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EILENBERG-MOORE ALGEBRAS REVISITED

Dieter Pumplin

Recently, there has been again a growing interest in
monadi¢ and premonadic categories. The Eilenberg-Moore
algebras, together with the theorems of Beck and Paré,
give us the means to decide, whether a category or,
more precisely, a ;unctor is algebraie, i.e. monzdic.

If the functor V:A - Set, Set the category of sets,

is only premonadic, A is equivalent to a full subcategory
of the category of the Eilenberg-Moore algebras via the-
comparison functor. If, in this case, one is able to
compute the Eilenberg-Moore algebras explicitly as uni-
versal algebras with operations and equations, one has
determined the "algebr&ic component" of the mathematical
theory described by V:A-Set (cp.e.g.{71)).

Hence, it seems to-be appropriate to give a review of
the: Eilenberg-Moore construction. This review is thought
as-& guideline for anybody investigating the algebraic
character of a mathematical theory given by a functor
Vi:A-X with a left adjoint. Consequently, the starting
point for introducing the Eilenberg-Moore algebras in
paragraph 1 is an elementary exercise from algebra, more
precisely from semigroups. In paragraph 2 the universal

property of tre category of Eilenberg-Moore algebras is
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proved, not as general as in (6], but of sufficient
generality for most applications. The last section
contains the Theorem of Beck (cp. [1],(8]), a Theorem
of Tholen characterizing premonadic categories (cp. [3)])
and a sufficient condition for the comparison functor

to have a left adjoint (see (9]).

§ 1 The Category of Eilenberg-Moore Algebras

Let us begin with a paradigmatic exercise. Consider

a semigroup B, a set X and a surjective set mapping
£€:B~+X., We will try to answer the following question:
"Under which condition ts there a semigroup structure

orn X, s.th. § <is a semigroup homomorphism?"

To get an idea how to solve this, let us assume there
is su¢h a structure on X and form the kernel pair of ¢
in the category of semigroups, f£,g: A-B, A:= {(bo,b1)|

b,eB, i=0,1, and E(b°)=£(b1)} with the induced

i
semigroup structure, and f{bo,b1) i= bo ' q(bo'b1) :=Db,.
Besides, take a set mapping y: X-B, right inverse

to &, £y==idx, which picks a representative out of
every equivalence class £-1(x), x€ X, Of course,

f,9g is also a kernel pair 'in the category of sets and
we have (Lyf=¢= gidB, hence, there is a unigue set

mapping d: B-A with fd=yg and gd=idB. All in

all, we have the following diagram:
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(SC) A B X

Surprisingly, the existence of such mappings fulfilling
the equations ¢gf=1¢gg, gy= idx r fd=yg, and gd= idB

also turns out to be sufficient for the existence of a

{(unique) semigroup structure on X making § a homo-
morphism. To show this, one has no choice but to define
X X, 1= E(y(xo)y(x1)) ' xo,x1E X, as the product on X
(which, incidentally, shows the uniqueness!). With

this definition one gets for bo'b1 €B
g(bob‘i) - s(gd(bo)qd(b1)) = Eg(d(bo)d(b1))
= F,f(d(bo)d(b,t)) . E(fd(bo)fd(b1))

= £y (E(b )Y (E(D))) = £(B)E(b,) .

Hence, £ is a surjective mapping preserving products.
But this, at once, yields the missing property for the
multiplication on X , namely the associative law and

we are finished. £ is, by the way, the coequalizer

ot- f. and g in the category of semigroups. For, take
%migroup homomorphism h: B-C with hf=hg,

then: (hy)§ =hfd=hgd=h and hy is uniquely determined

by this equation, because h'gf=h, h':X-C, implies
hy=h'gy=h'! It remains to show that hy is a homo-

morphism. For xo,x1€ X one has
hy(xoxI) = hys(y(xo)y(x1)) - h(y(xo)y(X.l))

= hy(xo)hy(x1) .
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This exercise and its solution is not only typical for
semigroups, but the samé result holds for any type of
equationally defined universal algebras. The only reason
semigroups were considered here, was, because in
semigroups there is only one operation and only one
equation, the associative law, whicn have to be verified.
Thus, the situation described by the diagram (SC) and
the equations between the mappings seems to be typical
for algebraic structures and, therefore, a special name
is introduced for it. Even though our examples are
categories of algebras over sets, we introduce this

new notion for an arbitrary functor.

(1.1) DEFINITION. If V:A-X 1is a {(covariant) functor,

a diagram
V(f) £
{SC}) V(A) v(B) X
vig) Y
d

in X , is called a split V-coequalizer, iff the following

aequations hold:

vi{f)d = y¢ , V(g)d = V(B) .

If V=Xis the identity functor, we simply speak of a

split coequalizer in X,

Just ac in our exercise, it can also be shown in the
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general situation that, in a split V-coequalizer, ¢ 1is a

coequalizer of V(f) and V{(g) in X .

Now, if this notion 1is really important for algebraic
structures, it should be possible to represent any
- equationally defined (universal) algebra as a split
V=-coequalizer in a canonical way, i.e. find for such
an algebra Ao morphisms f,g and mappings y,d , such
that the set V(Ao) . underlying Ao , appears as the X
in such a diagram (SC). This is, indeed, true and we
will, again, as a typical example, consider only the
case of semigroups.

Let V: SemiGip =S¢t be the usual forgetful functor
from the category SemiGap of semigroups to the category
Set of sets, assigning the underlying set to any semigroup
and the underlying set mapping to any homomorphism.

The free semigroup F(X) generated by a set X, also
induces a functor F: Set-=SemiGrp, the left adjoint
of V, uniquely determined (up to'i_sombrphism) by the

universal property

X —0 X vrx))

]
(om 1) 1 31V (o)
£ v
~V(s)

that to any set mapping f: X-V{(S), S¢& SemiGrp, there

is exactly one homomorphism e : F(X)=8S with
Vie)n(X) = f , r~{X) denoting the canonical embedding.
There is also, for every semigroup S , the canonical
representation of S as a quotient of F(V(S)) ,

c(8) : F(V(S)) =S, which is also characterized by a
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universal property:

Fv(s)) —=8) s
]
(UN II) 3! F(f), /
'
' ®
F(Y)
To any morphism ¢ there is a unique mapping f with
vw=¢c(S)F(f) .
Actually, n: Sedt =-VeF, ¢ : FeV~SemiGrp are natural
transformations (Here and in the sequel, the identity
functor on a category X is denoted by X , tool},

fulfilling the following equations:
(ADJ) (Vee)(neV) =V , (eeF)(Fen) = F .

