The hOCR Embedded OCR Workflow
and Output Format

Thomas Breuel (editor)

e December 2007 - initial release
e March 2010 - bug fixes, clarifications

1 Rationale

The purpose of this document is to define an open standard for
representing OCR results. The goal is to reuse as much existing
technology as possible, and to arrive at a representation that makes it
easy to reuse OCR results.

2 Getting Started

This document describes many tags and a lot of information that can be
output. However, getting started with hOCR is easy: you only need to
output the tags and information you actually want to. For example, just
outputting ocr_line tags with bounding boxes is already very useful for
many applications. Just start simple and add more output information
as the need arises.

3 Terminology and Representation

This document describes a representation of various aspects of OCR
output in an XML-like format. That is, we define as set of tags containing
text and other tags, together with attributes of those tags. However,
since the content we are representing is formatted text,

However, we are not actually using a new XML for the representation;
instead embed the representation in XHTML (or HTML) because XHTML
and XHTML processing already define many aspects of OCR output
representation that would otherwise need additional, separate and ad-
hoc definitions. These aspects include:

e standard representations for common logical structuring elements,
including section headings, citations, tables, emphasis, line
breaks, quotations, citations, and preformatted text

e standard representations for fonts, embedded images, embedded
vector graphics, tables, languaages, writing direction, colors

e standard representations for geometric layout and positioning

e output files that are understood without any further modification
by widely used viewers (browsers), editors, conversion tools, and
indexing tools
libraries for parsing and generating the content

e support for document metadata

We are embedding this information inside HTML by encoding it within
valid tags and attributes inside HTML; We are going to use the terms
“elements” and “properties” for referring to embedded markup.
Elements are defined by the class= attribute on an arbitrary HTML tag.
All elements in this format have a class name of the form “ocr..._...".
Properties are defined by putting information into the “title=" attribute
of an HTML tag. Properties in title attributes are of the form “name
values...”, and multiple properties are separated by semicolons.
Here is an example:
<div class="ocr page" id="page 1">

<div class="ocr carea" id="column 2" title="bbox 313 324
733 1922"> B B

<div class="ocr par" id="par 7"> ... </div>
<div class="ocr par" id="par 19"> ... </div>
</div>
</div>

The following properties can apply to most elements (where it makes
sense):

e bbox x0 y0 x1 yl1 - the bounding box of the element relative to the
binarized document image

o use X_bboxes below for character bounding boxes

o do not use bbox unless the bounding box of the layout
component is, in fact, rectangular

o some non-rectangular layout components may have
rectangular bounding boxes if the non-rectangularity is
caused by floating elements around which text flows

e textangle alpha - the angle in degrees by which textual content
has been rotate relative to the rest of the page (if not present,
the angle is assumed to be zero); rotations are counter-
clockwise, so an angle of 90 degrees is vertical text running from
bottom to top in Latin script; note that this is different from
reading order, which should be indicated using standard HTML
properties

The following properties can apply to most elements but should not be
used unless there is no alternative:

e poly x0 y0 x1 y1 ... - a closed polygon for elements with non-
rectangular bounds

o this property must not be used unless there is no other way
of representing the layout of the page using rectangular
bounding boxes, since most tools will simply not have the
capability of dealing with non-rectangular layouts

o note that the natural and correct representation of many
non-rectangular layouts is in terms of rectangular content
areas and rectangular floats

o documents using polygonal borders anywhere must indicate
this in the metadata

o documents should attempt to provide a reasonable bbox
equivalent as well

e order n - the reading order of the element (an integer)

o this property must not be used unless there is no other way
of representing the reading order of the page by element
ordering within the page, since many tools will not be able
to deal with content that is not in reading order

o presence presence must be declared in the document meta
data

The following property relates the flow between multiple ocr_carea
elements, and between ocr_carea and ocr_linear elements.

e cflow s — the content flow on the page that this element is a part
of
o s must be a unique string for each content flow
o must be present on ocr_carea and ocrx_block tags when
reading order is attempted and multiple content flows are
present
o presence must be declared in the document meta data

This property applies primarily to textlines

e baseline pp pn-1 -.- Po - @ polynomial describing the baseline of a

line of text
o the polynomial is in the coordinate system of the line, with
the bottom left of the bounding box as the origin

