Building NETCONF-enabled Network Management
Systems with libnetconf

Radek Krej¢i
CESNET, z.s.p.o.
Zikova 4, 160 00 Praha 6, Czech Republic
rkrejci@cesnet.cz

Abstract—NETCONF is proposed as a new standard protocol
for configuration and management of network devices. NET-
CONF provides standardized way to configure heterogeneous
networks. Currently, one of the obstacles to its widespread
adoption is a lack of programming tools allowing developers to
easily add NETCONF protocol support into the configuration
tools and network devices. libnetconf library provides such
functionality.

This paper presents possibilities of using libnetconf for a
development of network management applications and network
device controllers supporting NETCONF protocol. We describe
NETCONF functions provided by libnetconf as well as guidelines
for utilizing libnetconf library to develop network management
applications.

Index Terms—Ilibnetconf, NETCONF, network configuration,
network management

I. INTRODUCTION

Utilization of present computer networks is more and more
diversified. Demands of the users make networks heteroge-
neous and complex. Therefore, a simple and efficient manage-
ment of various network devices is a crucial task for network
operators.

Discussion about strengths and weaknesses of the spe-
cific network management technologies can be found in
RFC 3535 [1]. According to the conclusions of this docu-
ment, the Internet Engineering Task Force (IETF) set up the
network configuration (NETCONF) Working Group to focus
on standardization of configuration management mechanisms.
The main outcome of the group is the NETCONF protocol
specification [2].

This paper presents libnetconf — an open source' library
implementing the NETCONF protocol for the GNU/Linux.
Allowing developers to simply add the NETCONF protocol
support into their device or system is the main benefit of the
library. libnetconf allows developers to concentrate directly on
the device configuration.

The rest of the paper is organized as follows. At first, the
NETCONF protocol is introduced and all currently available
open source implementations are briefly presented. Next, the
libnetconf library is described and the example implementa-
tions of NETCONF server and client are briefly presented.

! Available from http://libnetconf.googlecode.com under BSD license.

II. NETCONF PrOTOCOL

NETCONF conceptually stems from JUNOScript. Both are
based on a lightweight remote procedure call (RPC) mecha-
nism using messages encoded in XML. NETCONF uses lay-
ered architecture to separate configuration data and underlying
transmission protocols (see Figure 1). Configuration data are
stored in the datastore reflecting the current device parameters.

Content Configuration and state ’ ‘ Notification data ’
data
o i XML-encoded RPC methods
perations (<edit-config>, <get>, ...)
Transport independent XML-encoded messages
Messages I
(<rpc>, <rpc-reply>, <notification>)
Secure Transport protocol between server and client
Transport (SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS, ..

Fig. 1. The NETCONF Protocol Layers [2]

NETCONF specification defines requirement for the trans-
port protocols used with NETCONF. However, Secure Shell
(SSH) [3] is specified as the mandatory one. [2, Section 2]

Next two layers form the NETCONF XML-encoded RPCs.
These RPCs represents NETCONF operations to manipulate
configuration data in the datastore of the targeted device or
system. Exceptionally, an RPC can affect the NETCONF
session or the server itself.

Basic NETCONF functionality can be extended using newly
defined capabilities. They allow modification of current op-
erations, definition of new ones or addition of some other
functions into both communication participants. During the
NETCONF session establishment, server provides the set of
supported capabilities that can be used during further commu-
nication. As an example, RFC 5277 [4] defines NETCONF
Event Notifications as a NETCONF capability providing asyn-
chronous message delivery mechanism for NETCONF.

III. RELATED WORK
There are several implementations of the NETCONF pro-
tocol?. Unfortunately, some of them are available only as

2The list maintained by the NETCONF Working Group is available from
http://tools.ietf.org/wg/netconf/trac/wiki.

http://code.google.com/p/libnetconf/
http://tools.ietf.org/wg/netconf/trac/wiki#NetconfImplementations

commercial products or they are out of date and not maintained
by the authors anymore.

Netconf4Android and ncclient implement only client side
of the NETCONF protocol following obsoleted RFC 4741.
EnSuite and YENCA provide server side implementation, but
they are out of date and poorly documented. The last notable
open source implementation is Yuma. It provides client as
well as server side implementation of the NETCONF protocol
following the last RFC 6241 [2].

Yuma offers a plugin mechanism to add modules into
the server and control a specific device or a system. Thus,
it is a complete NETCONF server with possibility to add
functionality to configure specific device. In contrast to Yuma,
libnetconf allows developer to add NETCONF capability into
their systems and devices.

