A formal specification for BIL: BIL Instruction Language

October 2, 2015

Contents

1 Introduction

2 Syntax
2.1 Metavariables L
2.2 BILsyntax e e
2.3 Bitvector syntax e
2.4 Valuesyntax e
2.5 Formula syntax L L e
2.6 Imstruction syntax L e

3 Typing

4 Operational semantics

4.1 Model of a program
Semantics of statements

Semantics of expressions

1 Introduction

This document describes the syntax and semantics of BAP Instruction Language. The language is
used to represent a semantics of machine instructions. Each machine instruction is represented by
a BIL program that captures side effect of the instruction.

2 Syntax

2.1 Metavariables

We define a small set of metavariables that are used to denote subscripts, numerals and string

literals:
index, m, n subscripts
id a literal for variable
num number literal
string, str quoted string literal

2.2 BIL syntax

BIL program is reperesented as a sequence of statements. Each statement performs some side-

effectful computation.

bil, seq RES
| {s1558.F S
stmt, s n=
var 1= exp — assign exp to var
jmpe — transfer control to a given address e

|

|

| cpuexn (num)

| special (string)

| while (exp)seq

] if (e)seq S
] if (e)seq else seqo

— interrupt CPU with a given interrupt num
— instruction with unknown semantics

— eval seq while exp is true

— eval seq if e is true

—if e is true then eval seq; else sego

BIL expressions are side-effect free. Expressions include a usual set of operations on bitvectors,
like arithmetic operations and converting bitvectors of one size to bitvectors of another size (casting

in BIL parlance).
exp, e =

| (eap)

| war

| word

| e1]e2, endian] : nat

| e; with [ey, endian] : nat < e3

| e1 bop e

\ uop €1

| cast : natle]

| let var = e;in ey

| unknown [string] : type

| if e; then ey elseeg

| extract : nat; : naty|e]

‘ 61@62

— a variable

— an immediate value

— load a value from address e; at storage e;
— update a storage e; with binding ey + e3
— perform binary operation on e; and e

— perform an unary operation on e;

— extract or extend bitvector e

— bind e to var in expression ey

— unknown or undefined value of a given type
— evaluates to ey if e is true else to e3

— extract or extend bitvector e

— concatenate two bitvector e; to es

var =

| id:type S
bop =
|+ — plus
| - — minus
| % — times
|/ — divide
signed
| / — signed divide
| % — modulo
signed
| % — signed modulo
| < — logical shift left
| > — logical shift right
| > — arithmetic shift right
| & — bitwise and
| — bitwise or
| xor — bitwise xor
| = — equality
| # — non-equality
| < — less than
| = — less than or equal
signed
| — signed less than
signed
| < — signed less than or equal
uop =
| - — unary negation
[— bitwise complement
endian, ed RES
| el — little endian
| be — big endian
cast =
| low — extract lower bits
| high — extract high bits
| signed — extend with sign bit
| unsigned — extend with zero

The type system of BIL consists of two type families - immediate values, indexed by a bitwidth,
and storagies (aka memories), indexed with address bitwidth and values bitwidth.
type, t =
| imm < sz > — immediate of size sz
| mem < $z1, S2p > — memory with address size sz; and element size sz

2.3 Bitvector syntax

We represent concrete bitvector operations with the following syntax. Operations marked with sbv
are signed. All other operations are unsigned (if it does matter). Bitvector is represented by a

pair of value and size. Operations ext and exts performs extract/extend operation. The former
is unsigned (i.e., it extends with zeros), the latter is signed. This operation extracts bits from a
bitvector starting from hi and ending with lo bit (both ends included). If hi is greater than the
bitwidth of the bitvector, then it is extended with zeros (for ext operation) or with a sign bit (for
exts) operation.

word, w =

| (w) S

| num : nat S

| 1: nat S

| true S — sugar for 1:1

| false S — sugar for 0:1
bv

| w4 wy S — plus
bu

| wy — Wy S — minus
b

| wy % Wy S — times
bu

| w) we S — division
sbv

| wr [we S — signed division
bv

| wy % woy S — modulo
sbv

| wy % ws S — signed modulo
b

| wy < wo S — logical shift left
b

| w 3wy S — logical shift right
b

| wy >>U> Wo S — arithmetic shift right
bu

| wy & wo S — bitwise and
bu

| wr | we S — bitwise or
b _

| wy, TOr Wy S — bitwise xor
b

| wy Z wo S — less than
b

| wy Z wo S — signed less than
bu .