4 Logical Structuring Elements

We recognize the following logical structuring elements:
* ocr document
* ocr linear
* ocr title
* ocr author
* ocr abstract
* ocr_part [H1]
* ocr chapter [H1]
* ocr section [H2]
* ocr sub*section [H3,H4]
* ocr display
* ocr_blockquote [BLOCKQUOTE]
* ocr:par [P]
These logical tags have their standard meaning as used in the publishing
industry and tools like LaTeX, MS Word, and others.
The standard HTML tags given in brackets specify the preferred HTML
tags to use with those logical structuring elements, but it may not be
possible or desirable to actually chose those tags (e.g., when adding
hOCR information to an existing HTML output routine).
For all of these elements except “ocr_linear”, there exists a natural
linear ordering defined by reading order (“ocr_linear” indicates that the
elements contained in it have a linear ordering). At the level of
“ocr_linear”, there may not be a single distinguished order. A common
example of “ocr_linear” is a newspaper, in which a single newspaper
may contain many linear, but there is no unique reading order for the
different linear. OCR evaluation tools should therefore be sensitive to
the order of all elements other than ocr_linear.
Tags must be nested as indicated by nesting above, but not all tags
within the hierarchy need to be present.
Textual information like section numbers and bullets must be
represented as text inside the containing element.
Documents whose logical structure does not map naturally onto these
logical structuring elemetns must not use them for other purpose.
Image captions may be indicated using the “ocr_caption” element; such
an element refers to the image(s) contained within the same float, or
the immediately adjacent image if both the image and the “ocr_caption”
element are in running text.

5 Typesetting Related Elements

The following typesetting related elements are based on a typesetting
model as found in most typesetting systems, including XSL:FO, (La)TeX,
OpenOffice, and Microsoft Word.

In those systems, each page is divided into a number of areas. Each
area can either be a part of the body text (or multiple body texts, in the
case of newspaper layouts). The content of the areas derives from a
linear stream of textual content, which flows into the areas, filling them
linewise in their preferred directions.

Overlayed onto the page is a set of floating elements; floating elements
exist outside the normal reading order. Floating elements may be
introduced by the textual content, or they may be related to the page
itself (anchoring is a logical property). In typesetting systems, floating
elements may be anchored to the page, to paragraphs, or to the content
stream. Floating pelements can overlap content areas and render on top
of or under content, or they can force content to flow around them. The
default for floating elements in this spec is that their anchor is undefined
(it is a logical property, not a typesetting property), and that text flows
around them. Note that with rectangular content areas and rectangular
floats, already a wide variety of non-rectangular text shapes can be
realized.

[Issue: there is currently no way of indicating anchoring or flow-around
properties for floating elements; properties need to be defined for this.]
The typesetting related elements therefore are:

e OCr_page
o ocr_carea (“ocr content area” or “body area”; used to be
called ocr_column)
s ocr_line [SPAN]
o (floats)
o ocr_separator (any separator or similar element)
o ocr_noise (any noise element that isn't part of typesetting)

The ocr_page element must be present in all hOCR documents. The
following properties should be present:

e bbox
o the bounding box of the page; for pages, the top left corner
must be at (0,0), so a typical page bounding box will look
like “bbox 0 0 2300 3200”
e image imagefile
o image file name used as input
o syntactically, must be a UNIX-like pathname or http URL (no
Windows pathnames)
o may be relative
o cannot be resolved to the actual file in general (e.g., if the
hOCR file becomes separated from the image fiels)
o if the hOCR file is present in a directory hierarchy or file
archive, should resolve to the corresponding image file
e imagemd5 checksum
o MDS5 fingerprint of the image file that this page was derived
from
o allows re-associating pages with source images
e ppageno n
o the physical page number
o the front cover is page number 0
o should be unique
o must not be present unless the pages in the document have
a physical ordering
o must not be present unless it is well defined and unique
e |pageno string

the logical page number expressed on the page

may not be numerical (e.g., Roman numerals)

usually is unique

must not be present unless it has been recognized from the
page and is unambiguous

o 0 o o

The following properties may be present:

e scan_res xX_res y_res
o scanning resolution in DPI
e X_scanner string
o a representation of the scanner
e X_source string
o an implementation-dependent representation of the
document source
o could be a URL or a /gfs/ path
o offsets within a multipage format (e.g., TIFF) may be
represented using additional strings or using URL parameters
or fragments
o examples
s x_source /gfs/cc/clean/012345678911 17
s X_source http://pageserver/012345678911&page=17

The ocr_carea elements should appear reading order unless this is
impossible because of some other structuring requirement If the
document contains multiple ocr_linear streams, then each ocr_carea
must indicate which stream it belongs to.

