-
Notifications
You must be signed in to change notification settings - Fork 46
/
gust86.cpp
749 lines (652 loc) · 25 KB
/
gust86.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* gust86.cpp: functions for Uranian satellite coords
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/*
** gust86.cpp
** Implementation of the Lascar and Jacobson theory of the
** motion of the satellites of Uranus. Written by Chris Marriott for
** SkyMap, with some modifications by me (Bill J. Gray).
** Based on :
**
** Laskar J., Jacobson, R.: 1987, GUST86 - An analytical ephemeris of the
** Uranian satellites, Astron. Astrophys. 188, 212-224
** https://articles.adsabs.harvard.edu/cgi-bin/nph-journal_query?volume=188&plate_select=NO&page=212&plate=&cover=&journal=A%2BA..
**
** Created: 17-JUL-98
**
** $History: gust86.cpp $
**
1 Feb 2012: BJG: Revised code to avoid errors on stricter compilers
such as OpenWATCOM.
5 Nov 2008: BJG: Revised code to be more C-like and less C++-like,
did general cleanup & simplifying. Now, you can just get positions
and velocities with one relatively simple function.
** 10 Jan 2003: Bill J Gray: changed the output from B1950 to J2000,
** by replacing the Uranicentric-to-B1950 matrix in "Position( )" with
** an Uranicentric-to-J2000 one. (The original code is still available
** with #define ORIGINAL_B1950.)
**
** The individual "per-satellite" functions contained a great deal
** of code identical except for coefficient values; I put that code into
** sum_uranian_series() with the coefficients passed in as arrays.
** Most (though not all!) comments are now in English instead of French.
**
** ***************** Version 1 *****************
** User: Chris Date: 2/10/98 Time: 6:54
** Created in $/SkyMap 4.0
** Moved from solar system DLL into main project.
**
** ***************** Version 2 *****************
** User: Chris Date: 18/07/98 Time: 4:49p
** Updated in $/SkyMap 4.0/SolarSys
** Initial working version.
**
** ***************** Version 1 *****************
** User: Chris Date: 17/07/98 Time: 11:59a
** Created in $/SkyMap 4.0/SolarSys
** Initial version.
*/
#include <math.h>
#include <assert.h>
#include "gust86.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923
#define DEGREES_TO_RADIANS (PI/180.)
static double an[5], ae[5], ai[5]; // satellite position data
// OrbitalPosition
// Compute basic orbital position data for the satellites.
static void gust86_mean_parameters( const double jde )
{
static double curr_jde_set = -1.;
if( jde != curr_jde_set)
{
const double t0 = 2444239.5; // origin date for the theory: 1980 Jan 1
const double days_since_1980 = jde - t0; // time from origin
const double days_per_year = 365.25; // days in a year
const double years_since_1980 = days_since_1980 / days_per_year;
int i; // loop counter
static const double fqn[5] = /* mean motion at epoch in radians/day */
{
4445190.550e-06, 2492952.519e-06, 1516148.111e-06,
721718.509e-06, 466692.120e-06
};
static const double fqe[5] = /* in degrees/year */
{
20.082, 6.217, 2.865, 2.078, 0.386
};
static const double fqi[5] = /* in degrees/year */
{
-20.309, -6.288, -2.836, -1.843, -0.259
};
static const double phn[5] = /* mean longitude at epoch in radians */
{
-238051.e-06, 3098046.e-06, 2285402.e-06,
856359.e-06, -915592.e-06
};
static const double phe[5] = /* in radians */
{
0.611392, 2.408974, 2.067774, 0.735131, 0.426767
};
static const double phi[5] = /* in radians */
{
5.702313, 0.395757, 0.589326, 1.746237, 4.206896
};
// Compute the orbital data.
