the operations and relations are locally presentable(OY more

generally "catégories localisables"” in the sense of Y.Diers [5]).

2. the operations M and relations R form a set and the functors
=
which are domain or codomain of ejither an operation or relation



| preserve p-filtered colimits for some cardinal B.~ \
Then there are cardinals ¥y such that a bialgebra (X,M,R) is <y-pre=~
sentable in Bialg(A) iff its underlying object X is y-presentable
in A (cf. 3.8). Moreover for a bialgebra (A,M,R) and a y-presenta-
ble object UEA every morphism £ : U —~—3> A admits a decomposition
into a morphism U—U' and a bialge®'ra morphism (U',M,R) —> (4,M,R)
such that U' is again <y-presentable (cf. 3.8). The class of all such
y's is cofinal in the class of all cardinals. Of special intérest is
the smallest possible <y . Estimates are gi?en in terms of A , M and
R . (The analogue assertiongconcerning the existence and size estimates

of sub-bialgebras containing a given subobject are discussed later on.)

We illustrate the above with some examples.

a) For Hopfalgebras over a commutative ring A one can choose fogx

vy any cardinal 2z X (ecf. 4.4). In particular every A-homomorphism

1
U—+—>H from a countably presentable A-module U to an arbitrary

A-Hopfalgebra H admits a decomposition into a A-homomorphism U—TU'
and a Hopfalgebra morphism U'—>H such that the underlying A-module
of U' is again countably presentable (the corresponding assertion for

5
finitely presentable A-modules is obviog&y false). Moreover the A-Hopf-

algebras whose underlying A-module is countably presentable form a

17 L{]

set" of dense generators in the category of A-Hopfalgebras (i.e. the
equivalence classes of such Hopfalgebras form a set).

The same holds for A-bialgebras, A-coalgebras etc. (cf. 4.3~4.7). More
over the following categories are locally %l—presentable: commutative
A-Hopfalgebras, cocommutative A-Hopfalgebras, bicommutative A-Hopfal-
gebras, A-bialgebras, commutative A-bialgebras, cocommutative A-bi-
algebras, bicommutative A-bialgebras, A-coalgebras, cocommutative

A-coalgebras, comodules over a A-coalgebra, bimodules over a A-bialge-

bra, etc (cf. 4.3-4.9).

—— —



b) Let E? be a fibration with base € and let & ¢ SO-——9 S be a

morphism in C such that 1) the fibres EES and Eé over So and
0

S are locally countably presentable categories and 2) the inverse
image functors a*, pl*, pir and pB?f preserve filtered colimits and
take countably presentable objects into countably presentable cbjects
(cf. Grothendieck [16], also for the notation). Then for an object

A€ gso with descent datum ‘)DA and a countably presentable object
UE?E%O every morphism f : U —> A admits a factorization into a mor-
phism U—>U' and a morphism (U',qb.) —_— (A,@A) between descent
data such that U' 1is again countably éresentable (cf. 4.14, 4.15).As
a consequence the category Desc(ggo) of descent data is locally

1

able provided the inverse image functors preserve colimits {(cf. 4.15),

% ~-presentable and the forgetful functor Desc(@g )'—-9'@5 cotriple~
=s, z

Likewise Desc(%éo) is a Grothendieck category (resp. a topos) provid-
ed the fibres are’and the inverse image functors preserve colimits and
finite limits (4.16).

If o 3 Sou—é S ig of gr-descent type (cf. Grothendieck [l?] 1.7),
then the above implies that every descent datum on objects of 2E$) is
effective providdd every descent datum on countably presentable objects
is effective (cf. 4.18).

N L]
Similar assertions hold for sections and cartesian closed sections with

respect to a fibration (cf. 4.19-4,26).

c) Let € = (G,e,8) be a cotriple in a locally a-presentable ca-
tegory A and assume that G : A—> A preserves B-filtered colimits
for some R . Let ¥ 2 sup('xl,a,ﬂ). Then for a @€-coalgebra (A,E)
and a y-presentable object U€ A every morphism £ : U-—aA admits
a factorization into a merphism U—>U' and a 6-coalgebra morphism
(U',E') —> (A,&) such that U'€ A 1is again y-presentable (cf.4.10)
This implies that the category A, of G-coalgebras is locally

sup ( %l,a,ﬁ)—ptesentable and that a €-coalgebra is <y-presentable iff

! ¢
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"ts underlying object is. Moreover A is a topos (resp. a Grothendiecﬁ

G
category) provided A is and G : A—> A preserves finite limits
(ef. 4.11),

Applications of this are given for comodules over a A-coalgebra

(cf. 4.8) and for bimodules over a A-bialgebra (cf. 4.9),

d) Let U be a small category and I a set of morphisms in
[HO’EEEEJ° Let X be a locally oa-presentable category and let
Cczfg,g] be the category of all EI-cocontinuous functors. For instance
if £ dis given by a set K of colimits in" U (resp. by a Grothendieck
topologgethen the E-coco%&nuous functors VU—X are exactly the K-co-
limit preserving functors on U (resp. the. 7T -cosheaves on U ). Let
Y be any regular cardinal such that o ¢ vy 2 Xﬁ and v > card(l),

Yy > card(do(U)), vy > card(ro(u)) for every o€ £ and Ueg U, where
do and ro denote the domain and codomain of o + Then for a ZI-co-
continuous functor t U—X and a Y-presentable functor se[g,g]
every natural transformation s — t admits a decomposition

s —s8'—>t such that sg' : U—X 1is I-cocontinuous and again
Y-presentable in [E,i]. This implies that the category Ccz[g,g] of
L-cocontinuous functors is locally <y-presentable and that the inclu-
sion ch[H’E] RN [E’EJ has a right adjoint. The latter has been

a long outstanding problem in category theofy.

The above can be generalized to a class % of morphisms whose codo-
mains {ro|o€ I} form a set (modulo equivalence). Therefore we can
also consider functors, which preserve a given class of colimits in
U (in particular one can choose all existing colimits in U ). The
abovdsize estimates for vy Thowever have to be replaced by more ela-’
borate ones. The apparatus needed for the genmeralization to a class &
is substantial (the entire chapter § 5 concerning purity and a good
deal of § 6 ). Further generalizations concern the replacemant of X

by a topological category over X (cf. 6.21),



{ e) The category Adj(A,B) of adjoint fuctors between locally pre- \
sentable categories A and B can be shown to be equivalent with the
category of LI=-cocontinuous functors U-—B for an appropriate small
category U and a set I of morphisms in [Eo,gggg] (cf.,6.19). Thus by
d) above Adj(A,B) 1is again locally presentable. In contrast if A and
B are Grothendieck categories (or topoi), then Adj(A,B) need not be
s0. A surprising counter example is the following. Let A be the cate-
gory of abelian p-groups for some prime p and B = Ab.Gr. the catego-
ry of all abelian groups. Then Adj(A,B).can.be shown to be equivalent

with the category of p-adic complete abelian groups (cf. 6.25 ¢)).

£) Let T : Bx A ——— C be a vafunctor between locally presen-—.

table categories and let I be a set of morphisms in B . Let

A
_Z,T
be the full subcategory of A consisting of all X€A such that
T(o,X) 1is an isomorphism for every o € I . For example T can be

@%, Tori(-,-), [-,-], Extg {—-,-) etc. and I the inclusion of a set

% of right ideals an the ring A . Assume that for every B€ B there

is a cardinal B8 suych T(B,~) preserve %{filtered colimits (which

B

is obviously the case for the above examples). Then there are cardi-

nals y such that every morphism £ : U —> A with AE€ éz T and U
' ?

y-presentable in A admits a decomposition U—o U'— A with

U'e A and U' being again y-presentable in A (cf. 6.2). For
=z, T =

instance if T is as above, F is countable and the ideals IE{?

countably presentable, then one can choose for vy any cardinal 2 %l.

If T = 8, » then consists of modules which are uniquely

A
-—E,@A
divisible by the ideals of T . For instance,let A and B be Gro-

thendieck categories and U&€ A a generator with endomorphism ring A.

Then the category Adj(A,B) of adjoint functors between A and B

is equivalent with the full subcategory of AE consisting of those

left A-objects which are uniquely divisibl. by the Gabriel filter

1Eiin A associlated with A (cf. 6.25 b)), ]



' We now return to the problem of constructing sub-bialgebras (U',M,R)
of a bialgebra (A,M,R) which contain a given subobject UC A such
that U' 1is not much bigger than U . Thislcan be done under the con-
ditions as above (e¢f. 1) and 2)) but the size estimates for U' are
different, in general less effective. They are best stated in terms of
noetherian conditions. The details are too involved to be given here
(cf. 3.22, 3.23). and we illustrate them with an example. Let A be a
commutative noetherian ring (or more generally a %]-noetherian ring
which means that every countably generated ideal 1is countably presen-
table). Then every countably generated A-~submodule of a A-Hopfalgebra
is contained in a sub-Hopfalgebra whose underlying A-module is again
countably generated. The same holds for A-bialgebras, A-coalgebras
ete, If A 1is not 'Zl-noetherian this need not be so. However there

is always a cardinal y such that A is y-noetherian (i.e, every
y-generated ideal is <y-presentable). Then the above holds for vy-gen-
erated A=-submodules of A-Hopfalgebras, ete¢. The same phencomenmhappens
for locally presentable categories. By Gabriel-Ulmer [13], 13.3 a 1lo-
cally a-presentable category is locally y=-noetherian for some vy 2 «

The increase of vy over o accounts for the less effective size

estimates for the constructed sub-bialgebras.

.

The basic idea for the construction of sub-bialgebras I got in a
seminar of the University of Zurich 1974/75 in which Kaplansky's de-
composition of projective modules into a direct sum of countably gen-
erated projective modules was studied (among other things). The par-
allel may be still apparent in § 1 in which an "elementwise" expo-
sition of the basie techniques is given. The incentive to study sub~-
bialgebras '"generated" by z subobject resulted from a problem which
was given to us (= a group of students) in Heidelbe}g in 1964 by
A.Dold. He suggestrd to investigate the category of cocontinuous

abelian group valued functors onm a Grothendieck category A in terms



I}
Lf a generator Ué& A and its endomorphism ring A . We didn't get | (
anywhere with it at the time but I kept it in the back of my =ind and
worked on it from time to time without much success, The turning point
was the discovery that in the special case A = abelian p-groups the
category of cocontinuous functor is equivalent with the category of

pP-adic complete abelian groups.



§ 2 Review of locally presentable categories

2.1 Defirition (2] 5.1) Let o zﬂX% be a regular cardinal., A small

category D is called a-filtered if

a) for every family (Dl) of objects in D with card(I) < o

1 &1
there exists an object D&D togebther with a morphism D{~—9D for

every 1€ 1 .

X
b) for every family '(Dow-mi_%vl) of morphisms in D with

1& I
card{l}) < o there exists a morphism vy 3 Dl--—-----}-D2 such that

Ye v, ®Ye for every pair 1, =€l .

For o =)C0 this specializes té the usual definition of filtered co-
limits {(resp. direct limits).

A functor F : A—B is said to preserve a~filtered colimits if
it preserves colimits over a-filtered categories. The least regular

cardinal a with this property is called the presentation rank 6f F

and dencted by @(F) . Examples are functors F : A-—B which have
a right adjoint or - somewhat surprisingly - functors F i A=—>B

between locally presentable categories (2.3) which have a left adjoint,

in particular underlying or forgetful fumctors (cf. 2.9, 3.4 ¢) ).

— e e — —— e ——

Likewise a functor F : —>B is said to preserve monomorphic a-£fil-

tered colimits if it preserves colimits over a~filtered categories
4 By

whose transition morphisms in A are monomorphic. (This does not mean

that F preserves monomorphisms.) The least regﬁlaq carinal ¢ with

this prepevrty is called the generation rank and dendted with e(F),

2.2 Definition (cf [f3] 6.1) Let a 2 ?ﬂo be a regular cardinal

and let A be a category with a-filtered colimits. An object A€A

is called a-presentable (resp. a-ggﬂgyated) if the hom-functor

[A,~] i A 8ets preserves a—filtered colimits {(resp. monomorphic

a-filtered tolimits). The least regular cardinai o 2 X% with this



§ 2 -2-

property is called the presentation rank (resp. generation rank) and

denoted with w(A) (resp. e(A)) . Clearly a{(A) > e(A) .

It may appear that this definition is stronger than the one given in
the introduction. This is however not the case, at least in_prgctise.
First by S¥wan everyyio—filtered category admits a cofinalidiﬁequg set.,
Hence for «a =)60 the two notions coincide. Second for o > )co

the two definitions are equivalent in a locally w-presentable category.
Moreover they lead to the same notioﬁ cf a locally o-presentable cate-
gory in 2.3 below. This can be shown by .going over the proofs of § 7

in Gabriel-Ulmer [I13].

2.3 Definition (ef [13] 7.1, 9.f) Let « Z)Co be a regular cardinal.

A category A is called locally w-presentahle if A has colimits and

a set M of a-presentable generators ( M is a set of generators
means: A morphism £ : A-—3A' dis an isomorphism iff [U,f] is a bi-
jection for every Ue€M ).

Likewise a category A 1is called locally a-generated if A has co-

limits and a set M of a-generated generators such that every copro-

duct l| U_l with Ule M and card(L) < a has ounly a set of proper
11
quotients. (Recall that an epimorphism p : X—>Y 1is called proper if

it does not factor through a proper subobjeect of Y .) The least regular

cardinal ga z'X% with this property is called the presentation rank
AR .

cf A (resp. the generation rank) and denoted with T (A) (resp. e(A))

,

2.4 A category is called locally presentable (resp. locally generated)

if it is locally a-presentable (resp. locally a~generated) for some o .

2.5 A locally oa-presentable category is locally a-generated ([IB] 6.6C)).
Surprisingly there is a converse: A locally oc-generated ca-

tegory is locally B-presentable for some B > o« (cf [13] 9.8, 9.10).

2.6 A locally a-presentable category has limits ([i3] 1.12) and is

cowellpowered ([I3] 7J%; i.e. every object has only a set of quotients).



§ 2 -3~

Moreover a-filtered colimits commute with w«-limits (cf [i3] 7.12; re-

call that }im (2—-2“)5) is called an a-limit if D has less than

a morphisms, [l3] § 0).

2.7 In a locally presentable category A with a set M of oa-presen-
table generators an object A€ A is B-generated for some R 2 o Iiff

there is a proper epimorphism I |U —3A with UtE.M and

1€l
card(I) < B (cf []3] 9.3). If moreover M 1is a set of regular gene-
rators, themn A€A 1is RB-presentable iff there is a cokernel diagram

. |[H:Z:ﬁ:$| lu{—-—9Y

jeJ ieT

with Ui’ Uje M and card(J) <'B > card(I) such that A is a re-
tract of Y (ef [h3] ?.6).(Becall that M 1is called regular 1if for

every A€A there is a cokernel diagram K;?H_Uv—%A with UveM.)
_ v

Moreover there is a regular cardinal & such that every §-generated
object in A is 8-presentable and & «can be chosen so as to exceed

any given cardinal (cf [LB] 13.3).

’

2.8 In a locally a-presentable category A the full subcategory

A(a) of all a-presentable objects is small and closed in A under
a~colimits. The same holds for the full subcategory 3(@) of all
a-generated objects ([13] 6.2). In particular for every A€A the
category A(a)/A of a-presentable objects over™> A is small and
o-filtered, and the colimit of the forgetful functér

A(a)/A—4 , (B—A)~U , is A (cf [13] 2.6, 7.4, 3.1)., The same
holds for the category of a-generated subobjects of A (cf [l3] 9.5).

The functor

1

A—3Ta(0)%, sets), A~ [-,a

induces an equivalence between A and the full subcategory of
[g(a)o, Sets consisting of all functors é(a)g—_)Sets which take

g-colimits in a-limits ([13] 7.9, for the corresponding assertion
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Moreover o—-filtered colimits commute with o-limits (cf D3] 7.12; re-
call that ;im (Qj—E—bé) is called an a-limit if D has less than

a morphisms, [l3] § 0).

2.7 In a locally presentable category A .with a set M of a-presen-—
table generators an object A& A is B-generated for some B > o iff
there is a proper epimorphism J_LU{-—éA with UIG.M‘ and

card(I) < B (ecf [K}] 9.3). If %E:eover M is a set of regular gene-

rators, then A€A is B;presentablé iff there is a cokernel diagram

.L}.U ) l_lu ;Y
jeJ iet

with Ui’ Uje M and card{(J) <'B > card(I) such that A 1is a re~-
tract of Y (cf [hB] 7.6).(3ecall that M 1is called regular if forx

every A€A there is a cokernel diagram K:!LLU\J——-)»A with UvE.M.)
v

Moreover there is a regular cardinal §&§ such that every S-generated
object in A is 8-presentable and § can be chosen so as to exceed

any given cardinal (cf [13] 13.3).

2.8 In a locally a-presentable category A the full subcategory
A(a) of all a-presentable objects is small and closed in A under
a—colimitq. The szme holds for the full subcategory K(a} of all
a-~generated objects ([13] 6.2). In particular for every A€A the
category A(a)/A of o-presentable objects over™ A is small and
a-filtered, and the colimit of the forgetful functédr’

Af(a)/A—A , (U—=A)~U , is A (ef [V3] 2.6, 7.4, 3.1). The same
holds fof the category of a-generated subobjects of A (cf [13] 9.55.

The functor
. i
é_'_") !_-f}.(o;)o: SEtS-_ls A~y [-s A]
induces an equivalence between A and the full subcategory of

[é(a)o, Sets] consisting of all functors é(a)g—m}Sets which take

e¢-colimits in a=-limits ([|3] 7.9, for the corresponding assertion



for E(a) see [lﬂ] 9.10).

2.9 By the special adjoint functor theorem every colimit preserving
functor between locally presentable categories has a right adjoinf. By
[EQ] 14,6 a limit preserving fuuctor § : A—FB between locally pre-
sentéble categoriesadmits a left adjoint iff § has rank (ef. 2.1},

i.e. iff S preserves a-filtered colimits for some cardinal a 27(6 .

Z2.1c Let U be a small category and let % be a class of morphisus
in [Eo’§E£EJ . Recall that a functor t :.g;—+§ (resp. s : QQ__§§)
is called I-cocontinuous (resp. L-continuous) if for every XeXx

and every o€ X the map Br,[t—,X]] (resp. [b,[X,s-]]) is bijec-

tive. If X 1is cocomplete (resp. complete), then there is a tensor

product bifunctor (resp. symbolic hom)

® i [U°,8ets] x [U,X]——3X

£ -]

.

[U°,5ets] x [U°,Xx]—x

defined by

e

[R.’ [t"’X]]
[R, I:X, s-—]]

[R Q@ tsX]

[, [r, s]]

e

for all X.E'_}E s RE [U_O,e_ts] . te_fg,gi_] and se[p__o,g(_] s ¢ Gabriel-
Ulmer D3] 8.1 . Hence t : E—X (resp. s : geaeg') is E-cocontinuous
(resp. L-continuous) iff ¢ @ t (resp. Eus]) ig’ an isomorphism

for every ogZ . The full subcategory of [g,g] consisting of all
E—coc;ntinuous functors is denoted with Ccz[g,zj . Likewise szgo,ﬁ]
denotes the full subcategory of all I-continuous functors. ‘
Examples for ¥-continuous (resp. L-cocontinuous) functors are sheaves
(resp. cosheaves) with respect to a Grothendieck topology and functors
which take a given class of colimits into limits (resp. colimits) etc,
see § 6. . |

A class I of morphisms in [Ho,Sets] is called closed if
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1) Z contains all isomorphisms 2) I 1is closed unter colimits
3) if p = o1 and.two of the morphisms op , ¢ , T belong to I ,
then so does the third.
For instance, if T is a class of functors U—>X , then the class
2 of all morphisms « such that w @t is an isomorphism for every
t€T 1is closed.
The closure % of a class L[ 1is the smallest closed class containing
LI . Hence a E-cocontinucus functor U—>X 1is also f-cocontinuocus.
Let I be a class of morphisms in [HO’EEEEJ , where U is a small
category, such that the codomains ro , ¢€ I , form a set (modulo

equivalence). Then by Dg] 8.1fﬂ

. . u] c 0 =
the inclusion CZEQ ’§E£EJ““9'D1 s3ets
has a left adjoint and a morphism t in [go,Sets] belongs to T

iff [T,p] is a bijection for every te:Cz[EO,SeEs] '

2.11 A category A 1is locally presentable iff there is a small
category U together with a set. I of morphisms in [HO,§E£EJ
such that A ¥ CE[@P’§EEEJ , cf, [13] 6.5, 8.6 ¢}. Moreover if B
1s any locally presentable category and U and E are as above, then
CEEQO,E] is again locally presentable and
n(c,[v°,B]) < sgg"' (n(B),n(do) ,m(re))
o

where do (resp. ro) denotes the domain (resp. %odomain).of g€r and

suﬁ*( ) denotes the least regular cardinal > sup (), ecf. [rs] 8.7 .

2.12 Let M=(T,u,p) be a triple in a locally presentable category A
Then by [}3] §lo the category of Tr-algebras A is locally presentable

iff T has rank (2.1). Moreover if T thas rank  then

w(é?B < sup {w(é),n(Tﬂ

*)The proofs of £i1318.10 and 8.11 have a gap: On p.99 it is used that
in ézz every object has only a set of proper quotients. This may not
be the case unless A has additional properties. The easiest way out

is to assume that A is locally presentable ... .
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§ 3 Bialgebras in locally preseutable categories

In this chapter some guestions of "Universal bialgebra" in a local-
ly presentable category A are investigated, Our definition of biaige-
bras in a category A is fairly brosad and includes universal algebras
and coalgebras in the sense of Birkhofr [l] or Lawvere Eﬁf], Z-conti-
nuous and I~cocontinucus functors in the sense of Gabriel-Ulmer [#3]
.1, algebras, coalgebras, Hopfaligebras and bialgebras in thke usual
sense over a commutative ring A , or  more generally bialgehras with
regpect to some tensor product snd an arbiﬁrary Prop [2%], coalgebras
over a cotriple with rank in A (e.g. comodules over a A=conlgebra),

algebras over a triple with rank in A , the category of descent data
with respect to fibrations and ;ore generally sections and cartesian
closed sections with respect to a fibration or cofibration, ete. Rough-
ly speaking a bialgebra (A,M,3) consists of an object A in A to-
gether with a set M of operations which satisfy certain relations & .
An operation is repreéented by a morphism p{(A) ¢+ FA-—--3F'A for some
pair of functors T,F' : Azm3X , and a relation by a morphism pair
r(A,M} : HA==3H'A for scme pair of functors H,H' : A=Y for de-
tails sce 3.1). Given a bialgebra (A,M,R) and a subobject U A

in the underlying category A , which we assume to he locally noetherian

for the moment, we are concerned with sub-bialgebras (D',H,R)

of (A:M,R) c&ntaining U such that U' 1is not wuch bigger than U .
We give in 3.22 a2 consiruction and sizg estimates for U' which in

many cases ave the best possible. For instance, if A is a commutative
noetherian ring, then it follows that any countably éenerated submodule
of a Hopfalgebra (resp. coalgebra, bialgebra, comodule over a fixed
A-coalgebra) is contained in a sub-Hopfalgebra (resp. sub-coelgebra,...)
whose underlying A~wodule is again countably generated regardless

of the size of A . If the category A is not locally noetherian,

the situat}on is dififerent and the question should ke put instead

as follows: Given a biglgebra (A,M,R) and a morphism
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f : U—A in the underlying category A with U being a vy - pre—
sentable object, does then f factor through a bialgebra morphism
(U',M,R) —> (A,M,R} such that U' is y' - presentable and y' is
not much bigger than ¥y ? In 3.8 we give a construction and size
estimates for U' similar to the noetherian case which in particular
implies the existence of denselgenerators in the above mentioned
examples, If A is any commutative ring and (A,M,R) 1is a A-Hopf—
algebra (resp. coalgebra, bialgebra, comodule over a fixed A-coalge-
bra), then by 3.8 any homomorphbism f : U—A with 11 being
countably presentable factors through a Hopfalgebra morphism
(U',M,R)~—> (A,M,R) (resp. coalgebra morphism ...} such that U'
is again countably presentable.‘Also 3.8 implies that every descent
data is effective provided every descent data on "small™ objects is
effective. For modules "small" means countably presentable. ﬁore

"small"

generally for a fibration with countably presentable fibres
means countably presentable provided either the inverse image func+—
tors have right adjoints which preserve countably filtered direct
limits or the inverse image functors take countably presenctabie

objects into countably presentable objects and preserve filtered

direct limits. The main results of this chapter are 3.8, 3.9, 3.22,3,24

g

and 3,28, The last two concern conditions which guarantee that'the

category Bialg(A) of bialgebras in a locally y-presentable category A
is locally y'~-presentable and that ' is not ﬁhch bigger than vy .
For instance, if A is any commutativ; ring, then they imply that the
categories of commutative A-Hopfalgebras, cocommutative A-Hopfalge-
bras, hA-coalgebras, A-bialgebras, comodules over a fixed A-coalgebra
etc. are locally countably ﬁresentable, regardless of the size of A .
Also if & is‘a cotriple with rank o in a locally +y-presentable
category A , then the category é@ of &-coalgebras in A is locally
y'-presentable, where ~y' = sup( ﬁa,y,a)
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3.1 In this paragraph we give the basic definitions., Let A be a
category. Let M be a set (or class) and assume that with each
p€ M there is associated an ordered pair of functors
F 1 A X and F : A X . Note that i i
du _—#-a_u cu _——9_u t the domain is always
A and that each pair has the same codomain (which can vary from pair

to pair)

X T
2y
f{\"\‘F //!/

Also note that the assignment u nm;(qu,Fcu) need not be injective.

A pre-bialgebra (A,p(A)) in A with respect to M is an object

uwe M _
A € A together with a morphism p(A) : quA-—-—éFcuA for every

HWEM . We say that an element w & M 1is an operation and p(A) 1is

the structurec morphism on A associated with 4 ., A morphioe

(A,u(A))u€ M“_—ma(Af’”(A')ue:M ibetween pre-bialgebras is a morphism

f : A—>A' in A which is compatible with the structure morphisms,

i.e. for every ue€M the diagram

p{A)
F A > Fouh
u cH e
Fyf : Fouf
ik Y L — ——> F A"
d]J U(Al) cu

cémmutes. The category of pre-bialgebras 1is denoted with P-BialgM(é)
Let V : P-BialgM(§)~*——}é denote the (faithful) forgetful functor
(A,u(A))uG MWVW.A . If it is clear which M we ate referring to we
write P-Bialg(A) instead of P-BialgM(é) . Further we abbreviate

(A,U(A))u€:ﬁ to (A,M) in order to avoid expressions of extreme com-
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plexity in the following. This notation does no longer distinguish
between pre-bialgebras with the same underlying object. The reader
should keep this in mind.

Clearly in practice one is not interested in all ppe—bia]gebras but on-

ly uILhDse which satlsfy certain glven relatlons. The relations are nor-

‘mally expressed in terms of dlagrams whlch have to commute, Thé diagrams

are constructed from the structure morphisms and other caponical mor-

pHisms. However tncre is a. great deal of variety and a scheme of

suff1c1ent generallty to cover the above mentioned examples bLecomes

hOP616591y involved. Supprisingly it turned out - after many

attempls —~ that the explicit description of the relations in terms

of structure and canonical morphisms is not needed to establish the
main ?esults of this chapter. Instead the following common features
suffice : 1) for every pre-bialgebra the diagrams expressing the
relations are given in some way 2) the diagrams are matural with
rQSpeét to pre-bialgebra morphisms.

More precisely by a relation r on P"Bialgm(é) we mean -a pair of

functors F : A —>» X and T : A ~> X together with a pair
. dr — - cr -, =T

of matural transformations Fd oV m0=x F roV. Explicitely with every

pre blalgebra (A M) there is associated a palr of morphlsms

;r(A M) ?dr% :::3 PcrAi in such =z Way_FQéF fo;_gveryﬁgrg—bialgebrg

morphism f: (A,M) —> (A',M) the diagram

L
r (A,M) \
, F d r A EE e TS F cr A
Fdrf Fcrf
r(A',M)
e 1 ———— v 1
FdrA 3 FcrA

commutes in the obvious sense (ie. with respect to both components
of r ).
Let R be a set (or class) of relations on P—BialgM(é).