In typesetting systems, content areas are filled with “blocks”, but most
of those blocks are not recoverable or semantically meaningful.
However, one type of block is visible and very important for OCR
engines: the line. Lines are typesetting blocks that only contain glyphs
(“inlines” in XSL terminology).

They are represented by the ocr_line area. In addition to the standard
properties, the ocr_line area supports the following additional
properties:

e hardbreak n
o a zero (default) indicates that the end of the line is not a
hard (explicit) line break, but a break due to text flow

o a one indicates that the line is a hard (explicit) line break
Any special characters representing the desired end-of-line processing
must be present inside the ocr_line element. Examples of such special
characters are a soft hyphen ("”), a hard line break (“
"), or
whitespace (" ") for soft line breaks.
Note that for many documents, the actual ground truth careas are well-
defined by the document style of the original document before printing
and scanning. From a single page, the careas of the original document
style cannot be recovered exactly. However, the partition of a document
by ocr_carea for an individual page shall be considered correct relative
to ground truth if (1) all the text contained in a ground truth carea is
fully contained within a single ocr_carea, (2) no text outside a ground
truth carea is contained within an ocr_carea, and (3) the ocr_careas
appear in the same order as the text flow relationships between the
ground truth careas.

The following floats are defined:

e ocr_float
ocr_separator
ocr_textfloat
ocr_textimage
ocr_image
s ocr_linedrawing - something that could be represented
well and naturally in a vector graphics format like SVG

o o o ol

http://pageserver/012345678911&page=17
http://pageserver/012345678911&page=17

(even if it is actually represented as PNG)
s ocr_photo - something that requires JPEG or PNG to be
represented well
ocr_header
ocr_footer
ocr_pageno
ocr_table

o 0 o o

Floats should not be nested.

6 Inline Representations

There is some content that should behave and flow like text

e ocr_glyph - an individual glyph represented as an image (e.g., an
unrecognized character)
o must contain a single IMG tag, or be present on one
e ocr_glyphs — multiple glyphs represented as an image (e.g., an
unrecognized word)
o must contain a single IMG tag, or be present on one
e ocr_dropcap - an individual glyph representing a dropcap
o may contain text or an IMG tag; the ALT of the image tag
should contain the corresponding text
e ocr_glyphs - a collection of glyphs represented as an image
o must contain a single IMG tag, or be present on one
e ocr_chem - a chemical formula
o must contain either a single IMG tag or ChemML markup, or
be present on one
e ocr_math - a mathematical formula
o must contain either a single IMG tag or MathML markup, or
be present on one

Mathematical and chemical formulas that float must be put into an
ocr_float section.

Mathematical and chemical formulas that are “display” mode should be
put into an ocr_display section.

Non-breaking spaces must be represented using the HTML nbsp; entity.
Soft hyphens must be represented using the HTML shy; entity.
Different space widths should be indicated using HTML and ensp, emsp,
thinsp, zwnj, zwj.

The HTML Irm and rlm entities (indicating writing direction) must not be
used; all writing direction changes must be indicated with tags.

Other superscripts and subscripts must be represented using the HTML
<SUP> and <SUB> tags, even if special Unicode characters are
available.

Furigana and similar constructs must be represented using their correct
Unicode encoding.

7 Character Information

Character-level information may be put on any element that contains
only a single "line" of text; if no other layout element applies, the
ocr_cinfo element may be used.

e cutsclc2c3 ..
o character segmentation cuts (see below)
o there must be a bbox property relative to which the cuts can

be interpreted
e nlpclc2c3..
o estimate of the negative log probabilities of each character
by the recognizer

For left-to-write writing directions, cuts are sequences of deltas in the x
and y direction; the first delta in each path is an offset in the x direction
relative to the last x position of the previous path. The subsequent
deltas alternate between up and right moves. Assume a bounding box of
(0,0,300,100); then
cuts("10 11 7 19") =

[[(10,0),(10,100)1, [(21,0),(21,100)1,
[(28,0),(28,100)1, [(47,0),(47,100)] 1
cuts("10,50,3 11,30,-3") =

[[(10,0),(10,50),(13,50),(13,100)1,
[(21,0),(21,30),(18,30), (18,100)1 1
Here is an example:

<span class="ocr_ cinfo" title="bbox 0 0 300 100; nlp 1.7 2.3
3.9 2.7; cuts 9 11 7,8,-2 15 3">hello

Cuts are between all codepoints contained within the element, including
any whitespace and control characters. Simply use a delta of 0 (zero)
for invisible codepoints.