| w Y we S — concatenation

| extword hi:szlo:szmn S — extract/extend

| extsword hi:sz lo:szn S — signed extract/extend

2.4 Value syntax

Values are syntactic subset of expressions. They are used to represent expressions that are not
reducible.
We have three kinds of values — immediates, represented as bitvectors; unknown values and
storages (memories in BIL parlance), represented symbolically as a list of assignments:
val, v

| word M
| v with [v, endian] : nat < v3 M
| unknown [string] : type M

2.5 Formula syntax

The following syntax is used to specify symbolic formulas in premises of judgments.

We use A to denote set of bindings of variables to values. The A context is represented as
list of pairs. We also add a small set of operations over natural numbers, like comparison and
arithmetics. Natural numbers are mostly used to reason about sizes of bitvectors, that’s why they
are often referred as sz.

We also add syntax for equality comparison for values and variables.

A ES
| ~ empty
| Afvar < val] — extend

formula =
| judgement

| (formula)

| o # v

| var, # vary

| naty > naty

| nat; = naty

| naty >= naty

=TI L

nat, sz =

nat; + naty
naty — naty
(nat)

o0
=TI L

2.6 Instruction syntax

To reason about the whole program we introduce a syntax for instruction. An instruction is a
binary sequence of ws bytes, that was read by a decoder from an address w;. The semantics of an
instruction is described by the bil program.
mnsn =
| {addr = wy; size = w2; code = bil} S

3 Typing

This section defines typing rules for BIL programs. Since BIL values bears type information with
them we do not need typing environment, so the rules are fairly straightforward.

stmt is ok
———————— T_SEQ_ONE
{stmt} is ok @

s1is ok
s9is ok
—— — T_SEQ.TWO
{s1; 82} is ok
s1is ok
{s2; ..;8p }isok
. T_SEQ_REC
{515 825 ..; 8, }isok

var :: t
exp :: t

. T_MOVE
var := exp is ok

erp :: imm < nat >

. . T_JMP
jmp exp is ok
_ T_CPUEXN
cpuexn (num) is ok
_ - T_SPECIAL
special (str) is ok
e:imm <1>
seq is ok
- _ T_WHILE
while (e)seq is ok
e:imm <1 >
seq is ok
. - T_IFTHEN
if (e)seqis ok
eimm <1 >
seq; is ok
seqo is ok
_ _ T_IF
if (e)seq else seq, is ok
exp :: type
———— T_VAR
idtt
_ T_INT
num : 8§z ::1mm < 8§z >
. T_TRUE
true :: imm <1 >
- T_FALSE
false :: imm < 1 >
e; : mem < nat, sz >
e imm < nat >
T_LOAD

e1lez, ed] : sz :: imm < sz >

6

e1 :: mem < nat, sz >
e imm < nat >
ez imm < sz >

. T_STORE
e1 with [eg, ed] : sz < e3 :: mem < nat, sz >
e imm < sz >
e imm < sz >
_ T_BOP
e1 bop eg :: imm < sz >
e imm < sz >
- T_UOP
uop €1 ::1mm < $z >
e imm < nat >
- T_CAST
cast : sz[e] : imm < sz >
var i 1
el t
ey i t!
- T_LET
let var = e;in ey :: t/
T_UNKNOWN
unknown [str] : ¢ :: t
er imm <1 >
et
e3 it
- T_ITE
if ey then ey else eg :: ¢
e:imm < sz >
821 >= S22
_ T_EXTRACT
extract : sz : szfe] mimm < sz — s+ 1>
e imm < sz >
e imm < sz >
T_CONCAT

e1Qey 1 imm < sz1 + $z9 >

4 Operational semantics

4.1 Model of a program

Program is coinductively defined as an infinite stream of program states, produced by a step rule.
Each state is represented with a triplet (A, w,var), where A is a mapping from variables to values,
w is a program counter, and var is a variable denoting currently active memory.

The step rule defines how a machine instruction is evaluated. We use “magic” rule decode
that fetches instructions from the memory and decodes them to a BIL program.

The BIL code is evaluated using reduction rules of statements (see section 5). Then the program
counter is updated with the ws, that initially points to a byte following current instruction.