It is well-known that the eguations (ADJ) are equivalent
to (UN I)as well as to (UN II) and this situation is

not particular for semigroups, but, if for any two
functors ﬁ :A=-X , F:X-A , these three equivalent
conditions are fulfilled, one says that F is left adjoint
to V or V pright adjoint to F or, that (V,F,e,n} 1is
an adjunctton. Now, returning to our problem at hand,
whether any semigroup can be danonically represented

by a split V-coequalizer, one gets the

{(1.2) PROPOSITION. For any semigroup S the diagranm

neVeFoV (S}

VoFoeVoe (S) Veoe {S)
VeFoVoFoV(S) — VoFoV(S) o—n0— "~ VﬂS)

VegsFaV(8) neV(S)

18 a split V-r czualizer.

- 102 -




Proof: The proof is routine ahd the easiest way to do
it is by using the eguations (ADJ). The first of these
equations yields ¢fy=X in (1.1) for ¢ :=Vee(S) ,
Yy:=neV(S) . Putting f := FoeVeg(S) , g := ¢2FeV(S) ,
d:= noVeFeV(S) , one gets the first egquation in (1.1)

by applying V to the trivial identity
goe = e(FoVee) = g(eoFoV) .,

The third equation in (1.1) results from
(VeFoVoe) (noVeFeV) = ((VeFoV)og) ({neV)oFeV)
= neVeeg = no(Voeg) = (noeV) (Vee) ,

while the last equation in (1.1} is just the first

equation in (ADJ) for the object FoV(S).

Now, this representation of the semigroup S by a
split V-equalizer is not only canonical but gives rise
to an interesting observation. Writing T := VoF ,
us=VegeF, as abbreviationg and X:=V(S) , §:=Vee(S),

the diagram takes the form

neT(X)
(€-ALG) 72(x) L1 T(X) ——
L (X) n (X)

and the following eguations hold: ET(§) = gu(X) ,
En(X) =X , u(X)neT(X)=T(X) , T()neT(X)=n(X)5.

And it is obvious from the above that these conditions
induce a semigroup structure on X, s.th. £ becomes

a homomorphism. Buﬁ (t-ALG) is not a split V-coegualizer,

provided we forget for the moment where T comes from.
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T together with u and n is an example of a so-

called monad:

(1.3) DEFINITION. t= (T,u,n) is called a monad

{cp. [3), where the name triple is used instead),

iff T:X-X , X a category, is a (covariant) endofunctor
and u: Tz-T ; ntX-=T ére natural transformations,

s.th. the following equations hold:

u{neT)

p(Ten) =17 ’
{MON)

u(Tou) p(peT) .

It is clear from the above that any adjunction induces
a monad. Eilenberg and ‘Moore in (3] and Kleisli in [4)]
proved the converse, i.e. any monad is induced by an
adjunction. The interesting thing from our point of view
is that Eilenberg and Moore used exactly diagrams {t-ALG)
for their construction.

On the other hand, it has been already pointed out
tha® any equationally defined, universal algebra can be
rgisplented as a diagram as in (1.2) and, hence, also
as a diagram (t-ALG). It will turn out that this is no
coincidence, because the construction of Eilenberg and
Moore in {3] is actually an excellent method for
representing categqgories of universal algebras. We will

now describe the Eilenberg-Moore construction.
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(1.4) DEFINITION. Let t= (T,u,n), T:X-=X, be a monad.
A t-algebra is a diagram of the form (t-ALG) together

with the equations
ET{(E)} = gu(X) , &n(X) = X ,

for X€OBX . ObX for a category X denotes the class
of objects; objects will invariably denoted by capital
letters, thus sometimes one simply writes X&€ X instead

of X€O0bX.

The other two eguations we had in our exarple are

automatically fulfilled. Often, a t-algebra will be
simply denoted by £: T(X)~X. A morphism from the
t-algebra 60 :T(Xo)-xo to the t-algebra 51: 'I‘(X1)--x1

is a morphism f: xo~x1 , S.th.

£
[a)

(X)) ——S——e X

T (£) l £
€1

T(X)) ———X,

commutes. For f.‘ne saxe of brevity this morphiismwill be denoted
by ¥ in the following; T: (T(X) °® X)) ~ (T(x) %) x).
The t-algebras with these morphisms form the category xt

of the Eilenberg-Moore algebras of t . There is a canonical
“forgetful” functor vt xBax . mapping a t-algebra

E:T(X) X to X and a morphism f of t-algebras to the

underlying morphism f in X . Obviously V® is faithful

and one gets the
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(1.5) THEOREM OF EILENBERG-MOORE (cp. [3]). For any

monad t on X V® has a left adjoint Ft: x-x®
The untt of this adjunction 18 n: X-VtoFt and the
eounit €v: Frovt . x® 15 given by Vt(et(T(X) 5 X))} =

Thts adjunetion tnduces the monad t .

Proof: It follows immediately from (1.3) that
u (X} :Tz(x) - T(X) 1is a t=-algebra for any object XE€X.
One defines FU(X) :=T2(x) ¥¥L 7(X) . we prove that

Ft is a left adjoint by veryfying (UNI):

x —2) Lyt et ) = T

vE @) '

vt ('r(x ) x y=X'

If a ¢ exists making this commutative, then it is
induced by a morphism o : T(X)~- X', which implies
ori{X)=£, ou(X)=¢'T(¢), hence o=¢'T(f), showing
the uniqueness of ¢ , because v"" is faithful. Now,
defining ¢ := £'T(f), a straightforward computation

proves that ¢ induces a t-algebra morphism o and
VE@)n(X) = en(X) = £'T(H)n(X) = £'n(X")E = £ .

Hence, Ft is a left adjoint of vt and, as in every
adjunction, the counit et is uniquely determined by
the equation vE (BT (x) §x) Jn(X)=X. Luckily,

£: T(X)=Xx induces a morphism

& Ft"V (T(X) > X) - (T{X).‘:. X) and gn{X)=X, thus H

is the counit.
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If t= (T,u,n), then VtoctoPt= p follows from the

definition of et » which proves the last assertion.

§ 2 The Universal Property of the Bilenberg?Moore Algebras

In this paragraph it will be shown that the Eilenberg-
Moore construction vt: Xt x for a monad t is uniquely
- up to isomorphisms- characterized by a universal
property (cp. (3], 2.2, [5], [6]), which proves very
useful in applications.

Putting aside our (hopefully existing!) set-theoretic
scruples we Qill in the sequel define the category of
monads and of adjunctions over a fixed category. The
reason for this is not so much mathematical, but in this
way the results can be formulated more elegantly. Besides,

this (dubious) constructions have no influence whatsoever

on the proofs and results.