Writing directions other than left-to-right specify cuts as if the bounding
box for the element had been rotated by a multiple of 90 degrees such
that the writing direction is left to right, then rotated back.

It is undefined what happens when cut paths intersect, with the
exception that a delta of 0 always corresponds to an invisible codepoint.

8 OCR Engine-Specific Markup

A few abstractions are used as intermediate abstractions in OCR
engines, although they do not have a meaning that can be defined either
in terms of typesetting or logical function. Representing them may be
useful to represent existing OCR output, say for workflow abstractions.

Common suggested engine-specific markup are:

e ocrx_block
o any kind of "block" returned by an OCR system
o engine-specific because the definition of a "block" depends
on the engine
e ocrx_line
o any kind of "line" returned by an OCR system that differs
from the standard ocr_line above
o might be some kind of "logical" line
e ocrx_word
o any kind of "word" returned by an OCR system
o engine specific because the definition of a "word" depends
on the engine

The meaning of these tags is OCR engine specific. However, generators
should attempt to ensure the following properties:

e an ocrx_block should not contain content from multiple ocr_careas

e the union of all ocrx_blocks should approximately cover all
ocr_careas

e an ocrx_block should contain either a float or body text, but not
both

e an ocrx_block should contain either an image or text, but not both

e an ocrx_line should correspond as closely as possible to an
ocr_line

e ocrx_cinfo should nest inside ocrx_line

e ocrx_cinfo should contain only x_conf, x_bboxes, and cuts
attributes

The following properties are defined:

e x fonts
o OCR-engine specific font names
e X fsize n
o OCR-engine specific font size
x_boxes b1x0 b1ly0 bix1 blyl b2x0 b2y0 b2x1 b2y1 ...
o OCR-engine specific boxes associated with each codepoint
contained in the element
o note that the bbox property is a property for the bounding
box of a layout element, not of individual characters
o in particular, use <span class="ocr cinfo"
title="x bboxes">, not <span class="ocr cinfo"
title="bbox ...">
x_confs cl c2 c3 ...
o OCR-engine specific character confidences
o cl etc. must be numbers
o higher values should express higher confidences
o if possible, convert character confidences to values between
0 and 100 and have them approximate posterior probabilities
(expressed in %)
x_wconf n
o OCR-engine specific confidence for the entire contained
substring
o n must be a number
o higher values should express higher confidences
o if possible, convert word confidences to values between 0
and 100 and have them approximate posterior probabilities
(expressed in %)

9 Font, Text Color, Language, Direction

OCR-generated font and text color information is encoded using standard
HTML and CSS attributes on elements with a class of ocr_... or ocrx_...
Language and writing direction should be indicated using the HTML
standard attributes lang= and dir=, or alternatively can be indicated as
properties on elements.

OCR information and presentation information can be separated by
putting the CSS info related to the CSS in an outer element with an ocr_
or ocrx_ class, and then overriding it for the presentation by nesting
another SPAN with the actual presentation information inside that:

<span style="presentation
style"> ...

The CSS3 text layout attributes can be used when necessary. For
example, CSS supports writing-mode, direction, glyph-orientation
I1S015924-based script, text-indent, etc.

10 Alternative Segmentations / Readings

Alternative segmentations and readings are indicated by a SPAN with
“class=alternatives”. It must contains INS and DEL elements. The first
contained element should be INS and represent the most probably
interpretation, the subsequent ones DEL. Each INS and DEL element
should have “class=alt” and a property of either “nlp” or “x_cost”. These
SPAN, INS, and DEL tags can nest arbitrarily.