for( i = 0; i < 5; i++)
{
an[i] = fqn[i] * days_since_1980 + phn[i];
ae[i] = fqe[i] * DEGREES_TO_RADIANS * years_since_1980 + phe[i];
ai[i] = fqi[i] * DEGREES_TO_RADIANS * years_since_1980 + phi[i];
}
}
}
static void sum_uranian_series( double *elems,
const double *ae_series, const double *aet,
const double *ai_series, const double *ait,
const double *amplitudes, const double *phases, int n_extra_terms)
{
int i;
for( i = 2; i < 6; i++)
elems[i] = 0;
for( i = 5; i; i--)
{
elems[2] += *ae_series * cos( *aet );
elems[3] += *ae_series++ * sin( *aet++);
elems[4] += *ai_series * cos( *ait );
elems[5] += *ai_series++ * sin( *ait++);
}
while( n_extra_terms--)
{
elems[2] += *amplitudes * cos( *phases);
elems[3] += *amplitudes++ * sin( *phases++);
}
}
// miranda_elems
// Compute the orbital elements of Miranda.
static void miranda_elems( const double t, double *elems)
{
/* --- Z = K + IH ---- */
static const double ae_series[5] = { 1312.38e-6, 71.81e-6, 69.77e-6,
6.75e-6, 6.27e-6 };
static const double amplitudes[3] = {
-123.31e-6, 39.52e-6, 194.10e-6 };
double phases[3];
/* --- ZETA = Q + IP --- */
static const double ai_series[5] = { 37871.71e-06, +27.01e-06, +30.76e-06,
+12.18e-06, +5.37e-06 };
/* --- RN => mean motion (radians/day) ---- */
elems[0] = 4443522.67e-06
-34.92e-06*cos(an[0]-3.e0*an[1]+2.e0*an[2])
+8.47e-06*cos(2.*an[0]-6.*an[1]+4.*an[2])
+1.31e-06*cos(3.*an[0]-9.*an[1]+6.*an[2])
-52.28e-06*cos(an[0]-an[1])
-136.65e-06*cos(2.*an[0]-2.*an[1]);
/* --- RL => mean longitude (radians) ---- */
elems[1] = -238051.58e-06
+4445190.55e-06*t
+25472.17e-06*sin(an[0]-3.*an[1]+2.*an[2])
-3088.31e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
-318.10e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
-37.49e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-57.85e-06*sin(an[0]-an[1])
-62.32e-06*sin(2.*an[0]-2.*an[1])
-27.95e-06*sin(3.*an[0]-3.*an[1]);
phases[0] = -an[0] + 2.*an[1];
phases[1] = -2. * an[0] + 3.*an[1];
phases[2] = an[0];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 3);
}
// ariel_elems
// Compute the orbital elements of Ariel.
static void ariel_elems( const double t, double *elems)
{
/* --- Z = K + IH --- */
static const double ae_series[5] = { -3.35e-6, 1187.63e-6, 861.59e-6,
71.50e-6, 55.59e-6 };
static const double ai_series[5] = { -121.75e-6, 358.25e-06, 290.08e-06,
97.78e-06, 33.97e-06 };
static const double amplitudes[4] = {
-84.60e-06, +91.81e-06, +20.03e-06, +89.77e-06 };
double phases[4];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 2492542.57e-06
+2.55e-06*cos(an[0]-3.*an[1]+2.*an[2])
-42.16e-06*cos(an[1]-an[2])
-102.56e-06*cos(2.*an[1]-2.*an[2]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 3098046.41e-06
+2492952.52e-06*t
-1860.50e-06*sin(an[0]-3.*an[1]+2.*an[2])
+219.99e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
+23.10e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
+4.30e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-90.11e-06*sin(an[1]-an[2])
-91.07e-06*sin(2.*an[1]-2.*an[2])
-42.75e-06*sin(3.*an[1]-3.*an[2])
-16.49e-06*sin(2.*an[1]-2.*an[3]);
phases[0] = 2. * an[2] - an[1];
phases[1] = 3. * an[2] - 2. * an[1];
phases[2] = 2. * an[3] - an[1];
phases[3] = an[1];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 4);
/*
*---- ZETA = Q + IP ----------------------------------------------------
*/
}
// umbriel_elems
// Compute the orbital elements of Umbriel.