(2.1) DEFINITION (cp. [(5),(6]). Let X be a fixed category
in the following. We define the category #Mon(X) by
taking as objects the monads over X and by defining

the morphisms as follows: If (T,u,n), (T’,u’',n’} are
monads over X , a morphism a: (T,u,n) = (T',u’',n') |is

given by a natural transformation a:T'-T fulfilling
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the equations

(i) an' = n ,

- (11) au' yl{aea) = y({aeT)(T'ea) .

If B8: (T',u',n") = (T",u",n") 1is a second morphism,

we have 8:T" -T', af: T"-T and
(aB)n™ = a{(Bn"} = an' =n ,
(aB)u" = au'(BeB) = placa) (BeR) = pu{(aB)o{ag)) .

Hence, one defines

——

_B'; Hl aB ,

which obviously yields a category Mon(X), the category

of monads over X . .

(2.2) DEFINITION. The adjunctions (V,F,e,n), V: A=X
are taken as the objects of the category Ad(X) of
adjunctions over X . A morphism in this category

S: (V,F,e,n) =(V',F',e',n'} is just a functor S:A-A'

with VieS=V,

Composition of the morphisms S is just the usual
composition "+" of functors. Note that S only forms
a commutative triangle with V,V' not with the left

adjoints.
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(2.3) LEMMA. let (V,F,c,n),(V',F',c',n') € Ad(X).

Then the following statements hold:

. (a) For any morphism S (V,F,¢,n) - (V',F',e',n"),

8:A=A', there is a unique natural transformation

as: F'+8eF with (V'sa)n'=n.

(b) If S (V,F,e,n) = (V',F',e',n') 13 a morphism in
Ad(X) and a: F'=S5°F a natural transformation,

then the following equations are equivalent:
(i) (V'ea)n' = n ,

" {ii} o = (e'eSeF) (F'en) ,
(1ii) V'eeg'sS = (Voe) (V'oaoV) ,

{(iv) ¢€'eS = (Soce}{aoV) .

Proof: (a): a 1is uniquely defined pointwise by the

following diagram (cp. (UNI)):

x n’ (x) vl,Fl (x)
'V (a (X))
n (X) ¢

VeF(X) = V'eSeF(X) .

Ittfis elementary to verify that this yields a natural
transformation. The asserted equation is fulfilled by
definition.

(b): (i)+=>{ii): Starting with (ii) one has:
(V'o[{c'eSeF)(F'en)jIn' = (V'og'oSeF) (V'eF'on)n’

= (V'ee'oSoF) (V'sF'an) (n'eX)
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(V'ec'o59F) (n'en)

= (V'ee'eSeF) ((n'X)e ((VeF)n))

(V'eg'oSoF) (n'eVeF)n
= (V'oe'eSoF)(n'eV'eSeF)n = n.

One realizes that this equation holds without any
reference to o or to (i) resp. (ii). Hence, continuing

the chain of eguations by (i) yields
(V'e[(e'oSeF) (F'en)])n' = (V'ea)n' .

This implies (ii), because of the universal property
of n'.
(1) = (iii):

{(Voe) (V'eaoV) = {Veg)(V'eec'oSeFoV) (V'eF'onoV) ;

now
{See)(e'oSeFeV) = c'o{Soe} = (c'08)oce
2 [(c'eS) (F'eV'e8) ]o[Ac] = (e'eS) (F'oV'oSoe) ,
which implies
(Voe) (V'oaoV) = (V'eg'e8) (V'oF'oV'oSac) (V'eF'onoV)
= (V'ec'eS) .
{(iii) = (ii):
(V'e((e'oSeFXF'en)))n' = (V'eg'oSoF)(V'eF'en)n’
But we have
(aeVeF) (F'on) = aen = ({SoeF)a)o{nX)

= {(SoFen)a .
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Hence, we get, by inserting (iii) into the right

side of the first eguation:
(V'e((e'oSoF) (F'en))]In' = (VocoF) (V'oaoVeF) (V'eF'on)n®
= (VogoF) (V'eSeFon) (V'ea)n'
= (V'ea)n' ,

i.e, (ii), because of the universal property of n' .

(iii)em» (iv) is obvious.

(2.4) DEFINITION. The functor Mon: Ad(X) -Mon(X) is

defined by:
Mon(V,F,e,n) := (VoF,VeeoF,n) ,

for (V,F,e,n) € Ad(X), and, for a morphism
S: (V,F,e,n) = (V',F',e',n') in Ad(X) , by:

Mon(S) := V'oq

with the unique a: F'-=Se¢F in (2.3}.

One has: V' ea=V'oeF' ~ V'eSoF, V'eSeF=VoP, and the
defining equations (i), (ii) in (2.1) are fulfilled,
because of (2.3),(b),(i), and the following:

V'ea = (V'oc'oSeF) (V'eF'on) {ep. (2.3),(b),(1i))
= (V'eSogoF)} (V'oaosVoF) (V'eF'on) (cp. (2.3},(b),{iv))}

3 (VoeoF) (V'eaoVeF) (V'oF'eV'og) (V'eF'on')
(cp. (2.3),(b),(1))}.

Multiplying this equation from the right with V'ec'eF',
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one gets

(V'ea) (V'eg'sF') = (VocoF) (V'eaoVePF) (V'eF'eV'eq) ,
i.e. (ii) in (2.1). Hence,

Mon{(S) : Mon(V,F,e,n) -~ Mon{(V',F',e',n"')

is a morphism in Mon({X).
(2.5} LEMMA. Mon: Ad(X) = Mon(X) <8 a functor.

Proof: Let S: (V,F,e,n) ~ (V',F',e',n"),

S': (V',F',e',n'") = (V" ,F",e",n") be two morphisms

in Ad(X). Let a:F'-=Se¢F be induced by S and

a' s F" - S'eF' be induced by S§' via {(2.3).

Then (S'ea)a':F" = (S§'.S)°F is a natural transformation,

and
(V"o [({S'sa)a'])n™ = (V" S'ea) (V"oa')n"
= (V'ea)n' = n ,

because of (2.3),(b),(1).

Hence, in view of (2.3),(a), (S'ea)a' is the natural

transformation induced by S§'°S, i.e.

Mon({S'oS) = V"o ((S'ea)a’')

= TV"eS ea) (Voa') = (Viea)(V"sal')

= (VWeq'? (V'ea) = Mon(S') Mon(S) .
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(2.6) DEFINITION. If t= (T,u,n) € Mon(X), denote the

adjunction given by the cai:egory Xt of Eilenberg-Moore

algebras and the forgetful functor Vt: x® - X with

left adjoint FU: X-X% by

t .t ¢t

Eil(t) := (VE,F%,e%,0%) .

