
Improved scaling of the disk space taken by the Bitcoin

blockchain

Benjamin Loison

june 2021

1 Summary

The concept of blockchains is recent in computer science, de�ned for its famous application
in Bitcoin by S. Nakamoto in 2008. Bitcoin is a blockchain allowing exchanges of the virtual
currency Bitcoin in a decentralized way, that is to say without intervention of states or banks.
One of the major challenges for blockchains is scaling, that is, maintaining stability and easy
interaction with the blockchain even if the number of users increases by an order of magnitude.
In the case of Bitcoin, in order to verify transactions, users, also known as nodes, must check
that every transaction on the network is correct. However, to do this, they must trace the source
of the money throughout Bitcoin's 358 Gb history. This amount of linearly stored data in use
of the blockchain, on the one hand, slows down the initialization of users (who then have to
download the entire Bitcoin peer-to-peer network), and on the other hand, prevents ordinary
users using, for example, their phones, from checking the network.
Our solution, being a special case of the article "Mining in Logarithmic Space" [4] dealing
with blockchains in general, consists in storing only a veri�ed current state of the monetary
amount belonging to each user. This allows to reduce the bandwidth consumption and also the
storage from 358 Gb to 4.3 Gb, although solutions for the storage already exist. Indeed a major
problem for someone wanting to participate in the protocol is the initialization. In practice,
initialization takes 10 days with a �ber connection since the download of the Bitcoin blockchain
from the nodes is very slow, in addition to the 358 Gb that the initializing node must allocate
to keep the Bitcoin blockchain. These two points discourage many enthusiasts, even though
Bitcoin is intended to be a decentralized cryptocurrency secured by everyone's participation in
the protocol.
In the particular case of Bitcoin, if we implement our approach while keeping the old protocol
running, we notice that the current state of the new protocol can only be veri�ed by the
nodes running the new protocol. However, we can also notice that only the last veri�cation
is considered in our approach. Since this one is the result of the consensus of the majority of
the nodes running the new protocol and the already initialized nodes switching to the new
protocol can verify this hash independently, we can hope that our contribution guarantees the
correctness of the data shared by the blockchain.
In this way, if such an approach were used to initialize the 10,000+ Bitcoin nodes, we could save
over 3,500 Tb of bandwidth and storage. To allow new nodes to initialize using this fast and
lightweight approach, we would need to propose a modi�cation to Bitcoin Core implementing
our approach and a modi�cation to one of the software packages used to mine Bitcoin.

1



Table of contents

1 Summary 1

2 Introduction 3

3 How Bitcoin Works 4

4 Progress 4

4.1 The main idea of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 The advantages of our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 The di�culties in applying our approach to Bitcoin . . . . . . . . . . . . . . . . 5

4.3.1 Presentation of the two problems . . . . . . . . . . . . . . . . . . . . . . 5
4.3.2 Only a hard fork to apply the theory ? . . . . . . . . . . . . . . . . . . . 6
4.3.3 The chosen solution : the use of the coinbase . . . . . . . . . . . . . . . . 7

4.4 Pre-implementation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.6 The work that remains to be done to make this approach a reality . . . . . . . . 9