static void umbriel_elems( const double t, double *elems)
{
/* --- Z = K + IH --- */
static const double ae_series[5] = { -0.21e-6, -227.95e-6, 3904.69e-6,
309.17e-6, 221.92e-6 };
static const double ai_series[5] = { -10.86e-6, -81.51e-06, 1113.36e-06,
350.14e-06, 106.50e-06 };
static const double amplitudes[11] = {
29.34e-6, 26.20e-6, 51.19e-6, -103.86e-6, -27.16e-6,
-16.22e-6, 549.23e-6, 34.70e-6, 12.81e-6, 21.81e-6,
46.25e-6 };
double phases[11];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 1515954.90e-06
+9.74e-06*cos(an[2]-2.*an[3]+ae[2])
-106.00e-06*cos(an[1]-an[2])
+54.16e-06*cos(2.*an[1]-2.*an[2])
-23.59e-06*cos(an[2]-an[3])
-70.70e-06*cos(2.*an[2]-2.*an[3])
-36.28e-06*cos(3.*an[2]-3.*an[3]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 2285401.69e-06
+1516148.11e-06*t
+660.57e-06*sin(an[0]-3.*an[1]+2.*an[2])
-76.51e-06*sin(2.*an[0]-6.*an[1]+4.*an[2])
-8.96e-06*sin(3.*an[0]-9.*an[1]+6.*an[2])
-2.53e-06*sin(4.*an[0]-12.*an[1]+8.*an[2])
-52.91e-06*sin(an[2]-4.*an[3]+3.*an[4])
-7.34e-06*sin(an[2]-2.*an[3]+ae[4])
-1.83e-06*sin(an[2]-2.*an[3]+ae[3])
+147.91e-06*sin(an[2]-2.*an[3]+ae[2]);
elems[1] += -7.77e-06*sin(an[2]-2.*an[3]+ae[1])
+97.76e-06*sin(an[1]-an[2])
+73.13e-06*sin(2.*an[1]-2.*an[2])
+34.71e-06*sin(3.*an[1]-3.*an[2])
+18.89e-06*sin(4.*an[1]-4.*an[2])
-67.89e-06*sin(an[2]-an[3])
-82.86e-06*sin(2.*an[2]-2.*an[3]);
elems[1] += -33.81e-06*sin(3.*an[2]-3.*an[3])
-15.79e-06*sin(4.*an[2]-4.*an[3])
-10.21e-06*sin(an[2]-an[4])
-17.08e-06*sin(2.*an[2]-2.*an[4]);
phases[0] = an[1];
phases[1] = an[2];
phases[2] = -an[1]+2.*an[2];
phases[3] = -2.*an[1]+3.*an[2];
phases[4] = -3.*an[1]+4.*an[2];
phases[5] = an[3];
phases[6] = -an[2]+2.*an[3];
phases[7] = -2.*an[2]+3.*an[3];
phases[8] = -3.*an[2]+4.*an[3];
phases[9] = -an[2]+2.*an[4];
phases[10] = an[2];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 11);
/*
*---- ZETA = Q + IP ----------------------------------------------------
*/
}
// titania_elems
// Compute the orbital elements of Titania.