A bialgebra (A,M,R) 1in A with respect to M and R is a



pre-bialgebra (A,M) such that for every ré€R the morphisms

. . [ A""“"“? I A o 1 v - > radg 2 4 3 1 i
r{A,M) : Pdr = Fcr ceincide, In other words a bhialgebra is a

pre-bialgebra satisfying the velations of R. A morphism between
blalgebras is a morphlom between the urﬂpr]ylng ple bia lgvbras. The

category of olalpebras is denoted with BialgM R(é) . If there s
¥ -

mno amblgu1ty we drop the indices M and R . Clearly Bialg(A)
is a full subcategory of P-Bialg(A). The forgetful functor
Bialg(A) -~ A , (A,M,R)nm~2>4A | is also denoted with V

3y the support of the operations M and the relations R we mean

the set {(ov class) ' of all functors F and Fcr , where

A 1
di’ rcu”'dr

w and r are running through M and R respectively. The subeclass
of all functors of F which are the domain of either an operation

or a rvelation is denoted with md . Likewise mc ‘tenotes the Bdbclﬂ;a

of all fhnCLOTb appearing as- the, (odoma1n of ethOl an OpeldLIOu or

en stated in

-r‘- .

a relation. In the fo‘]uvlup tHe h?nothpsis are of

terms of T, Ed’ éﬂ@ . instead of M and R . It is therefore
cssential to rpvp their mﬂanings in mind (& = dowain , ¢ = codowain),
3,2 Remarks I} It is casy to express that for some specified
vperation péM the structure morphism u{A) : quA — FcuA

should be an isomorphism for every pre~bialgebra (A,M) : One has

to add an operation pu to M and two relations ta R expressing

o = i j} 1 U = i - "' * )
1 CAY N (A) 1dFdUA and p(AYp (&) J_chcuA C{efn 3.2 I114).

I1) One can call an operation algebraic (resp, coalgebraic)

if qu and 1“(”J are endofunctors of A and FCIJ is the identity'
of é (resp, qu = idA); and likewise for relations. Typical

examples are functors A~—-9A which asgsign to an object A its

n-fold product, coproduct or tensor product ectec.

LIT) Tor examples of bialgebras see § 4 and § 6. Tt should however be
Sam- o
clear at this point how to express the examples given in the intro-
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duction to § 3 as bialgebras, i.e., how to choose the underlying category

A , the operations M and the relations R such that Bialg(A) is

a) the category of groups, rings, ..., COgroups, ... 1n A .

b) the category of algebras, coalgebras, bialgebras, Hopfalge-

bras ... over a commutative rving A,

¢) the category of ‘M' -algebras (resp. &-coalgebras) for a

triple T (resp. cotriple €) in A .

d) the category of descent data (or données de recollement) in

the standard situation

oK
* YN P
m/_ﬂ.“ . 2 ot 3,: 17
g =™ g Ti Fgreg T Pty srys
2 s s s

given by a : S§' - 8§ (cf. Grothendieck{}b] Def. 1.4 = Def 1.7).

The reader should be familiar with these examples, in particular

s F and the mnatural trans-

know what the functors F F _, F,_,
di cH s cr

formations FdroVZZZS F raV look like for every opevation ué M

e e i

and relation ré€R . If not, he is advised to fivst have a look at

§ 4 because Lhe following is often motivated by these

examples.

4 3 * +
3.3 We start with some elementary properties of the underlying

functor V: Bialg(A) —p A concerniné the preservation of limits

and colimits.

Lemma Let H : D —>» Bialg(4) be a functor such that the 1im££

(resp. colimit) of the composite V¢H : D —» A exists. Then the

following hold:

a) If every Fe preserves i&ﬂ VeR | thgn lim H exists in

— (4 -

Bialg(¢A) and = (lim VeH,M,R) .’

lim H
PPl
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b) If every Fe F; preserves 113 VeH , then 1lim B exists in

Bialg(A) and 1lim H = (liﬂ VoeH,M,R) .

Proof It suffices to consider a) because b) is dual.
By assumption for every operation u& M "there is an unique wmorphism

u&iig VeH) : de(Lig Ve H) — Féu(}im VeH) such that for every D¢ D

the diagram

u(lim Vel) a

. e 3 . = . ; .
Fgp(Qim Vo) o™i d P (Lim VoH)——1im (F_ o VoH)
Fay (Pp) P, (pp)

u{(VeH)D) - 2
Fq, ((VoH)D) ) F [ ((Vol)}D)

commutes, where‘ Py ¢ liEﬂVoH)—wﬁ(VoH)D denotes the canonical morphism.
Thus iiﬂ (Ve H) together with u(&ig VeH) , u€ M , is a pre-bialgebra
and Py is a pre-bialgebra morphism for every D& D . Hence for every
relation re¢ R and every D€D the morphism pair rQ&iE VoH, M)

gives rise to a commutative diagram (with respect to beth components

+

of r )
r{(lim Ve H,M) N
* i e e T e N ] & _:—' + °
'Fdr(“llm Ve H) > = Fcr ((llm Ve H) ~>1im Fcr Vel
Fdr(pD) Fgr(pﬂ)
v r (HD) g ‘
Fd§(V"H)D)L_ —— Fcr((VOH)D)

This shows that r(&ig VeH,M) is the inverse limit over all "pairs"
r{HD) , D& D . Since the two components of r(HD), DCD , coincide, the
same holds for rgiim VoH,M) and thus Q&iﬂ.qu’M) is a bialgebra. One
readily checks that the latter together with the bialgebra morphisms

py, ¢ (lim VeH,M,R)——3 HD is the limit of H : D—->Bialg(A)
D g— 1 —_ —
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3.4 Corollary a) If A is complete and every FelF  preserves

limits, then Bialg(A) 1is complete and the forgetful funceor

V : Bialg(A) —> A preserves {and creates) limits. Moreover

V is tripleable provided it has a left adjoint.

b) Likewise if A is cocomplete and every TFefF pPreserves

e sy¥ey d BaE2ELXES

colimits, then Bialg{(A) is cocomplete and the forgetful functor

V preserves (and creates) colimits. Moreover V is cotripleable

provided it has a right adjoint,.

c) If A has w-filtered colimits and every Fele preserves

them, then Bialg(s) has o-filtered colimits and V preserves

(and creates) them.

As for the tripleability and cotripleability note that by 3.3 a), b)
the underlying V always preserves (and creates) both V=con-
tractible kernels and cokernels. The condition ¢) holds in most
examples for an appropriate o . This is not so for a) and b)
However a) holds when all operaticns and relations are algebraic
(3 2 TI), while condition b) holds whén all operations and |

relations are coalgebraic (3.2 1I1),

3.5 1In order to study the category Bialg(A) from the point of
view of locally presentable categories the first question to answer
is whether there exist a-presentable objects f&r sufficiently
large o and how they 1o$k like. The following and 3.6, 3.7 give

a partial answer.

Lemma Let A Dbe a category with oa-filtered colimits and let

M oand R be a dara for bialgebras (3.1). Assume that card (M) < a

and that every FeF preserves a- flltcreJ colimits. Then a
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hialgebra (U,M,R) is o-presentalle in Bialg(A) provided Ue4

&
and TFU are oa-presentable ) for every T e&fW,.

il o ot e st [l i il d

15993;& If the underlying functor V : Bialg (A)—>4 and the functors
szmc preserve monomorphisms - e.g. in the situaticn 3.4 a) - then
there is an analoguous assertion for oa-genervated cbjects: A bialgebra
(U,M,R) 1is a-generated provided 1) card(M) < « and cvery Fe&F pre-
serves a-filtered colimits 2) U and FU are a-generated for every

Fe¢ Td . The proof is the same as for 3.5.

Proof First note that by 3.4 ¢) Bialg(A) has o-filtered colimits

and V : Blalg(A) —>» A preserves (and creates) them. Let
(X,M,R) = 133 (Xv’M’R) be an g-filtered ceolimit in Bialg(A) and
let £ ¢ (U,M,R) —= JEmJXU,M,R) be a bialgebra morphism with

m(U) = ¢ and .w(PU) < a for every FeF, . Since

d
Tim (Xv,M,R) = (lim ¥ .M,R) and U 1is a-presentable, the uvnder-
v v oo
lying morphiegm U -—» 1lim X% 6f f adwits a factorization
imoa :
f“ uy : v
U > X“ ———p lig Xv for some v , where u, denotes the under-

lying canonical! morphism. Ipn general 'fv is not a bialgebira morphism

beczuse fovy an operation pe&eM the mexphisms ¥

n T . -
‘cufv o Gy and

“(Xv) o Fd“fv need not coincide. However they beceome equal when

composed with F_u_ ¢+ F X — F_ 1lim X Dbecause f = u f is a
cu v TRV cy=—> v v

bialgebra morphism. Since quU is o-presentable and

F lig X ¥ 1i ¥ X is an o-filtered colimit, this implies
: LU g

c Ny c

TS v cuv
that there is a transition morphism u : Xv-¢ Xw ~ depending
on u - such that the diagram

*) 1t is not assumed that the codomain of ¥, Fe wa?is locally

presentable, but merely that [FU,—1

1 Dreserves all existing

a-filtered colimits.



§3 ~lo~

I‘C”(u'a f\J)

U - > F_ X,
cyp cp v

u(U) u (X y0)

F gl -
Edu(uafv)

N

quxw

commutes. Since card{(M) < o one can find a transition morphism
Xv -~ Xv" which has this property for every pu & M. This shows
that £ : (U,M,R) — L%E (X, ,M,R) admits.a factorization into
bialgebra morphisms (U,M,R) —¥ (X, M,R)—> 1&3 (¥, ,M,R), 1.e.

the canonical map

-—

. . A
Lig [, MRy, (% ,M,R)] —  [(u,mM,R), Lin, (X,.4,R)]

"

is surjective. In the same way one can show it is also injective.
Bence (U,M,R) is a-presentable in Bialg(A). (The former follows
also directly from the Ffact that V : Bialg(A) —> A is Ffaith-

ful and preserves a-filtered colimits and that U is a-presentable

in A).

3.6 Remark One would like to conclude from 3.5 that a bialgebra
(U,M,R) is a-presentable in Bialg(A) provided its underlying
object Ué A is. We will show below .in 3.7 that this is true
provided o is sufficiently large and A is locally presentable.
If A 1is locally finitely presentable, then 3.7 provides the
smallest o for which this is true. In general this is not so and
resorting to 3.7 can give poor estimates. However in examples one

often knows enough about the functors Fg F, (eg.in 3.2 IIL) to

d

find out divectly what the smallest o 1s such that w(U) g a

implics m{(FU0) < a for every Fg Fd. A particular situation is the
following. Assume that the codomain of every Fe¢ T, is locally pre-
sentable and that every T has a right adjoint GF . Then by 2.9

e i +

there is a (smallest) regular cardinal # such that every GF pre-
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serves @-filtered colimits. Hence «(U) < B implies = (FU) < B for

every Tc®y becawse [KU,-] = [U,6; =] . Likewise c(u) < p implies

e(FU)sB for every FEJFd and  Ud A

3.7 Lemma Let A be a locallv o~ preqenLablo category and let I(F

Mg, st S TS d

be a set of functors with domaln A  which preserve o- flltered colimits.

Let & > o be a regular cardinal such that

1} if X&' A and @(X) £ o , then #(FX) < a for every FEF
2) if e < a and B < @ , then Bp_< o

Then 7{U) < & 1mp]1cC T (FU) < a for every FG}Fd and U& A

Corellery Let A Dbe a locally a-presentable category with a data

M and R for bialgebras (3.1). Assume that card(M) < « and that

every Fe¢ [F preserves o-filtered colimits., Let & > a bL a cardinal

D

wiich the above plopertlos 1) and 2). Then a bialgebra (U,M,R) 1is

o presentqh]e 1n Bldlb\A} p10v1ded 4] 18 - prebtntable 1n A .

Remarks a) Note that condition 2) 1is trivially satisfied if either

. 4 +
a=='xb or « 1s of the form (ZY) for some y > a
b) Since the a-presentable objects in A form a small subcategary
there exists always a cardinezl o with the properties 1) and 2).

¢) Usging 5.1 one can prove an assertion analoguocus to 3.7 for locally

a-generated categoxies (cf, remark 3.5).

Proef of 3.7 The case o = a 1is trivial and we assume o > o . Civen

UcA with «(U) < o« we are looking for an ‘a—flltered colimit
presentation U = ]Lé‘hl such that W(XK) < o for-every K and the
cardinality of the index system is strictly smaller than o . Since
FEEFd preserves o-filtered colimits, it then follows easily that

T (FU) = n(1%m>FxK) < o

We need some preparation. Let D be a partially ordered set which is
~filtered and let D' be a subset of cardivality < ¢ . Then D' is
contained in an o-filtered subset D" whose cardinalicy is also < ;

One constructs D" by transfinite induction as follows. Let D' = p!
O

1£f X < a is a successor ordinal then let Di be the subset consisting
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of Di_] and an upper bound in D for every subset with

'l
A
card(I) < ¢ . If X < o 1is a limit ordinal let s kJ p ., In
e -
either case it follows from assq}tion 2) that caxd(D! J < a . Clearly

pr = e Di is a-filtered and card{(D") < & because a < a

Let Uec¢A be a—presentable. Then by 1.7 there is a cokernal diagram

: f

Lo ™% 1l — s
J i T4 4
iel g 163

such that 1) card(l) < o > card (J) 2) Xi and Xj are og-presen-

table for every 1& I and j&€J and 3) U is a retract of Y . We

will show that =#(FY) < a for cvery TFe& Wd . Since this implies

T (FU) < o , we can assume without loss of generality that Y = U,

Let D be the partially crdered set consisting of quddrupl s

(IK, K’fK’? } » where I, ¢ I, JK}TJ and LK,gK 'l X, 'T-* L
<3

K
i€T 3
)} and K

J

are morphisms such that card(IK) < @ > card(JK

the canonical diagram

| K I
|I X, 2 lmLx.
ier, By jeJKJ
|
b4
| 1]
J_x L > ] X,
ier g 1¢€J J

commutes. The ordering is given by inclusion, i.e. K < K' provided

IKC Iw 3 JKC?JE 3 and the induced diagram

£
L =2 ]

g : ]

1€ I]{ By JGJK
£, . i

Pl vty ]y,

16‘:1}\ B jEJK.
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commutes. Note that in both diagrams the vertical morphisms need not
be monomorphic! (This complicates the proof considerably). Using

that _L“l_xi is e=-presentable and J.JﬁX is the a—-filtered co-
iex J(.J
limit of its subcoproductswirh less than « supmands, it 1s routine

to verify that D 1is a~filtered. Let D' be the subset of D
obtained in the following way: For every pair I['¢ I and J'cCJ

with ecard(I') < a > card(J') pick one element (I ,J ,f ) of D

K, K’ K’gK

with the property 1I' = IK and J''= JK (provided there is such

an element, there wmsay be many or none with this property)., Clearly
condition 2) and card(l) < @ > card(J) imply card{(D') < a . Given

_J,X. with card(1') <« o there is an element (I_,JK,EK,g )
i€ 3 i ;
with 1I' = I, because J_-hX. is a-presentable and J_JMX is
N e & J
1e 1 ) j€d
the a-filtered colimit of itg subcoproducts with less than o sum-

mands. Lilkewise given J_J X. with card(J') < « “one can find
jeJ!

" i . t - f - . o ' .
an element (IK’JK’[K’&K) such that J L.JR . From this it follows
that D' is not empty and that the colimits of D"--—>4, anwJ*Jﬁ Xi

1 €71,
and D" ~---34 , K“ﬂ*l [ h , are ,lqi_xi and JﬁJMX. respec- K
Je.JI igl jed

tively (for D" sce abnve). Whence the colimit of D" e YA,
Koy Xy o= coker(fy,gK) is U , Note that D" is a-filtered and
card(D") < & . Since XK = coker(f{,gK) is a-presentable, by con-
dition l)' FXK is m-presentable [or every Fc:md . Summarizing we ob-~

tain

T(FU) = m(¥ lim X,) = n(Lim FX) < @
K DH -KGD" e >

because an d=~colimit of d-presentable objects is again T-presentable.

This completes the proof.

3.8 Theorem Let A be a locally prescntable category and let M , R

and F be a ﬂata for bialgebras (c¢f., 3.1). Assume there is a regular

cardinal such that

every F&F preserves f-filtered colimits,

Let y > B Dbe any regular F:liiﬂﬁl such that

a) card(M) < y > card{(R) and A is locally y-presentable.
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b) if V€A is y-presentable, then FU is y-presentable for

every FelF (cf. 3.6, 3.7 for v = Q).

Let (A,M,R) be a bialgebra and let Ue¢ A be a y-presentable object.

=W

Then every morphism f{ : U~—>A admits a factorization into a morphism

U-—>U' and a bialgebra morphism (U',M,R) —» (A,M,R) such that

U'¢ A is again y-presentable. Morcover a bialgebra (X,M,R) is y-pre-

sentable in Bialg(A) iff X 1is y-presentable in A

—

Remark Note that <y has to be stri;tly bigger than B ; hence vy E'Kl.

If the codomain of every Fé?md is locally presentable, then by 3.7

there is always a cardinal y > 8 such that the above conditions

a) and b) hold. The peoint is of course to choose Yy &as small as

possible. Thg moste useful situation seems vy ='x]. and B :‘Zo .

This happens in any of the following cases

I card (M) < kfo z card(R) , w(A) = Jfo » every Fe¢J/F preserves
filtered colimits, and every Fchd takes finitely presentable

objects into countably presentable objects (cf. 3.7).

IT card(M) s 2:0 > card(R), w(A) < Xfl,‘every F&fF preserves
filtered colimits, and every F€FFd takes countably presentable
objects into countably presentable objects.

JII card(M) < )CO 2 ecard(R), n(A) SXI » every Fe€lF preserves
filtered colimits and every Fe:md has a right adjoint GF

which preserves countably filtered colimits (cf. 3.6).

3.9 Corollary Let Y(y) be the full subcategory of Y = Bialg(A) con-

sisting of all y-presentable objects. Then for every Y€ Y the cate-

gory Y(y)/Y is y-filtered and the colimit of the forgetful functor
Y

Y(y)/Y—>Y is ; 1.e. the inclusion 1(7)4591 is dense (cf.D3]3.l).

Definition A set valued functor on a small category is called

310 Corollary Let FlatY[Z(Y)o,Sets] denote the full subcategory
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of [i(y)o,Sets] consisting of all ~y-flat functors. Then the functor

Y —> Flatyfz,(y)o,_s_st_s] , Y, 1]

is an equivalence.

. 3.11 Remarks I One can view 3.,l0 as a "generalization" of [K?J 7.9

The latter asserts that a locally y-presentable category X 1is of the
form X s Stytgfy)o,ﬂg] . Thus, if Y (y).is y-cocomplete, then by
D3j 5.4 a functor E(Y)D —> Sets is y-flat iff it is y-continuous,

i.e. FiatT[-E(y)o,Sets] = se [1()°,Me] (e [13]7.9).

IT It will be apparent from the proofs of 3.8 - 3,1¢ that the hypo-

theseﬁ have not been fully used; in particular the existence of
arbitrary colimits in A ., Besides b) and card(M) < y >:card{R) only
the following_properties are used

a) A  has B—filtered colimits for some B8 < y and every TFeF

preserves them,

b) for every A€ A the category A(y)/A of y-presentable objects

over A 1s y-filtered and A is the colimit of A(y)/A—A.,

(U— A) ~~x U (cf. 2.8).

A T - - - - —amps ee a

In general Bialg(a) 1is not_locally presentable but i; has again

B-filtered colimits and by 3.9 it inherits property b), For-instanée
the category of flat left A-modules over a ring A need not be
locally presentable,but has filtered colimits ;;d satisfies property b)
for every <y . An important class of éategories‘wﬁich are not locally

presentable but for which 3.8 - 3.10 applies are the "catégories lo-

calisables" recently introduced by Y. Diers [5].

Proof of 3.10. By 3.4 Y has y-filtered colimits. The functer

z_——>[zjy)o,8ets] , YM&[—,YJ is full and faithful because the
inclusion Y(y) L Y is dense, cf [ 23.4. Moreover it preserves
and refleects y-filtered colimits because the objects of Y(y) are

y-presentable in Y . Also its values are in Flat [z(y)o,Sets]
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because by 3.9 Y(y)/Y is y~-filtered for every Y€Y . Hence the

féctorization Y——-)Flat ]__Y(Y) ,Sets] YM—"l[-,‘f] is a full em=

beddlng whlch preserves Y-flltered collmlts. If F : Y(T) ___9 Sets

is . y-flat, let D be a ¥y~ flltered category rogether with a functor

D—> Y, DA Y such that F = lim [—,YD:] . By the above

D Ty

D&D
lim -, Y] = -,lim Y ] whence F = [-,Y] for Y = lim Y, .
D& =% [’DGD b= | ’_ pep °

This completes the proof.

Proof of 3.8 and 3.9 Since the proof is fairly involved and techni- -

cal we first give a sketch.

In a first step (3.12 - 3,17) we construct factorizations of
£: U —> V(A,M,R)

U—> U —> U, —> ... —> Up —> ...

for every ordinal €< g such that w (Up ) Sb’ and for every operation

Hé M there is a morphism y(€,9+1) : quUi-—é» FcuUf+l making the -

diagram

u(g, e+ 1)

FUS

&Y
e

b=
y
+

\ u (A} Y

*y
(=%
=
LS
\v
o
-

commutative. Using that qu and Fcu preserve RB-filtered colimits,

we obtain in the limit a morphism F (iim Ug ) ~—> F (11m U ) for
du' gz o B Use
every ue M., The latter make lim Ue into a pre-bialgebra and
F<B

U — A into a pre-bialgebra morphism. Since Bey

=]

lim f, : 1i

L3 g«

the colimit U' = 11m Ue is again prresentable. In this way one
S-CB

cbtains asfactorization of f : U —>» A into a morphism U — U!

"o

=,

and a pre—bialgebfa ﬁo££H£Eﬁ f}-#_fim f, (Ui;Mj;;——Q(A,M) with
o T<p 7

',M} being J’~pre§entab1e in P~Bialg(§)(cfl é.5).
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e e - . 3 = =S,

In a second step (3.18-3.20) we construct factorizations
e 4 ; .
&3

, M) —“> (UI,M) —5 (UJ,M) —> 0 — (u, M)~ ....
\x\\\\\\\iL\\\\\% %/iz////////////
(A,M,R)

in the category P-Bialg(A) for every g«<8 such that ﬁ(US)EY
and for every relation reR the vertical morphism pairs

in the diagram

F, af F., al
dr 4 dr ™2
1 a ] 1
.—...___._.+ N e 0 s s I
Far? Far Uy - Fdr Uy > Far &
|
(U, M) r{v’,M) -r(Ué,M) » r(A,M)
o 7 1
Fcrai vV Vv 1cru2 v vV
1 ] ]
-—._._..} ___,..______5, .._.__’-.‘-|..
FerU Fcr U FcrUZ Fcr A

become equal when composed with the adJacent horlzonLdl morphlsm

{(Note that the two components of r(A,M) coincide). Since relations on
P-Bialg(A) commute with B8-filtered colimits passipg to the limit

yields a pre-bialgebra (U",M) = lim (U¢ ,M) which satisfies the
£<B
relations. Since ﬁﬂ-x', one has also «(U") £ ). Thus the induced

factorlzatlon (u', M) —-> (U" M) __> (A M,R) of £': (U',M) -—> (A,M,R)

together with the one from the first step ylelds the de31red decompo-

me— ot S LM IEE TR o 6 0 e o Can e el L aas e NS

.51t10n of £ : U-——}V(A M, R) . .

Flnally to ehow thae a T presentable blalgebra (X,M;R? has.a
”ieﬁresentable-on&erlying object X ‘we efudy fhe cafegory of.those
bialgebras (U,M,R) over (X,M,R) whose underlying object U 'is
f-presentable.‘We show that (X,M,R) is the colimit in Bialg{(A) of
these bialgebras and that this (comma) category 1is J*-filtered. Thus
the identity of (X,M,R) admits a factorization
(X,M,R) —>. (U,M,R} —> (X,M,R) with m(U)s ) . Hence X 1is a retract

of U and thus also ¥ - presentable. Conversely,ﬁif X is Y-ofesentable,
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then by 3.5 (X,M,R) is likewise in Bialg(A)

3.12 Let R = g and let (A,M) be a bialgebra and f : U — A

a morphism with «(U) < y. Let (Ut,M) be a family of bialgebras

teT

with card(T) < y and let (h. : U - 1)

‘. be @Bfamily of

t& T

morphisms such that Ut is y-presentable and fo ht : (Ut,M)-—+ (A M)

is a bialgebra morphism for every te¢ T . We will show that £ admits
a factorization into a morphism g' : U - U' and a bialgebra
méébhiéé‘ f;:~(U',M) —> (A,M) such.that U' is y-presentable and
g'a-h .?_(bt,M)-—+ (U',M) is a bialgebra morphism for every ¢té& T .

3.13  Let BA £ be the category whose objects are factorizations
¥
8% £;

A) of f with ﬂ(Ui) < ¥ and whose morphisms

i —> 3 are morphisms a; : ﬁi-—+ Uj in A with org. = g and

i®i A
fju} = fi . Since D, = A(y)/A is y-filtered (cf. 2.8), it easily
follows that the functor
g5 £y £y
EA’f‘*ﬁ Rﬁ’ (v — Ui — A)“"”(Ui —> A)

is cofinal and that D, s V8 also y-filrered. Since 8 < vy the
i - - - o b ] . - -

category D, has g-~wellordered colimits which are computed point-

—A £
l; (resp. I ) denote the wvellordered set of al] ordlnals p < J

(resp. p < A) By transflnlte induction we will construct a functor

wise. Hence the same holds for . For an ordlnal A= $ let

: g £ »,
. A )
¢ .IEﬂQAf,l~4(WfﬂU{—“M)(
. id f
with @(0) = (U > U 3 A) such that
lim f£
115 @ = (U—ﬁll% U —~43 > A)

A<B
is a factorization of f : U—2A with the properties astated in 3.12.

For p < 1 1in ;é the transition morphism @(p)~9@(f) is denoted

0
T

with a

3.14 The induction hypothesis for an ordinal A is as follows.



There is a functor
: - gp fp
() “I'?\—_}EA,:E' p~—> (U ? Up > A)
whose value at 0 is (U ld% U £ YA) together with a morphism'
0 Bloer) R UYL
for every u g M and every p such that p+] < X subject to the
following condition: For every te&T and for every pair op,T with
p+l < t+! < A the diagrams
P (h) £, @) P @0, ) Py 7 )
Fo U == F_ 0 ——55 F_ a0 S L TR T i LI l‘—~—: ¥
cu t cy o cu p+l cu 1+l cu
Geex) 1 u(Uy) u(p,p/ u('r'r/r Cr(A)
CH y PHCH by (0 JED
SR — o > F
quUt Fd 1) ) Fd U — F U du
commute.,

3.15 TFor X=1 we put @(0) = (idu,f) and (+) trivially holds

whereas (+#) and (®x%=) are vacuous. If A is a limit ordinal <« B

the

3

functor @ : I H*QEA £ given by induction hypothesis has to be

extended to £k . Since D is y-filtered, the image of

for

A, £
— -,

llf—*?gﬁ’f has an upper bound in Eﬁ’f 5> L.e, there is an object

‘ . . .
Vs gk.)e-gﬁ’f together with a morphism Ay (fT,gT)———%(fX.,gl,)

every T < X . Since EA £ is y-filtered, there is moreover an
B 3

object (fl,gk)£ EA,f together with a morphism

}\'l
®a
the

: (fk,,gx,)___e(fk,gl) such that for every pair p < 1 in I

equation dg = a;° ai holds, where a;‘= a;O a;, and o = akoa

: = _ P
Therefore we can define @(A) = (fl’gk) and @(p<a) = a, and

obtain an extension @ : IT.—D . Note that {*%) and (=%x%) hold

—A —A, £

trivially for every p with p+! £ A and every pair p,1 with

A

A
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p+] < t+l £ A 'because ) isalimit ordinal.