5 Evaluation of the technical contribution 9

6 Meta-information 10

7 Appendices 12

8 Sources 15

9 Acknowledgments 15

2



2 Introduction

The concept of blockchains, is a recent concept in computer science, �rst de�ned by its
famous application in Bitcoin by S. Nakamoto in 2008 [1]. Bitcoin is a blockchain that allows
exchanges of the virtual currency Bitcoin in a decentralized manner, that is, without the in-
tervention of states or banks. When we talk about decentralization in computer networks, it
means that they do not use the widespread master-slave model as when we connect to Google's
servers with our computer for example, but rather a computer-to-computer model, also called
peer-to-peer. It is interesting to note that the �eld of blockchains is one of the few areas where
there is a signi�cant advance of practice over theory, so Bitcoin was only proven safe under
certain conditions in 2014 by Juan A. Garay [2]
One of the great di�culties for blockchains is scaling, that is, maintaining stability and easy
interaction with the blockchain even if the number of users increases by an order of magnitude.
In the case of Bitcoin, in order to verify monetary transactions, whether as a miner (user se-
curing the network) or as a full node (user verifying the network), they must verify that every
transaction on the network is legitimate and correct. However, to do this, they must trace the
source of the money throughout Bitcoin's entire history, which currently weighs 358 Gb as of
2021 [3]. This amount of data stored linearly with the use of the blockchain, on the one hand
slows down the initialization of miners and full nodes (which then have to download the entire
blockchain from the Bitcoin peer-to-peer network), and on the other hand prevents ordinary
users using, for example, their phones, from checking the network.
One idea might be to store only a current, also called snapshot, veri�ed state of the monetary
amount belonging to each user. So instead of going through the whole history of where the
money came from, one can simply check the account balance. This makes it possible to get
rid of the transaction history and thus most of the Bitcoin blockchain while keeping a very
high level of security. My work is based on this ingenious idea from the article "Mining in
Logarithmic Space" [4] which is however very general and which we will try to apply to the
Bitcoin blockchain. Additional problems emerge since, for example, this article does not deal
with the case of a �uctuating di�culty for miners to mine blocks, which is the case in Bitcoin.
In practice, after digital application, the Bitcoin blockchain will be transformed from 358 Gb
to 4.27 Gb, which allows a modern phone to easily check the Bitcoin network and allows a new
user to initialize 84 times faster in the best case.
Indeed, until now, smartphones were based on the Simple Payment Veri�cation (SPV) tech-
nique, which consists of relying on full nodes and having to wait for a certain number of
con�rmations in the blockchain to ensure that the payment made from the smartphone is taken
into account by the network.

3



3 How Bitcoin Works

A blockchain is a storage technology that allows a single database to be distributed among
di�erent actors without the need for a trusted third party. Transactions, monetary in the case
of Bitcoin, are issued to a few full nodes of the blockchain and signed by users wishing to make
an electronic transfer. A node is any network actor participating in the consensus algorithm on
the public register of monetary transactions that is Bitcoin.
In order to secure the network, the nodes transmit from one to another (knowing that a node
is generally connected to about 10 other nodes) the transactions they receive, provided that
they are legitimate and correct. That is to say, they must be issued by the depositary of the
monetary funds involved and that these monetary funds exist in accordance with the history
of previous transactions.
In order to converge the di�erent users' databases due to the transactions propagating in the
network, a level of di�culty is established by the history of the blockchain allowing everyone to
try to solve a cryptographic problem of this di�culty. The user who solves this problem �rst can
propagate the solution to the cryptographic problem and its associated database. The latter is
of course veri�ed by the other nodes receiving it. The nodes participating in this cryptographic
problem are called miners and have a probability of success proportional to their computing
power. The network is secure since it is assumed that the majority of the computing power
is honest. It should also be noted that miners have an incentive to solve the cryptographic
problem since they are rewarded with a �xed number of Bitcoin for success if they are the �rst.
Moreover, if a group of users had more than half of the computing power of the network, they
would have no incentive not to participate honestly, or else they would devalue their assets in
Bitcoin.
The di�culty is determined so that on average the network solves the cryptographic problem
every 10 minutes and it is at this average rate that the pending transactions are "validated".
However, this validation can be questioned and we then speak of a block of transactions at a
certain depth. If this depth is greater than 6, it is commonly considered that the probability
of revoking this block is almost zero. Indeed, if two answers to the cryptographic problem
posed are found at approximately the same time, then the two underlying transaction blocks
may be di�erent. In this case we name it : a fork. We must continue the consensus algorithm
and not consider for the moment either of the two blocks but wait until one branch of blocks
accumulates to be "signi�cantly" longer than the other with, for example, 6 blocks in advance.
Lightweight devices such as phones that do not have the ability to store Bitcoin's history cannot
therefore verify whether or not the payment they have made is actually being taken into account
by the network. The current SPV method, which relies on full nodes transmitting the depth
of the block in which their transactions are, is less secure than if these devices participated
directly in the Bitcoin protocol.