Example:

<INS class="alt" title="nlp 0.3">hello</INS>

<DEL class="alt" title="nlp 1.1">hallo

Whitespace within the SPAN but outside the contained INS/DEL elements
is ignored and should be inserted to improve readability of the HTML
when viewed in a browser.

11 Grouped Elements and Multiple
Hierarchies

The different levels of layout information (logical, physical, engine-
specific) each form hierarchies, but those hierarchies may not be
mutually compatible; for example, a single ocr_page may contain
information from multiple sections or chapters. To represent both
hierarchies within a single document, elements may be grouped
together. That is, two elements with the same class may be treated as
one element by adding a "groupid identifier" property to them and using
the same identifier.

Grouped elements should be logically consistent with the markup they
represent; for example, it is probably not sensible to use grouped
elements to interleave parts of two different chapters. Therefore,
grouped elements should usually be adjacent in the markup.
Applications using hOCR may choose to manipulate grouped elements
directly, but the simplest way of dealing with them is to transform a
document with grouped elements into one without grouped elements
prior to further processing by first removing tags that are not of interest
for the subsequent processing step, and then collapsing grouped
elements into single elements. For example, output that contains both
logical and physical layout information, where the logical layout
information uses grouped elements, can be transformed by removing all
the physical layout information, and then collapsing all split ocr_chapter
elements into single ocr_chapter elements based on the groupid. The
result is a simple DOM tree. This transformation can be provided
generically as a pre-processor or Javascript.

The presence of grouped elements does not need to be indicated in the
header; when it affects their operations, hOCR processors should check
for the presence of grouped elements in the output and fail with an error
message if they cannot correctly process the hOCR information.

12 Capabilities

Any program generating files in this output format must indicate in the
document metadata what kind of markup it is capable of generating.
This includes listing the exact set of markup sections that the system
could have generated, even if it did not actually generate them for the
particular document.

The capability to generate specific properties is given by the prefix
ocrp_...; the important properties are:

ocrp_lang - capable of generating lang= attributes

ocrp_dir — capable of generating dir= attributes

ocrp_poly - capable of generating polygonal bounds

ocrp_font — capable of generating font information (standard font
information)

e ocrp_nlp - capable of generating nlp confidences

The capability to generate other specific embedded formats is given by
the prefix ocr_embeddedformat_<formatname>.

If an OCR engine represents a particular tag but cannot determine
reading order for that tag, it must must specify a capability of
ocr_<tag>_unordered.

If a document lists a certain capabilities but no element or attribute is
found that corresponds to that capability, users of the document may
infer that the content is absent in the source document. If a capability is
not listed, the corresponding element or attribute must not be present in
the document.

13 Profiles

hOCR provides standard means of marking up information, but it does
not mandate the presence or absence of particular kinds of

information. For example, an hOCR file may contain only logical
markup, only physical markup, or only engine-specific markup. As a
result, merely knowing that OCR output is hOCR compliant doesn't tell us
whether that file is actually useful for subsequent processing.

OCR systems can use hOCR in various different ways internally, but we
will eventually define some common profiles that mandate what kinds of
information needs to be present in particular kinds of output. Of
particular importance are:

o physical layout profile: OCR output in XHTML format with a
defined set of common physical layout markup capabilities (page,
carea, floats, line). Logical layout may be present as well, but the
document tree structure must represent the physical layout
structure, with logical layout elements split and grouped as
needed.

¢ logical layout profile: OCR output in XHTML format with a defined
set of common logical layout markup capabilities (linear, chapter,
section, subsection). Physical layout may be present as well, but
the document tree structure must represent the logical layout
structure, with logical layout elements split and grouped as
needed.

Other possible profiles might be defined for specific engines or specific
document classes:

e common commercial OCR output (e.g., Abbyy)
o oOcCr_page
o ocrx_block, ocrx_line, ocrx_word
o ocrp_lang
o ocrp_font
e book target
o all logical structuring elements (as applicable), except
ocr_linear
o OCr_page
e newspaper target

o all logical structuring elements (as applicable)
o articles map on ocr_linear
o ocr_page

14 Required Meta Information

The OCR system is required to indicate the following using meta tags in
the header:

e name=ocr-system content="name version”
e name=ocr-capabilities content=capabilities
o see the capabilities defined above

The OCR system should indicate the following information

e name=ocr-number-of-pages content=number-of-pages
e name=ocr-langs content=languages-considered-by-ocr
o use ISO 639-1 codes
o value may be “unknown”
e name=ocr-scripts content=scripts-considered-by-ocr
o use ISO 15924 letter codes
o value may be “unknown”

15 HTML Markup

The HTML-based markup is orthogonal to the hOCR-based markup; that
is, both can be chosen independent of one another. The only thing that
needs to be consistent between the two markups is the text contained
within the tags. hOCR and other embedded format tags can be put on
HTML tags, or they can be put on their own DIV/SPAN tags.