static void titania_elems( const double t, double *elems)
{
static const double ae_series[5] = { -0.02e-6, -1.29e-6, -324.51e-6,
932.81e-6, 1120.89e-6 };
static const double ai_series[5] = { -1.43e-6, -1.06e-06, -140.13e-06,
685.72e-06, 378.32e-06 };
static const double amplitudes[13] = {
33.86e-6, 17.46e-6, 16.58e-6, 28.89e-6, -35.86e-6,
-17.86e-6, -32.10e-6, -177.83e-6, 793.43e-6, 99.48e-6,
44.83e-6, 25.13e-6, 15.43e-6 };
double phases[13];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 721663.16e-06
-2.64e-06*cos(an[2]-2.*an[3]+ae[2])
-2.16e-06*cos(2.*an[3]-3.*an[4]+ae[4])
+6.45e-06*cos(2.*an[3]-3.*an[4]+ae[3])
-1.11e-06*cos(2.*an[3]-3.*an[4]+ae[2]);
elems[0] += -62.23e-06*cos(an[1]-an[3])
-56.13e-06*cos(an[2]-an[3])
-39.94e-06*cos(an[3]-an[4])
-91.85e-06*cos(2.*an[3]-2.*an[4])
-58.31e-06*cos(3.*an[3]-3.*an[4])
-38.60e-06*cos(4.*an[3]-4.*an[4])
-26.18e-06*cos(5.*an[3]-5.*an[4])
-18.06e-06*cos(6.*an[3]-6.*an[4]);
/* --- RL => mean longitude (radians) --- */
elems[1] = 856358.79e-06
+721718.51e-06*t
+20.61e-06*sin(an[2]-4.*an[3]+3.*an[4])
-2.07e-06*sin(an[2]-2.*an[3]+ae[4])
-2.88e-06*sin(an[2]-2.*an[3]+ae[3])
-40.79e-06*sin(an[2]-2.*an[3]+ae[2])
+2.11e-06*sin(an[2]-2.*an[3]+ae[1])
-51.83e-06*sin(2.*an[3]-3.*an[4]+ae[4])
+159.87e-06*sin(2.*an[3]-3.*an[4]+ae[3]);
elems[1] += -35.05e-06*sin(2.*an[3]-3.*an[4]+ae[2])
-1.56e-06*sin(3.*an[3]-4.*an[4]+ae[4])
+40.54e-06*sin(an[1]-an[3])
+46.17e-06*sin(an[2]-an[3])
-317.76e-06*sin(an[3]-an[4])
-305.59e-06*sin(2.*an[3]-2.*an[4])
-148.36e-06*sin(3.*an[3]-3.*an[4])
-82.92e-06*sin(4.*an[3]-4.*an[4]);
elems[1] += -49.98e-06*sin(5.*an[3]-5.*an[4])
-31.56e-06*sin(6.*an[3]-6.*an[4])
-20.56e-06*sin(7.*an[3]-7.*an[4])
-13.69e-06*sin(8.*an[3]-8.*an[4]);
phases[0] = an[1];
phases[1] = an[3];
phases[2] = -an[1]+2.*an[3];
phases[3] = an[2];
phases[4] = -an[2]+2.*an[3];
phases[5] = an[3];
phases[6] = an[4];
phases[7] = -an[3]+2.*an[4];
phases[8] = -2.*an[3]+3.*an[4];
phases[9] = -3.*an[3]+4.*an[4];
phases[10] = -4.*an[3]+5.*an[4];
phases[11] = -5.*an[3]+6.*an[4];
phases[12] = -6.*an[3]+7.*an[4];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 13);
/*
*---- ZETA= Q + IP ----------------------------------------------------
*/
}
// oberon_elems
// Compute the orbital elements of Oberon.