4 Progress

4.1 The main idea of our approach

The challenge of my internship was to try to solve the problem of scaling, in terms of disk
space and bandwidth, of a blockchain.
The idea of the article supporting the internship, "Mining in Logarithmic Space" [4], is to keep
only the current state, also called UTXO set, and some blocks. These blocks are selected as
being the most recent for each level of di�culty of the hashes. In the following when we talk
about a hash, it means the hash of a block like for example :
00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048. The cryptographic pro-

4



blem mentioned above consists in �nding a result by the hash function SHA-256² starting at
least with a certain number of zeros (here the hash starts with 8 hexadecimal zeros). A hash
function is a function that takes a sequence of bits of any size and outputs a sequence of l bits,
256 in the case of SHA-256, this sequence being called a hash. The idea of hash functions is to
make a kind of "summary" of the data input to the function. These hash functions are designed
to allow to trace back to an antecedent from an image only with the help of brute force. In this
way, the miner makes many attempts to vary the antecedent a little and gives a random image
by the hash function's de�nition. Thus everyone has a chance to mine a block that corresponds
to his or her computing power. This proof of work is a way to establish a kind of democracy
depending on the computing power of each person on the internet. The expression of the level
of di�culty of the hashes consists in partitioning the hashes according to the number of zeros
by which they begin exactly.
The proof of work that is the resolution of the cryptographic problem, as it is the case in Bit-
coin, allows to apply the idea of this reference paper [4] and guarantees a very high security.
Indeed the idea consists in putting the current state, also called UTXO set, in the blocks and
in this way a node wishing to initialize only has to take the UTXO set of the 6th block starting
from the end. Moreover this approach proves that the 6th last block is indeed the one it claims
to be by noticing that some blocks have a rare hash compared to the others, i.e. by having
a hash starting with n hexadecimal zeros, we deduce statistically speaking that there are 16
blocks whose hash starts with n− 1 hexadecimal zeros and so on.

4.2 The advantages of our approach

I �rst studied the advantages of applying the "Mining in Logarithmic Space" [4] approach
to the Bitcoin blockchain. They are done at 2 levels :

1. For miners and full nodes : since the initialization would be done by essentially receiving
and storing the UTXO set of about 4.24 Gb of Bitcoin instead of the 358 Gb of the
blockchain. Indeed, according to the table on page 9 [Figure 1], polylog(n)c + kδ is
relatively negligible in front of a. Since n is 695 590 [5], c is up to 97 bytes, k is 6, δ is
between 0 and 2 MB and a is 4.24 Gb.

2. For smartphones using SPV : these lightweight nodes can easily become full nodes since
a weight of 4.24 Gb is bearable on a smartphone as opposed to the 358 Gb previously
required. This way a smartphone can more quickly trust that its transaction is well
registered in the Bitcoin blockchain and its participation as a full node also increases
the security of the network. Mining with a smartphone is irrelevant.

4.3 The di�culties in applying our approach to Bitcoin

4.3.1 Presentation of the two problems

The problem of �uctuating di�culty

The �rst of the two major problems in the case of Bitcoin is to manage the evolution of
the target T . T is a minimum di�culty, for example if T is such that a hash must start with n
zeros then a hash starting with n+ 1 zeros is also above the di�culty T .

To return to the subject of the evolution of the target T , which is the case in Bitcoin every
2,016 blocks, in the paragraph "Variable di�culty" on page 31 [4], the authors remind us that
the theory of their paper works on the condition of having a constant di�culty T . In the case
of variable di�culty, in order to keep the optimal compression they present, they would have

5



to adapt their use of the proofs in the paper "The bitcoin backbone protocol : Analysis and
applications" [2] to those in the paper "The bitcoin backbone protocol with chains of variable
di�culty" [7].
Then, after reading this last paper and thinking about the problems related to changing the
di�culty T , I realized that it was much simpler to take T = T0 with T0 the initial target of
the blockchain and thus the lowest. This would not allow to have the optimal compression
mentioned in the article but it would be enough. Moreover T cannot go below T0 because the
computational capacities of the computers are increasing : the computational requirement of
the protocol remains constant and the number of participating members is increasing and thus
the computational power of the blockchain network is increasing. Thus it is impossible to go
below T0 and there would be other problems related to such a collapse even in the case of the
current Bitoin protocol.