(2.7) PROPOSITION (cp. [5],[(6]). Eil induces a full

embedding
Eil : Mon(X) ~ Ad (X)

with left adjoint Mon : Ad(X) -Mcen(X) , ©Z.e. represents

Mon(X) as a full, reflective subcategory of Ad(X).

Proof: In order to show that Eil induces a functor, we

prove that Eil(t), t€ ObMon(X) , satisfies the universal

property (UN II)

Mon(Eil({t)) ———== ¢
[ Y

on (5) | /

Mon(V,F,c,n) ’
1.e. one shows the unique existence of a morphism
S’-: {V,F,e,n) =Eil(t) with Mon(S)=a for a given o

in Mon(X) .

At first the uniqueness of S is proved. Assume you

have such an S, i.e. a functor
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with vbes=V, Mon(s)=a, a: T~ VeF, then

Mon (S} -Vt°us=;. where a«.: Ft-seF is the natural

S
transformation induced by § (cp. (2.3),(a)). Now,
by (2.3},(b),(1ii), we have

(%) vEeebtes = (Voc)(Vtoaso‘V) = (Voe) (aoV) .

For A€O0ObA, Vt(S(A)) =V(A) implies that S(A) must
be of the form

a

S{a) = (T(V(a)) V(a))

with a suitable €p Remembering now the value of

eS(Tx) 8%, (#) yields
Vit (S A))) = g, = V(e@)a(V(A) 1 T(VA) ~VA) .
Next, the existence éf S is shown. It is obvious now,
how one has to define S : For AE€ OBA put
S{A) := (V(e(A)) a(V{(A) : T(V(A)) =V(A)) .

$(A) € Ob x* , because, a being a morphism in Mon(X) ,

we get from (2.1),(1),

(Vo) (aoV) (nTeV) = (Vee) ((anS)oV) = (Vee) (noV) = v,

(Voe) {{au®)ev) (cp. (2.1), (ii

(Voe) (aoV) (u®ov)

= (Voe) (peV) (aoaoV) = {Vog) (VeeeFoV) (aoasV)
On the other hand,

(Vee)} (aeV) (TeVog) (ToaoV)

= (Vog) {aoVee) (ToaoV)
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(Vee) [ ((VeF)a) o ((Vee) (VeFoV)) [ (ToaoV)

(Voe) (VoFeVoe) (aoVoFoV) (ToaoV)

(Voe) (VoFoVoe) (acasV) .
Hence,

(Voe) (aoV) (u¥oV) = (Voe) (aoV)Te[ (Voe) (aoV) ] ,
because

e(eoFoV) = coc = (c(FoV))o(Ae) = e(FoVoe)

holds.

If u: A-B is a morphism in A , we have the following

commutative diagram

T(V(A)) TeViu) T(V(B))
{aoV) (A) l l(GOV)(B)
VoFov(a) —YoEeVM} | yorov(B)
Vee (A) Voe (B)
v (a) LATY, - V(3)

proving U: S(A) -S(B) to be a morphism, i.e. we extend
§ to morphisms by

S(u) :=u .
It is routine to check that this definition makes S a
functor.

Obviously V==Vtos holds and, because of {2.3), (b}, (ii),

a. = { CtoSoF) (Fton)

S
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for the natural transformation agt Ft-SoF induced
by § (ecp. (2.3)). Thus
Vtou = (VtoetoSoP) (Vthton)

S

and

vPeebes = (Voe) (aoV) ,

because of the definition ¢of S , and, hence,

Vtous = (VoeoF) (aoVeF) (Ton)

(VogoF) (aen) = (VeeoF} {{(VeF)a)e (nX))

{VogoF) (VoFon)a = a ,

which implies

Mon(S) = Vtoas = q .

In the uniqueness proof for § we have apparently
forgotten the morphisms w:A- B, Dbecause we have proved
only that the values S(A) , A€ ObA , are uniquely determined.
But ,because of vies=v ,s 1is uniquely determined on the
morphisms u, too. Let S' be a second functor fulfilling
§*: (V,F,e,n) ~Eil(t) and Mon(S')=a. Then, for a
morphism u: A-B, we have S(A)=S'(A), S(B)=S8'(B),
because of the first part of the proof of {(2.7). But
then V(u)=v (s(u))=v®(s'(u)) implying S(u)=s'(u),
because Vt is faithful.

Summing up, we get that Eil induces a right-adjoint
to Mon: Ad(X) - Mon(X) ., As the counit is an identity,

therefore, in particular, an isomorphism,
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Eil ¢ Mon(X) - Ad(X) 4is full and faithful. Eil is also
injective on objects, for, let E1il(t)=Eil(t'),
t,t'€ ObMon(X) , then

t ottt U A L
(V 'F ,E 'n ) = (vt 'Ft 'Et Int) ’

which implies t=t' (according to the construction

of Eil(t) !). Hence, Eil is a full embedding.

(2.8) COROLLARY. The unit of the adjunction in (2.7),
Kp : F -EileMon(F) for a F= (V,F,e,n) €O0bAd(X) ,

V:A=+X, is given by

{(Voe)(A)
Vi(a))

KF(A) = (VoFoV(A)

for AEObA. K_ can obviously be canonically and

xMon(]F) .

r
uniquely extended to the whole of A, KIF : A=

The untiversal property of the unit Kg can alternatively

be described by the following diagram:

If ts:=Mon(F), t € ObMon(X) arbitrary, then, fcr
t t
any funetor L: A=X © pith Vv PeL=V, there is a unique

t
functor L':xS=xfo with V %L'=V® and L=L'sKp.
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Proof: As in any adjunction with known counit, the unit,
which we call K]E" is uniquely determined as the morphism
making the following diagram commutative for every

F € Ob Ad{X) :
MonecEilsMon(F) ——— Mon (F)
Mon(xm)
Mon ( F)

Looking at the proof of (2.7), one sees that, for
A€EObA,

Vog (A)

Kn? (A) = (VeFoV(A) V(a)) .,

because in the present situation we have a=Mon(TF) ,
a=VoF : VoF = VoF ,
The rest of the assertion is just a rewriting of the

universal property.
An interesting and useful result is the following

(2.9) PROPOSITION. Let F = (V,F,e,n) EObAd(X) , V: A=X

and put t:=Mon(F). If S: F =-EileMon(F) <s a

morphiem in Ad(X) with SeF=F%, then

SBKP.