static void oberon_elems( const double t, double *elems)
{
static const double ae_series[5] = { 0.00e-6, -0.35e-6, 74.53e-6,
-758.68e-6, 1397.34e-6 };
static const double ai_series[5] = { -0.44e-6, -0.31e-06, 36.89e-06,
-596.33e-06, 451.69e-06 };
static const double amplitudes[12] = {
39.00e-6, 17.66e-6, 32.42e-6, 79.75e-6, 75.66e-6, 134.04e-6,
-987.26e-6, -126.09e-6, -57.42e-6, -32.41e-6, -19.99e-6, -12.94e-6 };
double phases[12];
/* --- RN => mean motion (radians/day) --- */
elems[0] = 466580.54e-06
+2.08e-06*cos(2.*an[3]-3.*an[4]+ae[4])
-6.22e-06*cos(2.*an[3]-3.*an[4]+ae[3])
+1.07e-06*cos(2.*an[3]-3.*an[4]+ae[2])
-43.10e-06*cos(an[1]-an[4]);
elems[0] += -38.94e-06*cos(an[2]-an[4])
-80.11e-06*cos(an[3]-an[4])
+59.06e-06*cos(2.*an[3]-2.*an[4])
+37.49e-06*cos(3.*an[3]-3.*an[4])
+24.82e-06*cos(4.*an[3]-4.*an[4])
+16.84e-06*cos(5.*an[3]-5.*an[4]);
elems[1] = -915591.80e-06
+466692.12e-06*t
-7.82e-06*sin(an[2]-4.*an[3]+3.*an[4])
+51.29e-06*sin(2.*an[3]-3.*an[4]+ae[4])
-158.24e-06*sin(2.*an[3]-3.*an[4]+ae[3])
+34.51e-06*sin(2.*an[3]-3.*an[4]+ae[2])
+47.51e-06*sin(an[1]-an[4])
+38.96e-06*sin(an[2]-an[4])
+359.73e-06*sin(an[3]-an[4]);
elems[1] += 282.78e-06*sin(2.*an[3]-2.*an[4])
+138.60e-06*sin(3.*an[3]-3.*an[4])
+78.03e-06*sin(4.*an[3]-4.*an[4])
+47.29e-06*sin(5.*an[3]-5.*an[4])
+30.00e-06*sin(6.*an[3]-6.*an[4])
+19.62e-06*sin(7.*an[3]-7.*an[4])
+13.11e-06*sin(8.*an[3]-8.*an[4]);
phases[0] = an[1];
phases[1] = -an[1]+2.*an[4];
phases[2] = an[2];
phases[3] = an[3];
phases[4] = an[4];
phases[5] = -an[3]+2.*an[4];
phases[6] = -2.*an[3]+3.*an[4];
phases[7] = -3.*an[3]+4.*an[4];
phases[8] = -4.*an[3]+5.*an[4];
phases[9] = -5.*an[3]+6.*an[4];
phases[10] = -6.*an[3]+7.*an[4];
phases[11] = -7.*an[3]+8.*an[4];
sum_uranian_series( elems, ae_series, ae, ai_series, ai,
amplitudes, phases, 12);
/*
*---- ZETA = Q + IP ---------------------------------------------------
*/
}
// keplkh
// Solve Kepler's equation.
static double keplkh( const double rl, const double rk, const double rh)
{
/*
SUBROUTINE KEPLKH (RL,RK,RH,F,IT,IPRT)
*
*---- KEPLKH 1.0 12 DECEMBRE 1985 J. LASKAR --------------------------
*
* RESOLUTION DE L'EQUATION DE KEPLER EN VARIABLES LONGITUDES, K, H
*
*-----------------------------------------------------------------------
*
*/
const double eps = 1.0e-16;
double f;
double f0, e0;
const int itmax = 20;
int it;
if( rl==0.0)
return( 0.);
f0 = rl;
e0 = fabs(rl);
for( it=0; it<itmax; it++)
{
int k = 0;
const double sf = sin(f0);
const double cf = cos(f0);
double e;
const double ff0 = f0 - rk*sf + rh*cf - rl;
const double fpf0 = 1.0 - rk*cf - rh*sf;
double sdir = ff0/fpf0;
double sdir_over_2_to_the_kth = sdir;
do
{
f = f0 - sdir_over_2_to_the_kth;
e = fabs(f - f0);
if (e>e0)
{
k++;
sdir_over_2_to_the_kth *= .5;
}
}
while( e > e0);
if (k==0 && e<=eps && ff0<=eps)
it = itmax; /* time to break out of loop */
else
{
f0 = f;
e0 = e;
}
}
return( f);
}
// ellipx
// Compute rectangular coordinates from a set of orbital elements.
static void ellipx( const double ell[6], const double rmu, double xyz[6] )
{
/*
SUBROUTINE ELLIPX (ELL,RMU,XYZ,DXYZ,IDER,IPRT)
*
*---- ELLIPX 1.1 18 March 1986 J. LASKAR -----------------------------
*
* Calculate Cartesian coordinates (positions & velocities) and their
* partial derivatives with respect to orbital elements, given the
* orbital elements as input.