Backwards compatibility

The second main issue is backward compatibility, so using nodes of the new protocol as
well as the old one at the same time should not be problematic. This is called a velvet fork.
For example, in the new protocol, one could identify oneself as having the new protocol to
the node, and thus the use of new functionalities such as sending the Π proof, allowing rapid
initialization, would be possible. In practice it would be necessary to add log n pointers in the
blocks as in the theory. In this one the authors de�ne a set of pointers called interlink set which
consists in having the links of each block of level j to the last blocks of each level lower than j
which precedes it chronologically [Figure 2].
However, I will realize later, with the speci�cation of the binary format of the blocks, that
adding data in these blocks is very complex or even impossible because the header and the
content of each block can't contain additional data and the size of the header is �xed. I was
initially thinking of doing a hard fork. A hard fork as opposed to a velvet fork consists in
changing the protocol implying an impossibility of backward compatibility. This hard fork
would have consisted in including in the block the current state, that would have allowed to
send the block without the current state which it contains and thus, in this way, with the
hash of the block, one could prove to a new node by presenting him a set of UTXO ("which
is not in the chain of blocks") that this one is correct. However, in addition to the hard fork
breaking the backward compatibility, this would make the hash of the blocks complicated for
some components dedicated to it like the ASICs which would then take only about 1 MB as
input to the hash function but several Gb because of the UTXO set. One could then include in
the block only the hash of the UTXO set. However, some problems remain, such as the problem
of numerous ASICs in the case of Bitcoin.

4.3.2 Only a hard fork to apply the theory ?

The theory seems to require a hard fork in the case of Bitcoin to deal with this second
problem. However, I realized that for the implementation to be used in practice, it would have
to be backwards compatible. So we should not change the format of the blocks (this way we
can keep the mining power of Bitcoin). Then we have to rely on other assumptions we have,
like that the majority of users are honest. We could then ask the whole network for the hash
of the UTXO set and only ask for the UTXO set from one of the nodes that sent the majority
hash (and of course check it and if it doesn't match the majority hash by the hash function
we ask another user). In this way the ASICs work in the same way as before, except that
their initialization can be modi�ed. The big disadvantage of this seemingly relevant method
is, apart from the network cost of asking everyone (which may still be reasonable compared to

6



downloading the whole blockchain, since indeed a TCP handshake (used in Bitcoin) is only on
the order of KB and there are only about 10,000 discovered nodes), is the fact that, as long as
few people give the hash of the UTXO set, the majority hash is not necessarily the real one
in the network. However, as users switch to the new protocol, they check the hash of the new
protocol against the data they got from the old one and can by their majority "revoke" the old
hash of the UTXO set.
However, the scalability of network initialization is questionable for this last idea since even if in
the best case scenario where we establish a connection with everyone directly (without having
to discover them), our improvement would favor the enlargement of this same network and
with a linear complexity in the number of new users, this approach would not be sustainable
in the long run. However, a probabilistic approach can perhaps ensure a very high percentage
of certainty by not contacting the whole network.
Moreover, the set of UTXO that we are trying to obtain is of the order of k blocks before
the end of the chain (it can be strictly more than k blocks if it takes more than 10 minutes
to get everyone's hash). The other nodes, helping with initialization, can quite easily store
the order of k last blocks. Each of these nodes does not necessarily have to have the hash
of every UTXO set associated with every block ready to be sent, but can easily determine it
by backtracking with knowledge of the blocks following the requested one and a hash of the
UTXO set of one of these following blocks. In the scenario of high demand (each block hash is
requested more than once), hashing for each block its UTXO set and storing it is however faster.

There remains the problem of keeping for each block a pointer to the blocks that precede
it temporally speaking for each level of di�culty. As said before we cannot integrate this set of
log n pointers in the blocks, we could however generate it from the information already present
in Bitcoin. Indeed, each block refers to the block that precedes it in the blockchain, for each
block we can obtain its hash using the hash function and we can download in a safe way as the
UTXO set all the headers of the blockchain. Thus we have all the information to regenerate
this set of pointers that the support article [4] uses. Moreover we can notice that the size of all
the headers is very small since they weigh only about 62 MB in total because there are about
700,000 blocks where each header can weigh only up to 97 bytes.