This means that the comparison funetor K., is, among

i
all functors S making the diagram in (2.2) commutative,
uniquely determined by the property that it also commutes

with the left 22joints,
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Proof: We have, because of ntc n,

ag = SoF = F©

-according to (2.3),(a). Hence

(#) - €%o8 = Soe

holds, because of (2.3),(b),(iv). As vtos=v and

S(A) € Xt, A€ ObA, S(A) must be of the form

5n
S{(a) = (T(V(A)) —— V(A))

with a certain £a and T=VeF., (#) now yields (cp. the

definition of e dx)y in (1.5)):
S(sa)) =T, = s(ela))

and V%eS(c(a)) =V(c(a)), i.e. S(c(A))=V{{AIT, which
implies EA=V(e (A)) , resp. Ep=Vee(d) or S(A)=K  (A).
The equality §S= Kp on the morphisms follows as in the

proof of (2.7) from the faithfulness of V.

(2.10) DEFINITION. If ¥ = (V,F,c,n) EQbAd(X) r Vi A=X,
th.n, ¥ is called monadie, iff K]F is an isomorphism,
wenkly monadic, iff K]E‘ is an eguivalence, premonadie,
ifﬁ. Kp is full and faithful (cp. {ol).

K_ 1is called the (canonical) comparison functor

¥
between A and the Eilenberg-Moore tategory x* .

Often, one simply calls A monadic, resp. weakly or
premonadic instead of V ., But this can lead to serious

misunderstandings, if it is not clear beyond any doubt,
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which functor V is meant., For instance, the usual
forgetful functor V: Ban1-5¢t, Ban1 the category
of {real or complex) Banach spaces and linear contractions,
" is not premonadic, while the unit ball functor
O: Ban, ~Set, O(B):= {x] nxn<1}, for BEe Ban, ,
is premonadic. There exists an analogous example for
the category Top of topological spaces.

dowever, it will in general not lead o misunderstandings,
if one calls V: A« X monadie (resp. weakly monadie,

premonadic) instead of (V,F,e¢,n) . This is widely done

in the literature and we will also do so occasionally.

§ 3 Monadic Categories

In §1 we have shown that, for any semigroup S , the
diagram (t-ALG) obtained by re-writing the result of (1.2}
is a t-algebra for the monad t induced by the usual '
adjunction of semigroups, V: SemiGap- Sei, F: Sel~ SemiGnrp.
In the light of (2.8) (t-ALG), for Se€ SemiGrp, is just
KEJS) , i.e. our paradigmatic exercise on semigroups
would have led us also, necessarily, to the comparison

functor K_: Sem{an-Sezt. It is straightforward to

¥
verify that Ky is an isomorphism and a completely

analogous proof leads to the same result for any category
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of equationally defined universal algebras. The reason,
why we do not give these proofs here,is, because it is
by far easier to give them with the Theorem of Beck (3.2).
Thus, all categories of equationally defined universal
algebras are monadic (with respect to their usual
forgetful functors!) and the Eilenberg-Moore construction
appears as an elegant way to describe the notion of
"algebraic" theory or category. But actually it is of
far greater importance. The Theorem of Beck (cp. [1],({81),
which will be proved in this paragraph, gives a handy
criterion to recognize a category as monadic, and its
range goes beyond the scope of universal algebras.
. Thus, it is possible by this theorem, to classify other
categories as algebraic as, for instance, the category
Comp of compact Hausdorff spaces with the usual forgetful
functor. As interesting, perhaps even more interesting,
is another theorem, proved by Tholen in {9], giving
several necessary and sufficient conditions for a functor
to be premonadic. "Premonadic" means, in most interesting
cases, that the category is equivalent to a full subcategory
of its Eilenberg-Moore category (cp. [9),(10.6)). But,
because of the universal property (2.8), the Eilenberg-
| Moore category can be considered as the "algebraie null®
or the “algebra<c ccmporent” of the theory described by
the category in question. Thus, if one succeeds to give
an explicit description of the Eilenberg-Moore algebra

for a concreta -~remonadic functor V: A= Set, one knows
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the algebraic structure of the mathematical theory
described by V (cp. e.g. (7)).

For formulating the Theorem of Beck we need the following

- notion:

(3.1) DEFINITION. A functor V: A« X is said to create
uniquely split V-coequalizers, iff, for any split
V-coequalizer as in (1.1), the following conditions are

fulfilled:

{a) There is a unique morphism c¢:B-C in A with

vVic) =¢.

(b} ¢=coeqg(f,g), i.e. ¢ is a coequalizer of f and g

in A.

(3.2) THEQREM OF BECK (cp. {11,(8)}). Let (V F,e,n) be

an adjunction, V: A= X, then the following are equivalent:
(1) (V,F,e,n) s monadie.

(iL) V creates untquely split V-coequalizers.

Proof: (i)=» (ii): We may assume (V,F,e,n) = (Vt,Ft,at,nt)
for a monad t= (T,u,n) . Take a split Vt-coequalizer as

in (1.1), then one gets the following diagram:

- 122 -




T(a)/

- 27 -

) T2 (£) T2 (§) 5
T (A) = 72 (8) 7 (X)

72 (g)
U(A) T(b) u(B) T(h)/ /u(X}
T(f) T(§)

T(A) T(B) - 'r(x)
T(g) um
I\H""-‘
R . Wl T (o)
|
£ R 4 d
A B S X a

where V (T(A) - A) = A, Vt(?) =f, Vt(E) =g, etc,
First, we have to lift £ uniquely. Now, obviously,

T(t) is a split coequalizer of T(f) and T(g) in X

and ¢bT(f) =¢bT(g), i.e. there is a unique h: T(X)~-X

with hT(t)=¢b. Besides, h: T(X)- X 1is an Eilenberg-
Moore algebra:

hu (X)T2(£) = hT(£)u(B) = gbu(B) = gbT(b)

= hT(£)T(b) = hT(Eb) = hT(KT(E)) = hT(R)T3(£),
hence, hu(X) = hT(h) , ‘1‘2(&) having a right inverse.
Also, one has

hn{X}¢ = hT(£)n(B) = £bn(B) = ¢,

i.e. hn(X)=X and our assertion is proved. Besides,
T: (T8 28) - (T(x) BX) is a morphism in X® with
vt () = £. This morphism is uniquely determined by
vt(f)=¢, because, if there is a U: (T(B) 2B)~ (T(C)

with vS(Q)=¢, then C=X, T(C)=T(X) and
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cT{t) = tb=hT(£), which yields c¢=h.
Now, let t: (T(B) N B) - (T(D) 3 D) be in xt with
tf=tg. fThen, one gets tf=tg implying the unique

" existence of a u: X-D with t=uf. This leads to
dT(u)T(g) = dT(ut) = 4T(t) = tb = u¢b = uhT(c)

and dT(w =uh, i.e. W: (T2 - (> %D) is a
morphism with €=ugf and u is obviously determined
uniquely by T , because T is an epimorphism in X% .

Hence, {(ii) is proved.