IV. NETCONF LIBRARY

The main idea of the libnetconf library is to separate and
hide NETCONF functionality into the library itself. While
developers are working on the user configuration interface,
they should not be burdened with the communication protocol
between their application and the controlled system. Similarly,
device and system developers should focus on applying con-
figuration changes instead of managing configuration data and
communication with clients. libnetconf provides NETCONF
functions for building NETCONF clients as well as NET-
CONF servers.

Yuma requires running its complex NETCONF server on
the controlled device. In contrast, using libnetconf requires
building whole new server. On the other hand, such server can
be very simple or quite complex according to the specific re-
quirements of the controlled device. This potentially decreases
resource requirements for the controlled device, which can be
highly valuable in case of embedded devices.

libnetconf is based on authors’ experiences with develop-
ing standalone NETCONF remote configuration system (Ne-
topeer®). Currently, there is a new generation of the Netopeer
software being developed using libnetconf. Besides this usage,
there are client and server examples providing details of using
specific features of the library. These examples are available as
part of the libnetconf source codes. Also a complete Doxygen
documentation is available for all library functions.

The NETCONF protocol can be layered on several transport
protocols, but SSH is defined as the mandatory one. libnetconf
provides NETCONF connections only over SSH using libssh2*
on the client side and SSH Subsystem mechanism on the
server side. It means, that NETCONF server side applica-
tion is launched by an SSH daemon as its Subsystem [5,
Section 5.7] and libnetconf accepts incoming NETCONF
connection through the SSH daemon.

A. NETCONF Protocol Versions

RFC 6241 introduces several changes to the NETCONF
protocol. These changes required increment of the protocol

3Not maintained but still available from http://netopeer.googlecode.com.
4 Available from www.libssh2.org.

version to 1.1. However, the main difference between NET-
CONF 1.0 and 1.1 is in a framing mechanism when using
NETCONF over SSH. The new Chunked Framing mecha-
nism [3, Section 4.2] is defined for NETCONF version 1.1.
libnetconf supports both the NETCONF versions.

B. System Architectures

libnetconf must be applicable in case of very simple
applications as well as in case of very complex feature-
rich applications providing NETCONF functionality. Using
libnetconf in a NETCONF client is quite straightforward.

However, NETCONF servers can be implemented in very
different ways. Basically, there are two approaches depicted
in Figure 2 and described bellow. libnetconf is applicable in
both of them.

1) J 2) J
network) network P)

SSH server

[-

| libnetconf] libnetconf T
‘ libnetconf libnetconf
agent J agent
— | __--"" - device device
device manager manager
manager
R libnetconf libnetconf
libnetconf

configuration configuration
datastore datastore

Fig. 2. NETCONF server architectures using libnetconf: 1) Multi-level
architecture; 2) Single-level architecture.

1) The Multi-level Architecture: In this case, the device
control facility is separated into a single autonomous process
called device manager. This way, the problem of concurrency
in accessing the controlled device is avoided. The NETCONF
agents accept incoming NETCONF connections and then
pass NETCONF messages to the device manager. Agents are
invoked automatically by the SSH daemon using the SSH
Subsystem mechanism while the device manager is running
as a system daemon. For the inter-process communication
between the agents and the device manager we recommend
to use D-Bus® that serialize messages from multiple agents.
libnetconf provides functions to (de-)serialize content of the
NETCONF messages which simplifies passing NETCONF
messages between the agents and the device manager.

2) The Single-level Architecture: In contrast to the previous
case, agents are integrated into the device manager process.
There is no persistently running system daemon. New instance
of the device manager is invoked by the SSH daemon for each
incoming NETCONF connection. The main challenge of this
approach is a simultaneous access to the shared resources.
Device manager itself has to solve a concurrent access to
the controlled device from its multiple instances. libnetconf
deals with a simultaneous access to the shared configuration
datastore.

SMessage bus system, see www.freedesktop.org/wiki/Software/dbus

http://code.google.com/p/netopeer/
http://www.libssh2.org/
http://www.freedesktop.org/wiki/Software/dbus

C. Datastores

libnetconf provides implementation of the NETCONF data-
stores. Internally, libnetconf defines the interface to add vari-
ous types of datastore implementations in a future. Currently,
there are two datastore implementations: /) using standard files
and 2) storing no data. The second one is used when all data
in the device configuration model are defined as status data.
Datastore implementation is transparent for the NETCONF
server application accessing the datastore.

libnetconf internally deals with a simultaneous access to
the datastore and avoids interleaving of different datastore
operations. Thus, datastore operations seem to be atomic.