4.3.3 The chosen solution : the use of the coinbase

My supervisor then pointed out a more elegant solution. There is only one place where
you can put a little extra data that is not needed in the old protocol : the coinbase. The
coinbase is the transaction that in each block rewards the miner who mined it monetarily. In
each transaction a script with a language de�ned by Bitcoin allows to proceed to veri�cations.
Among the instructions of this language is OP_NOP which does nothing [9]. However, you can't
store much data in it. Nevertheless, if we notice that contrary to the theory, it is not necessary
to store all the pointers (as previously stated), we can see that the location is su�cient.

4.4 Pre-implementation statistics

At that time we were unsure of how exactly their implementation worked in practice. We
then contacted by email the authors of the paper on which we based our work. However, we
only received an answer after two months of waiting. This was not really a problem because the
main idea of the paper that one can use the di�culty levels of the hashes to prove a work done
was the basis from which I thought about how exactly to proceed with the implementation.
Before moving on to any implementation, I did some statistics on the number of hashes starting
with n hexadecimal zeros [Figure 3]. We often talk about hexadecimal or binary zeros starting

7



the hash to imagine the di�culty although in practice a di�culty where the hash starts with
010 is greater than a di�culty where the hash starts with 011, while the number of starting
zeros does not vary. In relation to these statistics of the number of blocks per hexadecimal level,
I thought I was getting a complete binary tree but in reality it seems logical that this is not the
case. Indeed the majority of miners came later when the di�culty was high, around di�culty
level 18, and since Bitcoin's di�culty has tended to increase continuously since the beginning,
we get this distribution.
This was also an opportunity for me to convince myself that I knew how to make a program
analyzing the Bitcoin blockchain that I downloaded with Bitcoin Core respecting the binary
format available online. Afterwards I noticed that in practice the binary zeros of the hashes
involve hexadecimal zeros every 4 bits and therefore the binary zeros were more accurate [Figure
4]

4.5 Results

After implementing and optimizing Algorithm 1 from the support article in C++, I ran it
with Bitcoin blocks in two di�erent ways :

1. by inputting the entire Bitcoin blockchain in one go

2. by giving as input an empty string and the �rst block of Bitcoin and then the resulting
compressed string of this function concatenated with the second block of Bitcoin and so
on over all blocks of Bitcoin.

I then noticed that theorem 3 of the article was veri�ed in practice. It consists brie�y in
verifying that compressing each block and adding it to the compressed of the previous blocks
is ultimately identical to compressing the whole blocks in one go. The veracity of the theorem
is of crucial importance so that the full nodes of the old protocol and those of the new protocol
have the same compressed chain after switching to the new protocol.

The compression of the entire Bitcoin blockchain results in a proof for fast initialization
noted Π = πχ of 2,065 blocks which after individual measurement weighs 0.96 Gb. I made a
vector representation of it [Figure 5]. We can notice that the rectangles at the beginning are
uniform because the di�culty increases and they are the most recent 2 ∗m (with m = 3 ∗ k)
blocks for each level of di�culty. Then more recently we notice that the blocks of higher level
of πχ appear, knowing that this highest level must contain at least 2 ∗m blocks. Focusing on
the cloud of the most recent part of the graph (10/2017), we observe that the �rst blocks of
this cloud are the rarest because of higher di�culty level ℓ : statistically they are older than
the 2 ∗ m most recent blocks of each intermediate level. Then since the blocks of level ℓ − i
(with i ≤ ℓ) are simpler to mine and that in πχ only the most recent 2 ∗m appear, we observe
in a general way in this cloud that the more time goes by, the more the di�culty level of the
blocks decreases. In spite of this gradual descent of the level of di�culty of the blocks, we can
observe the appearance of a block of higher di�culty level intercalating in this descent. Finally,
at the very end, we observe the last k blocks of the blockchain which have been taken as is in
accordance with algorithm 1. [Figure 6]
According to [10] we conclude that the theory put in practice allows to convert precisely the 354
Gb in 4.27 (4.24 + 0.03) Gb which makes a di�erence of 349.73 Gb. This amounts to dividing
the size of the blockchain by a factor of 84.