There are many different choices possible and reasonable for the HTML
markup, depending on the use and further processing of the document.
Each such choice must be indicated in the meta data for the document.
Many mappings derived from existing tools are quite similar, and most
follow the restrictions and recommendations below already without
further modifications.

Depending on the particular HTML markup used in the document, the
document is suitable for different kinds of processing and use. The
formats have the following intents:

e html_none: straightforward equivalent of Goodoc or XDOC

e html_ocr: straightforward recording of commercial OCR system
output

e html_absolute: target format for services like Google's View as
HTML

e html_xytable: target format for layout-preserving on-screen
document viewing

e html_simple: target format for convenient on-line viewing and
intermediate format for indexing

As long as a format contains the hOCR information, it can be
reprocessed by layout analysis software and converted into one of the
other formats. In particular, we envision layout analysis tools for
converting any hOCR document into html_absolute, html_xytable, and
html_simple. Furthermore, internally, a layout analysis system might

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://unicode.org/iso15924/iso15924-en.html

use html_xytable as an intermediate format for converting hOCR into
html_simple.

15.1 Restrictions on HTML Content

To avoid problems, any use of HTML markup must follow the following

rules:

HTML content must not use class names that conflict with any of
those defined in this document (Mocr_*")

HTML content must not use the title= attribute on any element
with an ocr_* class for any purposes other than encoding OCR-
related properties as described in this document

15.2 Recommendations for Mappings

When possible, any mapping of logical structure onto HTML should try to
follow the following rules:

the mapping should be “natural”’-similar to what an author of the
document might have entered into a WYSIWYG content creation
tool

¢ text should be in reading order
e all tags should be used for the intended purpose (and only for the

intended purpose) as defined in the HTML 4 spec

floats are contained in DIV elements with a style that includes a
float attribute

repeating floating page elements (header/footer) should be
repeated and occur in their natural location in reading order (e.g.,
between pages)

embedded images and SVG should be contained in files in the
same directory (no “/” in the URL) and embedded with IMG and
EMBED tags, respectively

Specifically

 and should represent emphasis, and are
preferred to , <I>, and <U>

, <I>, and <U> should represent a change in the
corresponding attribute for the current font (but an OCR font
specification must still be given)

<P> should represent paragraph breaks

 should represent explicit linebreaks (not linebreak that
happen because of text flow)

<H1>, ..., <H6> should represent the logical nesting structure (if
any) of the document

<A> should represent hyperlinks and references within the
document

<BLOCKQUOTE> should represent indented quotations, but not
other uses of indented text.

, , <DL> should represent lists

<TABLE> should represent tables, including correct use of the
<TH> tag

If necessary, the markup may use the following non-standard tags:

<NOBR> to indicate that line breaking is not permitted for the

enclosed content
e <WBR> to indicate that line breaking is permitted at that location

15.2.1 html_none

The simplest HTML markup for hOCR formats contains no logical markup
at all; it is simply a collection of DIV and SPAN elements with associated
hOCR information. Note that such documents can still be rendered
visually through the use of CSS.

15.2.2 htmli_simple

This is a format that follows the restrictions and recommendations
above, and only uses the following tags:

<H1> ... <H6>

<P>,

, <I>, and <U> for appearance changes (bold, italic,
underline)

 for any other appearance changes

<A>

<DIV> with a float style for floats

<TABLE> for tables

 for images

all SVG must be externally embedded with the <EMBED> tag
the use of other embedded formats is permitted

all other uses of <DIV>, , <INS>, and only for
hOCR tags or other embedded formats (hCard, ...)