If A is not a limit ordinal, then by assumption there is a functor

ﬁ H lk —QDA £ together with a morphism u(p,p+l) : quuﬁ_>FCpUp*l

satisfying X¥) for every uwé€eM and every p with p+! < A . It
+ l_l -

suffices to construct oy : (fx_],gh_l)**%(fl,gk) and

u(A=1,x) = quUA—l'“>FcuUl such that the couditions (), (¥%) and

(¥%%) hold. For an operation pEM it follows from F A = 123 FoO1.
€tas M 1

and “(quUA-]) < v 2 n(quUp) and. % < y that there is an object

. . . ‘ . . A=l .

i i(p) in BA,E together with morphisms a; : (fl—l’gl"]) >(fi,gi)

and udi-1,1i) quUlhl-—}F U. such that for every ¢ T and every

cu i .
p < A=]1 the two squares on the right in the diagranm
F_(h) F (2, ) F_ 2 P (£.)
Fou S btop oy ety oy ew 1l T oy Cawidty o,
cp t ¢y o cu p+l cp i cy
T /\ /ﬁ T
k(UL u(p,pﬂ) nia=1,1); 1 (A)
du(h ) (a ) : qu(ai-l) / qu(fk-l)
—cu_t _—_) —CH_22 Lo BB Ay p 4
Fd U FuuUU : uuUp ) qu”A*l > qu
- +
commuterwhere a?+1 = ai ]ai_: . Note that for X-1 > 0 the left side

of the diagram commutes by induction hypothesis whereas for A = |

this can be established using n(qu t) £ vy > card{(T) in the same

way as for the middle square. Since card(M)f< v™ and Bﬁ,f is
y-filtered, there is an object (U g)\)Ul A>A) in BA,f together
with a morphism ai 3 (fi,gi)-*é(fk,gl) for every uw € M such that
ai“ ai-l : (f l’gl )——é(fl,gA) is 1ndependant of i = 1i(u)

Héﬁce we can deflne Q(k) =" l,g:\), @(l-lcl) = - io.a;'l and

u(A—l,A) ; (u )° u(k i) for €M , With this one easiiy éees

that ﬁ 3 Ek_}gA,f is an extension onto lk and that ud{x=1,2)

satisfies (k)

3.16 We now construct a factorization of f : U=SA into a morphism
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g' : U=U' and a bialgebra morphism £' : U'->A such that the
- t t
properties stated in 3.12 hold. Let (U—gé»U-£—>A) be the colimit

of ﬁ : Eé—igA £ Then, as mentioned in the.middle of 3.13, we have
>

U' = ling U, and f£' = lim £, whereas g' : U-U' is the canonical
A<B A<B

morphism into the colimit.

For every p€ M the functors F and F preserve R~filtered
du . cH
colimits, in particular lig F, U -5 F lig U and
3 T<E du A du A<B by
. = . ) cui . e . . .
itg FCHUA Fcu %%% UA Passing to the colimit with 3, 14 (¥¥%) and
@x%¥)yields an unique morphism u(uty quU'—4>FcuU' such that the

diagram
t
Fou(®D
<ail T F_(f")
Fcu(ht) z = \‘-‘A C"‘(
—_— —_ 11 - 'V e———— F A
cp t Fcqu %%%}F Uk-l-l cu cp
'T' A -~ A
!
- t
() _i%g',qo.’xﬂ) u(U') u(a)
B
~1
Frhr! (ht) - Fd{{l (£ )
S — i O ' ~3 F
quUt ——aquUo -3 ng)quU%_ )quU duA
. A<B =
""-.__ _ ."’/
) ]
qu(g )

commutes. This shows that U' together with the morphisms

wu(U'), w€M , is a bilagebra and that f' : U'—?A and g'ht : Ut—éU'

are bialgebra morphisms for every t€T ., This completes the proof of

the assertion in 3.12.

3.17 For a bialgebra (A,M) let R(A M) be the category of-
,l.

bialgebras over (A,M) whose underlying object in A is y-presentable.

Recall that_fof every A€ A the category EA = A(y)/A of
Y-presentable objects over A is y-filtered (even ¥=-cocomplete) and
that the colimit of RA“9é,(U'£§A)AﬂaU ., is A (cf. 2.8). From this

and 3,12 it }eadily follows for a bialgebra (A,M) that the forgetful
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functor

. f £
(%‘) R(A,M)__)-P-A’ {(UaM)“‘__"‘é (A,M)}W(U——;A)

is cofinal and that E(A M) is y~filtered (but in general not
¥

Y-cocomplete). In particular (A,M) is the colimit of
€36 Deaany — Biake(a), { W, 05 M,m v w0

and Q(A M) has B-wellordered colimits which are preserved by the
H

functors (¥) and (kX).

3,18 We now return to the general case and drop the assumption R = g
which was made at the beginuning of the proof in 3.12. For a bialgebra
(A,M,R) 1let B(A,M,R) be the category of bialgebras over (A,M,R)
whose underlying object in A is y-presentable. Clearly the forget-

ful functor

—- S . e - e - s

(?']9) ~(A M,R) } E(A M)’ {(U M, R)——~¢(A M, R)}naq{(U,M)_h_arA M)}

is a full ewbedding. We willi show below in 3.%o that it is cofinal.

From this and 3,17 it follows that D is also y-filtered and
"(A9M)R)

that (A,M,R) is the colimit of

. Q(IA,M,R)_ PBialg(a), {(U,M,R) J‘}(A’M%R.)}”T”(U’M’R)

If (X,M,R) 1is y-presentable in Bialg(A), then fhis implies that the
identity of (X,M,R) admits a factorization ’
(X,M,R)—é(U,M,R)-ié(X,M,R) with fEER(X M,R) ° Hence X 1s a retract
of U, in particular X 1is also Yy-presentable. Conversely, if X

is y-presentable in A , then by 3.5 (X,M,R) is Yy-presentable in
Bialg(A) . This proves the second assertion of 3.8. Moreover this
shows that the category ECA,M,R) is the category of y-presentable
objects over (A,M,R) in Bialg(A) which completes the proof of 3.9,

3.20 For the cofinality of the functor 3.19 it suffices to show that
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2 pre~bialgebra morphism £ : (U,M)A(A,M,R) with m(U) £ v factors
through a bialgebra morphism f! : (U',M,R) > (A,M,R) such that
m(U') < v . The construction of f' is similar to 3.12 - 3.16, Let

D be the category whose objects are factorizations
—(A M), f £

g3
{(U M)n-———>(U M)-——*é-(A M)} of f wlth w(Ui) = v and whose
morphisms 1-5j are merphisms a; H (Ui,M)—%(Uj,H) in F~Bialg(A)

wvith the properties fi = fja; and gj = u;gi . Since 2(A,M) is

y-filtered and has B-wellordered colimits, it easily follows that rhe

functor

—(A M), f -%E(A M) {gi’fi}w{fi : (Ui,l‘i)'—)(A,M)}

-

is cofinal and that D is also y-filtered and has B-well=
"'(A M)sf
ordered colimits,

Recall that l; (resp. El) denotes the wellordered set of all

ordinals p < (resp. p < )). By means of transfinite inductrions

we construct a functor

€ -—3_9—(A M),
. - Co id ) £ ...
with 2(0) = {(u,M) L5 (U, M) ~—3{A, M)}

. ' '
such that the factorization lig o = {(U,M)*ﬁ—é(U',m)‘£—9(A,M)} of

f has the required properties. We write
.

g f .
Q(p) = {(U,M)"“Eé(Up,M)——R%(A,M)} for pe¢ EE and Q(p<t) = “2 for

< T i I .
p n I

We define Q(0) = {idU,f} « Assume  has been constructed for all

P <X, i.e. there ig a functor (YR I —%Q(A M), £

(0) = {idU,f} « If X is a limit ordinal we extend @ to

vith @(0) = {id,,f}

Iy
by defining Q(X) as an appropriate upper bound of the image of

-

2 lk_éE(A,M),f (the details are as above in 3.15). Now let A be

4 successor ordinal. For every relation r € R we have “(Fdruk-l) <y
Since FcrA =.1}g FcrUi i1s a y-filtered colimit and the morphisms
L€ 2w
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r(A,M) : FdrA==3FcrA coincide, there is a factorization
4 fl
{(v,m) = @, (4,0} and a morphism

-1
a‘i . (f;\"l’ gl_l)ﬁ—a<fi, gi)

+

in B(A,M),f depending on r such that the morphisms

: —=F
T(UA“I’M) ' FdrUA-] >BcrUl"I
L] vl-] > .
: q - . -
become equal when composed with Fcrai FcrUA-l FcrU1 Since

card(R) < y and is y-filtered there is a factorization

D
_(AsM)’f
) Ly
{wm —> w0 —23 a,m)
. X i ' . :

together with morphisms ay (fi’gi)—->(fk’gk) in R(A,M),f such
=1 i k=1 - . .

that Gy = oy ay : (fl-l’gk-l)‘-é(fl’gl) 1s independant of r .,

Thus we can define Q(i) = (8A,fk) and Q(A—l < A) = ai—l and it isg

: — i . 1 . -
clear that @ Il E(A,M),f 1s a functor. This shows that there is
a functor ¢ : lB_QE(A,M),f with Q(0) = {1dU,f} . By 3.17 and the
cofinality of the forgetful functor

— - 9 F
2ea,my, 5 Dea,uyr (fia8;)~nf

the colimit of 0 exists and can be computed pointwise, i.e,

lim ¢ = {(U,M) —E (iiyg U, , M) = (A,M) }
.,
where g' denotes the canonical morphiqm into the ¢éolimit. From the
. A .
construction of Oy4p ¢ (fk’gl)__>(fl+l’gl+l) and the diagram
Fcr(a;+13 can. o
Feh ™2 %y — %—?éle- Ferla ™27, )ILJ:? Y
T
B . 1 - r 1 I
r(Ul,M) r(UA+],M) %%E~I(UA’M) IL}E%»LX’M)
A &
F ‘5 ) ~
dr A +1 car. ... . = .
Faely = F LU —5lim Fy U, —> Fy lin U,

A<B ' A<B



it follows for every r€ R that the two components of the morphism

pair r(lim UA’M) coincide. Hence (Liﬂ UA’M) is a bialgebra,
l<§ ; A<B

3.21 Definition A sub-bialgebra of a bialgebra (A,M,R) is a2 bialge-

bra (U,M,R) ‘'together with a bialgebra morphism £ : (U,M,R)—»(A,M,R)
whose underlying morphism in A is a monomorphism.

Cicarly £ ¢ (U,M,R)~—> (A,M,R} 1is then also a monomorphism in
Bialg(A). However the forgetful functor V ¢ Bialg(A)—3 A does not

preserve monomorphisms in general (for an exception sece 3.4 a)).

——

The question arises whether there is an assértion analogous to 3.8 for
c-generated objects. This is not so. The reason for this asyumetry
lies in the fact that the underlying‘functor V : Bialg(A)-—-%A and the
functors FG‘FC need not preserve monomorphisms, We give below in
3.22 a version of 3.8 for <y-generated objects corfecting this
deficiency by additional assumptions. From the point of view of
applications 3.22 is useful in either of the following situations:

1) A is locally y-noetherian, i.e. every <y-generated object is
y-presentable, c¢f, rTBJ 3.19. or 2) every FEIFc preserves finite

limits, e.g. in the algebraic case 3.2" II ),

3,22 Theorem Let A be a locally presentable category with a dates

M, B and. ¢ for bialgebras (3.1)., Assume there is a regular

cardinal B such that

1) every FE€F preserves. p-filtered colimits

2) every p-vwellordered colimit of monomorphisms in

|
%
o
=]
]
i
3
T

monomorphism.

Let y > B be any regular cardinal such that

3) card(M) < ¥ and card{(R) < y

4) A is locally y-noetherian and if UE€ A is y-presentable, then

FU 1is «y~presentable for every F¢ Fd (ef. 3.6, 3.7 for y = a) .



Instead of 4) one can assume

4)' A i

n

- N
locally y-generated (cf. [idJ 9.1,) and every Fe?mc pre-

serves finite limits; moreover if U&€ A is y-generated, then FU

is y-generated for every FCﬂFd (in this case the assumption
card (R) < y is redundant).

Then the following hold,

a) If (A,M,R) 1is a bialgebra and UC A is a y-generated subobject

of A , then there is a sub-bialgebra (UM, R) S 3 (A,M,R) such

that U' contains U and 0 is alsoc y-generated.

b) A bialgebgi (X,M,R) 1is Y-generated in Bialg(A) iff X. is

y-generated in A .

¢) A bialgebra (A,M,R) is the y-filtered colimit in Bialg(A) of

its y-generated sub-bialgebras.

d) If A is locally y-noetherian, then every y-generated bialgebrq_

is y-preseantable in Bialg(A); in particulas if Bialg(A) is co-

——

complete (cf. 3.24 a), b) and 3.27 helow), then Bialg(A) i

‘

cally y-noetherian.

3.23 Remarks

a) Note that v has to be strictly bigger than £ , hence Y 2.)q

If the codomain of every FG‘Ed is locally presentable, then by 3.7

e
resp. 5.1 there is always a cardinal vy > f “such that the above con-

-

ditions 3) and 4) hold (resp. the second half of 4)'). The point is of
course to choose y as small as possible. The most useful situation

seems y = )q and B = f% . This happens in any ¢f the following cases.

I Every TFelF preserves filtered colimits, card (M) < f; > card(R) ,

A 1is locally finitely noetherian (resp. A is locally finitely

generated), every FelFC takes finitely generated objects into

counitably presentable objects (resp. into countably generated ob-

jects and every FEIFC preserves finite limits), cf. Corollary
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to 3.7.

II Every F€IF preserves filtered colimits and every countable co-
limit of monomorphisms in A is again a monomorphism,
card (M) < ﬁL 2 card(R) , A 1is locally jcl—noetherian (resp. A

is locally f(l—generated), every F¢IF takes countably genera-

d
ted objects into countably presentable ‘objects (resp. into coun-
tably generated objects? and every Fe-mc rPreserves finite 1i-
mits)Y, c¢f. Corollary to 3.7.

III Every FelF preserves filtered colimits and every countable co~
limit of monomorphisms in A is again a monomorphism,
card (M) = )% 2 card(R) , A is locally.xz-noetherian (resp. A
is locally };-generated).

Every Fe:IFd has a right adjoint which preserves countably fil-
tered colimits (resp. every Fele has a right adjoint which pre-

serves monomorphic countably filtered colimits, and every Fefmc

preserves finite limits), cf. 3.6.

b) As before in 3.8 the existence of arbitrary colimits in A is not

needed for 3.22 (cf. 3.1! a), b)).

Proof of 3.22 The proof is the same as for 3.8 with the following

obvious modifications. First for 3.12 - 3.16:

In 3.12 the morphisms f : U—A and ht : Ut——iU sy t&T , are mono=~

morphisms and e(U) < ¥ Z,E(Ut) « In 3.13 the category RA consists of

all y-generated subobjects of A and likewise EA ¢ consists of all
b

y-generated subobjects of A containing £ : U—>A (clearly both
categories are y—-filtered, [13] 9,1 - 9.3),

the
With this proof (3.14 ~ 3.16) of 3.12 goes through without change be-

cause either by assumption-4) in 3.22) one has n(quU) 2 y:. for every

L

HeM and every U€ A with e(U) <y or by 4)' in 3.22 one has

e (F <

duU) <y, for every U€A with e(U) < v and the transition mor-
phisms in FcuA = 113 FcuUi are monomorphic for every wueMM . No.e

]
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that by assumption 2) in 3.22 the induced morphism lig £, : lim U,— A
T S o7

ié again a monomorphism.

Second for 3.17 =~ 3,20:

In 3.17 and 3.18 the categories R(A,M) and D(A,M,R) consist of all
sub-bialgebras of (A,M) (resp. sub-bialgebras of (A,M,R)) whose
underlying object in A is y-generated. Im 3.20 the underlying mor-
phism of f : (U,M)—> (A,M,R) 1in A is a monomorphism, and the cate-
gory R(A,M),f consists of all sub-prebialgebras of (A,M,R) wvhich
contain £ : (U,M)---- (A,M,R) and whose underlying object in A is
Y~generated.

With this the arguments in 3.17 = 3.20 go through without change. Note
that as above by assumption 2) in 3.22 the induced morphism

%%% fl : %%%(UA,M)—*—Q(A,M) in 3.20 is wgain & monomorphism. Also note
that in thebpresence of the assumption 1), 2), 3) and 4)' the cofinali-
ty argument in 3.20 is redundant because by 4)' a sub-prebialgebra of

a bialgebra satisfies the relations automatically (whence the assump-
.tioﬁ -card(R) < ¥ 1is not neéded). ﬁ;réaver in“5.19 a bialgebré
Ex;ﬁ;kj_‘ig Y-ée#ér;téd beéause of the remark following 3,5.---

With these modificaticns it follows from 3.!8 that the assertions a),
b) and ¢) in 3,22 hold. As for d) it suffices to show that a y-genera-
ted bialgebra (X,M,R) 1is y-presentable iu Bialg(A) . By 3.22 b) X
is Y—geniiated in A and hence also Y-presentabfh because A is lo-

cally y-noetherian. By 3.5 and assumptibn 4) in 3.22 .(X,M,R) is y-pre-

sentable in Bialg(A) .

We now investigate the completeness and cocompleteness of Bialg(A).
Basically this occurs when the given data M , R and IF for bialgebras
(3.1) has one of the following properties: 1) every F€|Fc pPreserves

limits (algebraic case, cf. 3.2 II), 2) every FE&I, preserves coli-~

d
mits (coalgebraic case, ¢f. 3.2 If), and 3) the data M , R and IF
can be decomposed into one of type 1) and one of type 2) (roughly
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speaking every operation is algebraic or coalgebraic and every rela-
tion is algebraic or coalgebraic or a distributive law between an alge-

braic and coalgebraic operatica).

3.24 Theorem Let A be a locally presentable category with a data

M, R and [F for bialgebras (ef. 3.1). Assume there is a regular cax-

dinal B such thal every F&lF preserves p-filtered colimits.

Let Yy > B be any regular cardinal such that

1) card(M) < v > card(R) and A 1is locally y-presentable,

2) if U&A is y-presentable, then FU js y-presentable for every

Fé:Fd (cf. 3.6, 3.7 for v = & ).

Then the following hold,

a) If every FEfﬁd preserves colimits, then Bialg(A) is lo-

cally y-presentable and the forgetful functor V : Bialg(A).—5A is

cotripleable. The right adjoint <F : A——Bialg(A) of V preserves

y-filtered colimits (¢F = cofree functor).

b) If every F€IFC preserves limits, then Bialg(4) is locally

sup (B,r(A))-presentavie and the forgettul functor V : Bialé(&)_—aé

-

is tripleable and preserves B-filtered colimits. (The left adjoint

F : A——Bialg(s) of V is the free functor).
Remark Note the asymmetry between sup(B8,w{A}) and <y in a} and
b). For the locally y-noetherian case see 3.22 d). For conditions

guaranteeing B =gfo and vy =:Y] see the remark following 3.38.

3.25 Corollary Let A be a Grothendieck category (resp. a topos)

with a data M , R and [ for bialgebras. If every TETF preserves

d

colimits and every FGEFC finite limits, then Bialg(é) is again

a Grothendieck category (resp. a topas). This follows from 3.24 a),

4,11 and 3.3.

Proof a) It follows from 3.8 and 3.4 b) that Bialg(A) 1is locally

Yy-presentablie. By the special adjoint functor theorem the forgetful
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‘functor V : Bialg(A)— A has a right adjoint <¢F :‘é-;;ABialg(é),
whence by 3.4 b) V is cotripleable. For every Y~presentable object
(U,M,R) & Bialg(A) the functors [(U,M,R),CF~] and [U,-] are equi-
valent by adjointness, and by 3.8 U is Y-presentable., For a Y—fil-

tered colimit X = lim Xv the canonical morphism

A
¢ lim CFXv""*CF(_iﬂ Xu) gives rise to a commutative diagram
v v
LeV]
| (@m0, ¢) PN
[WaR), i erx ] oS [U,M,R), oF {1in % )] — [, Lin X ]
hY Y A
" N
_1_3\3 [(u,M,R), cFXv] - _—— » 3 aim [U,Xv]

Hence [(U,M,R), %] is a bijection for every y-presentable object
(U,M,R) € Bialg(A) . Since these objects forma set of (dense) generators
in Bialg(A) (cf. 3.9), it follows that P is an iscomorphism. Thus

cF : A---3Bialg(A) preserves y-filtered colimits.

b)Y By 3.4 a), c¢) Bialg(é) has limits and p-filtered colimits and

V : Bialg(A)—A preserves and reflecfs them. In order to show that

V has a left adjoint, we verify the solution set condition. For every
object U€& A there is a regular cardinal & such that U is S-pre-
sentable. By 3.7 there is a regular cardinal y such that & < Yy > B
and the counditions a) and b) of 3.8 hold for Y . Since the category
A(y) of y-presentable objects in A is small, it follows from 3.8
and 3.1 that the same holds for Y{v) (see 3.9),‘wﬁere ¥ = Bialg(A) .
It then follows from 3.8 that a set of representatives of Y(y) - i.e.
a skeleton - is a solution set for U , Hence V : Bialg(A)——>A has a
left adjoint F and is tripleable by 3.4 a). The composite

Ve F : A-——sA preserves B-filtered colimits and it therefore follows
from Gabriel-Ulmer [13] le.3 that Bialg(A) 1is locally sup(g,m(A))-~

presentable.

3.26 It is well known that the category of commutative (resp. co-
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commutative) Hopfalgebras over a commutative ring A can be viewed

aé the category of cogroup (resp. group) objects in the category of
commutative A~algebras (resp. cocommutative A-coalgebras). Similarly
the category of commutative (resp. cocommutative) A-bialgebras can be
viewed as the category of comonoid (resp. monoid) objects in the cate-
gory of commutative A-algebras (resp. cocommutative A-coalgebras). In
both cases this rests on the fact that in the category of commutative

A-algebras (resp. cocommutative A-coalgebras) the categorical copro-

duct {(resp. product) is the tepmsor product lifted from Mod Thus

I
theorem 3.24 can be applied twice - first a) and then b) or vice versa-
and it follows that any of the above categories is locally j(]-presen-
table, However the category of arbitrary A-bialgebras (resp. A-Hopf~
algebras) cannot he expressed this way because the tensor produect 1if-
ted to the category of A-algebras or A-coalgebras islnot the categori~-
cal coproduct or product. The following is motivated to rectify this,
at least ip part.

3.27 Definition Let M , R and IF be a data for bialgebras in

0

A (3.1). A decomposition of M , R aund F into an algebraic and coal-

gebraic part consists of a data M , R and F in A and a data

st

v, R and. £ in Bialgy — (A) with the following properties:
J.‘j’R -

1) BlalgH,R(é) = Blalgﬁ’i(BlalgB’ﬁ(é)) .

2) every ﬁéﬁﬁc preserves limits,

==l
ST

3) ever £ reserves colimits,
Y d

Likewise a decomposition of ¥ , R and F into a coalgebraic and al-

gebraic part consists of a data ¥ , R and F in A and a data

M, R and T .in Bialgﬂ f(A) with the properties

1 = 1 : = = ¥ —_ b
1) Blalg”,R(é) BldlgM,R(BlalgM,R(é’)
2) every fCiﬁd preserves colimits,

= =
3) every TF¢ F. preserves limits.
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For example to express the category A-~Bialg of arbitrary A-bialge=~
bras in this way let A = Modﬁ and choose M to comsist of a multi-

plication p : 1dA ® 1dA~~——>1dé and a unit yp constﬁm——)ldA and

R of the associative and unitary laws. Then B = Bialgﬁ ﬁ(é) ig ob-
¥

viously the category of A-algebras and the tensor product 1lifts from

" -— S — -

Eﬂﬂﬁ to B ., Let M in B consist of a comultiplication
A B A and let R .

A idB +r+¢idB @, id and a counit ¢ : idB-hméconst
consist likewise of the coassociative and counitary laws. With this

one readily checks that Bialgq ﬁ(B) is canonically isomorphic with
rl, et

A-Bialg(4a) , cf. 4.4 for details. Unfeortunately it doesn't seem possible

to express the category of arbitrary A-Hopfalgebras in a similar way.

While the antipode can be viewed as a morphism s : idB——ﬁm-}idB0pp I

don't know how to express the relations involving s in B . One

would have to show that for a A-bialgebra (M,u,u,A,e) the composites

VY @, u £ B 3Gy ® M ~—3M and
M——E% M ®h M &§-§~r3 M @A M-~£—%M which are defined in Mod“ are

multiplicative or antimultiplicative whithout using that they coincide

.

with M--S, h-—EmaM

3.28 Theorem Let A be a locally preseutzble gakegqgi. Let M , R

and I be-a data for bialgebras in A which admits a decomposition

into an algebraic part M , R , T and a coalgebraic part M, R, T

L
(cf. 3.27). Assume there is a regular cardinal R such that every

FefF and every fe.ﬁ preserve f(-filtered colimits. Let v > B be

any regular cardinal such that

1) card(M) < Y o, card(ﬁ) <y , card(R) < y , card(i) <y and A

is locally y-presentable,
2) if UE€ A and (X,ﬁ,ﬁ)GﬁBialgq ﬁ(é) are y-presentable, then TIU
|
and F(K,ﬁ,i) are y-presentable for every Telfd and fﬁfﬁd

(ef. 3.6, 3.7 foxr vy = %).

e

Then BialgM’R(A) Bialgﬁ’ﬁ(Bialgﬁ’i(é)) is locally y-presentable
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and the underlying functors

BialgM’R(§)~———~9 Bialgﬁ;ﬁ(A) and Bialgﬁ’ﬁ(é)—w———g'é

are cotripleable and tripleable respectively.

Proof By.3.24 b). the underlying functor Bialgﬁ i(é)=——->é is triple-
able and Bialgﬁ ﬁ(&) is locally y-presentable. Likewise by 3.24 a)
.
the underlying functor ]3:'..-=1lg‘01 R(A)_f-_—éBialgﬁ i(A) is cotripleable
Py & - 3 ——

and BialgH R(é) is locally y-presentable:
-

‘i3.29 Remark In the same way one considers morphism between algebraic
theories and the corresponding algebraic functors (cf. Lawvere [21]),
one can study morphisms between data for bialgebras. For a given data
M , R in A& and a subset M'C M there is an obvious relative forget-

ful functor

Vier ' P-Bialg, (A)—P-Bialg,,(4) , (A,u(A))ueﬂ“ﬂ(A,u(A))ucM' .

Let R' be a set of relations on P—Bialgﬁ.(é) which hold in
- - + = {: .
BlalgM,R(é) s, 1.e. Vrel(A,M,R)éfBlalgM,’R,(é) for every

(A,M,R) € Bialg,, R(A) . Then there is also an induced forgetful functor
A‘-’

Vel ! BlalgM’R(é)-—*——} BlalgM,,Rtfé)

One can easily generalize the rvesults of this chapter - in particular
3.8, 3.22, 3.24, 3,28 =~ to this situation. But in.general it is dif-
ficult to find a data M" , R" 1in BialgM,R,(é) ~ hopefully simpler
than M , R - such that Bialgy ,(4) = Bialgyw pu(Bialgy, oo (&) ;

(see 3.26, 3.27 for cases like Bialg(A) = Coalg(Alg(A)) .



§ 4 Examples of hialgebras in locally presentable categories

In this section we give a first series of examples of bialgebras and
apply the main resvlts of § 3. A second series can be found in § 6.
In the following we discuss universal algebras (4.1), universal co—

algebras (4.2), cealpgebras over a commutative ring A (4.3), A-bial-~

gebras and A-Hopfalgebras and generalizations (4.4 - 4.7), comodules

cver a h_coa]éebra (4.8}, bimodules over a A-bialgebra (4.2), coalgebrés
OQEIIa cotriple (a.lo ~“4.12), algeb?és ovar a triflé (4.!3); donntes
Ge recollement and descent data (4.14 - 4.16) and more genrally
sectious and cartesian closed sections with respect to a Eibraiion

or cofibration (4.19 - 4.26). Although some of these cases are dual

to each other as far as the data for bialgebras is concerned, the
assertions resulting frem 3.7, 3.8, 3.9, 3.22, 3.24 and 3.2Y% are not

and can be quite different. We always assume the base category A to
be locally presentable although, as for 3.8, 3.9 and 3.22 the existence
. C o . ety .
of srbuitravy colimics im A& 1is not needed. We leave the generatrzalbion
by meawvs of 3.11 te the raader. .

We uwse the following notation for a data (3.1) of bialgebras M., R, I® :
FFox an operation ueM and a relatien rZ£ R we write ¢ @ FdJ'“?Fcu
and v Fer:LiF - respectively. A data will often be given by first

specifying the set F of support functors and then indicating the

operatiens and relations iw this form.

4.1 wuniversal algebra.

Lett A be a category with fiﬁite products. Let © bhe a finitary
algebraic theory in the sensé of Lawvere [lfj (or Birkhoff), =g. groups,
ringss algebraé... . Let M be a set of defining operations and R

o set of defining relations for € in the usual sense. For pe M

let F = jd and let E : A-—A be the funcior A~¥TTA which
cy . A du = o

assigns to an object its nuwfold product, where n“ is the arity
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of u . A pre-bialgebra (A,M) 1is an object A € A together with a
morphism L'A——iA for every upu& M . For a relation r & R let
{l. .