8



Not counting the Python and C++ algorithms that preprocess the blocks to list them with
the time they were generated, the Bitcoin Core �les they are stored in and where in them and
their associated hashes, my C++ implementation is 800 lines long. I don't think it's particularly
interesting to include it in this report but it is however available on GitHub [11]. However, to talk
about it brie�y, I would point out that by means of macro the user can change the processing
mode : compression of blocks one by one or compression of all at once. Also in my algorithms
to distinguish blocks from each other I only used a reference to the location of the block in the
Bitcoin Core �le containing it.

4.6 The work that remains to be done to make this approach a reality

The goal is to adapt and integrate my code to a mining and full node software in order
to give potential tools helping to run the Bitcoin protocol. We must then succeed in mining
a block in the o�cial blockchain of Bitcoin to integrate our modi�ed coinbase transaction in
order to initialize the new version of the protocol allowing the fast initialization presented by
our approach. We should therefore try to contact a mining pool that could help us with this and
contact the Bitcoin development team to let them know that an implementation in recognized
software in the �eld of this approach has been made and that the theory supports it. An inter-
mediate step would be to proceed in the same way as on the o�cial Bitcoin blockchain but on
the already existing Bitcoin test network. Indeed, such a network already exists and it does not
require the power of a mining pool but only that of a processor to carry out our integration tests.

5 Evaluation of the technical contribution

The idea of reducing each user's bandwidth and hard drive usage by about 350 Gb is appea-
ling, since at the scale of Bitcoin's 10,000+ nodes, this represents about 3,500 Tb. However, it
is important to be clear about the advantages and disadvantages of this method from di�erent
points of view :

1. For light nodes becoming heavier nodes by uploading and storing 4.3 Gb does not increase
their veri�cation speed since they have to wait at least 6 blocks after the transaction
they are studying to consider it permanently validated. However, the security of those
switching to the new protocol not only increases the security of Bitcoin by acting as
veri�cation nodes, but also allows them not to have to depend on other nodes and this
contributes to a gain in security.

2. For enthusiasts, this makes it easier to try to contribute to the Bitcoin protocol, since it
requires much less data to be downloaded to initialize, which is time consuming on such
a peer-to-peer network.

3. With our approach, each user no longer has a Bitcoin transaction history. This can be
seen as a positive for reducing storage space and bandwidth, but it can make it less
reliable, for a new node, to try to download this history anyway by running the old
protocol since fewer users are running it (for a new node).

4. One of the most important negative points is that in case of a fork considered solved
by some (because one of the branches has a 6 blocks lead), if the other branch manages
to compete again with the other branch and win the fork, users who thought this was
impossible will not be able to easily go back and use the other branch. It should be
noted here that there have been a few forks in the Bitcoin blockchain, and theoretically,
although statistically insigni�cant, an old branch that is no longer relevant could compete
and win the fork with the branch that was in the majority until then. It would therefore

9



be necessary to record all the blocks of the alternative branches, or at least the changes
to the UTXO set before the fork, but this improvement was beyond the scope of my
work.

6 Meta-information

The state of the art of the blockchain domain as a basis for re�ection to restrict

to the case of Bitcoin

I have already had an introduction to the topics of cryptography and blockchain at the
MathInFoly summer school in 2019. It was during this course that I learned the fundamentals
and developed the desire to go deeper into these topics.

I did my entire internship remotely because of the current health crisis.
Before having chosen the �nal subject of my internship with my supervisor, she sent me four
research articles in the �eld of blockchains, totaling 65 pages ([12], [13], [14], [15]). These allo-
wed me to distinguish the di�erent research works that can be done : making a general case
of a particular case and vice versa, making incomplete demonstrations, having a new idea in a
domain and seeing where it leads us, deepening already existing works...