15.2.3 html_ocr_<engine>

The HTML markup produced by default by the OCR engine for the given
document. Examples of possible values are:

e html_ocr_finereader_8

e html_ocr_textbridge_11

e html_ocr_unknown - the HTML was generated by some OCR
engine, but it's unknown which one

15.2.4 html_absolute_<element>

The HTML represents absolute positioning of elements on each page. The
possible subformats are:

html_absolute_cols - absolute positioning of cols
html_absolute_pars - absolute positioning of paragraphs
html_absolute_lines — absolute positioning of lines
html_absolute_words - absolute positioning of words
htm|_absolute_chars — absolute positioning of characters

Google Science Search and Google “View as HTML" both use
html_absolute_lines; this is probably the most reasonable choice for
approximating the appearance of the original document.

15.2.5 html_xytable_absolute

The HTML is a table that gives the XY-cut layout segmentation structure
of the page in tabular form. Note that in this format, text order does not
necessarily correspond to reading order.

The format must contain one TABLE of class ocr_xycut representing each
page. The TABLE structure must represent the absolute size of the
original page element. The markup of the content of the table itself is as
in html_simple.

15.2.6 htmi_xytable_relative

The page representation is as in html_xytable_absolute, but table
element sizes are expressed relative (percentages).

15.2.7 html_<processor>

The HTML represents markup that follows the mappings of the given
document processor to HTML. Note that the document doesn't actually
need to have been constructed in the processor and that the processor
doesn't need to have been used to generate the HTML. For example, the
html_latex2html tag merely indicates that, say, a scanned and ocr'ed
article uses the same conventions for logical markup tags that an
equivalent article actually written in LaTeX and actually converted to
HTML would have used. Possible subformats are:

html_latex2html

html_msword - HTML mapping generated by “Save As HTML"
html_ooffice - HTML mapping generated by “Save As HTML”
html_docbook_xsl — HTML mapping generated by official XSL style
sheets

16 Document Meta Information

For document meta information, use the Dublin Core Embedding into
HTML. See also Citation Guidelines for Dublin Core

17 Sample Usage

The HTML format described here may seem fairly complicated and
difficult to parse, but because there are lots of tools for manipulating
HTML documents, they're actually pretty easy to manipulate. Here are

http://dublincore.org/documents/dcq-html/
http://www.dublincore.org/documents/dc-citation-guidelines/
http://www.dublincore.org/documents/dc-citation-guidelines/

some examples:
import libxml2,re,os,string

convert the HTML to XHTML (if necessary)

os.system("tidy -g -asxhtml < page.html > page.xhtml 2>
/dev/null")

parse the XML

doc = libxml2.parseFile('page.xhtml")

search all nodes having a class of ocr line
lines = doc.xpathEval("//*[@class='ocr line']")
a function for extracting the text from a node

def get text (node):
textnodes = node.xpathEval (".//text()")

s = string.join([node.getContent () for node in
textnodes])
return re.sub(r'\s+',' ',s)

a function for extracting the bbox property from a node

note that the title= attribute on a node with an ocr_ class
must

conform with the OCR spec

def get bbox(node) :
data = node.prop('title')
bboxre =

re.compile (r'\bbbox\s+ (\d+) \s+ (\d+) \s+ (\d+) \s+ (\d+) ")
return [int(x) for x in bboxre.search (data) .groups ()]

this extracts all the bounding boxes and the text they
contain
it doesn't matter what other markup the line node may
contain

for line in lines:

print get bbox(line),get text(line)
Note that the OCR markup, basic HTML markup, and semantic markup
can co-exist within the same HTML file without interfering with one
another.

	The hOCR Embedded OCR Workflow and Output Format
	1 Rationale
	2 Getting Started
	3 Terminology and Representation
	4 Logical Structuring Elements
	5 Typesetting Related Elements
	6 Inline Representations
	7 Character Information
	8 OCR Engine-Specific Markup
	9 Font, Text Color, Language, Direction
	10 Alternative Segmentations / Readings
	11 Grouped Elements and Multiple Hierarchies
	12 Capabilities
	13 Profiles
	14 Required Meta Information
	15 HTML Markup
	15.1 Restrictions on HTML Content
	15.2 Recommendations for Mappings
	15.2.1 html_none
	15.2.2 html_simple
	15.2.3 html_ocr_<engine>
	15.2.4 html_absolute_<element>
	15.2.5 html_xytable_absolute
	15.2.6 html_xytable_relative
	15.2.7 html_<processor>

	16 Document Meta Information
	17 Sample Usage