Fcr = 1dA and let Fdr t A—3>A be the functor Aﬁ‘?k! A , where

n, denotes the arity of r . The functor Fdr is also denoted with
idAnr . Since relations are built up of operations and projections,
for every pre-bialgebra (A,M) and every relation reR there is a

morphism pair r(A N) : l IA.::iA Whlch is natural in (A,M) - i.e.

{1d s i.dA ’ idAz...} . It is stralght forward that Bialg(4)
is 1somorphic with the category ©-Alg(A) of 6-algebras in A
(i.e. the category of product preserving functors ©-—34)

-

Assume that A 1is locally a-presentable. Let B be the least

regular cardinal such that B-filtered colimits commute with finite

products, whence £ < a by [13] 7.12, By .an obvious cofinality argu-

ment for every n 2 0 the functor A—4A , A~$ln|A preserves R-fil-

tered colimits, moreover it is right adjoint to A— b, A*ﬁJELA 5

Thus by 3.24 b) and 3.7 (remark) 8-Alg(A) is locally n-presentahla

and the forgetful functor V : B-Alg(éj——éé is tripleable and pre-

serves B~filtered colimits (cf. also []3] 11.4).

Let y be a regular cardinal such that

1) B <y2a, 2) card(M) < y > card(R) and 3) if A€A is

y-presentable, then so is lnlA for every finite n > 0 (cf. 3.7

remarks). Then by 3.8 a 6~algebra (X,M,R) is y-presentable in

=

ff X y-presentable in A .

o-Alg (4)

+h

Likewise, i Y 1is a regular cardinal such that

1) B<y2a, 2) card(M) < vy and 3) if A€ A is y-generated, then

so is |] A for every finite n 2 0 , then a 6-algebra (A,M,R) 1is
n —— — —_———

e

y-generated in ©8-Alg(A) iff A 1is y-generated in A (ef. 3.22),

If in addition A 1is locally y-noetherian, then so is ©6-Alg(4) .

The generalizationSto non-finitary theories in the sense of Linton [23]

with rank or to partial operations are obvious generalizations and
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left to the reader (see also 6.14). The above can be genralized to

categories A which are duval to a locally presentable category. By

ut

means of 4.2 below and ©-Alg(A) (G-Coalg(éé))o it follows that

the category of ©-algebras in the dual of ailocally presentable cate=.
gory is itself the dvual of a locally presentable category. In particu-
lax if "A = Comp (vompact spaces) or A is any Grothendieck AB 5y ca=

tegory with cogenerators, then 8-Alg(A) is the dual of a locally . :&

presentable category.

4,2 universal coalgebra

Let A be a category with finite coproducts. Let © be a finitary
algebraic theory and let M and R be sets of defining operations

aud relations as above. For pe¢ M let qu = idA -and let Fc t A——A

be the functor A“ﬂL%LA . A pre-bialgebra (A,M) 1is an object A€ A

together with a morphism A-—)%.LA for every p¢M . Likewise for a
I
i ) = i H ~7. .
relation € R letl Fdr :r.dA and let Fcr A—3A , A %%_A As

above there 1is for every pre-bialgebra (A,M) a morphism pair

r(A,M) : Azzigl A. and the category Bialg(A) is isomorphic with the .
category G—Co:1g(é) of 8~coalgebras in A . Note that -Ed = {idA}
and mc = {idA(O) , idA(l) N idA(z) ,} , Where idA(n) denotes t;e
functor A*él;LA . If —é has finite products, them A-34 , A**JELA
is left adjoint to AhéqurA .

»,
Assume that A is locally presentable and let

»

Y > sup {j(l’ m(A), card(M)+, card(R)+} .

(Recall that &' denotes the least regular cardinal > § .) Since

A(y) 1is closed in A wunder finite coproducts (cf. 2.8), it follows

from 3.24 a) that the category &-Coalg(A) is locally y-presentable

and the underlying functor V : B-Coalg(é)?—}é_ is cotripleable and

its right adjoint <F : A—>6-Coalg(A) preserves y-filtered colimits. .

Moreover by 3.8 a ©-coalgebra (X,M,R) is y-presentable in &-Coalg(A)
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iff X 1is y-presentable in A, in particular a merphism U-—3(A,M,R)

with «(U) < v admits a decomposition into a morphism U—2U' and

a O-coalgebra morphism (U',M,R)—3(A,M,R) such that #(U') < vy .

Likewise if A 1is locally y-noetherian and if in A B-filtered co-

limits of monomorphisms are monomorphic for some 8 < y , then by

3,22 4d) 0-Coalg(4) is locally y-noetherian. In addition every Y-ge-

nerated subobject of a ®-coalgebra is contained in a 6-subcoalgebra -

whose underlying object is also y-generated. (Note if A 1is not lo-~
cally y-noetherian, then the latter need not hold, in particular a
8=coalgebra (X,M,R) .need not be y-generated in ©-Coalg(a) if X

is y-generated in A , and conversely.)

The generalizations to nonufinit;ry theories in the sense of Linton [13]
with rank or to partial co-operations are obvious and left to the
reader (see also 6.14 -~ 6.16). The above can be generalized to catego-

ries A which are dual to a leoccally presentabie category. This is done

n

in some way as in 4.1 by means of 8-Coalg(A) (G—Alg(éf)jo,

4.3 (Coalgebras over a commutative ring.
4

Let A = Mod be the category of A-modules over a commutative ring A .

A
Let [F = {consth , 1d , id ® id , id @ id ® id} » where id is the identi-

ty functor of ModA and const, 3 Mod -——9Modh is the constant functor

A
A~? ] . The tensor product is taken over A ., Let M = {4,5} >

where A v id--»id ® id and ¢ : id--»const, *are operations called

A

comultiplication and counit. A pre-bialgebra is a A-module A :to-.

gether with homomorphicsms &A : A—3> A @ A and €y ° A—A | Let

i 1
R = {rl » Ty s r3} s where 1 3 idz-:34id @ id @ id and ‘
r, i id==tz3 id, ry id=z=z3'id are relations, called coassociative

and counitary laws, which for a pre-bialgebra (A, ﬁA’ eA) are given

by the diagrams
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AgpAeA . A i A
v . n
ldAQAA A‘imldA :
Ag A A A
id @gT TE ® id id
A A A A
AgA A
Ao A A® A
A
A bp
AA
A A

It is straight ferward that r r, and ry are relations and that

1’
Bialg(gggﬁ) 'is the category A-Coalg of A-coalgebras. Note that

g = {id} . Recall that Eﬂéﬁ isxlocally Y—noethefian (i.e. every
yY—generated module is y-presentable) for some Y > }fo iff every ideal
IcA is y-generated. If A has this property, it is called y-noe-
therian; in particular for y = JVO the notion ﬁl-noetherian coin-
cides with noetherian in the ﬁsual sense. Clearly if A is noetherian,
then it is y-noetherian for any ¥ 2 22

By 3.2% a) the category A-Coalg is locally .xl—presentable and

by 3.8 for vy 2 K“ 2 coalgebra tx,ax,ex) is Y~presentable in

A-Coalg iEf its underlying module X is y-presentable in Mod 1

A =

particular a A-homomorphism U-—e(A,‘AA,eA) wit m(U) < ¥ admits a

“coalgebra morphism

A
(u', AU,,QU,)-——Q(A, AA,eA) such that «(U') < vy

decompositioq into a A-homomorphism U—U' and

Likewise, if A is y-noetherian for some Y Q,XH, then by 3.22

A-Coalg ii_locally Yy-noetherian and a y-generated A-submodule f a

coalgebra is contained in a subcoalgebra whose underlying A-module is

Y=generated,. Moreover a coalgebra iﬁ y-generated in A~Coalg 1iff its

underlying module is y-gemrated in Mod (Note that these assertions

""L L]

need not hold if A is not y-noetherian.)

The same results hold for the category of cocommutative A-coalgebras.
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For by adding to the above data of bialgebras a relation expressing

the cocommutativity of A:id--» id ® id one obtains instead the cate-
gory of cocommutative A-coalgebras,

The above improves the results of M. Barr [1 ] considerably. He showed
that for § > sup(eard(h)+,)¢l) every §-generated submodule of a A-co-
algebra is contained in a subcoalgebra whose underlying module is also
6-generated; in particular the coalgebras whose underlying module is

sup(card(ﬁ)+),)Cl)-generated, form a set of gemrators in A-Coalg . As

shown above these problems have something tB do with the (minimal) num-
ber of generators for-ideais ];cA and not with tﬁé cardinaliﬁy of-'A
The latter enters his argument fcr a different reason. A submodule of

a coalgebra which is closed under the comultiplication need not be a
subcoalgebra because it need not be coassociative. If however the sub-
module is pure, then the coassociativity carries over. Therefore he
considered only pure submodules and embedded the given submodule of

the coalgebra into a pure submodule. In this way the cardinality of A

comes in and the "generated" subcoalgebra can become much bigger

than necessary. )

As for Fox's [3] generalization of Barr's results see 4.7 below.

4.4 Bialgebras, Hopfalgebras over a commutative ring, generalizations

Lo Props and locally presentable categories.

Let A = ggin be the category of modules over a commutative fing A

The data M, R, F for A-bialgebras is as follows. Let )

F = {I;const:i.1L , 1id , ide id , id.aiil@id} be as above for coalgebras (4.3).
~Let M = {é. $E s U ,u} be operations, where A : id— —> id@® id

£ ¢ id—-—=> const, , W : id ® id=——=>1d and u : const,— —> id are

A
operations called comultiplication, counit, multiplication and unit
respectively. Thus a pre-bialgebra is a A-module A together with
homoemorphisms AA ! A—-3> A ® A, €yt Ae—mp My * A®A—A

and u, 3 AA—>»A . Let R = {rl, r2""rlo} , Where



=
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ry : idZZ3id @ id @ id ,r2:id223id,r3

above in 4.3 and the relations r, * idgidpid 2234d , r. : id-ZZ 3id

T id--3ia , LF id @ id Z-Zjid & id , rg consthiijconstﬁ

rs_ i constA::3id®id , X : id @ id.‘.:.';c.on-st

e * A

bialgebra (4,A by the diagrams

A’EA,HA’UA)

Ao hoa A . /j;/a
id & ®1d \’4 L
ADA 1 A 1(1A®‘I.IAJ’ \I/uAsidA
\ / Ae A Awa
1 .
F A
AdA@Aa@A ——ﬁ-—}AaAaAaA A
%ﬁy/m : AA \Q&
\
A@A ; ldf\
A
~
A Ao A
wy N ay/ \
A A®A Awe A A
AL Bu
Ai\t / A \‘ /A
Ao a A

are given for a pre-
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where fA P A®AQ@AQ@A—~——>A Q@ A®A®A is the homomorphism
interchanging the two inner factors. It is straight forward that
Yys Tosewey T, are relation§ on P-Bialg(gggﬂ) and that Bialg(ﬂgiﬂ)
is the category A-Bialg of A-bialgebras. In order to express the ca-
tegory A-Hopf of A~Hopfalgebras as bialgebras in Egiﬂ one adds to
M an operation & : id---3id (= the antipode) aﬁd to R two rela-
tions iy ¢ id 2z23id , £, idT-3id which for a pre-bialgebra

(A’AA’EA’HA’uA’SA) are given by the diagrams

idAQ’} S SA@idA
A d——m3 A @ A ApgA ———-H>Aa@ A
A '-‘. et 6 A
A A A . R
> €
% A : A
uA \ /A
A A

-Likewise by adding relations expressing the comnutativity of u or

the cocommutativity of A or both one can obtain the categories o

i

commutative A-bialgebras and A—Hopfaléebras, cocommutative A-biale
gebras and A-Hopfalgebras and bicommutative A-bialgebras and A-Hopf-

algebras. Note that Wd =1F and that (A & A) ¢ w{A) and likewise

e(A @ A) < e€(A) for every AeiModA .

4.5 Thus for v a:%] it follows from 3.8 that 3 A-bialgebra (X,M,R)

is y-presentable in A-Bialg iff its ﬁnder{zigg gpduie X is y-pre-

sentable in Modﬁ . Moreover a A-homomorphism U-> (A,M,R) with
7(U) £ v admits a decomposition into a8 A~homomorphism U—3U' and a

A~bialgebra morphism (U',M,R) — (A,M,R) such that «(U"') 5 v 3 in

?

particular the A-bialgebras whose underlying module is Xl—presentable

form a set of dense generators in  A-Bialg (cf. 3.8 and B3] 3.1

If in addition A is y-noetherian for some vy 2 :Kl (cf. 4.3),

then by 3.22 a y-generated submodule of E_bialgebra is contained in a
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subbialgebra whose underlying module is also y-generated. Moreover 3

A-bialgebra is y-generated in A-Bialg iff its underlying module is

y-generated in ModA :

The same assertionshold for the categories of commutative A-bialgebras

and A-Hopfalgebras, cocommutative A-bialgebras and A-Hopfalgebras

and bicommutative A~bialgebras and A-Hopfalgebras.

4.6 With the exception of arbitrary A-Hopfalgebras all of the above

categories are locally Xl—preseutable. In addition the various rela-

tive forgetful functors have left adjoints resp. right adjoints. If A

is y-noetherian for some vy > Xl s then the above categories are also

locallz xw—noetherian.

The data of bialgebras for these categories admit a decomposition into
algebraic and coalgebraic parts, cf. 3.27. Thus the first assertion
follows from 3.28 and the last from 3.22 d) while the one concerning
adjoints is a consequence of either 2.9 or the special adjoint functor

theorem. For more details see 3.26 and the discussions following 3.27.

4.7 Generalizations Let P be a prop in the sense of Mac Lane tvﬂ

Section 24, and assume that it can be defined by & countable number of
operations.and relations (see M. Barr [ ] p. 605/606 for a discussion).
It is clear that the tensor product preservipg functors £~ﬁ>§giﬂ
can be expressed as bialgebras and therefore the assertions in 4.5
carry over to this situation. Likewise if the prop P is algebraic or
coalgebraic ([1 ] 6.1) or admits a decomposition as im 3.2 , then the

category of tensor product preserving functors P — Mod is locally

A
'xl-presentablq,and if A is y-noetherian for «y g_xj , it is locally
Y-noetherian, etc.

More generally let A be a category equipped with a bifunctor

® : Ax A-—4A which is coherently associative, symmetric and unitary.

Then for an arbitrary prop P one can express tensor product preser-
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Ving functors as bialgebras as above., If A 1is locally presentable
and @ preserves o-filtered colimits in both variables for .some *

o > )oo > then 3.8 (resp. 3.7) and 3.22 (resp. 5.1) apply.

Moreover if the prop P is of algebraic or coalgebraic type (cf. [l]1
6.1) or admits a decomposition like in 3.27, then the category of ten- '
sor product preserving functors P— A is again locally presentabie-

etc. (see 3.28 and 3.22 d)). In particular this applies to the coalge«
the

braic situation considered by Fox [8 ]. We leave it to,reader to spe-
cify the minimal cardinais in 3.7 - 3.28 for tensor product preserviag

functors P—> A (note that the case ¢ = X’o is particularly simple

and useful).

While props give rise to data of bialgebras, the converse is not

true, not even for A = Moqﬂ and

F = {constﬂ ; iad ; 1d @ id.,id & id & id} . For instance, as M. Barr

pointed out to me, Lie algebras over A cannot be expressed as tensor

product preserving functors E:_>§giﬁ for some prop P because the

Jacoby identity involves addition of structure morphisms, However they

can easily be described as bialgebras, the Jacoby identity is given by
f,

the relation A ® A & ﬁ;:g%iiA., where f£(x,v,2) = 0 and

glx,y,z) = [[x,y],z] + [[;tz],xj + [[z,x],y] .(Note that £,

are obviously natursl with respect to A-homomorphisms preserving the

and 8y
bracket). The notion of bialgebras allows more flexibility as far as
relations are concerned , It ié also more natural aud its simplicity
should be compared with the technical problems involved with a prop r
and the coherence aparatus for @ and P .

1 should add that these prop problems prompted me to look for'some-
thing simpler. When I met M.Barr and T. Fox in the fall of 1975 T had
ten "different™ proofs for the same theorem (namely 3.8); one for ZI-co-
continuous functors, one for coalgebras over a cotriple, one for des-

cent data , one for A-coalgebras, one for comodules over a coalgebra,
1]

one for A-bialgebras,... . On the other hand Fox [Sj had a proof for
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a tensored locally presentable category and a coalgebraic prop, but no
réasonable ;ize estimates for the generators he constructed. In order
to obtain that and also to cover the case of non-coalgebraic props I
had to look for an "eleventh proof" of 3.8 considering interlocking
operations and relations which turned to be very technical and ex-
tremely laborious. Fox [S'] had got : around this problem in the same
way as Barr [1 ] by using purity (see 4.3 above). The use of purity
however makes good size estimates impossible and thus something else
had to be found. In this way I was led to the notion of pre~bialgelras
and bialgebras as defined in 3.1, the above mentioned example of Lie-
algebras served as a guide. The unification of the eleven proofs of

3.8 was a somewhat "unexpected fringe benefit™,

4.8 Comodules over a A-coalgebra,

Let A = Mod be the category of modules over a commutative ring A

A
and let C be a A-coalgebra with comultiplication: A : C—CHC

and counit e : C-3>A (ecf. 4.3). Recall that a right C-comodule is a
A-module A together with a A-homemorphism GA : A—3AwC  such that

the diagrams

A®C ApcC
§ ; N
A \\\Qaf:dc GA //ﬂ \\\¥Efe
- N
A\\\\\\ﬂ Ae® Ce C o SA® A
8 ,/idm . .
A Aec A
commute. The temnsor product ts over A . A right C-comodule morphism

(A,6A) __§(A',6A,) is a A-homomorphism f : A—-3A' with the property

§,,0 f =(f ®.i&8° & The category of right C-comodules is denoted

Al A
with ComodC {(cf. Demazure-Gabriel [#] p. 174, Sweedler @8] 30/31).
To express ComodC as bialgebras in Modﬂ let ¥ = {id, (i) C, & C @JC}

and M = {GY , where id 1is the identity of }Ic}dﬁL and § an -
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OPeration id--3e C . Let R = {rl,rz} » where r : idzZ-3 @ C & C

l —aa =

and r, : idzzzid are given by the above diagrams. Clearly r, and
r, are relations on P-Bialg(ModA) and Comod_ = Bialg(Modﬁ) holds.

C
Note that Fgy = {id} .

Thus by 3.22 and 3.8 the category Comod, is locally X, -presen-

table and for T.afxa a comodule (X,8,) is vy-presentable in Comod,,

if X is y-presentable in ﬂodh » in particular a A-homomorphism

U - (A,ﬁA) with «(U) < ¥ iactofs into a A-homomorphism U-—>U"'

and a comodule morphism (U',GU,)-————é(A,ﬁA) such that w(U') g ¥

Likewise if A is y-noetherian for some v 3)(1 (cf. 4.3), then by

3.22 Comod. is locally y-noetherian and a comodule is y-generated in
Comod, iff its underlying module is y-generated in Mod, . Ip addition

a y-generated A-submodule of a comodule is contained in a subcomodule

whose underlying module is y-generated. The last assertion was first

proved by Wischnewsky [3&] under the additional assumption that
Y » card{A) . Following Barr [j.] he used purity arguments which in
general mzke the "generatod" subcomodule bigger than neccssary.

If C is A-flat one can easily show that Comodc is a locally

jél-presentable Grothendieck category and that for a a.ka a comodule

C . — ' TalsoL, Y
is a-generated iff its underlying module is, etc. (cf. 3.25,3.22{5ee[&$ﬂ

4.9 Bimodules over a A-bialgebra

L

Let Modﬁ be as above and let H be a A-bialgebra with mulitiplication
-t H®@ H——3H , unit u 3 A—==—H , comultiplication A : H—H o H

and counit € : H=—3A (cf. 4.4). Recall that a bimodule over H 1is

a A-module A together with A-homomorphisms My ol A @ H—3A and
GA : A—>A @ H such that 1) My defines a right H-module structure

on A with H being viewed as a A-algebra 2) SA defines a right
.
H-~comodule structure on A with H being viewed asAA—coalgebra

3) GA is H-linear, where the right H-structure on A @ H is given

by A : He—e—m—3H @ H , i.e. if A(g) = L gi'® gj“ , then
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“}(m ® h)g = I mg% ® hgi" (cf. Sweedler [QSJ 4,1)., For instance, if

XE:Modﬂ then (X eH, ide u, id® A) is a H-bimodule. A morphism

between H-bimodules is a A-homomorphism which is compatible with both
structures. Let gimodﬂ denote the category of bimodules over W

-

To express BimodH as bialgebras in Modﬁ let

E =.{id, @ H, @ § @ H} and let M = {G,u} consist of operations

€ : id~-»> @ H and yu : @ H-~- id » where id is the identity

functor of Modh . Let R = {r] » Tops Faoy T, s rs} congist of re-
lations r, ids=== = @ HeH, r, : ide=z3'id , r, : @ H&@ Hzz= % id
v, ¢ idz=gid , s ¢ @ Hzz@:H , where r; and r, are as above

Ty Ty s r5 are given for a pre-bialgebra (A’Gg’“A)
by the diagrams

A@H

. /’ N

idy & w Ha id, ®u My
A

A H&nu

A g A S A
N /
RN Ma |

Ag@Hn '
idA & T & idH
ApH® H@H SA®H®HGQH
- 3
A@gH Ag H

with T : H@ H-—H ® H being the twist homomorphism h @ h'~»h' @ h

One easily checks that Tys -«3Tg are relations on P—Bialg(Modh) and

that Bialg(Modﬂ) = Bimod, . Note that Fq = F and that every functor

in Fd is colimit preserving. Moreover for every Aéi&gﬂﬁ it follows
from [A e H .y ~ J s [A, [H,-]] and [A @ He H, - ] - I:A e H,[H,—]]

that (A @ H) < sup(n(A) , W(H)) > m{(A® Ho® H) and likewise
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e{A @ H) < sup(e(A) , e(H)) 2 e(h @ Ha H) .

Thus 22'3.24 a) gimggﬂ is locally sup(}jl,w(H))-Eresqptahlg

and for «y 2 sup(}(l,n(ﬂ)) it fellows from 3.8 that a bimodule

(X,GX,uX) is y-presentable in BimodH iff X is y-presentable in

yggﬁ 3 in particular a A-homomorphism U*——a(A,GA,uA) with a(U) 2 ¥

factors into a A-homomorphism U-3U' and a bimodule morphism

(UlSGUI)UUI)__—_} (AaGA:UA) "LCh _f'__llat m(U') = v .

Likewise if A is y-noetherian (cf.. 4.3) for some vy 2 sup(}:],ﬂ(ﬂ)) .

then BimodH s locally y-noetherian and a bimodule is y-~generated in

ﬁiNOdH iff its underlying module is y- gene ated in Mod, . In addition

a y-generated A-submodule of a bimodule is contained in a sub-bimodule

whose underlying A-module is Y—generated.

Letually Eiﬂﬂiﬂ is locaily fg]—presentable and locally d-noetherian
where § is the least regular cardinal > :51 such that every right
ideal of H 1is S§-generated (in the catego?y of right H-modules).

Tliis follows from 3.28 resp. 3.28 and 3.24 a) because there is a deccm-

g ) in the sense of 3.27. In more detail

Mo

position BimodH g Camod,
|.

- va L - - == 1 ™ . . i L4
the algebraic part of M = {G,uj and , R {L],Iz,r3,r4,r5, is

t 1 1 - “=’ 'hoo -
{u} and R {rg,r4] whence BldlgM|’R,(ygﬁA) Mod,, . There

S H
is a functor & H : ModH————PModH s A and A e, H (see 3) above) to-
gether with natural transformations @ ¢ : ® H-ﬂn}idMOd and

H

& 4 : @ H—23@ H® H , where ¢ is the counit of H and A the co-

multiplication. (The verification that & A is well defined is some -

what laborious but straight forward.) With this one can define the co-

algebraic part of M and R as M" = {§ : id--3 @ H} and

-

R" = {rl t idz:zz @ He B, r, ! Mﬂ::-?ldi s where id 1is the iden~-

tity of Mod and r, and r

H , are defined exactly as in 4.8. It 1is

now routine to show that BlalgM“ R,,(]"Iod y = BimogH . Note that if H

tH

is flat over A , them Bimod, is a locally ?Cl—presentable Grothen-

dieck category and for a > sup(?fl,a(ﬂ)) a bimodule is a-generated

iff its underlying module is, etc. (cf. 3.25, 3.,22).
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4,10 Coalgebras over a cotriple.

Recall that a cotriple €& = (G,d8,e) in a category A consists of a

functor G : A-—>4A and natural transformations § : G—~*?G2 (= comul~-

tiplication), € : G —--——9idA (=counit) satisfying G& + & 8G » 8 (co-

associative law) and Ge - § = idG = gG + 6§ (counitary law). A G-coal-

gebra in A is a pair (A,£) , where & : A-—>GA 1is a morphism satis-

fying e(A)e E = idA and GE° E = 6(A)Yo E -, A morphlsm (A E)——-%(A' ")

of G-coalgebra is a m01phlsm £ : A-—>> A" satlefylng E 'o £ = GfUE

The category of all €~coalgebras is denoted with é@ . The underlying

functor EG———Q A, (A,E) ~3 A 1is left adjoint to the cofree functor
é-w-%ée sy A~ (GA,8(A)) . Given a cotriple & = (G,8,e¢) 1in A it is

easy to describe Ag in terms 6f bialgebras. Let I = {idA’ G, Gz}

and let M = {6} be an operation § : idA~—~9 G . Thus a pre~bhialgebra

is an object Ac A together with a morphism GA t A—>GA . Let

1 . . . s s s
{r j be the relations r, : K__jt} and r, : id, =23 id,

which for a pre-bialgebra (A,GA) are given by the diagrams

GA GA

)
5, / Nl s ‘ /
e \\\\ﬂ X Sy N\le(4)
S 6%a /
H\G\A\\ /{ A > A

Clearly Ty and r, are relations on P—Bialg(é) and
holds. Note that F, = {idé} .

Assume A is locally presentable and that G as rank (cf. 2.1)

and let y > sup()ﬁi,ﬂ(é),n(Gj) . Then by 3.24 a) é@ ds locally

sup(){l,ﬂ(é),ﬂ(G))*presentable and by 3.8 a coalgebra (X,8,) is y-pre-

sentable in é¢ iff X 1is Y-presentable_ig é ; in particular a mor-

phism U———?(A,&A) with «#(U) £ v admits a decomp091t10n into a mor-

phism U-—>U' and a coa]gebra morphlsm (U' U,)———9(A § ) suc@

— - N TP, irgas - -y e

that W(U'j's Y . legggﬁg if A is locally Y noetherlan for _some
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Y z sup()Cl,ﬁ(é),w(G)) and if in A B-filtered colimits of monomoxr-

phisms are'monomorphic‘for some £ < y , then é@ is locally y-noe-
therian and a coalgebra (X,Sq) is y-generated in ém iff X is y-ge-

nerated 1n A . Also a y~generated subobjgg; U of a

Ak et e —_ b e e

algebra (B?GA)

13 contained in a subcoalgebra (U',6 ) such that U"' is y- generated,

Rot b Lttt u'

4.11 Corollary Let € = (G,8,e) be a cotriple in a topos A (resp.

Grothendieck category). Equivalent are

(i) AG 8§ a Lopos (resp. Grothendieck category) and the left

adjoint A——rA (A,GA)ﬁﬁﬁ A , preserves finite limits.

(i1) Gt A—>A preserves flnltL limits and has rank,

. e S—— S ————

Moreover iff i) holds, then éG‘ is a locally sup(ﬁCl,n(é),n(G))~E£E_

sentable topos (resn. Grothendieck category) and for

Y > sup(jﬁl,ﬂ(é),n(G)) a coalgebra (X,3 ) is Y-genératéd_i% 5@
iﬁi X is v+ geq&ﬁiﬁgg in A, etc. (599 3. 25 and 3.22 for R =}60).

-Eﬁgg§*~fi}2:$(ii)-ﬁThe Tirst assertion is trivial and the second
follqws from 2.9.

{ii)=(i) By 4.lo ém is locally présantable. The undetrlying functor
éé__%é preserves and creates colimits. The same holds with respect to
finite limits because G is finite liwit preserving. This implies that
é@ is a Grothendieck category provided A is. Likewise if A 1is a
topos, one readily checks with this that é@ satisfies the conditions
DE] 12,13 a) - d) (=Giraud's axioms) and hence %s 'a LOPOS.

