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Preface

Dear	Reader,

Please	hold	on!	I	know	many	people	typically	do	not	read	the	Preface	of	a	book.	But	I	strongly
recommend	that	you	read	this	particular	Preface.

It	 is	 not	 the	main	 objective	 of	 this	 book	 to	 present	 you	with	 the	 theorems	 and	 proofs	 on	data
structures	 and	algorithms.	 I	 have	 followed	 a	 pattern	 of	 improving	 the	 problem	 solutions	with
different	 complexities	 (for	 each	 problem,	 you	 will	 find	 multiple	 solutions	 with	 different,	 and
reduced,	complexities).	Basically,	it’s	an	enumeration	of	possible	solutions.	With	this	approach,
even	if	you	get	a	new	question,	it	will	show	you	a	way	to	think	about	the	possible	solutions.	You
will	find	this	book	useful	for	interview	preparation,	competitive	exams	preparation,	and	campus
interview	preparations.

As	 a	 job	 seeker,	 if	 you	 read	 the	 complete	 book,	 I	 am	 sure	 you	will	 be	 able	 to	 challenge	 the
interviewers.	If	you	read	it	as	an	instructor,	it	will	help	you	to	deliver	lectures	with	an	approach
that	is	easy	to	follow,	and	as	a	result	your	students	will	appreciate	the	fact	that	they	have	opted	for
Computer	Science	/	Information	Technology	as	their	degree.

This	book	 is	also	useful	 for	Engineering	degree	students	 and	Masters	 degree	 students	 during
their	 academic	 preparations.	 In	 all	 the	 chapters	 you	 will	 see	 that	 there	 is	 more	 emphasis	 on
problems	and	 their	analysis	 rather	 than	on	 theory.	 In	each	chapter,	you	will	 first	 read	about	 the
basic	 required	 theory,	which	 is	 then	 followed	by	 a	 section	 on	problem	 sets.	 In	 total,	 there	 are
approximately	700	algorithmic	problems,	all	with	solutions.

If	 you	 read	 the	 book	 as	 a	 student	 preparing	 for	 competitive	 exams	 for	 Computer	 Science	 /
Information	Technology,	 the	content	covers	all	 the	required	 topics	 in	 full	 detail.	While	writing
this	book,	my	main	focus	was	to	help	students	who	are	preparing	for	these	exams.

In	all	the	chapters	you	will	see	more	emphasis	on	problems	and	analysis	rather	than	on	theory.	In
each	chapter,	you	will	first	see	the	basic	required	theory	followed	by	various	problems.

For	many	problems,	multiple	solutions	are	provided	with	different	levels	of	complexity.	We	start
with	the	brute	force	solution	and	slowly	move	toward	the	best	solution	possible	for	that	problem.
For	each	problem,	we	endeavor	to	understand	how	much	time	the	algorithm	takes	and	how	much
memory	the	algorithm	uses.



It	is	recommended	that	the	reader	does	at	least	one	complete	 reading	of	this	book	to	gain	a	full
understanding	 of	 all	 the	 topics	 that	 are	 covered.	 Then,	 in	 subsequent	 readings	 you	 can	 skip
directly	to	any	chapter	to	refer	to	a	specific	topic.	Even	though	many	readings	have	been	done	for
the	 purpose	 of	 correcting	 errors,	 there	 could	 still	 be	 some	minor	 typos	 in	 the	 book.	 If	 any	 are
found,	 they	 will	 be	 updated	 at	 www.CareerMonk.com.	 You	 can	 monitor	 this	 site	 for	 any
corrections	 and	 also	 for	 new	 problems	 and	 solutions.	 Also,	 please	 provide	 your	 valuable
suggestions	at:	Info@CareerMonk.com.

I	wish	you	all	the	best	and	I	am	confident	that	you	will	find	this	book	useful.

–Narasimha	Karumanchi
M-Tech,	I	IT	Bombay

Founder,	CareerMonk.com

http://www.CareerMonk.com
mailto:Info@CareerMonk.com
http://CareerMonk.com
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The	 objective	 of	 this	 chapter	 is	 to	 explain	 the	 importance	 of	 the	 analysis	 of	 algorithms,	 their
notations,	 relationships	 and	 solving	 as	 many	 problems	 as	 possible.	 Let	 us	 first	 focus	 on
understanding	 the	 basic	 elements	 of	 algorithms,	 the	 importance	 of	 algorithm	 analysis,	 and	 then
slowly	 move	 toward	 the	 other	 topics	 as	 mentioned	 above.	 After	 completing	 this	 chapter,	 you
should	be	able	to	find	the	complexity	of	any	given	algorithm	(especially	recursive	functions).