D. Supported NETCONF Capabilities

NETCONF capabilities extend functionality of the base
NETCONF protocol. libnetconf divides them into the groups
of basic and other capabilities. The basic group includes all
capabilities defined in RFC 6241 (Writable-Running*, Can-
didate configuration*, Confirmed Commit, Rollback-on-Error,
Validate, Distinct Startup*, URL and XPath capabilities).
In the libnetconf client side API, all these capabilities are
supported directly by the functions to create NETCONF RPC
messages. Server side implementation currently supports only
basic capabilities marked with asterisk in the list.

NETCONF allows definition of new capabilities in the
future. Furthermore, any capability can specify modification to
the existing NETCONF operations. This represents nontrivial
issue for the design of the API. To avoid changes of the
current libnetconf API with any newly supported capability,
non-basic capabilities are handled by the special variadic
function nc_rpc_capability_attr() modifying previously cre-
ated RPC message. The function accepts a request code
parameter specifying how the message should be changed.
Request codes correspond to the specific modification of a
particular capability. If an extra parameter for such change
is required, the function accepts it as a variadic parameter.
The list of supported request codes can be expanded with
newly supported capabilities modifying the existing operation.
This way a support for another NETCONF capability can be
added into the libnetconf library with preserving backward
compatibility.

Currently, besides the mentioned basic capabilities, libnet-
conf supports the following additional capabilities in both
client and server side APIL

1) With-defaults®: This capability changes processing and
displaying of the default configuration values defined in
the configuration data model. There are several with-
defaults modes of the NETCONF server behavior. This
mode can be selected via the libnetconf Server API. On
the client side, application can modify RPC message using
nc_rpc_capability_attr() to force specific with-defaults mode
supported by the NETCONF server.

Defined in RFC 6243 [6].

2) Event Notifications’: NETCONF basically uses syn-
chronous message delivery — clients wait for answers to
their RPC requests. This capability adds support of the asyn-
chronous messages (notifications) to the NETCONF protocol.
It allows server to announce an event occurrence to the clients
that expressed their interest.

The Event Notifications is a specific capability since it does
not only modify or add a new operation, but it fundamentally
changes communication rules of the NETCONF protocol.
The support of this capability had to be taken into account
during the initial design of the library. Due to this capability,
libnetconf internally uses separated message queues for the
incoming event notifications and replies to the sent RPC
requests. NETCONF client have to use separated functions
to retrieve notification and RPC reply from the libnetconf’s
message queues. These functions can be called as blocking,
timeouted or non-blocking.

E. Concurrent Processing in libnetconf

Multi-threading support is a significant requirement for
present applications. libnetconf allows concurrent access from
multiple threads to the selected library objects such as NET-
CONF session or messages. Furthermore, due to providing
statistical information specified by the NETCONF Monitoring
module [7], libnetconf shares some generic information about
active sessions between all processes that use libnetconf.

V. USING libnetconf
A. libnetconf API

libnetconf functions are divided into the following groups
dealing with handling of basic objects provided by the library.

session: Functions to connect to the NETCONF server,
accept incoming connection and get information about the
established NETCONF session.

rpc: Functions to create, modify, send, receive and parse
NETCONF RPC messages.

rpc-reply: Functions to create, modify, send, receive and
parse NETCONF RPC reply messages.

event notifications: Functions to handle notification
streams, enroll a new event and to create, send, receive and
parse NETCONF notification messages.

datastore: Functions to handle NETCONF configuration
datastores.

generic: Generic libnetconf functions.

B. libnetconf Client

A simplified scheme of the libnetconf client workflow is
depicted on the left side of the Figure 3. After the application
initiation, libnetconf is initiated and client can connect via
SSH to the specified host using libnetconf functions. Before
connecting, client is allowed to set up preferences of the
SSH authentication methods®. These functions are included
in session group.

"Defined in RFC 5277 [4].
8Interactive authentication, password authentication and authentication us-
ing SSH keys are supported.

2)

initiate application initiate application

send rpc

v

receive reply from server

receive NETCONF rpc

]4_

process request]

v v

initiate libnetconf [initiate libnetconf]
v v

connect to NETCONF server [initiate datastore(s)]
v

configure device
according to startup datastore

v

create speuﬁc NETCONF rpc [accept NETCONF session]
v

[)
[)
|)
B peszssssisga?ssztm.m]«
|)
[)
|)
()
|
)

display result to user
S

apply changes
from running

v

datastore
close NETCONF session
and I|bnetconf
[send reply]
close appllcatlon v S

close NETCONF session
and libnetconf

C] performed by libnetconf 1
[:] performed by application [close application]

Fig. 3. Simplified workflow of the: 1) libnetconf client; 2) libnetconf server.