The last assertion follows from 3.25 and 3.22 for @8 =)Co

4,12 Remarks @If G does not preserve finicte limits, then é@ need

not be a Grothendieck category (resp. topos), if A is.”For instance,
let U-S95Ab.Gr. be the inclusion of the full subcategory consisting of

all finite p-groups for some prime p . Let A& = [E,§2-§£~]+ be the ca-

tegory of additive functors and let XCA e the full subcategory of

all cocontinuous functors. By 6.16 below the inclusion XCA has a
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right adjoint and the resulting cotriple on A has obviously the pro-
perty é@ o4 X 4+ By 6.25 ¢) below é@ is isomorphic with the category
of p-adic complete abelian groups which is not a Grothendieck category
(e.g. the colimit of the system Z@Z-2L§W/p22——z}... i zero because

in the category of all abelian groups it is the Priifer group Z(pm)

whose completion is zero,)

b) Corollary 4.!1 may sound like the well knowu theorem "If € ig a
left exact cotriple in an elementary'topos E,, then E’G is again an
elementary topos” But in fact ip has little to de with it. The main
ingredient in 4.11 is the existence of generators in &G which is not
contained in the assertion concerning elementary topoi. Alse in the

latter there is no rank assumption on the cotriple which is necessar
P

for the existence of generatcers.

4,13 Algebras over a triple., Let T = (T,u,u) be a triple in a cate-

gory A and let éE denote the category of T-algebras in A, cf.D3]

§ To. The description of é? as bialgebras in A is dual to 4.lo, i.e.

if & = {iq,, VIR, M om {w ¢+ T--3id,}. and
2y e ey ) . _ .
R = {rl T -~.$1dA;, r, ldA'" 1d.} are dual to the data for bial

|

gebras in 4.1lo, then AE = Bialg(A) . Note that wc = {idA} and

Ta = {idA,T,TZ} + Assume A is Jocally presentable and T has rank

(2.1). Then by [ ] § lo é? is locally sup (m(A) ,m(T))-presentable,
a,

Let vy > % be a regular cardinal such that v > w(A) , vy > 7(T) and
| bea ca _ (A nd

that w{U) 2 v implies w(IU) < vy for ve A .(Note that by 3.7 such

cardinals exist.) Thus by 3.8 a M-algebra (X,ux) is y-presentable
in é? iff X 1is y-presentable in A ., Likewise if ¥ ij] is a regu-

lar cardinal such that vy 2 e(A) , v > e¢(T) and that e(U) ¢ v im-

plies €(TU) < vy for U&€A (cf. 5.1), then by 3.22 a T-algebra

(X,ux) is y-generated i &E

I

iff X 1is y-generated in A . If i

addition A is locally y-noetherian, then 80 is éE . (Note that for

B z sup(n(A),n(T)) a morphism U—3(A ) with (YY) < 8 obviously



§ &4 -18-

factors into a morphism U—3V and a T-algebra morphism

(V,uv)———a(A,uA) sucbhb that (V,uv) is B-presentable in é? s, namely

the one given by the free TW-algebra on U , but V need not be B=pre-

sentable in A ) .

4,14 Descent data and données de recollements.

We follow Grothendieck [lb] but limit ourselve to descent data. . The

case of données de recollement is almost identical (but simpler) and

the obvious modifications are left to the recader. It should be noted

that the following is a special case of cartesian closed sections be=
low in 4.19. Let & be a fibration with base C, t.e. for each

XeC there is a category EEX (= the fibre over X) and for each mor=

phism f : X-—Y a functor f*:_&—Y‘"‘%’ __3::}{ (= the inverse image of f)

and for each composite X—E}Y-Eéc a natural equivalence

Qf’g : (gf?~—)f*g* subject to the usual compatibility conditions

(see [tL] pef. 1.1 or [t1#]). Let o : $,~>85 Dbe a morphism in ¢

and assume that the fibre products S _ x S and S x S x 8 exist.
035 "o 05 "o g "o
Let 5, = 8§ x § and let p, ¢ S85,—»§ denote the projection
1 0 g o i 1 , ©
on the i-th factor, i = 1,2. Likewise let 82 =8 x 8 xS and
o g "0og "o
let pij : Sz—+ S] denote the partial projection on the i-~th and

j—=th factor, where (1,3) = (3,1), (3,2), (2,1) . Clearly
PiP3y = P Pyys PyP3y = PyP3y and Ppypyy = PyPy, hold and these mor=

phisms together with the diagonal 4 : S, —§, ecive rise to a dia=

gram
g «" (.___.“"* 7 P3” f
Pai*
—s“"—%o =3 s, —3 Is,
P Pog™
N Zox %
and natural equivalences c ¢ 1d—24A p* , C : id—48 po
A,Pl 1 Nﬁ,pz 2
- ¥ o= ¥ * . 2, % ;}2‘
Cp3l,p1 (P1P3])——-§% p3lpl 3 CPZI,p] . (plpzlf:ﬂ}pz]pj 4
= ¥ * = %=g ¥ %
I:‘.l:‘:a]"]:_)2 (P2P33‘-—>P3IP2 s CP32,P2 : (p2p32)j——;p32p>ﬂ p
‘ : Zip % ok ¥ % ¥
¢ : — and ¢ . .
Pyys Py .(‘132"21*)Q Pa1 P2 #%% Cpo 1o, (9103707 )

Recall that a descent datumon an object Ae?is is an isomorphism



P

¥ ¥ ¥ . ‘
Py; (P,) = Py (Pu)° Py (f,) modulo equivalence, i.e.the

§

4

P, A—?}pz A with the properties A*(CPA) = id

e - o e
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A and

diagrams
a8 p 7 (a)
]
Q%fﬁg?f/)ﬂ
A £p,)
R . A
Dpl N B ()
%
P34 (%) v ¥
7, P% ) — — 3 Py By (A)
. A
~ -
= e (A)
P3P
7
" _
(Pypy) (A) = (2o, )% (a) ¢ W s
pB]’Pz =
o
PPy (i (pZPBi)ﬁ(A)
W
¥ % ¥ ¥ %
(’\
g "l
pZI’PZ(A? »,
L , .
(0 Pyqd (&) = (p,p,, T (a) o p, A | &
i
= (e (A)
PygsP
% !
Palel (8) T
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commute. In the following we mean by a descent datumalso a pair

(A,qk) satiéfying the above conditions. A morphism (A,@A)——>(A', @A,)
between descent data is a morphism & : A —>A' in ‘3; with the
property pz*(i)‘*q% = (Pﬁy°pi¥(£) . The resulting category of descent
data 1is denoted with Desc(ﬁég . To express descent data as bialge-

. 7 P " ¥ e * X ¥ % * %
bras in _So let ¥ {pl » Py o 1d525, A Po ’*PBI P, s Pg; Py }
—_ o .
and let M = {?,@} consist of operations q?:fDI-—% p; and

P : Py—=>P, - Likewise let R = {rl ¥ Ty Ty er} consist of relatiouns
¥ ¥ . S

T, pl--iSp1 » T, pz---3p2 » Ty 1d&%-w‘3lq§% and

P )K . 4] . : ~'o —
r, * p31 P, _“§p31 pi* which for a pre-bialgebra (A,fPA,(fA) are
given by

id id "
e, . PiA * Py A
pl A Vo = __.___.7 P] A P2 A ..._______-:'; pz A
P °Fa Fa®Pa

and the two diagrams above. With this it is immediate that

Iy *
Desc(é’ = Blalg(gr ) . Note that F, = {p *, P ﬁ, ld& s D P *1
=8, d | 2 &y 31 Py
¥ % " 7
and Fc = {pl s 2 y id > Pgy p; . Thus by 3.3 DechEEO) has cou-

U
limits (resp. limits) and the forgetful functor Desc(@é )-%>§fs ’
. C 0
(A,(PA)““ﬂA preserves them provided EEQ has colimits {(resp. limits)

“o

and the inverse image functors P1¥’ pz* and p3fr preserxve
them., Likewise 1f EES hus y~filtered colimits for some ‘y?‘Xoand
o ;
the above functors preserve them, then Deac(gi*) has y-filtered co-
T
o

limits and the forgetful functor preserves them.

4.15 Assume that 3? EF and g? are locally presentable and

5, 7 78 =5,
that the inverse image functors pi*, pz* and 931* have
rank (2.1). Let y > B Pg_cérdinals such that
1) gé is 1oca11y y=-presentable and
4]
2) the functors pfk, ];;\2;’k and p3:< preserve B-filtered

colimits and take y-presentable objects into y-presentable objects

(the existence of such vy's follows from 3.7, see also 3.6).
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Then by 3.8 for every descent datuw\(A,qh) and every morphism

f: U=3A in g; with #(U) < ¥y there is a decomposition of f
Yo

inte a morphism U ->U' and ¢ morphism (U',(PU,)-e(A,<PA) of des-

cent data such thar «(U') g v . Moreover a descent datum (X,(PX) is

y-presentable in Desc(%é ) iff X Js y-presentable in Eg . If in
o o
addition the inverse image functors pl*, p2>k and *

P34
preserve colimits (resp. limits), then by 3.24 Desc(gé ) is locally
o

Y-presentable (resp. f-presentable) and the forgetful functor

Desc(@% )‘—95% , (A ,@A)AA#A is cotripleable (resp. tripleable). In
0 o ~
particular the canonical functor (cf. Llé] 1.4)

. —_ oo {’ - . *’ \ ~ 7V -‘l
§: F - pesc ), vru(a Doy Do, (07
o 2 I
. . - * . . ]
1ls an eduivalence iiE o 3;-m>3é 18 cotripleable (resp. triple—
O

able). The relationship between descent and tripleability (resp. cotri-

pleability) was first noticed by J. Beck and J. Benabou.

g . .
4.16 If é% , 3@‘ and 3% are Grothendieck categories (resp. to-
o B & * * ¥
poi) and the inverse inmage functors Py 5 Py, and Py; Dpreserve

] e ]
cotimits and finite limits, then Desc(fg ) is again a Grothendieck
L : =So LS noa

category (resp., topos). This follows from 3.25,

4.17 The version of 4.15 for generated objects is as follows. Assume

l *

that gé . E; and @; are locally presentable and that pf*, P,y

0 1 T2
¥

EN

Py have rank (2.1). Let vy > B he cardinals such

*

that

et

Y-generated)

f . . .
1) \ig is locally y-noetherian (resp. & 1s locally
0 o

.. . . (- . .
2) every B-well ordered colimit of monomorphisms in Q% 1s agail
0
monomoyrphic

Tk

oy

¥ # .
3 the functors P1 . P2 and Psq preserve f-~filtered colimits

and take <y-presentable objects into y-presentable objects

(resp. they preserve p-filtered cotimits and finite limits and

take Y-generated objects into fy-generated objects, cf. 5.1)




Then by 3.22 for every doocent datum (A,%DA) and every y-generated

subobject U of A there is o y-generated subobject U'C A contain-

ing U and a descent datuw.{u‘,g)u.) such that the inclusion

U'Ss A }ﬁ E_morphiig of descent data . Moreover a descen} datum
‘ vl .
&,(P ) is y-generated in Des(d, ) iff X . is vy-generated in ¥
X7 &= YOREDEIAZEd 1 N — YTRIIEIATEC D S,
cete.
4.18 A possible application of the above is the following. If des-

cent data are effective on small objects in %f then they are

-5 2
T 0 -~ it
effective on all objects. In more detail let 0 ﬁ —> Desc gs‘ be
o
the canonical functor defined in 4.15. Recall that o i 5. -— 58 is

0
called of F-descent type (resp. of strict F-descent typey. if § is

full and faithful (resp. an equivalence), ¢f. [ib] Def. 1.7. In

addition to the asssumptions made for the first half of 4,15 we assume

. - o .
that E; has y~filtered colimits and that o' i §5—9‘§;
_ 0
preserves y-filtered colimits. Then o : S . —>8 1is of strict B-descent

type provided ii‘iﬁ-££iy~descent type and every descent data (U,?U)

with U y-presentable ip _ is effective (i.e. in the ifmage of
x-Lth N L iWaye Vo

e Y R Y R L T e L
0 ’
ﬁ). This follows from 4.15 and 3.9 which imply that every descent

datum (A,¢A) in Desc(%é } is the y~filtered colimit of descent da-
0
ta (Ui,?u') with H(Ui) < v 3 whence if §(Yi) a(Ui’TUi)? then

ﬁ(i%g v.) # 11m by = ;im(Ui,?Ui) = (8,90 .

I

The smallest cardinals Yy and B which are possible for this (and 4.[5)

are Xl and 'xb . Thus, ii‘ 3; is locally countably presentable (or
0

finitely presentable) and E; has countably filtered colimits and the

. . ¥ : : * ,
inverse 1image functors a*, pl*, p; and Py, Preserve fil=

tered colimits and take countably presentable objects into countably

presentable objects, then every descent datum is effective provided

descent data are effective on countablv presentable objects and
o 3:’,""'-93: i ; descent type.

4.19 Sections and cartesian closed sections with respect to a fibration.

The following is based on, or rather prempted by exposé I in SGA 4 Ly
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A. Grothendieck and J.L. Verdier [!F] (mainly p. 138-179). At my talk
FEH] M. Tiérney suggested to compare the notion of a bialgebra (3.1)
with the notion of a section {Eésp. cartesian closed section) for a
fibration, and theorem 3.8 with theorem I 9.25 in [1?1. (Both apply .
to descent data and récollements in the context of Grothendieck cate-
gories or topoi and yield the éxistence of generators.) In order to
facilitate the comparison we essentially use the notion and notation
for a fibration p : E-38 as defined in I]?] p. l6o, although it
differs from the one used in 4,14 above (for an exposé on the different
ways to look at fibratious see Giraud [i%] or SGA | expose VI). Let

p ¢ E-B Dbe a fibration with small base B . Foxr an object BeB

-1

the fibre p " (B) 1is denoted with E and the inverse image functor

B
for a morphism f : A-B in B with £X .

EB—)EA Let HomE(HB_,.E_.)

denote the category of sections with respect to p : E—SB-, i.e. the

full subcategory of [E,E] consisting of all functors s : B—E with

the property ps = idB , of. [i}] p. 161, Likewise let HomcartB(E,E)

be the full subcategoryofHomB(E,E) of all cartesian closed sections,

i.e. all sections s B—2>E such thati for every morphism f : B-3A
the canonical morphism 's(B)—+f¥(A) is an isomorphism. The main theo-

rems' of section I.9 in [1%] concern the existence of generators in
_ andl _
Homg(ﬁ’g)“ﬂp‘ HomcartB(E,E)\implicite size estimates in terms of
i : —_— ) -

“"filtrations cardinales". Without loss of generality one can assume
a,
that the objects of B form a set whose cardinality is the same as

that of a skeleton of B ; this can always be achieved by pulling back

ot

the fibration p : E—>B along a full inclusion E-:~?§ {(for skelann
o o ’ : 3 . - .
B of B see EZ&]...). In order to express sections and cartesian c¢losed

- R - ‘ T I *®
Sections as bialgebras letr A = I l EB and let F = {fqu|(XJ;Y)€Mor]ﬁ

. — BQ_:_B_ f%
consist of all composites [l E, *Ey YEL
pes ¥

all morphisms of B and R denotes the canonical projection onto E..
. ‘ )

where f runs through

Let M = {uflfﬁ.Mor E} » where f : X—Y runs through all morphisms

of B and Mg is an operation pX--éf*p . Thus a pre-bialgebra consists f

Y
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)

a family (SB LE B of objects in E  together with a family

-* ; : . .
{uf.sx__“éf Sy }(me,Y)G Mor B of morphisma. Let
R = {r. |B€ B}LJ {r_ If,gE.Mor B and g f defined}

consist of relations r. PopLT3p for evéry BB and

ldB B B —
re . : pxj:?g*f*pz for every composite - X—£9Y~§42 in B8 , which for
]

a pre~bialgebra (SB’pf)Bé;E,fGiMor B are given by the diagrams

id . gsv

\ i
3 = . b A
B CE 8
" '-__h-"_“"‘-m..;. // \\}
- = #* ' S ¥k
s s, = 1d_” (s_) s I‘g'(Sz)
B "B B "B ?X 5
—— 5 A,
Vig L Gyt >
L (gef) (s A )

With this it is straight forward that Bialg(4) = HomB(E,E) . Clearly
mc = , wd = {pB|B€ZE} and every projection P przserves all
(existing) colimits and limits. In order to obtain cartesian closed
sections one adds to M for every morphism f : X—>»Y an operation

He o fka-,;pX and to R two relations which for a pre-bialgebra

are given by the diagrams

¥

Mg AL 5y (:'f Aig g 5K e
/ = / \\1 _
SX —— 3 ) f* \f'#ﬂ o
id Sy °Y idex, . 7
s £¥g s
X : Y

With this Bialg(A) = HomcartB(E,E) . Note however that inthis case

IF = mc = md . Thus the functors in de preserve only those colimits

(resp. limits) which are preserved by all inverse image functors £*
f€Mor B . The above shows that sections and cartesian closed sec~-
tions are specia] cases of bialgebras. The converse, i.e, that for

a given data M , R and IF of bialgebras in a category X there
is a fibra;ion E-—B such that either HomB(E,E) = Bialg(X)

or HomcartB(g,E) = Bialg(X) , is very unlikely.
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Such a hypothetical fFibration

(cf, v )

discussion below in

4.20 Assume that the fibre E%

BB

and that the inverse

f in B

for every morphism X->Y

dinal such that 1) v > H(EB)

for eveary

f : X=>Y and 3) v > HMor i3 Let: & be

& > %] atisfying 1) - 3). Then in

y~presentable Lff s is y-prescutable

‘B

particular A

is leocally S=-presentable
Y-presentable objects into vy

nerated objects. Moreover

f*pY : -‘—T J:,B-"'") B

BEB

for every f

4.21 Assums A.20. Then

would bhave

image functor

Let v 2 X

-1 Te

-piresentable objects and likewisc

by 3.8 for every section

Le have welrd properties

is locally presentable for every

£ EY—m>§X has rank (2.1)

”1 be any regular car-

BeB 2) vy > w(f*) for every

the least regular cardinal
an object (ﬁ
B¢
in EB for every 1
take

and the projections Py

for y-ge-

X-»¥ the functor

preserves d-filtered colimits.

S € HDmB(E,E) y for

of

every family (tp)p o

objects and every familyw

(fB ->sRB)

by

such that

of morphisms “(EB) <y in

a s f lOl‘I

Zp

t'e Homp (B,E)

Be B

for every there is

Be B

topether with a natural transformation

| H ¢ I 1 - — ~ 5 r , - " -

¢+ t'-5s such that t'B is y-presentable in EB and 'fB : tE-?SB
. .. v P8 .

admits 2 decomposition tB-ﬁt B ~—sB for every B¢ B . Moreover a

B-5E is y-presentable in

section s

sentable Ln E

Ep for every

B e ‘E .

Assume in addition to 4.20 that there

such that for every B¢BR

is a regular cardinal

$B is y-pre-

Homy (B,B) iff is y-pre-

-,

B < ¥

B-well ordered colimits of monomorphisms

in EB are monomorphic and that either EB is locally y-noetherian
or all inverse image functors f*, where fc Mor B , preserve finite
limits. Then for every section s B-+E and every family

(fB : tB-iésB)B& B of y-generated subobjects there is a subsection
®: t'"Ss s guch that ¢'B contains tp and t'B is y-generated

in Ep for every BEB . Moreover a section s : B-E is y-generated
in HomB(E,E) iff sB is y-generated in Eq for every B¢ B .
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4.22 Assume 4.20. Then by 3.24 a) HomB(E,E) is locally 6-presen-

table and the functor

Hom,, (B,E) 5T TR, , s~a(sB), .
pep B ECE

is cotripleable. Its right adjoint prese 2rves §-filtered colimits.

Assume in addition to 4.20 that every inverse image functor £¥,

where f¢ Mor B , preserves finite limits and that every fibre EB 5

where Be B

e iy}

is a Grothendieck category (r resp. a topos). Then by 7

315 HomB(E,E) is also a Grothendiec]

'0

ategory (resp. a topos).

4.23 Assume 4.20 and that for every f¢ Mor B the inverse image

¥ .. . . Y
functor {° preserves limiis., Let &' be the least regular cardinal

such that every £t preserves §'~filtered colimits. Theu by 3.24 b)

HomB(E)E) is locally &6'-presentable and the functor

Pom (B E)->T_ rE vaw(sB)B - B
BE B €2

is trlpteabl and preserves 6'=~filtered cclimits. (Note that in con-

trast to 4.22 the case =X is possible, eg. if Mor B 1is finite,
o po . B

every fibre EB , BE€B, is locally finitely presentable and £* pre=~

serves filtered colimits for every f¢€ Mor B .)

4,24 The situation for HomcartB(ﬁ,E) is different because de
. : T e - £* '

consists oif all composites rﬁniﬁégYu-}EX . In general these func-

BeB
tors neither take y-presentable objects into y-presentable objects

nor do they preserve colimits, Therefore additional conditions are

needed to guarantee the validity of 4.21 - 4.23 for HomcartB(E,E)

They are as follows.

For the first half 2£ 4.21 one has to assume 1n addition to 4.20 that

for every £ &€ Mor B the inverse image functor £%¥  rakes Y~present-

able objects into y=~presentable objects, and for the second half of

4.21 that every f¥ takes y~generated objects into y-generated

[U}

objects.
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Fox 4.22 (both the first and second half) one has to assume in addition

to 4.20 that for every f¢ Mor B the inverse image functor 7 pre-

serves colimits and takes y-presentable objects into vy~ presentable gb-~
jects. (Note that by the special adjoint fuwctor theorem every f£° has a
right adjoint fx . Thus it follows from [X, £, -] |t X, —] that the

functor £% takes y-presentable objects into y-presentable objects iff

fu preserves y-filtered colimits for every f¢€ Mor B .)

- . b
For 4.23 no additional assumptions to 4.20 are needed. The functor f

may not take §'-presentable objects into §'~presentable objects with &'

as in 4.23, but by 3.7 there is a regular cardinal 6 > &' such thas

'ﬁ: £ -

every " takes S-presentable objects into $-preseuntable objects. Thus

by 3.24 b) Homcart (B E)

i
[—
Rel
e}
| fus
| =t
=
[=2)
|
!
ol
o
I
iH

able with &' s 1

1

!

|

|
= IU‘
I

4.23 and Homcart (B E) —> l [ s~~~ (8B) '5 tripleable and
BLB

preserves 5" -flltered colimits.

e o Sl e

4.25 Remark TFor the first half of 4.21 (in particular the existence

of y-presentable gewevators in HomB(E,E)) the assumptions 4.26 are

not fully used, in particular the existence of arbitrary colimits in

the fibres E_, , BEB , is not needed. Instead of 4.20 it suffices to

—B
assume that there arve regular cardinals vy > g8 > Rfo such that the °
following conditions hold
1) card(Mor B) < y

¥

2) for every B& B the fibre EB has B-filtered colimits and for
every f¢€ Mor 2 the inverse image functor £ preserves p-fil-:

tered colimits

3) for every BE€ B and every AGEEB the category EB(Y)/A of
Y-Presentable objects over A 1is y-filtered and 4 1is the co-

limit of

BT
I

A, (U—2>A)~~ U

This follows from 3.11 a), b) and 4.1

Likewise the first half of 4.21 holds also for HomcartB(ﬁ,E) provided
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in addition to the above conditions 1) - 3) the following is satisfied.

: ) . ‘ .
4) for every f£€ Mor B the inverse image functor £° takes Yy-present

able objects into y-presentable objects.

4.26 CO@B??EERB_EiEhnﬁﬁﬂhﬁ_l;g; The wmain theorem I, 9.25 asserts the
following. Let p : E~>B be a fibration with a small base B and
assume that for every morphism £ in B the inverse image functor f

has rank (2.1). Then hoth HomB(E,E), and HomcartB(E,E) admit a

$et of strict generators provided the following four conditions are

e
satisfied a) every fibre EB s BEE , has a set of strict ) generators

b} every fibre L s B€ DB , has colimits and pullbacks <¢) for every

—B

. B 2 . .
BCB the kernel functor DMor E —"*EB s (v, v) v ker(u,v) s has rank (2.1),

B
whore 1*'[1:)1'2_1-}_1.s denotes the category of morphism pairs in EB with coa-
mon domain and codomain d) in every fibre EB » BEPB , the pullback of
a strict epimorphism*) is again a strict epimorphism.

The conditions a) - d) imply that fo§ every B&B the fibre EB is
locally presentable; (This is because by [;?] I. 9,11 every object in
Eq is presentable.) The converse is Lot true. A locally presentable

category satisfies a), b) and c¢) but not d) in general; e.g. the ca-

tegory Cat of small categorics does not satisfy d). Grothendicck aund

Verdier do not give explicite size estimates for the generators and the

ones which result from their proof are not very effective. For instance
Ay
if the fibres are locally finitely or locally}xl-presentable and the in-
* P : -
verse image functors preserve filtered colimits and if the set of mor-~

phisms of B is countable, then their proof yields that all sections

+

se'HomB(E,E) with w(sB) < (2150) for every Be B form a small ge-

- +
nerating (even dense) subcategory. {(Recall that (21¥0) denctes the
least regular cardinal > Zkio) - In contrast it follows from 4.21 above
%) o
An epimorphism f : A—-2B ie called strict if 1t is the cokernel of
its kernel pair A x AT=F A . In Gabriel-Ulmer [I}j § 1 strict epimor-

Phisns are called regular.
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that already all sections sae& HomB(E,E) such that sB is countably
presentable for every Be¢B form-é small generating (even dense) sub-
category.

The proof of Grothendieck and Verdier (cf. I. 9.22 - 1, 9.26) for the
existence of generators in HomcartB(E,E) is not correct. The error
is on p. 173 in [1?], where they clgim that the indicated composed
morphism f*(X(B)i)~~;f*(X(B))-X(f)i; X(a) factors through a canoni-
cal morphism X(a)j-—i;%y(xj)= ﬁ(a)‘ for some j , assuming tﬁé? .;
is c¥-filtered (——- I ::ast grand devant c } and X(B); is .;:*-presehtal.rle
<; c-accessible). This need not be so because in general £%* does
not take c+-presentab1e objects into c+—presentable objectst As a mat-"
ter of fact with ¢ as in [r’]-p. 173 the cardinal n(f*(s)i) can

be arbitracy large although £% has rank, (As a guidance for this
phenomenon we mention the filtered colimit preservinglforgetful functor
Egih—}gggg for some ring A , which takes finitely presentable ob-
jects into card(A)+—presentable objects, c¢f. also 3.5 - 3.7) As a
consequence of this error the lemmata 9.21.16 (i) and 9.21.19 are
incorrect and the "filtrations" of HomcartB(E,E) given in T.%.22-

N "
I. 9.26 are not "filtrations cardinales as claimed.
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in this section we generalize scme aspecis of purity to locally
presentable categories. This will be crucial f£er the next sectien but

seems of independant intercst and we thevrefore state

=

t sencrately,

Recall that over a vring A a submodule i : T<S3A of a left A-module

Aa ,Mod is called pure i:if for every right A-module BC Modh the
F2 Salininiiy e
induced map B&hi : XQﬁU“~%KxﬂA is a menoworphism. Cleéarlty i : U--84

ig alrecady pure if Bmpi is a mounomorphism fer cvery finitaly
presentable module B  because every module iz a filtered colimitc ¢f
finltely presentable ones. (Actually one carn test purity with finitely

presentable evelic modules, bul -£his
! 3 ’

e

s pot relevant in the following,

The important thing is that purity can be tested with & set of medules.)

Among the various characterizations of purity the following is
instructive for our purposes. A monomorphism i : U--3A is pure iif

it ig a filtered colimit of splitting monomorphisms. Therefore any
functor T 1  Mod - 32X which preserves fiitered colimits takes pure

mepomorphisms into monomoerphisms. The provise is that in ¥ a filtered

-

colimit of splitting monomorphisms is again a monoworphism. Note thai
the cless of all filteved colimit preserving T (x variéble) containeg
a subset with which purity can be tested. Fakir [ 7] used the above
characterization to define purity im locally presentzble categories,
We ivtroduce here a weaker nction of purity.. "

Now let A be an arbicrary category and let '(T :;£"“¢EV)VGM bhe &
family of functors. A monomorphism 1 : U-2A ian A is called pure
with respect to (TV}VEM if Tvi : TVUnmﬁTVA 13 & monomerphism for
every Vg M . Given a subobject Y of A< A we ars concerned with the
problem of constructing a pure subobjeet Y¥' of A which contains ¥
and is not much bigger than Y . For locally presecntable categories znd

a set M we give a construction and size estimates which are ithe best

possible in the cases envisazged here. Ii shontd be noted that the
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existence of arbitrary colimits in A and EV is not needed, the
"minimal" conditions on A, Xy and T, can be found in 5.3c) and
-5.6 b)o

We begin with some preparation. Recall that e(A) denotes the least
regular cardinal vy such that A is y-generated, i.e. the functor

[A,—] t A-———5Sets preserves monomorphic y-filtered colimits (cof. 2.2).