*
* ELL(6) : Orbital elements A: Semimajor axis
* L: Mean longitude
* K: ecc*COS(LONG asc node+ ARG PERI)
* H: ecc*SIN(LONG asc node+ ARG PERI)
* Q: SIN(Incl/2)*COS(asc node)
* P: SIN(Incl/2)*SIN(asc node)
* RMU : Constant of gravitation for the two-body problem
* RMU = G*M1*(1+M2/M1) M1 Central mass
* M2 Satellite mass
* XYZ(6) : State vector; 0..2 = position, 3..5 = velocity
* (The following three items were in the original code,
* but have been removed:)
* DXYZ(6,7) : Partial derivatives of the state vector with respect to
* the six orbital elements...
* DXYZ(I,J)=DRON(XYZ(I))/DRON(ELL(J))
* ...and with respect to the total GM:
* DXYZ(I,7)=DRON(XYZ(I))/DRON(RMU)
* IDER : 0 Get the state vector only, or...
* 1 Get the partial derivatives also
* IPRT : Print out results (not used)
*
* Subroutine used: KEPLKH
*/
double rot[2][3];
double tx1[2], tx1t[2];
double ra, rl, rk, rh, rp, rq;
double rn, phi, psi, rki;
int i, j;
double f, sf, cf;
double rlmf, umrsa, asr, rna2sr;
/*
*---- ELEMENTS UTILES --------------------------------------------------
*/
ra=ell[0];
rl=ell[1];
rk=ell[2];
rh=ell[3];
rq=ell[4];
rp=ell[5];
rn=sqrt(rmu/(ra*ra*ra));
phi=sqrt( 1.0 - rk*rk - rh*rh );
rki = sqrt( 1.0 - rq*rq - rp*rp );
psi = 1.0/(1.0 + phi);
/*
*---- Rotational matrix: ----------------------------------------------
*/
rot[0][0] = 1.0 - 2*rp*rp;
rot[1][0] = 2*rp*rq;
rot[0][1] = 2*rp*rq;
rot[1][1] = 1.0 - 2*rq*rq;
rot[0][2] = -2*rp*rki;
rot[1][2] = 2*rq*rki;
/*
*---- CALCUL DE LA LONGITUDE EXCENTRIQUE F -----------------------------
*---- F = ANOMALIE EXCENTRIQUE E + LONGITUDE DU PERIAPSE OMEGAPI -------
*/
f = keplkh( rl, rk, rh);
sf =sin(f);
cf =cos(f);
rlmf =-rk*sf+rh*cf;
umrsa =rk*cf+rh*sf;
asr =1.0/(1.0-umrsa);
rna2sr=rn*ra*asr;
/*
*---- CALCUL DE TX1 ET TX1T --------------------------------------------
tx1 = (x, y) location of satellite in the plane of its own orbit,
tx1t = (vx, vy) in similar plane, z = vz = 0.
*/
tx1[0] =ra*(cf-psi*rh*rlmf-rk);
tx1[1] =ra*(sf+psi*rk*rlmf-rh);
tx1t[0]=rna2sr*(-sf+psi*rh*umrsa);
tx1t[1]=rna2sr*( cf-psi*rk*umrsa);
/*
*---- CALCUL DE XYZ ----------------------------------------------------
Now rotate from the plane of the orbit to the plane of Uranus' equator.
*/
for (i=0; i<3; i++)
{
xyz[i] =0.0;
xyz[i+3]=0.0;
for (j=0; j<2; j++)
{
xyz[i] += rot[j][i]*tx1[j];
xyz[i+3] += rot[j][i]*tx1t[j];
}
}
}
// Position
// Compute position and velocity components for a single satellite
// at a specified time.
#define VERY_VERBOSE_OUTPUT
/* Define the above to get a "play-by-play" of what values are */
/* computed. Should make it easier to build an implementation */
/* of this theory, since you can get test values... */
#ifdef VERY_VERBOSE_OUTPUT
#include <stdio.h>
#endif
void __stdcall gust86_posn( const double jde, const int isat, double *r )
// Input arguments:
// jde Julian date, TDT
// isat Satellite index
//
// Output arguments
// r Data array [0..2] position, [3..5] velocity components.