(ii)=>(i): To prove this implication, we will define
a functor L: XT=A + inverse to the comparison functor
Kp @ A-x%. We know already (actually, in (1.2) we only
showed it for semigroug;s, but the proof carries over

verbatim!), that, for any A€ ObA ,

VocoFoV(A) Vee (A)

VoFoVeFoV(A) * VoFoV(A) V{(A)
VoFoVeg (A) neV(A)
neVoFoV(A)

is a split V-coequalizer. Hence, there exists a unique
nl#?hism Syt FeV(A) ~A with V{cA) = V(e (A)) and,
besides, ¢y = coeq(coFeV(A) , FoVoe (A)) . Thus c, = c(A)
is a coequalizer and, in particular, an epimorphism,
hence V is faithful.

Now, put t:=Mon(F) , F := (V,F,e,n) and take any
Eilenberg-Moore algebra &: T(X)~X. & is a split

V-coequalizer, because we have
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2 p{X) = V{goF (X)) £
T (X) T(X) X ,
T(E) = VI(F(g)) n (X)
neq (X)

with €¢n({X})=X, Eu(X)=¢T(f). Besides, we have
V{eoF(X))noT{X) = u(X)neT(X) =T(X) and
V(F{£))neT(X) =n{X)E, because n is a natural
transformation.

Hence, (ii) implies the unique existence of a

: P(X)~L in A with V(c£)=£ and

Cg X

c€=coeq(e°F(X),F(£)) . Therefore, for ¢: T(X)=-X

in Xt‘, one defines
L T(X)*EX) t= L
( : e
Now,

n°V(L )
V(L ) —=e VeFeV(Ly)

\ lv(c )
: V(Ly)

commutes, which implies

cE = e{Lx) = e(L(T(X)jEX)).

If u: (T(x)ix)-— (T(X") ll:—.-}(') is a morphism in x* ,

i.e. the diagram

VeF (u)

V°F°V(Lx) V°F°V(LY)
(l') VOC(LX) VoE(LY)
u
V(LX) - V(LY)
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commutes, then
C(LY)F(u)th) = e(LY)F(u)coF(x)

~follows, because V is faithful, and the above equation
holds for the V-images of both sides.

Now, c(Lx) =c, = coeq(F(g),esF(X)) , hence there is

£
& unique

w Lx-ol.Y
with

we(l’.-x) = e(LY)F(u) .
This yields

V(W) Vee (Ly) = uVoe(Ly)

resp.

Viw) = u .

Define now L(u) :;s=w; w is obviously uniquely determined

by u resp. u. This extends L to a functor
L:xt-a,
Taking now, for A€ ObA , the Eilenberg-Moore algebra

RN
LR,

v A
KF(A)atwnNM)-JiLllva>.

one concludes

Sy(e(a)) e (A) : FeV(A) - A ,

L(Kp (A)) = A.
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If v:A-B 1is a morphism in A, we have
Keg (v) t Kp (A) -Kgp (B) , Kp {(v}=V(v), i.e. we have
to replace u in diagram () by V(v) . As V 1is faithful,

V(v)=V(w) implies v=w and we get

LKg (V)) = v,

Conversely, for (T(X) L4 X) € Ob x® , oOne gets
& =
Kg (L(T(X) * X)) K]F (Lx)

Vee (Lx)

= V°F°V(LX) V(Ly}

(T(x) %) .

Let u: (T(X)$X) - (T(Y)EY) be a morphism in X%,

i.e. a commutative diagram

VeFoV(Ly) = T(X) — e 1 (¥) = VeFoV (L)
Vve(Lx) g lc lVoe(LY)
V(L,) =X Y . y=vV(L,)

X Y

One has L(U)=w with the unique w:Ly =L, with

Viw)=u and we (Lx) = e(LY)F(u) .

Now, KF {(w) 1is given by the diagram
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N VoFoV(w) .

VeF V(Lx) VeoP V(LY)
V°€(LX) V°E(LY)
Viw)=u

V(Lx) V(LY) .

i.e. the same diagram as above. Hence,
RF»L(E) =u

holds, i.e.

KpoL = x* .

Thus (i) has been proved.

Paré proved in [8) another version of Beck's Theorem
by showing that (V,F,e,n) is monadic, iff V creates
uniquely absolute coequalizers, where a coequalizer is
called absolute, iff it is preserved as a colimit by
any functor, -

Beck's Theorem is very suitable for proving concrete
functors to be monadic, e.g. the usual forgetful functor
from any category of equationally defined universal
algebras to Set . We demonstrate this byvrestricting'

ourselves to the paradigmatic case of non-abelian groups.

(3.3) PROPOSITION. V: Gap- Set , the usual forgetful

functor from the category of non-abelian groups to

sets ts monadie.
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Proof: Let

V(£) £
V{A) T/ V(B) —=*X
vig) Y
d

be a split V-coequalizer, ty=X, ¢gV(f)=(Vig),
V(f)d=yE, V(g)d=V(B). For x1,kzex define
(#)  xyxy 3= By (x)y (%)) .
For the sake of simplicity, we will write f resp. g
instead of V(f) resp. V{(g) . For bo,b1eB we have
E(b°b1) = &(g(d(bo))g(d(b1))) = ¢£g{d(b_)d(b,))

= ¢£(d(b)d(b,)) | = §(fd(b )fd(b,})

= E(y(e(b))y(E(by))) = £(b)E(D,)

i.e. £ is surjective and preserves the product.
Hence, the product (#) in X is associative and X with

this product is a semigroup.

If ep is the identity element of B , put

e = E(eB) .
, f,;j:g

B eavery x€ X this yields

ex = E(eB)E(y(x)) = e(eBy(x)) = E(y(x)) = x

and, likewise, xe=X.

Thus, e is the identiy element of X and X is a

monoid.

For x€ X, define
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1

"1 e g ltyxn)”!

).

then
-1 -1 -1
Xx°*x ‘= xE({y(x)) ) = E({yix)}&ly(x) ') =
= tlyy0T) = Eley) = e
likewise

-1
X ‘X = e.

Hence, X is a group and § a group homomorphism.

As the construétion is obviously unique, the lifting
of £ to a group homomorphism is unigue. Besides, § is
a coequalizer of £ and g in Gap . Take a group
homomorphism ¢ : B-C with og=of. As £ is a
coequalizer of V(f) and V(g) in Setl, there is a set
mapping h: X-C with ¢=hf. Now £, as a surjective
group homomorphism, is V-final, hence, h is a group
homomorphism. Thus V creates uniguely split V-coequalizers

which implies V to be monadic because of (3.2).
(3.4) REMARK. Mutatis mutandis the proof of (3.3) carries

over to any category of equationally defined universal

algebras over Se¢t : These categories are all monadic!
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(3.5) PROPOSITION (cp. (8]). Let Comp denote the category

of eompact Hausdorff spaces and V: Comp= Set the usual

forgetful functor, Themn V <& monadiec.