In order to fully understand the stakes of blockchain, I read many Wikipedia articles cove-
ring a wide spectrum from blockchain tools to application cases. This reading took me a few
days and was done before the beginning of the 6 weeks internship.
After a few articles the idea of reducing local storage and total transmission of the blockchain
in order to facilitate the scaling of blockchains interested us particularly.

During my internship, my supervisor sent me 8 research papers totalling 390 pages and I
took the initiative to read another one of more than 30 pages so that I could understand the
�eld of blockchains and more precisely the state of the art of the studied theme ([4], [1], [16],
[17], [2], [18], [19], [7], [20]). Reading these di�erent articles occupied a third of the time of the
training course since during these readings I managed to better de�ne and �nd solutions to the
problems of the application of "Mining in Logarithmic Space" [4] to the case of Bitcoin.

In parallel to my re�ection on the theoretical approach and in order to make statistics and
prepare the implementation I downloaded the entire Bitcoin blockchain thanks to the renowned
software in the �eld Bitcoin Core. It was also the occasion to notice the di�culty of becoming a
full node since indeed the download through the Bitcoin peer-to-peer network required 10 days
on a �bered network, which still underlines the interest of reducing the amount of bandwidth
and disk space necessary to initialize the Bitcoin protocol.
Two weeks into the course, my supervisor and I could not �gure out exactly whether or not
the snapshot of the current state noted a was in each block. We also did not understand what
was being sent, only the block or the block with the snapshot, and what exactly was being
hashed. We then sent an email to the authors of the article supporting the course to ask them
for clari�cation. Waiting for their answer didn't put my work on hold and after two weeks I
didn't think I would receive an answer. However, after the internship, two months after our
request, one of the authors of the paper took the time to answer us. In practice, this did not
really change our technical solution.

Programming

10



During the internship I programmed a little in Python, or C++ as soon as the task became
heavy without e�cient multithreading and precise memory management, in order to obtain
statistics that are not easily found on the internet such as the distribution of the hashes of
the blocks sorted by the number of hexadecimal or binary zeros or the respect or not of the
chronological order of storage of the blocks, their sizes...
This programming to obtain these statistics took me little time compared to the last week of
the internship, where after a group consultation with my supervisor and one of her colleagues
doing practical work on blockchains, we decided that I was going to implement our approach
in the particular case of Bitcoin that we had studied and adapted from the general case of
the paper "Mining in Logarithmic Space" [4]. In particular, we had to implement Algorithm
1 of the paper and verify the veracity of Theorem 3 in practice. This was not an obvious
task because my implementation had to be particularly e�cient in compressing the 700,000
blocks of the Bitcoin blockchain in two di�erent ways. Especially in the case of block-by-block
compression, it is quite easy to notice the restriction of algorithmic optimization methods since
the process calling the "Dissolve" function of Algorithm 1 [Figure 6] is iterative and it itself in
its "for" loop line 7 is iterative and cannot be multi-threaded. Indeed the execution of a loop
has repercussions on the following ones, the only possible optimization was to choose the data
structures as well as possible by analyzing the repercussions of an iteration of the loop to the
other one and of a call to the other one of this function "Dissolve". In particular, we had to
understand precisely the binary format of the blocks. In the end, the algorithm took 24 hours
to execute in the case of block-by-block compression with what was already compressed.

11



7 Appendices

Figure 1 � Excerpt from the table on page 9 of "Mining in Logarithmic Space" [4] (BTC
means Bitcoin)

Figure 2 � Set of pointers for "Mining in Logarithmic" Space [4] necessary for the proper
execution of their approach

Figure 3 � Distribution of Bitcoin block hashes by di�culty m (n) where m is the number
of hexadecimal zeros at the beginning of the hash and n is the number of hashes starting
precisely with m hexadecimal zeros

12



Figure 4 � Distribution of Bitcoin block hashes by di�culty m (n) where m is the number
of binary zeros at the beginning of the hash and n is the number of hashes starting precisely
with m binary zeros

Figure 5 � Distribution of the hashes of πχ, where each block has a width of 1 pixel

13



Figure 6 � Algorithm 1 of "Mining in Logarithmic Space" [4] allowing to compress a
blockchain.