5:1 Lemma  Let A be a locally a-generated category (cf. 2.3) and

T : A—2X a functor which preserves monomorphic o-filtered colimits.

Let & 2 a be any regular cardinal such that

i) if We A and E(w) < o , then &(TW) < a

2) if o <o and B8 <3

Then if UgA is a-generated, so is TU.

' ) - + +
Remark Note that if a = ﬁ; or o = (2Y) for some Yy > a , then

. . . . . +
the "akward" condition 2) is automatically satisfied.(Recall that ¥

denotes the least regular cardinal > ¥y.)

Proof The case o = & 1is trivial and we assume a > a . Let Ue A
be an a-generated object. By 2.7 there is a family (w1)1eI of

A-generated objects wle A and a proper epimorphism =: 5;% W{—ﬁll
such that card(I) < & . Let R be the set of all subsets J of I

-~

with eard(J) < ¢ ardered by inclusion. Cleérly R ig a-filtered and

-

it follows from condition 2) that card(R) < & . Let U denote the

J

¥ . '

image of the composite | | Wl—~% J,l_W{——%U , where the first mor=
1€J 1¢1 ]
phism is given by the inclusion JeI . Then by [ ] 6.7 b U; is
again u-generated. Hence by condition 1) TU, is g-generated. By [Kﬁj
6.7 a) the canonical morphism $: lim Uyt U is monomorphic. Since
eR

- {'_‘.

¥ Jl WU factors through lim UfmeU and “f is a proper
1¢1 ' Jeﬁ '
epimorphism, it follows that ¢ is an isomorphism. Summarizing we



obtain
e(TU) = (T 1in U, ) = e(lim TV ) < @
JLR Je R
because by| J62 an G~colimit of G-generated objects is again G-generatéd.
This completes the proof. (We note the similarity with the proof of
3.7)). Concluding we remark that the existence of colimits in A isa’
not needed for the ahove argument. We have only used that an a-gane -

rated object U is an o-filtered G-colimit of oa-generated subobjects.,

Recall that a locally &-presentable category is called locally
6~noetherian if every S-generated object is d-presentable. By fi;] 13.3
every locally presentable category is locally S8-noetnerian for suffi-

ciently large & .

5.2 Theorem Let (TV : A- ;)XV)v -y Pe a family of functors, where

M ii a EEE ?ﬂﬁ. A 329 EV » VEM are locally ptesentable Eiiﬁggifﬁf
Assume rhere 1s 2 regular cardinal o such that every T, preserves
EEEEmorphlc o fllfelﬁd col%@its and that in "A  and KV a-filtered
“collmlgl of monomogziiﬁyf are monomorphlc for “v;1y QE'M . Let @& be

any regular cardinal such that

1) card{M) < § > g

2) A 1is locally é~generated and EV is locally &-noetherian for
every V&M ) B

— .

3) if Ue«A and e(U) £ 6 , then e(TﬁU) < 8§ for every Ve M

— ———

(cf, 5.1)

Then every ¢- ~generated aubob;pct Y of AEA 1is contained in a pure

subobject Y' of A which is also 6-generated.

.5.3 Remarks
a) Note that by 5.1 and [13] 13,3 there is always a regular cardinal &
satisfying 1) - 3) 2nd it can be choosen sc as to exceed any givey

cardinal. The point is of course to choose & as small as possible.
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b} Note that y Thas to be strictly bigger than o , whence Y gﬁﬁ; N

For insté@nce for left modules over a ring A - 1i.e. A = AMod .
EV = Ab.Gr., TV = van for a finitely presentable right

A-module XV and M = set of equivalence classes of finitely pre-
sentable rignt A-modules - one has o =~5; and card(M) = card(i)

if A is infinite and card(M) = ﬁ% if A is finite. Clearly

for 6 > card(A) every G6-generated module U is S-presentable
and card(U) < & , whence card(X@hU) < 8§ for every finitely pre-
senttable X . Thus for & > (card(A), ﬁ;) every d-generated sub-

module Y of A 1is contained in a 8-generated pure submodule Y'

of A (cf. Barr [1]).

c) From the proof of 5.2 below it will be obvious that not all

asgsunptions on A and E\I are needed, in particular the existence

of arbitrary colimits in A and Xy is redundant. Besides condi-

tions 1) and 3) only the following properties of A, X, and T

=] v

are used : A has u~filtered colimits and every TV H é——é&v y VEM

VEeM , an eo-filtered co-

¥

preserves them. In A and in every ‘§V"

limit of monomorphisms is again 2 monomorphism. Every object ACA

is a d-filtered colimit of §~generated subobjects. In EV s

every §-generated object is d-presentable and every morphism ad-"

Ve M,

mits a factorization into a proper epimorphism and a monocworphism,
»

Proof of 5.2 Let 1 ¢ ¥—>A be a monomorphism in A , where e(¥) 5 §.

-

Then TV(Y) is d-generated and hence §-presentable for every V< M . Let

u

limit of its §-generated subobjects Yu and let i11 : Yu——eA denote

the inclusion (cf. 2.8). Clearly i : Y—-»A belongs to this system and

A= 1lim YU be the colimit presentation of A as the 8~filtered co-

‘we write Y =Y and i = i . Since T_(V ) 1is &-generated, so is

o 0 V' o

im(TV(io) for every Ve M , cf. [ } 6.7 d). Thus im(Tv(io)) is

- r\’ -

d-presentable and from i
) U

a 6-generated subobject Yu together with a morphism

E’TV(Yu)nm—ﬁ»lv(u) itt follows that there is
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gu $ im(Tv(io))—~ﬂ TV(YH) ~ depending on T? and we thereforp write
¢ i — 4 i N - hat : .
v 1m(TV(10)) y Tv(ﬁv) instead such that the diagram

.0
. " v '
1m(TV(10)) —?TV(A)
. .
Y id
v T, (i) g
vV v
Y S SR, A
T, ) 2 Ty (4)
commutes, where 33 and iV C Yv“-—‘rA denote the canonical inclusions..
(Note that Tv(iv) nced not be a monomorphism).. Let 16 : Y%wweA be
a $~generzted subobject containing iO : Yo—hﬁA and iV : Yv—wﬂA
The inclusions u Yo—méYG and w : YV-ﬁY$ give rise to a pair of
morphisms
Ly
i (T, (1)) — oy T_(Y.)
P _ vite” T Ry Ny T (w)
v'/'_ “'-.._‘_H
/_.f T
i v . R \:} m 1
Ly (V3 Ly (Yy)
“' _‘..?
HM'—_ i — e J——— —— “‘""_'W_#-H
Ty (u)
~where pz denotes the canonical projection - which become equal when

LI [ LI | . BNy o yF LIS, » - —
composed with Fv(lv) : TV(YV) }PV(A) . Since TV(YO) is §-presen

table and TV(A) = 1;3 1V(Yu) , Lhere is ihalgenerated subobqect
gl >,

i; : Y'-— A containing ié : EJ*~+A sucﬁYthe above pair becomes

. - LI r I . ] . : []]
already equal when composed with fv(z) H TV(YV)-_qrv(YV), where

z YG"“?Y; denotes the inclusion. Since card(M) < & , there is a

L]

§~generated subobject 1, : ¥ —FA , containing Yv

1 1
together with a morphism ﬁg : im(Tv(iO))w—ﬁT

for every VEM ,

V(Yl) for every V< M -
c

namely the obvious composite im(T(io))mugd TV(YV))LqTV(YI) - such

that the diagram



o .0
, Py . ! Iy
1V(YO) e} lm(TV(ID)) e ey T (A) r
7 |
£~ ,
TV(uo) )&/ Iﬁ id
/,/
A~
- 1 . 1
o p . l ) Jy | "
TV(YI) > 1m(TV(1])) '“4**E~*~% TV(A)

commutes, where u ot Y6~->Yl denotes the inclusion. We now proceed

by transfinite induction. If X is a successor ordinal, then Yl is -

constructed from YA—] as above and so are the morphisms
A-1 . . _ ‘o f
EV : 1m(TV(1l_l))--w9TV(YA) for every VeM™M , If X < a is a limit

ordinal, then let YA be any 6~generated subobject of A containing

every Y for p<a . We claim that Y' = lim Yy is a 8-generated

P A<g
pure subobject of A containing Y, =7Y . The latter is obvious
because li% i, 2 lim Y——A is a monomorphism. Since a<4§ the
S Ry E o Im iy
A<o h<d
object Y' 1is é~generated by 2.8 . The purity of the inclusion

i' ¢ Y'——A 1esults from the induced diagram

. A A
lin p . lim
. = v o . =0 Jy
Lﬁﬂ TV(YR) 2 lim im (TV(ll) tocsee i TV(A)
<o A<
lim T, (i,) |= | | id
oo B = q i
@ VoA
' 7t b i
T,(Y') - pv-——ua- im (T, (i")) - J-———m—--}T .(A)
VAR v , - i
., o T
l' _---H e
T (i)
in which 1lim jl is a monomorphism for every V&M , Hence q 1is
puriiey v

monomorphic, Since ' is a proper epimorphism, so is q and thus
Py

] v » )\ * + L] + 1
@ 1s an isomorphism., Moreover },g py is an isomorphism, it's
A<
. . . )\ . . .
inver is 1lim . Henc T (i s a monomorphism for ever Ve M
erse vy ence V( Yy i i p v y

A<
i.e. i' ¢ Y'—9A is pure which completes the proof.

5.4 DPefinition Let T : B x A—:C be a bifunctor. A monoworphism
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it Y--9A is called T-puvre if Y(B,i) : T(B,Y)-—— T(B,A) 1is a

monomorphism for every B« B

Clearly T-purity is equivalent with purity as defined above for

{r(s,-) : A—aC) L. B

3.5. Corollary Let T : B x A-—3C be a blfunPLor, where A, B

and € are locally presentable categories. Assume there is a regular

cardlnal o such that T{~,=) preserves a- £1110red Collmltb 1n both

variables and such that 1in both A and € a- flltered COllmltu of

monomorph:sms are again monomo*phlnms Let ¢ he any regular caquraT

such that

1} 8»n and the set M of cqu1valence class ses of a-presentable

objects in B has cardinality <§

2) B is locally a-presentable, C is locally é-noetherian and

1=

is locally 8-generated

3y if V& B is a=-presentable and UeA d-generated, then T(V,U)

is &- generated.

Then every o-generated subobject Y on A€ A 1is contained in a

6-generated T-pure subobject Y' of A .

Proof Since T(-,-} preserves o-filtered colimits in the first
variable and every B¢ B is an a-filtered colimit of o-presentable
objects, a monomorphism i : Y— A is T-pure iff T(V,i) 1is a

LN
monomorphism for every a-presentable object V& B . The assertion now

follows from 5.2,

5.6 Remarks

a) Note that by 5.1 and DE] 13.3‘there are alwéys cardinals o and
6 such that A , B , C and T satisfy the conditions in 5.5
(The only exception is that T(-,=) preserves o-fliltered co-
limits in.bsth variableﬁ_ﬁhich has to be required separately).

The point is of course to chwoze & as small as possible.

b) As in 5.2 (ef. 5.3 ¢)) the asszunptions on T : B x A—>C are not
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fully used and 5.5 can be generalized conmsiderably, in particular

the existence of arbitrary coliwmits in A , and € is not

j=

needed. The following conditions suffice to establish 5.5. There
is a set M of objecis in B sach that T-purity can be tested
with the functors T(V,-) : A—3C with V running through M .

Putting TV = T(V,-) and EV = C for V&M , then all the
conditions Jlisted in 5.3 ¢) hold, i.e. ‘A has w-filtered colimits
and ..., .

The notion of T-purity was independantly introduced by T, Fox [g ].

For a locally presentable category X and a coherently syumetric,

associative and unitary tensor product @ : X x X=X with rank

he proved thar every y—generated subobject in X is contained in

a y'wgenerated pure subobject for some y' . He gives no size

estimate for y' and the case of purity over non~commutative

rin

0

s 13 excluded. The present versions of 5.2 and 5.5 represent a
slight (but useful) improvement over the original scatement in [ﬁl],
The proofs of Fox [® ] and the one given here have little in
common, While our proeof often gives theée hest possible upper bound

for ', the one resulting from his proof is much too lavge to be
useful in practice, Following Barr [j ], Fox [8 ] used 5.5 to prove
that the category of coalgebras in a locally presentable category
A with respeci fo some tensor product @ : A x é;w—}éz and a co-
3.,
algebraic Prop has generators (cf, 4.?).'We use’5.5 in the next
section to prove that the category of Z-cocontinuous functors
U—+A has generators when I 13 a proper clasé.
Fakir [ 7] defined the notion of an a-algebraically closad monc-
morphism in locally u—p?esentable categories. He showed that a
monomorphiém is a-algebraically closed iff it is an a-filtered
colimit of splitting wmonomorphisms. From this the relationship
with purity becomes evident aud it is clear that the test functors

L

TV in 5.2 (resp. T(V,-) in 5.5} preserve a~algebraically closed
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monomorphisms, in particular the latter are pure. The converse

)

need not hold and obviously depends on the family (T of

V'VE M

test-functors. It might be interesting to investigate (and characterize)
pure monomorphismswith respect to functors different from temsor pro~ -
duct type functors, eg. (co)homology functors

(H_)

n
nnem’(ﬂ)' (Tor_)

n . _ .
LEN® o ne N,(Ext )nc N ete- (i.e, functors which .
presexve oa-filtered colimits for .some a)., Note that for any of thesie
sets of test functors theorem 5.2 applies and the size estimates for

8§ can be effectively handled,



§ 6 Local presentability of A, . . CcF[U,x']
Y a T T

and Adj(A,B); examples
This section is a cortinuation of § 4. We give further examples of bi-
algedbras - in particular ¥-cocontinuous and E-centinuous functors,
pairs of adjoint fumectors ete. = and apply the resulis of § 3 and § 5.

Let T ¢ B x A—-=C be a bifunctor aud let (o : daw~+r0)0€“ be a
- - - "

class of morphisms in B . Let &E,T be the full subcategory of A
consisting of all objects X&€ A such that T{c,X) 1s an isomorphism
for every o€ ¥ . The bifunctor T{(-,-) and the class T give rise

to a data for bialgebras in A such that Bialg(a) = éE,T and the
forgetful functor Bialg(é)Wﬁéé' is the Inclusion &E’TJ£¢§ (e, H5.1).
The main resvit 6.12 (resp. 6.15) concerns conditions on T : B x A-—2C
and on a class I which guarantee that éE,T is locally 8-presentable
(resp. locally &§-noetherian) for some specified cardinal & depending
on T and £ . If T 1is the bifunctor o : [HP’EEEE] pd [?ﬁgjﬁ—*ﬁ
(resp., 1 = [—,_]). as defined in 2.lao, then A = [E,E] and éZ,T
consists exactly of all I-cocontinuous (resp, I-ccntinucue) functors

on U with values ia X (cf. 6.14, 6.15). By choosing I according=-
ly one can obtain colimit (resp, limit) preserving functors U-—%X or
cosheaves (resp. sheaves) with respect to a Grothendieck topology on U
and values in X (ci. 6.16 ~.6'17)° Moreover the category of pairs of
adjoint functors between locally presentable cagegories is equivalent
with a category of I-cecontinuous Functors (¢ £, 6.i8’- 6.20).

Another example‘for T is the tensor product &, oOver some ring ﬁ..
If ¥ = {It-éh}leaf is the set of ail inclusions for a family\aaof right
ideals in A , then hgﬂiz,ﬁﬁ cgnsists evactly of all left A-modules

X which are uniquely divisible by ' , i.e. for which multiplication
ImﬁXW—AX is an iscmorphism for every _IE&T. For ipstance, 1f A 1is

a Grothendieck category and 4/ = [U,U] the endomorphism ring of a

generatory ﬁcig , then the functor Cocont[&,éﬁ.ﬁg.]~—%nM0d_, Lot
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induces an equivalence between cocontinuous functors t : A-—3Ab.Gr.
ard s T diviait . o -
nd uniquely J*-divisible left A-modules, where ¥v“ is the Gabriel filter

on A associated with A (cf. 6.25b}}) Cocontinuous functors can have

unexpected features, eg. the category of cocontinuous functors from

P

abelian p-groups to abelian groups is equivalent with the category of
p-adic complete abelian groups. Similar assertions hold in motre gencral

situations {cf. 6.25¢)}.

6.1 Leama Let T : B x A—3C be a bifunctor and (o :-.do*—--r'rcr)ce, .
a class of moyphisms in B . Then there is a data M,R,F for bial-

gebras in A (ef. 3.1) such that Bialg(a) = A, . and the forgetful
functor Vi Bialg(A)— 2 is the inclusion A, . C A . The class F

copsists of all functors T(do,~=) ¢ A—-C and T(ro,-) : A—C ,

where o runs through % and F =, = mc holds. Moreover if I

is a set, them so are M,R and F

Proof Let F be as above. For M and R we limit ourselves to an

intuitive descriptfon. A pre-bialgebra is an ohject XcC A together
with a2 morphism o (X) T(ro,X) —~»T(do,¥X)}) for every o¢¢ I . Note that
the forgetful functor P-Bialg(A)— A need neither be an embedding
nor full. The relations on a pre~bialgebra (X,U(X))0€ ; express

that the composites

T@do,n) 22X ro,x3 IE redo, ) and 7o, <E) nido,0) KX 1ieg,x)

are the identities of I(da,x) and T&rd,X) respectively for every
0 I . In other words T{(o,X) 1s an isomorphism and o(X) 1its in-

verse. Hence a bialgebra is an object X< A together with an isomor-
phism o(X) T(ro,X)hgaT(dc,X) whose inverse is T(g,X) . Therefore

(X,0 (X)) ~>X 18 bijective on objects

the map Blalg(ﬁ)“ﬁéZ,T ’ e I

and it can be made into a functorx @ by mapping a bialgebra mor-
i . 3 { —3 (X" ") . -t ' . Th
phism £ (}x,o(}{))‘jc_j . (X',0(X ))0@'2 onto f X— X en 0

is obviously an isomorphism. So we can identify A o with Bialg(4)
y
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and the forpgetful functor Bialg(&)unﬂé,(x,o(x))c ~+¥ becomes the

< L
inclusion éﬁ T(;& . The other assertions in 6.1 are obvious.
>

6.2 Theorem Let T : Bx A—2C be a bifunctor, where A is a lo=~

i

C:

P

11y presentable cstegory. Let I be a

LIS —— -

f
im

et of morphisms in B

Assume there is a regular cardinal o su

ife

h that T{(do,~) : A—3C

and T(ro,~) presevrve a-filtered colimits for every da& I . Let

Y > @« Dbe any regular cardinal such that

a) card{(X) < v and & 1is locally y=presentable

b) if U&A 1is y-presentable, then so are T(do,U) and %(ro,U)

for every o&f (cf. 3.7 for v = @).
Then every morphism f : U—>A with the properties A¢ A and

=E,T

mn(U) < ¥ admits a actorization U--2U'-—A such that w(U') < Y

and U'€ A . . Morcover an object X&€ A . is y-presentable in
| B >

A iff it is y-presentable in A .

-_Z . T oy Cimlims Cerees i e=ini —_—

Proof The aasertions follow directly from 6.1 and 3.8. It should be
noted however that e direct proof can pe given following the paiteru

in 1.., . This proof is simpler because it involves only a one-step

construction in contrast to the two-step construction in 3.8.
6.3 Remarks

a) Note that y has to be strictly bigger than™ a . Moreover if
every object in G is presentable, then by 3.7 there is always
a cardinal Yy satisfying the conditions a) and b). The point is.

of course to choose y as small as possible (cf. remark ﬁollowing

3.8).

b) The theorem also holds when A 1is not locally presentable, but

merely satisfies conditions a) and b) in 3.11. In either case

AE T need not be locally presentable, however it is equivalent
oy

with the'category of y-flat functors on the category éZ T(Y)
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consisting of all y-preseutable objects in AZ T (ef. 3.11 and 3.9),.
Tl

6.4 Rgfinitioq Let T : B x A e p"_pctoy_ggi Y a

5

morphisms in B . Assume A and C are locally presentable. Then

rankZ(T) denotes the least cardinal & > na(A) such that for every

c& I and every "(A)”Eﬂﬁﬁﬁﬂﬁﬁblq object UC A  the objects T(do,U)

and T(ro,U) are 8-prescntable. For a set M of objects i A

rankM(T) 1s defived likewise.

Tf the functors T(do,-) and T(ro,~) preseirve colimits for every
o€ , then by the special adjoint functor theorem they have right ad-
joints 8(do,~-) and S(ro,-) and the latter have rank (2.9, 2.1).
Since by adjointness [T(do,U), -] & [U,S(do,-)] and

[T(rc,U),—J ¥ [U,S(r0,~)j , it is not difficult to see; that rankE(T)
is the least regular cardinal & such that & 2 7(A) and

mS(da, =) < & > nS(ro,-) for every o¢ I ..With this it L{g not hard

to check the following.

L

1} Let A be a commutative ring and A a Grathendieck catege

v. Let

T be the bifunceor &, : Mod, x ,A “__héhé , where Aé is ,the

A A=

category of A-objects in A . Then

A

rankx(ﬁﬂ) < sup*(ﬂ(é),w(do),w(ro)) , where sup®( ) denotes the
ge L
least regular cardinal 2 sup ( ). Likewise if A is not commu-

tative and T is the bifunctor @&

¢ Mod, x., A~—*A , then

A A Th—

rankz(ﬁﬁ) < sup*(w(é),w(dc),ﬂ(ra),card(ﬂ)+) , where card(h)+
GC 2 :
denotes the least regular cardinal > card(A) .

2) Let T be the bifunctor & : [EO,§3££J 5 [H,&jw-m-}i as
defined in 2.lo, ﬁhere X 1is a locally presentable categary.
Then rankZﬁQ) is thclleast regular & 2> 7(X) such that
.éard(do(U)) < 5§ > Eard(roﬁU)) for évery 0d¢CL and every object
U& U . Te see that nof%#%%e right adjoint S§{(dov,-) : X— [U,X]
assigns to an object X the functor Uwﬂ-Tﬁ (= do(U)~fold pro-

.3y
duct of X); and likewise for S{ro,=)
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6.5 Corollary Let T : B x A—-C be 2 bifunctor, where A and ¢

are locally presentable categories. Let % be a set of morphisms in

B . Assume that T(do,-) and T(rc,—-) preserve colimits for every-

g€ L (resp., limits and a=filtered colimits for some a) ., Then éZ 7
5

is locally presentable and the inclusion 4. ,~%3A has a right ad-

£,T

joipt (resp. left adjoint). Moreover if

Yy = sup(ﬂ(é),)cl, card(z)”, rankz(T)) (5333, y' = sup(n(ﬂ),a)>)'

then As o is locally vy-presentable (resp. y'~presentable) and the
'y

right adjoint A—yA

{(resp. the inclusion éE —>A) preserves
5

T

T
y-filtered colimits (resp. y'-filtered colimits). In the first case

(i.e. T(do,-) and T(ro,-)}) cocontinuous), the assertions in 6.2

hold for y as defined here.

Proof The corollary is a consequence of 3.24, 6.1, 6.2 and 6.4,
6.6 Remark The second case (T{(do,~) and T(rc,-) continuous) can al=-
so be ohtained from [[3] 8.6 b). The proofs for 6.5 and [13]| 8.6 b)

are entirely different,

6.7 The analoguous assertion to 4.8 and 6.2 for y-generated objects

requires stronger hypotheses., They are listed in the following

Theorem Let T B x A—=C be a bifunctor, whxe A and C are lo-

cally presentable categories. Let I be a set &f morphisms i B and

assume there is a regular cardinal o  such that every a-filtered co-

lJimit of monomorphisms in A is a monomorphism and such that T{(dog,-)

and T(ro,-) preserve a-filtered colimits for every o€ £ . Let

Y > a be any regular cardinal such that

a) card(I) < y and A is locally y-generated

b} if U€ A is y-generated, then so are T{(do,U) and T(xo,U) for

every o€ I .

cl) T{(do,-) and T(rao,-) preserve finite limits for every o& &
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ead of ¢ I) one can assume

-
=1
.
it
=]

(o)

eévery y-generated object 1is y-presentable.

Then the following assertions hold.

I If Aéféz T and UK A is a y-generated subobject of A, then
?
there is a subobject U’ of A containing U such that
U'e éz p and U' is y-generated i A
s 18 generated in A
IT An object X€”éE,T 1s y-generated in éE,T iff it is y-generated
in 4.
III An object Xg¢ Ay p 18 the y-filtered colimit of its y-pgenerated:
3
subobjects in Ay 1
IV In the presence of c2) everj Y~genarated object in éﬁ T ig
-]
YRIgsentable .in A; 4
Proof The theorem is an immediate consequence of 3.22 and 6,1 .
6.8 Remarks
a) Assume that the conditions in 6.7 are satisfied except for ct)

and c2) and that instead the follgwing hoids.

¢3) In A every object is the y-filtered colimit of its T-pure®

Y-generated subobjects (cf. 5.4, 5.5, 5.6 b)),

Then assertion I) can be strengthened as follows.

I' If Aé'éz r and U&ZA is a y-generateds. subobject of A ,

then there is a T-pure y-generated subobject - U

o]
Hh

A

—_—

containing U such that U‘C-:éz T
»

This follows from 6.1 and the proof of 3.22, Instead of using in
3.22 the presentation of an object as the y-filtered colimit of
its y-generated subobjects one considers the cofinal subsystem of
all T-pure y-generated subobjects; for pre-bialgebras and sub-pre-
bialgebras whose underlying objects in ‘A are y-generated one

) L]
pProceeds likewise,
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Note however that a), b) ¢3) do not imply II, III, IV because

the inclusion éZ T-—éé need not preserve monomorphisms.
¥

h} As ahove in 6.2 not all assumptions on A and C are needed for

I - IV and one can get by as in 6.3 h), Note that there is al-
ways. a cardinal ¥y > o such that 6.7 a), b), ¢ 2) hold. The point
is of course to choose ¥ as small as possible, cf. also 3.23.
In order to deal with the situation when I 1is mnot a set -
which is necessary in order to consi&er functors on a small category
U which preserve all existing colimits .in I - we have to use purity
with respect to a bifunctor T : B x A-—C . We assume in the follow-

ing that A, B and C are lcocally presentable, although the existence

of arbitrary colimiis is not needed for 6.12 (cf. 6.3b), 6.8b)).

6.9 Definition Let I be 2 class of morphisms in a category B
Assume that in B every morphism B:B-—B' admits a factorization
into a proper epimorphism B" : B-—3im 8 and a monomorphism

B' : im B—=DB'. Then denotes the class of those subobjects of

I

roc which are of the form o¢' ¢ im ¢ —s ro .for some o €% .

Conditions on B which guarantee the existence of such factorizations

can be found in [13] 1.5, 1.6. Clearly they hold in every locally pre-

sentable category. Note that HZE is a set provided the codomains
{ro|ae Z} form a set and B is well powered. =~

6.lc Let T : B x A—>C be a bifunctor and I a class of morphisms
in B . If T(-,-) preserves proper epimorphisms in the first variable
(resp. takes proper epimorphisms intc proper monomorphisms in-case T
is contravariant in the first variable)}, then it follows easily from
the above that A &€ éX,T impiies AGJ%WE,T y 1.e. éE,TC &GnE,T . The

converse is Munfortunately'" not ftrue, but the following shows that

&X,T 1s c%osed in é&ﬁb,T under T-pure subobjects.