A, w,var ~ A w’, var"

delta,w,var — {addr = wy; size = w2; code = bil}

bv
A, wy + we b bil ~~ A,,wg,{}

A, w, var ~ A’ w3, var

STEP

delta,w,var — insn

DECODE

delta,w,var — insn

5 Semantics of statements

The reduction rule defines transformation of a state for each statement. The state of the reduction
rule consists of a pair (A, w), where A is a mapping from variables to values and w is an address
of a next instruction.

Two statements affect the state: Move statement introduces new var < v binding in A, and
Jmp affects program counter.

The if and while instructions introduce local control flow.

There is no special semantics associated with special and cpuexn statements.

A, word &+ stmt ~ A’ word’

Ak e~

A, w b var := e ~ Alvar < v, w

Al e~ w
A, wkjmpe~~ A w

MOVE

JMP

CPUEXN
A, w - cpuexn (num) ~» A, w

SPECIAL

A, w + special (str) ~ A jw

AF e~ true
A, word - seq ~ A’ word', { }

A, word F if (e)seq ~ A’ word’

IFTHEN_TRUE

Ak e~ true
A, word = seq ~ A’ word', { }

IF_TRUE
A, word - if (e)seq else seq; ~ A’ word’
A F e ~ false
A, word - seq ~ A’ word', {}
IF_FALSE

A, word F if (e)seq else seq ~ A, word’

A1 F e~ true
Ay, wordy F seq ~> Ao, wordy, { }
Ao, wordy - while (e)seq ~ As, words

WHILE
Ay, word; - while (e)seq ~~ Ag, words

At e ~ false
A, word - while (e)seq ~ A, word

WHILE_FALSE

A, word F seq ~ A, word’, seq"

A, word + sy ~ A, word’

A, word F {s1;82; .58, } ~> Al word, {s2; .5 8n} SEQ-REC
A, word F sy ~ A, word’
A, word = {s1; 52} ~ A word', {s2} SEQ-LAST
A, word & 81 ~ A, word’
SEQ_ONE

A, word = {s1} ~ A word', { }

SEQ_
A, word = {} ~ A, word, { } QNI

6 Semantics of expressions

This section describes a small step operational semantics for expressions. A symbolic formula
A F e — ¢ defines a step of transformation from expression e to an expression ¢’ under given
context A.

A well formed (well typed) expression evaluates to a value expression, that is syntactic subset
of expression grammar (see section 2.4).

A value can be either an immediate, represented by a bitvector, a unknown value, or a memory
storage.

A memory storage is represented symbolically as a sequence of storages to the originally unde-
fined memory. Each storage operation of size greater than 8 bits is desugared into a sequence of 8
bit storages in a big endian order.

A load operation will first reduce all sub expressions of a memory object to values and then
recursively destruct the object until one of the following conditions is met:

load-byte: if the memory object is a storage of a value to an immediate (known) address that
we’re trying to load then the load expression is reduced to value.

load-un-memory: if the memory object is an unknown value, then the load expression evaluates
to unknown.

load-un-addr: if the memory object is a storage to unknown value address then load expression
evaluates to unknown.

At exp ~ exp’

VAR_REDUCE

Alvar < v] - var ~ v

AF var ~ v
var # var’

VAR_EXTEND
Alvar’ < v'] - var ~ v

VAR_UNKNOWN
[| - id : type ~» unknown [str| : type

Al ey~ 1y

LOAD_ADDR
AF eife, ed] : sz~ ej[v, ed] : sz
Al e ~ vy
LOAD_MEM
AF erw, ed] : sz~ vi[vg, ed] : sz
LOAD_BYTE

A+ (v; with [w, ed] : 8 <— num : 8)[w, ed'] : 8 ~ num : 8

OAD_UN_A
A F (v; with [unknown [str] : ¢, ed] : 8 <— va)[vs, ed] : 8 ~» unknown [str] : imm < 8 > LOAD-UN-ADDR

wy # wy
A F (v with [wy, ed] : 8 < v3)[wa, ed] : 8 ~» vi[wo, ed] : 8

LOAD_REC

- LOAD_UN_MEM
A+ unknown [str] : mem < nat, sz >~ unknown [str] : imm < sz >

succw = w'

A F v[w,be] : sz ~ v[w, be] : 8Qu[w’, be] : (sz — 8)

LOAD_WORD_BE

succw = w’