Proof: Let
V(f) 1
V{Y) V(Z) —X
vig) 4
d

be a split V-coegualizer, gy=X, &V(f)=¢V{g), V(f)d=y¢
V(gldé=V(Z) . Again, we write in the following simply
f for V{(f) , g for Vi(g) . For a subset AC2Z of a

topological space, let A denote the closure of A in Z .

For ACX define

A= £(y(A)) .

Then, for A,BCX,

R=(A) = £(YAD) = E(y(E(y(a))))

E(fd(y(A))) = ££(d{y(A))) = £gl(d(y(A)))

£(gd(y(A})) = ¢(y(A)Y) = c(y(A)) = A

AUB = g(y(AuB)}) = ¢(y(A) uy(B))

= g(y(A)u y(B)) = g(y(A))ug(y(BY) = AuB

Hence, A+A is a Kuratowski-closure-operator on X,
making it a topological space. £ becomes a continuous

mapping, because foxr BCZ:
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£(B) = ¢(y(g(B))) = g(£d(B)) = ¢£(d(BY)

= ¢g(d(B)) = ¢(gd(B)) = £(B) .

§ 1is even a closed mapping, for, take BC Z with

B=B, then
E(B) = ¢{B) = ¢ (B}

is closed.

As a surjective mapping from a compact space has a
guasicompact range, X is gquasicompact. This lifting
of £ is obviously unique, if we assume for the moment

that X is even Hausdorff. Because, if £ is continuous,

then, for every BC Z, we have necessarily ¢(B)=7%(B).

Hence, for AC X, because of A= ¢g£(y{(Ad)),

E(Y(A)) =2

holds.

It remains to show X to be Hausdorfi. Take X 1%, €EX,
xot x1 . {y(xi)} is closed in Z , Z being Hausdorff,
therefore {x1}= 5({Y(xi)}) is closed, i=0,1 and
{(x 10 (x,}=9. .

This implies that 5‘1({::1}) is closed in Z and
5-1({::0}) n 5-1({x1}) =@ . Hence, there are open 0,CZ,
i=0,1, 0,n0,=¢ and ;'1({xi})coi. Thus,

C(0,) :=2)\0, , i=0,1, is closed and C(O )ucC(0,) =2,
i.e. €(C(Oi)} , 1i=0,1, 1is closed in X and

£(C(0°)) UE(C(01)).=X.
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We have x1¢ §(C(0,)), because, if x; € 8(C(0,)),

then there is a z eC(Oi) with X, = ((zi) ¢ Ll.e.

i
-1

ziE £ ({xi}} COi + Which 1s a contradiction. Hence,

we have xie C(&(C(Oi)}) , 1=0,1, where this set is

open and
C(E(C(Oo))) nc(£(0(01))) =@,

i,e. X is Hausdorff and therefore compact.
The lifted £:2~X, X with the above topology, is
also a coegualizer of £ and g in Comp : If c:2-T

is in Comp with cf=cg, we have

V(f) . .
v(Y) ——= v(2) — {8 L (k)
vig) t
|
M ;h
. ]
v(T} .

As ¢ is a coequalizer of VI(f),V(g) in Set , there

is a unigque h: V{X) =V(T) in Set with
hV(E) = V(c) .

Now, E, as a surjective continuous mapping between
compact spaces is a quotient mapping, i.e. V-final.
Ho'nca, there is a unique continuous mapping ﬁ: ;{-T
with V(h)=h, hi=c.

Note, that the lifting £ of £ 1is uniquely determined

by £ alone, because any such lifting f necessarily

has the property E(B)=E£(B)}) for any BC Z. Hence,

necessarily, for any ACX, E{(y(A))=E(y(AJ)=A.
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(3.6)REMARK. Let Top" denote the category of topological

spaces and continuous, closed mappings, and let

V: Top'-.Set be the usual forgetful functor. Then, as
'in (3.5) one shows that V creates uniquely split
V-coequalizers. This notwithstanding that V is not

monadic, because it does not have a left adjoint.

Assume F: Setf - Tap* to be a left adjoint of V,

For 1 : = {o} €0bSef , one sees at once that

the closure '?;EET is equal to F(l]). Now, take

a set X with a cardinality greater than

V(F() ), 1X1 >IV(F(1))l, and supply it with the
topology Txoz = [Q,{xo},X} for some fixed xotsx.
Define x: 1 - V(X,Txo) by xf{o) ¢ = Xg * Then there
is a unique continuous and closed mapping

o: F(H) - (X,Tx ) making the diagram

o
n (1) .
1 > v|(s'(11))
0
X :V((p)
\
]
VX, T )
X0
commutative. As o(n,(1)) = {xo} , we get
e(F(UL)) = {xol = X , i.e. ¢ is surjective implying
[fV(F(1))] 2 IXI , which is a contradiction.
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Similar reasonings apply, if one defines the categories
Top: and Top: analogously, Top: as the category of
T,-spaces and closed, continuous mappings, Top: as the
category of T4-3paces (normal spaces} and closed,

continuous mappings.

The following resulff of Tholen is very well suited for
recognizing concretely given functors as premonadic. This is
important in all those cases, where one knows that a certain
functor V:A-X is not monadic and wants to "embed" the
category A into a category of algebras, namely the category

of Eilenberg-Moore algebras.

(3.6) THEOREM (cp. {9]1,(10.1)). For an adjunction
(V,F,e,n), V:A~X, the following statements are

equivalent:

(i) (V,F,e,n) 1is premonadic.

(ii) ¢ s pointwise a coequalizer,

(iii) € 18 pointwise a regular epimorphism,

(Av) V <@ faithful and ¢ i8 pointwise V-final.

Proof: (i)=>(ii): We show that for any A€ ObA , c(A)
is a coegualizer in the following diagram: |

FeVee (A)
FeVoFoV(A) Fov(a) —S(B)
coFoV{A)
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Let ¢ be such that esFoV(A) = ©FeVee(A) . Now, by

applying V to this diagram and by taking into account

v=v%K, where KeK_ denot
T notes the comparison functor,

one gets

vE (KoFoVoe (A)) vE(Koe (A))
Ve (KeFsVeFsV(a)) — v (KeFov(a) vk (a)
v (KecoFoV(A)) neV (A)

n(VeFeV(A))

Now this is a split Vt-coequalizer, because this is just
a rewriting of (1.2) with vt and K . As vt uniquely

creates split vt-coequalizers

KePoVeoe{A) Koe (A)
KoFoVoFoV(A) D KeFoV(A) K(A)
KogoFoV{A) )
t
K(o) u:
‘
K(B)

is a coegualizer diagram, hence there is a unigue u
with K(¢) = uKee(A) . This induces a unique ¢: A-B
with o= ye{A), because K is full and faithful.