// These are equatorial rectangular coordinates in km and
// km/sec respectively, referred to epoch J2000.0.
{
static const double gms[5] =
{ // GM of each of the five satellites
4.4, 86.1, 84.0, 230.0, 200.0 // in km^3/s^2
};
const double AU_in_km = 149597870.0; // 1AU in km
// NOTE: modern value is 149597870.7, 700 m larger
const double t0 = 2444239.5; // origin date for the theory = 1980 Jan 1
const double gmsu = 5794554.5; // Total GM of Uranus plus satellites,
// in km^3/s^2
const double gmu = gmsu - (gms[0]+gms[1]+gms[2]+gms[3]+gms[4]);
/* Above is GM of Uranus alone, without the satellites */
/* Satellite GMs sum to 604.5; gmu = 5794950.5 */
const double rmu = gmu + gms[isat];
/* Above is GM of Uranus plus the satellite we want */
const double seconds_per_day = 24. * 60. * 60.;
const double seconds_per_day_squared = seconds_per_day * seconds_per_day;
const double days_since_1980 = jde - t0;
double el[6], xu[6];
int i, j;
/*---- INITIALISATIONS --------------------------------------------------*/
/*---- Test parameters: ----------------------------------------------*/
gust86_mean_parameters( jde);
// The function to call depends on the satellite.
switch (isat)
{
case GUST86_ARIEL:
ariel_elems( days_since_1980, el);
break;
case GUST86_UMBRIEL:
umbriel_elems( days_since_1980, el);
break;
case GUST86_TITANIA:
titania_elems( days_since_1980, el);
break;
case GUST86_OBERON:
oberon_elems( days_since_1980, el);
break;
case GUST86_MIRANDA:
miranda_elems( days_since_1980, el);
break;
default: /* should never happen */
assert( 1);
return;
}
#ifdef VERY_VERBOSE_OUTPUT
printf( "Asked for satellite %d at JDE %f\n", isat, jde);
printf( "elems %f %f %f %f %f %f\n",
el[0], el[1], el[2], el[3], el[4], el[5]);
#endif
/* el[0] from the above actually gives the mean motion, in radians
per day. Use Kepler's 3rd law to convert this to a semimajor
axis in kilometers. */
el[0] = pow( rmu*seconds_per_day_squared/(el[0] * el[0]), 1.0/3.0 );
/*---- Calculate Uranicentric XYZ coordinates (position & velocity) ----- */
ellipx( el, rmu, xu );
#ifdef VERY_VERBOSE_OUTPUT
printf( " Revised el[0]: %f km\n", el[0]);
printf( " Posn/vel in Uranus' plane:\n");
printf( " %14.6f %14.6f %14.6f km\n", xu[0], xu[1], xu[2]);
printf( " %14.6f %14.6f %14.6f km/s\n", xu[3], xu[4], xu[5]);
#endif
for( i=0; i<6; i++)
r[i] = 0.0;
/* Output is in the Uranicentric frame of reference. Doing */
/* a matrix multiply by 'trans' converts to J2000. See */
/* 'gust_ref.cpp' for details as to how this matrix was made. */
for( i=0; i<3; i++)
for( j=0; j<3; j++)
{
const double trans[3][3] = {
{ 0.9753206898, -0.2207422915, 0.0047321138},
{ 0.0619432123, 0.2529905682, -0.9654837185},
{ 0.2119259083, 0.9419493686, 0.2604204221} };
r[i] += trans[j][i]*xu[j];
r[i+3] += trans[j][i]*xu[j+3];
}
#ifdef VERY_VERBOSE_OUTPUT
printf( " Posn/vel in J2000:\n");
printf( " %14.6f %14.6f %14.6f km\n", r[0], r[1], r[2]);
printf( " %14.6f %14.6f %14.6f km/s\n", r[3], r[4], r[5]);
#endif
for (i=0; i<6; i++) /* scale output to be in AU & AU/s */
r[i] /= AU_in_km;
}