C is the chain of blocks
C∗ ↑µ denotes C∗ blocks exactly of level of di�culty µ
C∗ ↑µ {b :} denotes C∗ ↑µ blocks more recent than the b block

14



8 Sources

1. S. Nakamoto. Bitcoin : A peer-to-peer electronic cash system. 2008
2. J. Garay, A. Kiayias, N. Leonardos. The bitcoin backbone protocol : Analysis and applica-
tions (revised 2020)
3. https://www.blockchain.com/charts/blocks-size
4. Aggelos Kiayias, Nikos Leonardos and Dionysis Zindros. Mining in Logarithmic Space. 2021
5. https://www.blockchain.com/btc/blocks
6. https://en.bitcoin.it/wiki/Block
7. J. A. Garay, A. Kiayias, N. Leonardos. The bitcoin backbone protocol with chains of variable
di�culty
8. https://bitnodes.io/
9. https://en.bitcoin.it/wiki/Script
10. https://statoshi.info/d/000000009/unspent-transaction-output-set?orgId=1&refresh=
10m

11. https://github.com/Benjamin-Loison/Mining-in-Logarithmic-Space/blob/main/main.
cpp

12. Geo�rey Saunois, Frédérique Robin, Emmanuelle Anceaume, Bruno Sericola. Permissionless
Consensus based on Proof-of-Eligibility
13. Antoine Durand, Emmanuelle Anceaume, Romaric Ludinard. StakeCube : Combining Shar-
ding and Proof-of-Stake to build Fork-free Secure Permissionless Distributed Ledgers
14. Krishnendu Chatterjee, Amir Kafshdar Goharshady, Arash Pourdamghani. Hybrid Mining
15. Marshall Ball, Alon Rosen, Manuel Sabin, Prashant Nalini Vasudevan. Proofs of Useful Work

16. Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, Ed-
ward W. Felten. SoK : Research Perspectives and Challenges for Bitcoin and Cryptocurrencies
17. Emmanuelle Anceaume. Which Abstractions for the Blockchain Technology
18. Thomas Lajoie-Mazenc. Increasing the robustness of the Bitcoin crypto-system in presence
of undesirable behaviours
19. Aggelos Kiayias, Andrew Miller, Dionysis Zindros. Non-Interactive Proofs of Proof-of-Work
20. Meni Rosenfeld. Predicting Block Halving Party Times

9 Acknowledgments

I am happy to have found an internship allowing me to deepen the �eld of blockchains.
This thematic links cryptography (with mainly hash functions), network architecture and data
architecture, as well as the veri�cation of changes in its data. This modern �eld is particularly
interesting because it allows secure, light and decentralized protocols to share data representing
real facts.
I would particularly like to thank my supervisor Emmanuelle Anceaume from IRISA laboratory.
She knew how to direct me to relevant articles describing the state of the art of the domain. She
has always been attentive, available and willing to listen. I would also like to thank Romaric
Ludinard who made himself available to give me some precious advices on the implementation
part.

15

https://www.blockchain.com/charts/blocks-size
https://www.blockchain.com/btc/blocks
https://en.bitcoin.it/wiki/Block
https://bitnodes.io/
https://en.bitcoin.it/wiki/Script
https://statoshi.info/d/000000009/unspent-transaction-output-set?orgId=1&refresh=10m
https://statoshi.info/d/000000009/unspent-transaction-output-set?orgId=1&refresh=10m
https://github.com/Benjamin-Loison/Mining-in-Logarithmic-Space/blob/main/main.cpp
https://github.com/Benjamin-Loison/Mining-in-Logarithmic-Space/blob/main/main.cpp

	Summary
	Introduction
	How Bitcoin Works
	Progress
	The main idea of our approach
	The advantages of our approach
	The difficulties in applying our approach to Bitcoin
	Presentation of the two problems
	Only a hard fork to apply the theory ?
	The chosen solution: the use of the coinbase

	Pre-implementation statistics
	Results
	The work that remains to be done to make this approach a reality

	Evaluation of the technical contribution
	Meta-information
	Appendices
	Sources
	Acknowledgments