(14)=>(iii): is trivial. But one should remember the
definition of a regulcr epimorphism: If £:A-B and
g:A=-C, then gsf is used as a notation for the
following property: For any two morphisms u AR D-2a
fu, = fu, implies gu =gu,. An epimorphism e: A+B

is called rezular, iff, for any g: A-C, g<e implies

the existence of a g':B=-C with g=g'e.
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(L11i)m (iv): As ¢ is pointwise an epimorphism, v 1ig
faithful, 1f

VoFeV(a) _Veoe (A) v(a)

V(O h

V{B}

is a commutative diagram, then, for any

U euy C+FoV(A), ¢ (A)u°= € (A)u1 implies

Vieu ) = Vieu,) , i.e. ' ou_=ou, . Hence, o< c(A) and
there is a unique o' :A-B with o¢=¢'e(A). But
Vee (A) 1is an epimorphism (cp. (ADJ)), which implies

h=V(e') . Thus, ¢ (A) is Vv-final.

(iv)=>(i): As V is faithful, so is K. For A,Bc ObA

let f: K(A)~K(B) be a morphism, i.e. one has a

commutative diagram

T(V(A)) —=2£B) . ya)

T(£) £
T(v(B)) B y(a) .
Ags c¢(A) is V-final, there is a unique u:A-B with

V(u)=£f and uc(A) =e(B)F(f}=¢e(B)F-V(u), hence

f=K{u) and K is full.

In many applications, the comparison functor KIP has a
left adjoint for a premonadic adjunction. This was

proved by Dubuc in (2] and improved by Tholen in .9 .
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We give 'a direct proof for the sufficiency of a condition,

often fulfilled in applications.

(3.7) PROPOSITION. Let I =(V,F,e,n}) be a premonadte

adjunction, Vi A= X, and let A have coequalizeres.

t
Then KIE" A-X", teMon(IF), has a left adjoint.

Proof: Take an object (T{X) EX) e obXx® . select some

fixed coequalizer as shown in the diagram

F(g) cg
F(T(X}) ——— F({X) C;;
ch(X$
Voe (C.)
in A . Now, KF(C£)= (V°F°V(Cg) V(Cg)) is
in X* and we get the following diagram:
Ton {X) T(V(c )
T(X) —————— 'I' (X) — T(V(Cg))
~ /
T(V(£}),
VeeoF(X) / Vos(Cg)
vicy 7
. r(x) A v(C,)
n (X) / ,
(V(A)) /
Vee (A) / V(f)
V(A)

The two horizontal diagrams together are a morphism

. t
in X7, because
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'V'c(Cg)(T(V(cgl)Tc*n(}()) = Vic Ve eF(X)Ten (X)
= V(cg)u(X)Ton(x) = V(cg)u(}{)no'r(x)
- V(cg)T(E}noT(x) - {V(cg)n(X))C

" holds.

This morphism is even universal, for, given any

morphism F: (T(X)%x)-K_(a) in x© , we get a unique

F
fzcg*A, S.th.
F(¢) 'cg
F(T(X)) —* F(X) Cg
coF (X) |
P(B\ '
| -
FoV{A) ,f
f
e&,
]
a

commutes, because
(e (AYF(£))F(E) = e(A)F(£E) = e (A)FoVee (A)F-T(f)
= e (A)eoFoV(A)F(T(f)) = (c(A)F(£))e-F(X) .
Hence,

-y

V(f)V(cg)n(X) = Voe (A)VeF (£)n(X)

R

= Yoc (A)neV(A)E = £

holds.

Now, let g:C,~A be a morphism in A, s.th.

£
K]F(g) 1 cESn(XS =f, then

V(g)V(c.)n(X) = £ = V(?)V(cg)n(x)
5
holds, i.e.

v(ge ) (X) = V(fcg)n(x) '
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resp. g = ch » l.e. g=§f, which means the uniqueness
of £,
Thus R(T(X) & X) 1= CC defines a functor R: xt. A,

left adjoint to K_ with unit

r
V(CE)"\(X) : (T(X)EX)-.K]FG’R(T(X)EX) .

(3.8) EXAMPLES. Let us consider two easy examples to

illustrate these results.

(1) In the category Ab of abelian groups, consider
the full subcategory Tca gree of torsion-free abelian
groups and denote the usual forgetful functors by

Vi Torngree~Set, W: Ab- Set and the embedding by

E: Torfree-Ab. V is not monadie, for, consider the

-

following diagram in Set for some n€ N, n>1,

£ g

A /2 z/nz '
g9 Y
d

where ;¢ is the canonical projection in Ab , Z the
abelian group with the usual addition. A is the
torsion-free abelian subgroup of 22 defined by
A:={(k,1) | k=1modn}, £(k,1):=k, g{k,l)=1. The
set mapping y is defined by denoting by y(k+ nZ)

the unique number in (k+nZ) n {0,1,...,n=1}.

With &(k) :=y(g(k)), ke Z, we put d{k) := (§(k), k),
ke Z , and have a split V-coegqualizer, which can

obviously not be lifted. On the other hand,
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-~

e(A) 3 FfV(A)-A, A€ ObTongree, is a coequalizer,
thus V 13 premonadic Lecause of (3.6),(i1), and the
comparison fu j

P nctor Kp has a left adjoint because of
(3.7). Actually, the category of Eilenberg-Moore
_algebras fo 4 |
g r V is Ab angd hr,=E . The left adjoint

R: Ab — Tonfree is diven by R(A) := A/T (A)
or (A

for A € bAb, if Tor (A) denotes the subgrouo of torsién

elements of A,

- {2) Let Ban1 denote the category of (real or complex)
Banach sbaces and linear contractions. O: Ban1*.Set
is the so-called unit ball functor defined by
O(B) := (x| x€éB and 1x1 <1}, If, for a set X,
11(X) denotes the 11-space generated by X,

then 1, is a left adjoint of O . A basis of 1,(X)

is given by the Dirac functionals Gx , X€EX, ax(x') t=0
for x#+ x' and sx(x)= 1. It is not difficult to see
that ¢(B) 1100(8)-'3, Be Ban1, is a coegualizer.
Hence, due, to (3.6), O is premonadie and the
comparigson functor has a left adjoint because of (3.7).
It is less simple to show that O is not monadic and

to explicitly compute £he category of Eilenberg~Moore

algebras, which has been done in [7].
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