AF v[w,el] : sz ~ v[w',el] : (sz —8)Qu[w, be] : 8

LOAD_WORD_EL

AFe~sw
A& e with [e, ed] : sz < € ~ e; with [ey, ed] : sz + v STORE_VAL
AFe~w
A& e with[e, ed] : sz < val ~ ey with[v, ed] : sz < val STORE-ADDR
AFe~wv

STORE_MEM
At ewith [vy, ed] : sz < val ~ vwith [v, ed] : sz + val

succw = w’
A F high : 8[w] ~ w;
At low : (sz — 8)[w] ~ wy
A F vwith[w,be]: 8 + w; ~ v’
A F vwith [w,be] : sz < val ~ v’ with [w/,be] : (sz — 8) < w2

STORE_WORD_BE

succw = w'’
A Flow : 8[w] ~ wy
A+ high : (sz — 8)[w] ~ we
A+ vwith [w,be] : 8 + wy ~ v
A F vwith[w,el] : sz < val ~ v with [w', el] : (sz — 8) < w»

AFe ~wv

STORE_WORD_EL

AFletvar = e;iney ~ let var = vin ey LET_HEAD
Alvar + v] - e ~ val
AF lot var — vine — val LET_BODY
Al e ~ true
AFife thencelsecs — e 08
A F e ~ false
A I if e; then e; else e3 ~~ 3 ITE_FALSE
A = €y ~ U
A e1 bop ez ~ e bop v BOP_RHS
Al e ~wv
BOP_LHS

At eq bop v ~ v bop v’

10

BOP_UNK_RHS

A F e bop unknown [str| : t ~» unknown [str] : ¢

BOP_UNK_LHS

A+ unknown [str] : ¢ bop e ~ unknown [str] : ¢

PLUS

b
Al—w1+w2->w1+vwz

MINUS

bv
Al—wl—wgwwl—wg

TIMES

bv
AFw *x wy ~ wy * wy

DIV

bv
AFw [wy~ w [/ w

SDIV

signed sbv
A wr / wo ~ U / w9

MOD

bv
Al—wl%wgwm%ﬂa

SMOD

signed sbv
A wy, % wy~ wp Y wo

LSL
bu
Al w <€ wy~ w <K wy
LSR
bv
A w > wy ~ w > wy
o ASR
AFw > wy~ w S>> w
LAND
bv
Al—wl&wgwwl&wg
o LOR
Al w |wy ~ w | we
o XOR
A F wy xor wy ~~ wy TOr Wo
E
AFw = w~ true @
NE
AFw # w ~ false @
LESS
bv
AFw < wy~ w < wy
Al—wl 75 W ~> W
LESS_EQ

Al w <= w~ w&(w < ws)

SIGNED_LESS

signed sbv
Ak w1 < wo ~~> wp < W

AFw # wy~ w

signed signed
AFw < ww~w&(wy < w)

SIGNED_LESS_EQ

11

AFe~wv

uopP
A F uop e~ uopv
NOT_TRUE
A —true ~ false
NOT_FALSE

A —false ~~ true
A €9 ~> U9
A e@Qey ~~ eQuy

CONCAT_RHS

AF €1~ N
AF 61@’02 ~ Ul@vz

CONCAT_LHS

CONCAT_LHS_UN
A F unknown [str] : tQuy ~» unknown [str] : ¢

CONCAT_RHS_UN
A F vj@Qunknown [str] : ¢t ~» unknown [str] : ¢

b CONCAT
AF wl@wg ~ U Y w9

AFe~w

A F extract : sz : szm[e] ~ extract : sz : sz[v]

EXTRACT_REDUCE

EXTRACT_UN
A | extract : sz : sz[unknown [str] : t] ~ unknown [str] : ¢

- EXTRACT
A extract : sz : sp[w] ~ extw hi: sz lo: sz

AFe~sw

A& cast : sz[e] ~ cast : sz]v]

CAST_REDUCE

AST_
At low : sz[w] ~ extw hi: (sz—1) lo: 0 CAST_LOW

. - CAST_HIGH
A& high : sz[num : sz2'] ~ ext num : sz’ hi: sz’ lo: (sz! — sz)

CAST_SIGNED
A F signed : sz[w] ~ extsw hi: (sz —1) lo: 0

CAST_UNSIGNED
A+ unsigned : sz[w] ~ low : sz[w]

succ wy = eazp‘

SuUCC
bv

succnum : sz = num : sz + 1: sz

12