L4

6.11 Lemma Assume that & , B and C are locally presentable and that
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T(-,~) preserves regular epimorphisms and well ordered colimits in

[N

well ordered limits in case T is contravariant in the first variable).

g == P ——

Let Aéléz ¢ and tet i : X-—A be a T-pure monomorphism in A
« i :
Then X éE,T 1ff X(:éﬂﬁE,T

Proof We limit ourselves to the first case¢ because the second one is

dual. By [13].6;6 by, 1.5 2 morphism in a docally presentable category
is a proper epimorphism iff it is a well ordered colimit of regular
epimorphisms. Hence T{(-,-) prescrves proper epimorphisms in the first

variable. The assertion now results from the commutative diagram

T{ro,i}
T(ro,X) . > T{(ro,A)
i
TT(U",X) ' TCa,
T(imag,1)
T(im oy X) c > T(img,A)
T(s,X)
i
T T(o',X) T(o \A)
' T(do,i)
T(do,X) < >  T(dg,A)

observing that T(¢',X) and 7T(¢',A) are proper epimorphisms, that

T(o,A) is an isomorphbism and that T{(do,i) 1is a monomorphism.
LS

6.12 Theorem Let A , B and C be locally presentable categories.

Let T : B x A~—>C (resp. T : EOX'ﬁ ~—3C) be a bifunctor which

4

preserves colimits in both variables (resp. limits and for

jm®

very B4&B

the functors T(B,-) : A—¥C preserves B~filtered colimits for some B8

depending on B). Let I be a class of morpbisms in B such that

the codomains {ro|oc £} form a set. Then the inclusion A —3 A

eatas: st Zme=U GO, 2y g

hias a right adjoint (resp. left adjoint). In first case (but not in

the second). A is locally presentable. TIn more detail let § gffl

=% R T vt e rre——— e

L

be any regular cardinal such that
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1) A and C are locally 6-poetherian

2) there is a regular cardinal a < 8§ such that i A and ¢

a-filtered colimits of monomorphisms are again monomorphic

3) 8 > sup {card(M)+, rankX(T), rankM(T), card Gay)+}

with which-T-purity can be tested

where M 1is a set of objects in

1=

(egs w(B)-presentable objects in . By c¢f. 5.6 b) and 5.5; for lﬂz

and rankgz (1), rankM(T) see 6.9 and 6.4 respectively). Then AE T
t X L . iy RPN

is locally 6-noetherian and tke right adjoint A-- A

5. o Preserves
=5, et ES ST NS

6-filtered colimits. Moreover an object X{:éZ,T is 8-generated in

A iff it is in A , and every morphism f-3: U—>4a with Ach.
e

and U d-generated in A factors through a monomorphism U'S34 ian &

such that e éE 7 and U' is S-generated.
»
6.13 Remark The existence of a left adjoint éz T-*%& in the second
>
case (i.e. T : §0)<&‘mﬁ——+g) can also be obrained from the main result

of Freyd-Kelly [ie], One shows that there is & class @ of morphisms

in A such that A = A i and _the codomains of § forwm a set.
- =L,T "'Q,['_s_J

Also the proof given below can easily be extended to locally bounded -

categories in the sense of Fréyd-Kelly [iC]. An example for A and I

such that éE - _] 1s not locally presentable can be found in [IQ]
’ »

80!5!

"

Proof of 6.12 We first settle the case T : Eo XA —C which is

much simppler because the results of § 5 about purity are not needed.
Since T{(do,-) and T(ro,-) are continuocus for every odo¢ 2 , the
category éE,T is complege and the iAclusion éz’T——>é presérves
limits. In addition every monomorphism in A is trivially T-pure. For
the existence of a left adjoint ﬁ-ééi,T it suffices to verify the
solution set condition (cf. Freyd [5]). This means that for every
object X&€ A there is a small subcategory M, of éE,T such that

every morphism f : X--3A with Aéféz 7 admits a factorization
o T
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X—3X"—A with X'G‘EX . By 2.8 there 18 a cardinal « such that

X

X 1is ay~generated. Since ?R.Z is.a set, there is a regular car-

dinal B8 such that w(A) 2 B = ay and T{(ro,~) and T(im o¢,-)

preserve B-filtered colimits for every o6& I . By 5.1 there is a car-

dinal vy > B such that e(T(ro,U)) < v > €(T(im o,U)) for every

o€ L and every y-generated object U& A . Then MX = A(y)n AE T is.
. . -_ el iy

a "solution set", where z(y) denotes the full small subcategory of
all y-generated objects in A {(cf. 2.8). To see that let f : X—>A

be a morphism with AG:éX,T as above. Then by [K3] 6.7 a) the image

of f 1is also y-generated and by 6.11 A is also in . So

A
, _ﬁ%‘T
6.7 a), b), c¢1) can be applied to HQX and the inclusion im f-—A.

Therefore the latter admits a factorization im fi;>x‘~E-A such that

X'eg ék? p and X' is vy-generated in A . By 6.11 X‘G'QE T which
i >

shows that EX is a 'selution set" for X .

As for the first case (i.e. T : B x A——C) the inclusion A A

L,

preserves colimits and Az T is cocomplete. Thus by the special ad-
Loy

joint fuuctor theorem there 1s a vight adjoint A-—3 A provided

éE T has generators. To establish that let &§ be any regular cardinal
»

with the propexties 1), 2) and 3) stated in 6.12. We show that

~
A(8)n A is a small genevating subcategory of A . The §-genera~

L, T —,T

ted cbjects in A obviously form a small generating subcategory.

Therefore it suffices to show that every morphism f : X—3A with

Aé‘AE T and ¢e(X) = & admits a factorization X-——X'—A such that

Ty

'¢ Ay o and X' s S-generated in A .. This is done in the same
]

pattern as above. First by 6.11 AcC A implies A€ A and

ﬁ;.[}ﬁj 6.?Id5-im f 1is d~generated. In crder to apply 6.8 a) to the
inciusion im f<$5A with respect to vy = & and Jﬂz (not I), it
suffices to verify 6.7 b) and ¢3): the other assumptions in 6.8 follow
trivially from those in 6.12. As for ¢3) we use 5.2 and the fact

that in A" «every object is the 8-filtered colimit of its S-generated

subobjects. In 5.2 let EV = € and TV = T(V,-) for every VCM
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Then the hypothesis in 5.2 follow trivially from those in 6.12 ex-
cept for condition 3) in 5.2. The latter and condition 6.7 b) express
the following. For every V&M yevery o0&k’ and every $§-generated.ob-

ject U&€U the inequalities
e(T(V,U)) < & and e(T(ro,U)) < & > ¢(T{(im o,U)

hold. To verify. them first recall that in A and € the notions

d-generated and S-presentable coincide by assumptiony i.e. E(G) = A(8)

and C(8)

"
"

C(6), cf. 2,8, By the special adjoint functor theorem the
funetors T(V,-), T{(ro,-) and T{(im o,-) have right adjoints for
every Vg M and cdel which we denote with §(V,-), S(ro,=~) and

.$(im 0,-) vrespectively. By 2.9 the latter have rank (2.1) and as men-

. . ; . .. _ .
tioned in 6.4 the jnequalities rankM(T) < 6 and ranknzz(T) < 6 im

Ply that the functors §(V,-), S(ro,~) and 3(im oc,-) preserve
-filtered colimits for every V& M and J¢ £ . Hence for every é-gene-

rated object U&E A the adjunction isomorphisms

Ay

[T(V,U)s_} = [U,S(V,")], [T(I‘U,U),""] I_‘U,S(ICF,"")], [T(im C‘,U),"] :‘) [U’S(im G:")_]

yield the desired inequaliﬁies c{T(V,U)) < & and .

S(T(rU;U)).S § > e(T{im U,Ui)‘. With this theiassumptions‘in 6.8 are
verified for y = & and %22 . Thus the inclusion im f-->A adnmits

a factorization dim f——X'——53A such that X' is a T-pure subobject
of A which belongs to AM?Z’T and is d-generatéd in A . Then 6,11

implies X'€ A which shows that E(&)n A

Ay p "is a small generating
»

L,T

subcategory of éz T Since the inclusion AE T-éé preserves colimits
? ¥

and the objects of A(8)n A are d-presentable in A , they are a

2, T

fortiori S-presentable in éE T whence &Z T is locally 6-presentable,
H] » }

The last assertion in 6.12 is obviously part of the above construction

of generators in éz T Since A(§) = A(8) an object Xéféz T which
» B ¥
is §-generated in A is likewise a fortiori &-gedrated in AZ oo For
- ]
the converse det Ac A be any object, Then it follows from the above

z,lil
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that A 1is the é6-filtered colimit in A of subobjects XiCLA

which are S-presentable in A and belong to ﬁz T o Thus the Xi's are
25, i
a torftiort S§-presentable &E,T and A = l%E§Xi hoelds 1in éE,T
If AGI&E T is é-gencrated in A , then the identity of A admits
H

Fid

a factorization A~M§Xi-59A s whence Xi"EF%A for some 1 ., Thus A
is 8-presentable in &F _ Summarizing we obtain that an object
-3
é Y . g 3 . - '-; 1 S - 1 q - -S
A éE,T 1s é-generated ir éE,T 1ff 1t is in A and that &Z,T i
locally &-noetherian. With this one can show as in 3.24 a) that the

right adjoint éf“ﬁéz ¢ Preserves §-filtered colimits which completes
k]

the prcof of 6.12.

6.14 We now apply 6.2 ~ 6.12 to-the bifunctor

@ [QO,Setgj x [U,gj_~¢§ as defined in 2,106, where U is a small
category and X is cocomplete. we QO not apply them to the bifunctor
symboiic hom [-,*] {(cf. 2.10) because the resulting statements for
L-continuous functors are, except for size estimatesy; contained in
[131 § 8. Also it is straight forward to deduce the correspoanding
size estimates for Z-~continuous functors from 6.2 and 6.7 a), b), cl).
Let I be a class of morphisms in [g0,§g£§] . Then by 2.10 a
functor t ¢ U——X is Z-cocontinuvous iff o & t 1s an {somorphism
for every o€ , in other worvdsg [l’ﬁjz,w coincides with the full
subecategory CCE[H,EJ cf {g,z} consisting of all I-cocontinuous
functors U-~3X . With c¢ard(0b U) and card{Mor™) we denote the
cardinality of the set of ébjects and the set of morphisms of a skele~-
ton of U respectively (cf. Schubert [2&] p. 170). Recall that if &
is a set and X locally presentable, then rankz(®) exist and i§_the
least regular cardinal &6 2 w(X) such that )
card{(do(U)) < & » card(ro(U)) for every €U and évéry- OE I ,
cf. 6.4 and 6.4 2), It might be instructive to show directly how this
cendition on & implies w(do & t) 5 & 2 7(ve & t) for every o€ 7T -

and every finitely presentsble functor tg& [g,é] . Since do @ and

r¢ @ are cocontinuous, it suffices to verify this when t beloungs



to a set of regular §-presentable genervators. By [i3] 7.2 h) the ge-

neralized representable functeors X & [U,~] ! U~——3X U!ﬂLmLX form a
[l
set of regular (even dense) gencrators, where U 1is ruaning through

Ob U and X through ObL(X(8)) (note ¢ 2 1(X)} . Since

X @ do(U) = Jmi.x

do (V)

nt

o @ X & [U,-])

i

i,l ¥ , the conditions
ro(U)
card(do(B)) < & > card(ro(U)) obviously imply

and likewise ro & (X & [U,‘])

1@ e (X [U,-]) < o :c“ﬂ.(ro s (%o [u,-])

for every o¢g I .

6.15 Coxolizry Let U be A small category and let & be a class
of morphisms in [go,Set31 such that the codomains {ro|oe £} form
a4 set. Let X be a locally presentable category. Then Ccy[g,gj 1

locally presentable. In moxe detail, let

§ = supﬁ{ﬂcl, w(X), s (card(da(U))+, card(ro{U))+), card(2)+}

if 2 is a set, resp. let

* .
§' = sup{jfi, m{X), sup e(ro), card(ﬁzy)+, card (Mor g)+}
CEL ‘

if % 1is a class. (In the latter case it is assumed in addition thaft

X is locally é'-noetherian and that there is a cardinal ¢ < &' =szuch
y . — e -

— e T ——

that in X o«-filtered colimits of monomorphisms are monomarphic.)

Then Ccz[ﬂsﬁj is locally S-presentable (resp. locally 5‘—n0etheri;£).

Moreover a IL-cocontinuous functor t : U~—3X i3 S-presentable (resp.

8§'—generated) in CCZ[H’E} iff it is 6-presentable (resp. 6'—genera:

ted) in [U,X] . In particular every merphism (resp. monomorphism)

t—ss with se‘CcE[H,E] and t &-presentable (resp. §'-generated)
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that ¢t'¢€ CCZ[E,E] and t' is 6-presentable (resp. 6'-generated).

Proof If % 1is a set the assertion follows from 6.14, 6.5 and 6.4 (y=6).

If £ is a class we apply 6.11, 6.12 and 6.4 and revert &' to & ,
For this we have to verify the conditions 1)=-32) im 6.12, The first two
conditions are obvious. As for 3) note that purity with respect to ¢
can be tested in - [H0,§££§J with finitely presentable functors; hence
we choose M. = Ob([ﬁ?,ﬁgEi]( KL)) . By [13]3?.6 g2 functor r : H?wnégggi

is finitely presentable iff there is a cokernel diagram

noo m

Iy 1 (-0, ) —s x

. a L . - J

1=1 i=1
in other words, a finitely presentable functor can be described by a
finite set of morphisms in U . Since the set of finite subsets of
Mor(U) has the same cardinality as Mor(U) , this shows that

+ .

card (M} £ card Mor (U) ; whence canxd(M) < 6§ . Since e{ro) < 8

. . . ] .
for every o€ L , there is an epimorphism ng-['sulj“‘9 ro in
' 1€ L.
¢
[HO,Sets] such that card(I_ ) < § . From card(MorU) < § it there-

fore follows that .
I >
§ > card(_[l‘[U,Ui]) 2 card(ro(U)) » card{(im ¢ (U))
i¢l
g
for every U¢ U and every o¢ = . Hence rankd (@) < & by 6.14
3 z
(resp. 6.4), In the same way one shows rankM(Q) £ & . With this con-

ditions 1) = 3) in 6.12 are verified which cdmpletes the proof of

6.14 when £ 1is a class.

6.16 Colimit preserving functors. Let U be a small category and
k

let (U = lig U ). be a class of small colimits in U . Every -

v, k kéK .

k€K gives vise to a canonical morphism Ty lig *,Uv ] —> [~,U J
k

v
in [go,ﬁets] . Let Ly = {okfké K} and let X ge a cocomplete cate~
gory. Then for every functor t and every k&€ K there is a canonical

. , . k .o .
morphism uy lég LUv ~—~—> tU" ., By adjoininess Ty and u,  give

k k
rise to a commutative diagram



"
[[-,Uk] @ t, X] e [tUk, x]
Lok @ t, XJ uk_,x']
N ' N
e
[tim[-v, ]« ¢, x] > 1])};'?_‘ e, 5 K]
) k
for every X€X . Thus o, @ t is an)somorphism itf u,  is and the'
category CCT EH{EJ coincides with the category CCK[E,K1 of all

K
functors UY-——>X which preserve the colimits in X . In order to apply

6.15 the codomains of £ have to form a set. In order to obtain thie

an inverse to the in-

1o

et U be a skeleton of U andg é ¢ U—3

[+
clusion I U=U (cf., Schubert [ﬁb] 16, 3.4). The resulting class
ot . k .
K of colimits (I0§)U 5([ @)U in U has the property
- Q <]
CcKLH,§] = Ccorﬁ XJ and the codomalns of I = {0k|k€ K} form a set

(two colimits in K are cousidered equal if their index categories,

their diagrams and their canopvical morphisme coincide). Therefore we

o
can assume without loss of generality tQQE K =X .
If K 1is a set of colimits in U and X localliy presentable, then
by 6.15 CcK[y,g] is locally 8-presentable for

& = s-._!p"{xl, “(.}99 ;‘;ER(C&rd 1i13[U,UU ], card I;L_I,Ul‘-]), card(l{)+}
LeOh it Vi k

and a K-cocontinuous functor t : U-—X is §-presentable in

CCK[E’E] iff it is S-presentable in [U X] etc. (see 6,15).

Ei}ewisg if K 1is a class Q£ colimits in U and X 1is a locally

§-noetherian categor; for some regular cardinal

8 2 Sup*{fvl, (%), card(&Qz )+, card (Mor g)+}
K

and 1f 1n addltlon a-f:lrered LOllm]tG of monomorﬂhlqmq are monomor-

phlc 1n X for some « < & , thep CCK[H’§1 15 lovally G“DOLthLIlad
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ete. (see 6.15). In particular “(CCK[E’E]) is bouunded by

shp{fcl, m(X), card(ZMor EI—)+} .

The passage from K to K is essential for the above size esti=
mates of “(CCK[H’E]) . Also given U and K one may find U' and
K' sueh that CCK[ELEJ 2 CcK,{g',gJ and the latter gives a better
size estimate for &6 . For instance, let U = p~Ab.Cr. and X = Ab.Gr.
be the category of abelian p-groups and abelian groups respectively and
let K be the class of all colimits in U . Let U'cU be the full

subcategory of all finite p-groups and let K' ©be the class of finite

) v
colimitsin U' . Then CCKLH,§]~——ﬂ CCK'[E"EJ , Lo

tIU‘ is an
equivalence and card(ﬁ‘) = car@(ﬁ?.ﬁl) - ﬁ; = card (Mor i') holds.
Thue by the above the category of cocontinuocus functors
p-Ab.Gr. —2Ab.Gr. is locally Aa-noetherian. This cannot be improved.

If this category were locally finitely generated, then by [ﬁ?] 7.12
a counteble colimit ¢f monomorphisms would be again a monomorphism.

But this need be s0. To show that we use the equivalence

Y

p*éh.ﬁﬁ--—»CcY[p-éh.gz, éh.gz.] s x-veakx of 6.25 ¢) below, where

- R R
prAb.Gr. denotes the category of p-adic complete abelian groups. Then

the colimit of 2/p2 Byz/p2z s 2/p°72-— ... in Ab.Gr. is the Priifer

o - + - d a
group Z(p ) whose completion is zero, whence the colimit in

A * - ’ L] a »
p—Ab.Gr. 15 zero, This shows in particular that the colimit of the

vertical non-zero monomorphisms

oz/p2) —3 ez 14 gz 1.
lid AP+ @p%
v W
Y pr 2 . 3. @p
oz/pz) =P o(z/p ) L e (z/p 1) 28 ..

in CcK[p-éh.EL., éﬁ.gz.] is zero. (Note that 6.25 ¢) was used to
show that @p- 1s a monomorphism in CcK[p~§R.§£., Ab.Gr.] although

@pp is obviously not polntwise a monomorphism, eg. (Z:’/an’)ap-n = 0.)

Remarks a) The problem of whether the inclusion CCK[Q,EjfiﬁE,§J has
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a right adjoint has been around for quite a while. Partial results
were stated without proof in Freyd ES] p. 118/119 and Freyd-
Kelly [!Q]:R. 170, Recently G.M. Kelly has communicated to me a
simple proof for X = Sets which makes use of the explicit descrip-
tion of colimits in Sets in an elegant way.

b) By [I3] 7.9-a category -é is locally a-presentable iff it is
equivalent with the category of «-contiwous functors &(af;——?gggi.
The question may arise whether locally presentable categories can
also be characterized as categories of set-valued K-éocontinuous
functors (or more generally as ZI-cocontinuous functors for some
class § as in 6.15). The answer is negative. Any category of the
form CCZEH’EEEE] has a smail cogenerating subcategory (even co-
dense [ ] 3.1) because the category Sets has one ([i3] 4.15)

and the inclusion Ccz[y,gggijii+[g,gg£§] has a right adjoint.This
shows thal categories of the form' Ccz[g ’EEEE] constiltute only a
very small subelass of the class of locally presentable categories.,

6.17 Cosheaves, Lei U be a small category with a pretopology v ,

-

i.e. with each U« U there is associated a set J(U) of subfunctors
of [*,U] : gﬁ~—9Sets - called covering cribles - such that

id[-,U]Q J(U) and for every natural transformation “f: [—,U']—&[—,U]
and every R&J(U) the inverge image Lf7_l(R) belougs to J(ury .
Recall that a functor t » U—3}X 1is called a t-toshcaf on U with
values in X 1if for every.triple UEU , R€EI(U) and X€ X the in-

clusion o : R——a[-,u] induces a bijection
o, (e=,x1] + ([0, (e x)] = [&, [e=,x]], F ~>po

or, what is equivalent by 2.lo ~ assuming X has colimits - the mor~
phism o & t : R t-~—{-,U] ® t is an isomorphism for every o ,
cf. Borel-Moore [3 ], Gray [LE], Kultze [Qtﬂy The full subcategory of

[g,&] consisting of all r-cosheaves is denoted with CshT[H,E] . Let
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ET be the set of all inclusions RS -,U] » where R€ J(U) and U

runs through a skeleton of U . Then CcE [H,E] = CshT[HAEJ « If X
T

is locally presentable, then CshT[H,E] is locally d-presentable

for 6 = sﬁﬁ({jcl, (X}, card(Z )+, Sup(card[U,U']} , ete. (see 6.15).
T @ u'el

Likewise if X is locally 6~noetherian and

+ . .
8 z_sup{)fl, m(X), card(ET)+, card(Mor U) } and if in addition

o-filtered colimits of monomorphisms are monomorphic im X for sorme

¢ < § , ther Cshﬂ[g,ﬁ] is locally §- oetherian, etc. (see 6.15),

Remark Let <t be a Grothendieck topology on U . Let 1, be a

pre-subtopslogy of v - i.e. JOCU)C J(U) for Ueg U - which gene-

rates T . (ck. [3%] 20. 1.,6). Then one can show that

Csh [U,X} = CshT [U, X] and thus in the above estimate for n(CshT{g,gj)
T == = o - '_"“ .

one can therefore replace card(ZT) by card(ZT ) which can be
]

much smaller. To see that the cosheaves on U with respect to T,

and T coincide first note that every T-cosheaf is a Tycosheaf.,

For the counverse let 21 be the closure of L. (cf. 2.10). Then by
< a

2.1l0 every 1, ~cosheat is ET ~cocontinuous. Moreover by [13] i2.5
0 a i

ET is contained in ET . Hence every ZT ~cocontinuous functor
[y (4]

U-—X is a t-cosheaf.

6.18 Adjoint functors, Let A and B be categories and let

Adj(A,B) be the full subcategory of [é,ﬁ] consisting of all
functors A-~—B admitting a right adjoint.‘Then Adj(A,B) is equi-

valent with the category whose objects are pairs A—E}E—E?& of ad- "

Joint functors (T = left adjoint) and whose morphisms are pairs

(¥ : T—T', y: S'—asj of natural transformationssubject to the usual
compatibility condition. The equivalence is given by the forgetful
functor (T,S)nvéT . Our ajim is to show that Adj(A,B) 1is locally

presentable if A aud B are, and to give an estimate of

m(Adj(A,B)) in terwms of A and B . This is done by identifying

+

Adj(A,B) with a category of I-cocontinuous functors U—>B, where
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U is a small generating subcategory of A,

We start out somewhat more generally. Let U be a smatl category

and let I be a class of morphisms in Egogsegg] such that the codo-

main§ {r0|0€ Z} gEET a set. Recall that cr[§°,§g£§] denotes the

category of all Z-continuous functors go—ﬂ68ets and that CE[EO,Sets]

@s locally presentable if £ 1is a set (ef, 2.10, 2.11). 1In eiﬁher

case the inclusion T CE[HO,EEEE]——“Q[HO,SetSJ has a left adjoint
L : [EO,Sets]v—ﬂ CE[HO,ﬁets] by 2.il0. Let A = CE[HO,Sets] and let

X be a category with colimits. Then by 2.lo every functor t : U-—X

gives rise to an adjoint pair

@t [U°, sees]—x and x-—[0°sets], X~ [t-,x] .

[v°,
. . PR ¢ 1. o
Clearly t 1is Z-cocontinvous iff Lt—,X} @ CZ[E ,Sets] for every
€X . Hence t~(@ t)+ I induces a functor ¢ : Cc?[g,g]"wéAdj(é,g)
On the other hand the Yoneda embedding Y : g_“+[g°,8ets] and the

left adjoint L [go,gets]wwacz[go,§etsj give rise to a functor

Y1 AdI(AX)—[U,X], T~~TLY .

6.19 Lemma The functor

I

O ¢ cey[U,X]—8dj(a,X), t@ t) - T

is an equivalence and its inverse is . If the representable functors

g?"dSets are J-continuous, then %(T) = TLY is equivalent with the

composite R-X%CE[HO,ﬁets]"EPE for every Te Adj(A,X) .

-

6.20 Corellary Let A = Cz[go,Sets] with U and -I as above and

o

ler X e a locally presentable category. Then Adj (4,X)

presentable. In particular the category of adjoint pairs between two

locally presentable categories is itself locally presentable.

In more detail, if I is a set, then Adj(A,X) 1is locally S-presen-

A

+ +
table for §& = suﬁ*{zfl, 7 (X), sup(card do(U} , card ro(U)+Lcard(Z) } 3
5SS oE x -

end a left adjoint T : A—X is S-presentable in Adj(A,X) iff

TLY @ U—X. is é-presentable in [U,¥] . In addition every natural

transformation H-—T with Te Adj(A,B) and HLY 6&-presentable in
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[E,E] admits a factorization H—H'—3T suec that H'  has a right

adjoint and H'LY is 8-presentable in [E,&] » cf. 6,15,

Likewise 1if I is a class' an X is lo allz_G-noetheriap_ﬁo;__

aram > —T - =i i i -

5§ > sup{X,, 7(0), card(ﬂtz)+.~card(ﬁ9r 0} and if in addition

e-filtered colimits of monomorphisms are again monomorphic in X -for

some a < § , then. Adj(A,X) is locally &-noetherian, etc. (see 6.15).,

Remark If A is a locally presentable category, then the above esti-

mate for § resp. T(Adj(A,X)) depends on the presentation

A2 CZ[EO,Setgj » ef. 2,11, The point is of course to choose a presen— -
. . i +

tation in such a way that sup(card(2)+, sup{card do(U) , card ro(U)+)}

e i LA PN

is as small as possible. If the tepresentable functors E?»eSets

are I~continuous - which is often ‘the case - then a left adjoint

T : A—X is 8-presentable in Adj(A,X) iff its “"restriction" on U is

S-presentable in [H,E] .
Proof of the lemma If the representable functors [—,U] s Ue U ,

are I-continuous, then the assertion follows from 6.!8 and the well
known fact (due to Kan[}ﬂl) that the Kan extension
[U,%]—>4di([U°,sets], X), t~>t @ is’an equivalence (cf. Liz] § 2).
S0 we basically have to deal with the. (techrical) complication that
the representable functors need not be LI-continuous, Let T : A-—X
be a functor with a right adjoint. The I-cocontinuity of the functor

t = TLY results from the diagram

it
e
e

[ro, [t-,x]]) = [ro,[TL¥-,X]] ¥ [ro, [¥-,15x]] [ro, 18%]

[o,[t~,%]] | [0,18%]

I
ne

[dc,[t-,X]]

(do, [70¥-,%]] = [do, [v~,15x]] ¥ [do,15%]

where o¢I , X€X , in which [o,ISX] is & bijection because SX

is IL-continuous. We show that there are natural isomorphisms

(H—@)(t) 2 t and (@Ef)(T) 2 » Recall that the closure I of T

Ll

-.consists of all morphisms & in [go,ggts such that |5,F] 1is a
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bijection for every Fé‘gz[go,Setsj and that a functor t : U—X s
S-cocontinuous iff it is I-cocontinuous (ef. 2.10). Then for every

U€ U the canonical morphism TG [-,U]-—%&L[~,U] belongs to I - bhe-

cause for every VFe CEEQO,Séts} the map
[tg:F) = [[-v] , ¥} — [1L[-,v] , ¥]

is bijective. (Note [IL[-,U], ¥] = [L[-,u], F] = [[-.U], F].) Hence

for every U€ U and every I-cocontinuous functor ¢t : U-—X the

moyphism Ty @t [-,U] & t‘hﬁIL[“,U] ® ¢ is an-isomorphism. Since
IL[-,U] ® t = ((@t)*I'L-Y)(U) and the composite
o~ Tu @t
t = [ 0] gt —— o L[-,0] @ ¢

e

is natural in Y , we obtain t (@E) T LeY = (9&@)(t) . 8Second if

T : A—3X has a right adjoint 8 , then 50 does TL : [Qo,gggg}——?g .
namely IS . If t = TLY , then by 2.1o0 the right adjoint of ® t is
the functor X—~9[H°,§g£§],X'~H}[TLYF,X] . B§ adjointness the létter
is isomorphic with I8 . Hence TL % ® t which implies

"

@) () = JCTLY) = §(e) = @ ). 1 ¥ 1L ¥ 1 .