As the next step, client has to take request from the user.
This part of work is out of the libnetconf scope.

Then the client creates the required NETCONF RPC mes-
sage using libnetconf functions from the rpc group. Besides
the set of basic NETCONF RPC operations that can be created
directly by the functions provided by libnetconf, there is also
a generic function that allows caller to create non-standard
NETCONF RPC request. Created message is not connected
with the specific NETCONF session and can be used multiple
times in one or more NETCONF sessions.

Created RPC request is sent through the specified NET-
CONEF session to the server. Then client receives the reply that
can be processed by several functions provided by libnetconf
in rpc-reply group.

After presenting results to the user, client processes another
user request or closes NETCONF session and terminates.

C. libnetconf Server

The right side of the Figure 3 depicts a simplified work-
flow of a libnetconf server with the single-level architecture.
The server is invoked as an instance of the netconf SSH
Subsystem. After the application and libnetconf initialization,
server gains access to the NETCONF datastore(s). If this is
the first instance of the server and the device is not initiated,
the server should apply configuration settings according to
the NETCONF startup datastore. Now, the server is ready
to accept incoming NETCONF connection that invoked the
application as the netconf SSH Subsystem.

libnetconf takes care of negotiation of used NETCONF
protocol version and all other things needed to establish the
NETCONTF session. Since now, the server is able to receive
and processes NETCONF RPC requests using libnetconf func-

tions. Furthermore, libnetconf automatically applies requested
operations to the NETCONF datastores. If the requested op-
eration targets the running datastore, the server should reflect
performed changes to the controlled device. This operation is
out of the libnetconf scope. When all requested operations are
performed, a reply containing acknowledgment, requested data
or error description is sent back to the client. This process is
repeated until the session termination is required or until some
eITor occurs.

D. Example Implementation

Example NETCONF server and client are part of the libnet-
conf source codes. Despite the simplicity, example client can
be used as a regular command-line NETCONF client. Example
NETCONEF server demonstrates usage of the libnetconf library
as described above.

VI. CONCLUSION

In this paper, we describe usage of libnetconf as an im-
plementation of the NETCONF protocol — the IETF standard
protocol for the network configuration. We provide guidelines
for the implementation of NETCONF-enabled network man-
agement applications using libnetconf.

Judging from the feedback from the NETCONF community,
the libnetconf library is well accepted. A library implementing
the NETCONF protocol is supposed to force the integration
of the NETCONF protocol in various management systems.
The integration is made even easier by using C programming
language, which provides a solid base for bindings in a
wide range of programming languages. In November 2012,
libnetconf based applications successfully took part in the
IETF NETCONF interoperability testing.

ACKNOWLEDGMENT

This material is based upon work supported by the “CES-
NET Large Infrastructure” project LM2010005 funded by
the Ministry of Education, Youth and Sports of the Czech
Republic.

REFERENCES

[1] J. Schoenwaelder, “Overview of the 2002 IAB Network Management
Workshop,” RFC 3535 (Informational), Internet Engineering Task Force,
May 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3535.txt

[2] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, ‘“Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6242

[3] M. Wasserman, “Using the NETCONF Protocol over Secure Shell
(SSH),” RFC 6242 (Proposed Standard), Internet Engineering Task
Force, Jun. 2011. [Online]. Available: http://tools.ietf.org/html/rfc6242

[4] S. Chisholm and H. Trevino, “Netconf event notifications,” RFC
5277 (Proposed Standard), Internet Engineering Task Force, Jul. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5277.txt

[5] D.J. Barrett and R. E. Silverman, SSH, The Secure Shell: The Definitive
Guide. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2001.

[6] A. Bierman and B. Lengyel, “With-defaults capability for netconf,” RFC
6243 (Proposed Standard), Internet Engineering Task Force, Jun. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6243.txt

[7] M. Scott and M. Bjorklund, “YANG Module for NETCONF Monitoring,”
RFC 6022 (Proposed Standard), Internet Engineering Task Force, Oct.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc6022.txt

http://www.ietf.org/rfc/rfc3535.txt
http://tools.ietf.org/html/rfc6242
http://tools.ietf.org/html/rfc6242
http://www.ietf.org/rfc/rfc5277.txt
http://www.ietf.org/rfc/rfc6243.txt
http://www.ietf.org/rfc/rfc6022.txt

