Skip to content

Latest commit

 

History

History

CUSTOM

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your custom datasets

Download the pretrained parameters (e.g., moco and detco) at here and put them in the current directory.

├── WSSS/
|   ├── core
|   ├—— ...
|   ├—— moco_r50_v2-e3b0c442.pth
|   └── detco_200ep.pth
  1. Let's take the Market1501 dataset as an example. Make sure your data/Market1501 folder is structured as follows:
├── bounding_box_train/ 
|   ├── xxx.jpg
|   ├── ...
├── bounding_box_test/ 
└── query/ 
  1. Then specify the input size in train_CCAM.py
train_transform = transforms.Compose([
        # the input size is decided by the adopted datasets
        transforms.Resize(size=(256, 128)),
        transforms.RandomHorizontalFlip(),
        # transforms.RandomCrop(size=(448, 448)),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
    ])
  1. To train CCAM on the custom dataset
OMP_NUM_THREADS=16 CUDA_VISIBLE_DEVICES=5 python train_CCAM.py --tag CCAM_Maket1501_MOCO --batch_size 128 --pretrained mocov2 --alpha 0.25

The code will create experiment folders for model checkpoints (./experiment/models), log files (.experiments/logs) and visualization (./experiments/images/).

├── experiments/
|   ├── checkpoints
|   ├—— images

Visualization

Reference

If you are using our code, please consider citing our paper.

@InProceedings{Xie_2022_CVPR,
    author    = {Xie, Jinheng and Xiang, Jianfeng and Chen, Junliang and Hou, Xianxu and Zhao, Xiaodong and Shen, Linlin},
    title     = {C2AM: Contrastive Learning of Class-Agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022},
    pages     = {989-998}
}
@article{xie2022contrastive,
  title={Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation},
  author={Xie, Jinheng and Xiang, Jianfeng and Chen, Junliang and Hou, Xianxu and Zhao, Xiaodong and Shen, Linlin},
  journal={arXiv preprint arXiv:2203.13505},
  year={2022}
}