6.21 Generalizations to topolopical and additive categories. In view

of the work of Wischnewsky [3&], Ertel~Schubert [Ll,

Wyler [37] and others, the assertioms in 6.15, 6.16, 6.17 and 6.20 can
be gemralized to the situation, where X is .veplaced by a topological
category over a locally presentablie category. Note that in 6.14, 6.18

and 6.19 it was only assumed that X has colimits. In more detail let
U. be a small category and I . a class of morphisms in [go,gggij

such that the codomains {ro|oe )} form a set. Moreover let F : g—éﬁ
be an initial structure functor, where X is locally presentable, cf.
Roffmann [IB], Wyler {%?], Wischnewsky [35]. Then by Wischnewsky [33]

2,13, 2.22, 2.23

— Ceyp [U,¥) ) cey[U,%], t~w-c
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is again an initial structure functor and by 6.15 Ccz[g,g] is lo-
cally presentable. Hence all of Wischnewsky's assertions in E?@] 2.13~
2.24 and elsewhere apply, in particular Ccﬁfd,ij has limits, dense
o LY
. . fre S O s . s
generators and the juclusion CCE[H,EJ*—ﬁfg,g] has a right adjoint, etec.
In particular the functor Adj(cz[HO,SetsJ{ g’.u+[g,%], T~»TLY , is

full and faithful and has a right adjoint.

-.The assertions in 2.lo0, 2.1t, 6.14 - 6.2¢c can also be formulated
in the additive case. For this assume that the categories A,B...,
U,X,... are additive (or preadditive) and that all functors are addi-

tive. If the category Sets of sets is replacded by the category Ab.Gr.

of abelian groups and if (U,X], [g,éﬁ.gi.] etc. denote the categoriecs
of additive functors, then there is an additive bifunctor

@ 3 [go,ég.ga.] X ig,g]fa.g with the same properties as in 2.1lo, 2.11
and 6.14. (Note that in 6.14 the additive genralized representable
functors are composites of the form X & [U,“] s H“_}éH‘EE°H“>§ s Where
X@ is the left adjoint of [X,-] * X—Ab.CGr.) . With these modifica-
tions all assertions in 6.14 - 6.20 hold also in the additive case.

If there is danger of ccufusion we dénote ‘the category of additive
functors U-—X with [H,§]+ in order to distinguish it from the cate-

gory [U,E} of all functors U—X .

6.22 Closure properties cf Adj(a,B), Whereas. Adj(A,B) is locally pre-

*,
sentable provided A and B are (6.20), there is no corresponding

assertion for topoi or Grothendieck categories. Likewise if X 1is a

topos or a Grothendieck category, then Ccz[g,gj need not be so, not

N

even when X is given by aGrothendieck topology on U (ecf 6.25 ¢)).

-

The following definition is "designed to rectify" this, at least in the
additive case., It is motivated by Lazard's [22] characterization of

flat modules as filtered colimits of finitely generated free modules,

6.23 Definition A class I of morphisms iBi-[go,Sets] » U small,

{rolo€ &} form a set and do and

is called flat if the dodomain

jw
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ro are filtered colimits of representable functors for every oe3Z .

A category A is cakled flat if there ig 2 _small category U and a

flat class I =~ of morphisms in [HO,Sets] such that A % CE[Hé,Sets]fi

In the additive case (6.21) flat classes and flat additive categories

are defined likewise.

This is obviously somewhat an ad hoc definition and it raises

many questions. We limit ourselves to the following.

6.24 Corollary Let A be a flat category and let I be a flat class

———— r—— e — —— — — — —_——

of morphisms in [E?,SetsT y Whre U is a small category. If X is a

topos (resp. a Grothendieck categorz), then'Eg_are Ccz g,g] and
Adj(A,X) .

Likewise, if A and I are flat additive, then Adj(A,X) and

Cc_|U,X are Grothendieck categories, provided X 1is.
L= + g L5

Proof We limit ourselves to the non-additive case, the proof for the
additive case is similar. Let X be a topos (resp. a Grothendieck cate-
gory) and let I be a flat class in [HOSEEEEJ . Clearly Ccz[g,§1

is closed in [H’EJ- under colimits. Since da and ro are filtered
colimits of representable functors for every ¢ €&l and X 1is a topos
(resp. a Grothendieck category), one readily sees thsat the functors

do @ : [y_,ﬁ]-;_}g and ro @ : [E,E]-————)}_{“ preserve finite limits.
Hence Ccz[g,EJ is closed in [EAEJ under finigg limits and by

6.15 it is locally presentable. If X is a Grothendieck category,
then 86 is [E,g] and therefore, by the above, tﬂe same holds for

Cc [U X] . On the other hand if X is 2 topos, then sb 18 f }
and it follows from the above and Giraud's characterization of topoi

(cf LlSJ 12.13 a) - d)) that CCZ[E,E] is again a topos.

6.25 Examples af categories Adj(A,X).

5.25 a) Let U be a small category with a pretopology 1 (resp’. with

. \ . hY
a class K Jf colimits). Then by 6.19 the category AdJ(ShT[EO,SetsJ,E)
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of adjoint functors between the category of set valued sheaves on the
site (U,t) and a cocomplete category X 1is equivalent with the
category CShT[E’E] .of t“COShéaves on U with values in X . Likewise
the category Adj(CK[HO’EEEEJ’E) vf adjoint functors between the cate-
gory of K-limits preserving functors gq—+§33§ and a cocomplete cate-

gory X 1is equivalent with the category of K~cocontinuous functors

_I;]‘__"_}E .

6.25 b) Grothendieck categories. We give a.description of Adj(A,X)
for Grothendieck categories A and X in terms of those objects in
X which are uniquely divisible by all covering right ideals of the

endomorphism ring of a generator®in A ., We start out somewhat more

il

generally.

Let A be a ring and * a set of right ideals in A . Let X be a

Grothendieck category and ni the category of left A-objects in X .
- » a; " * kl + . M
An object X¢,X 1is called uniquely divisible by ¢ if for every L&

e

an isomorphism . Let Jhﬁ denote the

the evaluation I@KX*—%X is

full subcategory of ,X consisting of all uniquely L?:divisible ob--

i1

jects. Dually a module Y& ModA is called }gigiosed-(cf. Gabriel [[;1,

- ot . . . - R
Stenstrom [1?J pr 37) if for every TI&W the restriction [ﬁ,YJ»&LI,YJ

is an isomorphism. Let (gggﬁ)éy denote the .full subcategory of

=

" M ’ a
Odﬁ consisting of all “~closed modules. By 6.2 the inclusion

a g

< L
v > joi - I : =
(Iodﬂ)gg—-éﬂodh hagAleft adjoint loc #Odﬁ:ﬁé(MOdﬁkﬂ called 1lo
calization at &f + In particular (Modﬂ)af is locally &~-presentable
o
for & = su?fﬂ(I) . In general W ~loe is not exact unless ot is a
1ew

pretopology, c¢f. 6.17 and ﬁ?&] 22. Let I be the set of all ipclu-

sions ICA for 1%, If {A} denotes the full subcategory of gggn
whose only object is A , then theré are canonicatl isomorphisms

[{#}°PP,ab.cr.] = Moa, , ¢ [{a}°PP.ab.0r.] 2 (Mod )y, [{n}.X] % X

@15 . Together with the functor % from 6.18 they

id

and Ccz[{ﬁ},ﬁ]

give rise to a diagram
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ite
e

and one readily checks by means of 6,19 that the composite W' is the
funector T'vﬁ(ngiloc)(ﬁ) and that its inverse assigns to an object

X EAE the restriction of @AK onto (Modﬁoﬁ; . From 6.20 it follows

Fhat Adj((ModAlgy,ﬁy_ is locally é-presentable for

x .
6 = sup{gal,n(ﬁ),card(ﬂ)+,card($ﬁ+} s, and a functor T : (Modh%y«n—gé

admitting a right adjoint is S-presentable in Adj((ModPLg X) iff
1 \-l' ’ ‘.‘.- m——

(T*giloc)(ﬁ) is é~presentable in ﬂE , etc. see 6,15,

Now let A be a Grothendieck category. Lét Uec A Dbe a generator and
A o= [U,U] its endomorphism ring. Let Ef be the filter of all right
ideals IC A which cover U 1in the sense that U = gzéim Y 5, where
Lm, vy, denotes the image of v ¢ U-->0U . Then it follows from -Gabriel-

Fopescu [11] (see also &G] (6)) that the functor é——a(ggﬂT%g, A”Q[“,A]
) I

is an equivalence. This together with the above yields that the functor

Adj (A, %)~ @',\x, T ~~> TU
Ay X s

»,
an equivalence for every g;othegdieck category X . In addition

[

Adj(A,X) is locally d-presentable for

§ = sup{)fl, m(X), card(?3+, card(ﬁf}, ete {see 6.15).

6.25 ¢) 1In the above case Adj(A,X) was described in terms.of divi~
siﬂle objects in X . In thé follo;ing we give a rather speciai ;xaﬁple
of a Grothendieck category A such that Adj(A,X) can be described

in terms of complete objects in X . The details are somewhat involved

and have nothing to do with what has been done above. Instead they

center around the conditon of Mittag-Leffler.
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Let R be a commutative ring and (¢R an ideal. Let zﬁhModR be the

full subcategory of Mod,

cyelic submodule (a) 1is a quotient of Rﬁaﬁn ‘for some n > 1 depeﬁ-

consisting of all wodules A such that every

ding on a & A , In analogy to the category of abelian p-groups we call
ﬁﬂ_ﬂﬂﬂg the category of Zr-modules. Clearly,ﬁegggR is a Grothendieck ca-
tegory with {Rﬁﬁ,, RL@.Z,...} as a set of generators, and thus by the
special adjedint functor theorem every cocontinuous functor,ﬁa—ggin——ﬁg
has a right adjoint, In particular the right adjoint of the inclusion
I: ﬁLngggR——é QRER assigns to an R-module the largest ,-submodule.

Let X Dbe-a Grothendieck category and X, the category of R-objects

R
in X . An object X¢& ER ig called /i-adic complete if the canonical
. s Y . ) . . v . .
morphicm X~ )éﬁm_xfﬁg X 1s an isomorphism, where X 1is the image
\)
of the evaluation morphism _QUQRXT“—% X and the truansition morphisms
, ] ; + —
x/&;“+'x-u~a>xﬁﬁo“x are given by the inclusions cﬁy ]C”ﬂy . Let.éa-&R
denote the full subcategory of KR of all <% ~adic complete objects.
N ——
Note that even in general the jinclusion ﬁk-ER-J_% £R need not have a
left adjoint.
Then the functors
¢ AdJ(-Modp, Xy-—32 <Xp, T--3 lim T(R/o:”)
v
and
o,
Yo X, —— Adi({2-Mod_,X), X~ (@ X)e I
=R L R

are well defined and ‘inverse equivalences provided either +% is finitely

v, A - .
generated and R/ 15 artinian for v > | or .4 1is a principal

ideal generated by a non zero divisor. Moreover the inclusion

P

.01—§R~*:3§R has a left adjoint, namely Xﬁﬂ?%%m X/4." , and

Adj(ri-Mod, X) is locally sup(X',,n(X))~presentable (resp. locally
sup(ff],e(ﬁ))-generated). Note that if R 1is noetherian, then R/
is artinian for ¥y > | iff the associated prime ideals of .0UL are

maximal.
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Proof We limit ourselveS to the case X = Ab.Gr., and give an outline

for the modifications in the gemeral case at rhe end. Note that
N,

—-— A .
X = ModR and "f’?’--}iR = L2 MudR

We first show that ¢ and Q are well defined. For % this is obvious

because the inclusion I : Ahhgggk ——)gEQR preserves colimits. As for
£ let T : LE-EEQR-—%éE.EE. be a functor with a right adjoeint., Since
T is additive, for every /% -module A the map R—w+[TA,TAJ,r~QTr‘,
wakes TA into a R-module. This gives rise to a factorization of T
through the forgetful functor V : ERER““QQE'EE' s and thus

QI(T) = %ig T(R/af) is a R-module which is ohviously functorial in T
It will Ee shown below that %EE'TRfag is 42-adic complete,

~ v
If XG.&rModR » then there are canonical isomorphisms

ny

Ny SN ) . v "
x‘“ﬁééim Xign X =23 1$m (R/e ®p X) , whence O"WX) X 1is a natural

equivalence in X . The converse - i.e. ¥Q(T)

b

T for every T
admitting a right adjoint - is more involved.
Slnce every iwmodule is in a canonical way a colimit of coples of

~R

11m1t of copies of RL@, i3] Rﬂ% for n, m = |, 2... Hence two colimit

R # R (cf [Au] .5 b)), it tollows that every X €11 Mod is a co-

preserving functors P and F' on AE—QQQR are isomorphic iff for

every u > 1 there is an isomorphism PF(R/gz") & F'(R/g2) which is

natural in R/&? . We will show that for every cocontinuous functor
T =42‘M°dR—"?éE-E£f and every mn > | there is an isomorphism
n ~ n o . . . n
&, ¢ T(Ri@") —= R/ ®p lim TR/ which is natural in R/m  and
v

T and such that the canonical projection ;im T(Rfdy)-—eT(Rhﬁp)

is the eompo%lte of the canonlcal morphlsm

LA

lim T(R/a )-—ﬁR/a, % 11m T(RLQ.) w1th gh . The latter implies that
-l%m T(Rﬁm,f .s’zz ad:c completea Assume £¢ is f1n1tely generated an&
e ) .

let (ak) be a set of generators of & . Let £ :.lLR-9R be

k€ In

. . . n ..
the homomorphism whose restriction onbthe k—-th summand is multipli- .

cation with a, - For every v > n £ induces a morphism
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The exac?! sequence iz -—f-—) R — R/ —230
I

. . +
and l:hI(-:_{l filtration ....o?,v IC,&?:}C....C@HCR
diagrams
0 o
l ~N
o —3 kery fn+i 3 o 3 ker fn+l
c dlp -
+3 g Farieq n+l
oK) oo = LL R [P T 20 i == LR/
n n
v +1 § n+ |
n
PN .. > o ln
W b
) 9]
0 0
A 4 W

L.
v :.-4/5/

R ;
A e

@ #) AN

b s

gn+£1

R/,ozn

-
=

noy,..» - ‘.
g Qriri-4 G o

J .
[

Rin ™™ Barioa.. R [ete

n. . .
glve rise to commutative

Jrvie 27 1
'Jl \ J-
eyl ety R
Frpina LTI

A's

A
n 1
R/ s Rig
1!’

ker

"

L rig"
In
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where p and p_,. denote the

. . o . . i .
n+i-1 2 Qnei-y * %pei 2 n+i * In+i ? n+i
obvious canonical morphisms. Let im(T(ker fn+i)) denote the image

n+i

of T(ker f )—,»T(u_ R {0z

J . It suffices to show that the induced

n .
sequences in the inverse limit

Grp) 0—lim im(T(ker £ .M)=——lim T(LR/""")mlin T@" /" 1m0
I i 1 i

v Lﬂl T /o ) _— 11m T(R[c};n*l) 3 Rl —50
" ,

are exact. For then the composite of Gwx) and Exrx)
) b2 llm T(f )

Cddm T(Y4R/e™Ty (IE_ mEL

- .

n

i L%E T(R£@P+1) SR/ >0

is also exact and from the commutative diagram with exact rows

2

“—= +
(JIJ-R)x ;m T(R/") ¢—— JI-LM TR/ == lip T(JILR//i/n i
%/

L : : ,f'. .

{I@R (QK’)KL’IH ::‘/"/ 2._%"_!1_[ 1fn+1
. R S L o, Nt
Rep tm T(R/p ) ——— éim T{K/an )

R/a™ ®, " lim T(R/a") T(R/g"™)
Y
R
0 0 : E
’ --7- — A

it follows that there is an isomorphism

3 T FE n"-";_ - ],'|_" Ve . 3 - . ;,) ..° 4 v I . . .‘ e - T _.~‘ . .

. T(R/@"Y —3 R/ @y lim T(R/2") which is natural in T .
v -

" Pne ‘réeadily checks "that. £ has the two.properties medtioned Above’,

‘ . , n .
as for the naturality in R/2 note that a homomorphism

can

g ¢ R/ —s R/ can be decomposed into R/e" —23 Rin" Rﬁmm

L] * r * n -
for some rgR if n > m resp. into R/e" =21, rR/ix" TSR/ if

'
+

m > n , where can denotes the canonical projection. This completes
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the proof modulo the exactness of (**# and (9 2pe)
As for the exactness of (*#%)} note that by the first assumption on ¢z

. ] .. - n+i .
ker fn+i 15 a subwodule of the artinian module %ﬁ R/fpm . Hence,

satisfies the condition of Mittag-Leffler.

the system (ker f£. .)

n+i‘ié N

Since T preserves epimorphisms the system (T(ker f also

n+i»i€!N
satisfies Mittag~Leffier and thus the same holds for its image -
(im T (ker fn+i))i€-.,N - Therefore applying the vight exact functor T

to the diagram (%) and passing to the limit yields the exactness of

(¥%%). On the other hand, if £ = (a) and acR is not a zero divi-

sor, one can chose In = {an} . Then

. 0 .
ker fn+i = ker @R[an+lR) -leé R/an+1Rﬂ = Rﬂzn and the morphism
ker fn+i —3ker E -l induced by
Poei ° (R/an+13)~—ﬂ(R/an+l-lR) can be identified with

v .

R/a®R 2 >R/a™R . Since R/a"R hfiﬁ;R/anR is zero for v > n ,
the system (ker fn+i)i£IN satlisfies the condition of Mittag-Leffler

trivially and oune proceeds as in the first case.
For the exactuness of (¥»¥ it suffices to show that the transition

morphisms of the systems
e ker(fjn%i;~——§ker(TJn+i_])-—$-~———éker(fgn) = 0
. o ) _ n
Y — ker(Tpn+i)-~—4ker(lpn+i_1}——9|u ——¢ker(Tpn) T(R/oz )
induced by diagram (##) are egpimorphisms, For theé latter this is

obvious because by (¥+) it is an epimorphic image of the system

n, n+i Tqn+i.—l n, n+i-1 n, n
—~—=2 T lon 7) ———— T Joz ) e (& Jer)

whose transition morphism are epimorphic. (Note that T 1is right

exact.) For the. former this requires some diagram chasing on the

diagram (cf. (ex))
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Tt —— ker T‘}n+i ***** e ker (T] n+i-1 ) ———3 e
N N
\x - ’]rq . 3 ) \b’ *
- +9q -
e ) Tﬁmnﬂ2n+l) o n+i-] > T(@nﬂmp i l) s
;';N -rn/ = ¥
'L;‘-r
+i-ly n4d . .
T@" é&f- ) T3n+i T(Jn+i-1)
o 4 ¢
52. T Rp -‘-\ +i~1
Ty T(Rﬁﬁndl) . n+1-1. 3 T(RA,n i YD et

. . + . .
For xc¢ ker T(Jn+i_1) there 1s an element Ve T, Aan-l which 1is

mapped onto x by the epimorphism T(q ). The aim is to find an

n+i~j
?efker T(Jn+i) wh}§h is .also mapped ontg x under T(qn+i4)' Since
'?(Jn+i—l)x = 0 , the image ¥ = T(Jn+i)y .1s in the kerael of
T(p_ .. ¢ T(Rin iy ey L since
n¥i+l n+i Bn-i-i n+i Ph+iog n+i~|
P LA SN AL L S N —0

- . n+i-l nai
1s exact and T is right exact, there is an element ze& T{&% [ )

which 1s mapped by T(B ) onto ¥ . On the other hand the composite

n+i
r@ttiTl i, T@" e ALY ETEA T@” gy
‘is zero, whence the image of ¥y - T(an+i)(z) under
T(qn+iw1) : TQ&h/gn+i)—~"4 T(mnﬁﬁn+ihl) is als?“ ¥ . But
T(jn+i)(§ ™ T(an+i)(2) = ; - T(Bn+i)(2) =5 ~ 5 = 0 which shows

that y =y - T(a Y(z) is in ker T(j } . Hence

n+t n+i

‘ker.$(Jh+i)—ﬁ7%ker.T(Jﬂ;iéi) 18 surjective which -completes the proof:

EEEE R

of the exactness of @**«) Note that for the exaaness of @ﬁﬁn none
of the condltlonson R was used.,
The generalization to Grothendieck categories is straight forward

and requires only the exactuness of (¥x#) and (K#x%). The diagram

chasing for ‘(¥td can be done in any abelian category and by Roos [2@]

oo ts
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the functor %im preserves the exactness of sequences

. 1) . . . .
O——a(Al)lc N ——ﬂ(Al)le_N ~—4(Ai )ie N >0 in Grothendieck categories

provided the transition morphiswsof (Ai');r

iemn @re epimorphic. Thus

thg sequence (**¥x) is exact without any coandition on A2 . The above
result of Roos also implies that Mittag-Leffler holds in Grothendieck
categories so that the proof for the exactness of (#%x) goes through
without change.

P

It remains to show that the inclusion 62-§R——é§R

and that Ade%-ModR,X) is locally sup(f@l,W(E))—presentable.'

has a left adjoint

_ L
For § = sup(jel,w(ﬁ)) the inclusion I :AiﬁER-—QER Preserves
§~filtered colimits and in ER 6~filtered colimits commute with
6-limits. To see the former let X = Lig X'1 be a 6-filtered colimit

u
in X, of 42-adic cemplete objects XU . Then the ‘composite

. N . . i v, . 1.
lim X = lim(1i X o X lim{(iim X /o' X = lim{lim X /. lim X
_ﬁgl y _?rr_;( m X/ ) Em(lin X, feX ) = lim(lin " Lim X))

I T W
is the canonical map from miﬂ Xu to its -adic completion, whence
. y I
liq Xu is 42 -adic complete and the inclusion I :,&-§R~—¢§R pPre-~
H that

serves {-filtered colimits. (Notesthis holds for ‘any ‘ideal cz&R )

7 —
The functor §R—~§§P s Xrﬁ?éig XZ@}X has its value in z&—&R be -
: i

cause

. . g
sz(c&Rx) = 11..m X/eoX
i

. “" N - .
is, as Shown above, AZ-adic complete. Thus by.the universal property

A s
o . i .
of lim X&T X the functor L : Kp =1 ER s X'mnl%mkn X is Jleft
. - * . A - l -
adjoint to the inclusion 1T : AQ—§R ~—+§R « Since w(X) = R(ER) it
- follows from .|LU, -] . [v,1- ] s where ‘U€'§R--and' 1(U) < & , that
~ ;
AR*XR is locally 6-presentab1e. Thus the same holds for C, e
Adj (2 Mod s X) - because it is equivalent with AE-ER . In the same

way one can show that Adj(d&—ModR,ﬁ) is locally sup()fl,ﬂ(z))—
SN

generated,
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List of Svymbols

a) non alphabetical

[%,Y]
[4, 8]

A(a)

K(a)

b) alphabetical

Adj(A,B)

A -Mod

R

BialgM R(_{&_)
]

A-Bialg

BimodH

set of morphisms X —3y
category of functors A —3B

full subcategory of a category A consisting

of all ua-presentable objects

full subcategory of a category A consisting

0of all a-generated objects,

closure of a class I of morphisms

full subcategory of a category A consisting
of all objects X€A such that T(¢,X) is an
isomorphism for every oé¢€ Z , where

T : Bx A—3C 1is a given bifunctor and I

a class of morphisms in B

category of all @G-coalgebras in A for some

cotriple @

category of all T -algebras in A for some
triple T

category of left A-objects in A

category of all functors A — B admitting a
right adjoeint

full subcategory of ModR consisting of all

R-modules A such that every cyclic submodule

(a) 1is a quotient of R/Otn for some n 2 |

depending on a

category of bialgebras in A with respect to

operations M and relations R

category of bialgebras over a commutative

ring A

category of bimodules over a bialgebra H

4.10

4,13

6.4

6.18

4.4

4.9



Cc‘): [2’ E]

Cocont[é,ﬁ]

GomodC

Comp

csh. [U,x]

Da,m,R)

Desc(g')

e(a)
e (A)

e(P)

category of small categories
cardinality of a set §

category of A=coalgebras over a commutative

ring A

full subcategory of [E,E] consisting of all

I=-continuous functors

full subcategory of [H,EJ consisting of all

I-cocontinuous functors

category of all cocontinuous functors A4 — B’
category of right comodules ‘over a coalgebra C
category of compact spaces

category of all X-valued <t-cosheaves on a

site (U,t)

category of factorizationms U gi;U. ty A

of a morphism U—-f—)A

category of bialgebras over a pre-bialgebra
(A,M) whose underlying object in A is
y-presentable

category of bialgebras over a bialgebra (A,M,R)

whose underlying object in A is y-presentable

category of descent data with respect to a

fibration ¥ and a merphism o §,— 8§ in

the base

generation rank of an object A

generation rank of a category A
generation rank of a functor F

class of all functors which are domain or co-
domain of a given class of operations and

relations

subclass of all functors of F which are the

codomain of either an operation or a relation

subclass of all functors of F which are the

domain of either an operation or a relation

4.26

3.1?

3.18



Hom, (B, E)

HomcartB(E,E)

m(A)
m(A)
T {F)

P-BialgM(é)

rankE(T)

rankM(T)

fibre over an object with respect to a
fibration F

full subcategory of Ag consisting of all
uniquely % -divisible objects for a filter ¥
of right ideals an.. A

category of sections with respect to a
fibration p ¢+ E—B

full subcategory of HomB(E,E) consisting of all
cartesian closed sections with respect to a

fibration

full subcategory of ModA ¢consisting of all
s _— e
% -clerd modules

presentation rank of an object A
presentation rank of a category A
presentation rank of a functor F

category of pre-bialgebras in A with respect
to M

least cardinal & 2 w(A) such that for every
ocel and every n{(A)-presentable object
Ugd the objects T(do,U) and T(ro,U) are
§ presentable

likewise

4.19

6.25

6.4

6.4



algebras over a triple

bialgebra

-~ , pre~bialgebra

- 5, sub-bialgebra

bialgebra over a

commutative ring

bimodules over a

A-bialgebra

category

- of adjoint functors

- of bialgebras

- of pre-bialgebras
- flat

= a-filtered

= Grothendieck

= locally generated
~ locally o-generated
= locally +y-noetherian
= locally presentable

= locally a-presentable
closed class of morphisms

coalgebra
- over a commutative ring
- over a cotriple

- universal
coalgebraic operation

L-cocontinuous

comodule over a A-coalgebra
I-continuous

cosheaves

Index

4,13, 3.24 b)
3.1, 3.2, 3.3, 3.4, 3.5,3.6, 3.7, 3.8,
3.9, 3.1, 3.22, 3.23, 3.24, 3.25,3.27,
3.28
.1, 3.2 1)
.21, 3.22, 3.23
3.26, 4.4, 4.5, 4.6
4.9
6,18, 6.19, 6,20, 6.21, 6.22, 6.24,
6.25 a), b)), c)
3.1
3.1
6.23, 6.24
2.1
3.25, 4,11, 4,12, 4.16, 4,22, 6.24, 6.25 b)
2.4
2.3
3.21, 3.22, 3.23
2.4
2.3
2.10
4.3
4,10, 4,11, 4.12, 3.24 a)
4,2
3,2 1I1)
2,lo, 6.14, 6.15, 6.16, 6,17, 6.18, 6.19
6,21, 6.22, 6.24
4.8
2.10, 6.14
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decomposition of a data for

bialgebras

descent datum

- effective

donnees de recollement

a-filtered
y=flat set valued functor

flat class of morphisms

generation rank
- of a functor

- of an object
a—-generated

generator

Hopfalgebra over a

commutative ring

morphism
- pre-bialgebra

- bialgebra

operation
- algebraic

- coalgebraic

pre-bialgebra
a-presentable

presentation rank
- &8f a functor

- of an object
prop
pure

T~pure

relation

3.27, 3.28, 3.29, 4.6, 4.9

3.2 III d), 4.14, 4.15, 4.16, 4.17,
4,18

3.2 III d), 4.14

2.1

3.9, 3.10, 3.11 I

6,23, 6.24

2.'

2.2

2.2

2.3

3.26, 4.4, 4.5, 4.6

3.1

3.1

3.1

3.2 I1), 3.27, 3.28, 4.7

3.2 II), 3.27, 3.28, 4.7
3.1, 3.2 1)

2.2

2.

2.2

4.7

§ 5 Introd., 5.2, 5.3, 5.6 d)
5.4, 505’ 506 C), 6-8 a), 6-11’ 6012



sections with respect to a
fibration

- cartesian closed
sub-bialgebra

support of operations

and relations

topos

4.21, 4.22, 4.23,

h.24, 4,25, 4.26

4,11, 4,16, 4,22,

4.25,

4,26