1.1	Variables

Before	going	to	the	definition	of	variables,	let	us	relate	them	to	old	mathematical	equations.	All	of
us	have	solved	many	mathematical	equations	since	childhood.	As	an	example,	consider	the	below
equation:



We	 don’t	 have	 to	 worry	 about	 the	 use	 of	 this	 equation.	 The	 important	 thing	 that	 we	 need	 to
understand	 is	 that	 the	 equation	 has	 names	 (x	 and	y),	which	 hold	 values	 (data).	 That	means	 the
names	 (x	 and	 y)	 are	 placeholders	 for	 representing	 data.	 Similarly,	 in	 computer	 science
programming	we	need	something	for	holding	data,	and	variables	is	the	way	to	do	that.

1.2	Data	Types

In	 the	 above-mentioned	 equation,	 the	 variables	 x	 and	 y	 can	 take	 any	 values	 such	 as	 integral
numbers	 (10,	20),	 real	numbers	 (0.23,	5.5),	or	 just	0	and	1.	To	solve	 the	equation,	we	need	 to
relate	them	to	the	kind	of	values	they	can	take,	and	data	type	is	the	name	used	in	computer	science
programming	 for	 this	 purpose.	 A	 data	 type	 in	 a	 programming	 language	 is	 a	 set	 of	 data	 with
predefined	 values.	 Examples	 of	 data	 types	 are:	 integer,	 floating	 point,	 unit	 number,	 character,
string,	etc.

Computer	memory	is	all	filled	with	zeros	and	ones.	If	we	have	a	problem	and	we	want	to	code	it,
it’s	very	difficult	to	provide	the	solution	in	terms	of	zeros	and	ones.	To	help	users,	programming
languages	and	compilers	provide	us	with	data	types.	For	example,	integer	 takes	2	bytes	(actual
value	depends	on	compiler),	float	takes	4	bytes,	etc.	This	says	that	in	memory	we	are	combining
2	bytes	(16	bits)	and	calling	it	an	integer.	Similarly,	combining	4	bytes	(32	bits)	and	calling	it	a
float.	A	data	type	reduces	the	coding	effort.	At	the	top	level,	there	are	two	types	of	data	types:

• System-defined	data	types	(also	called	Primitive	data	types)
• User-defined	data	types

System-defined	data	types	(Primitive	data	types)

Data	 types	 that	are	defined	by	system	are	called	primitive	data	 types.	The	primitive	data	 types
provided	by	many	programming	languages	are:	int,	float,	char,	double,	bool,	etc.	The	number	of
bits	allocated	for	each	primitive	data	type	depends	on	the	programming	languages,	the	compiler
and	the	operating	system.	For	the	same	primitive	data	type,	different	languages	may	use	different
sizes.	 Depending	 on	 the	 size	 of	 the	 data	 types,	 the	 total	 available	 values	 (domain)	 will	 also
change.

For	example,	“int”	may	take	2	bytes	or	4	bytes.	If	it	takes	2	bytes	(16	bits),	then	the	total	possible
values	 are	minus	 32,768	 to	 plus	 32,767	 (-215	 to	 215-1).	 If	 it	 takes	 4	 bytes	 (32	 bits),	 then	 the
possible	values	are	between	-2,147,483,648	and	+2,147,483,647	(-231	to	231-1).	The	same	is	the
case	with	other	data	types.

User	defined	data	types

If	the	system-defined	data	types	are	not	enough,	then	most	programming	languages	allow	the	users



to	define	their	own	data	types,	called	user	–	defined	data	types.	Good	examples	of	user	defined
data	types	are:	structures	in	C/C	+	+	and	classes	in	Java.	For	example,	in	the	snippet	below,	we
are	combining	many	system-defined	data	types	and	calling	the	user	defined	data	type	by	the	name
“newType”.	This	gives	more	flexibility	and	comfort	in	dealing	with	computer	memory.

1.3	Data	Structures

Based	on	 the	discussion	above,	once	we	have	data	 in	variables,	we	need	some	mechanism	for
manipulating	 that	 data	 to	 solve	 problems.	Data	 structure	 is	 a	 particular	 way	 of	 storing	 and
organizing	 data	 in	 a	 computer	 so	 that	 it	 can	 be	 used	 efficiently.	A	data	 structure	 is	 a	 special
format	for	organizing	and	storing	data.	General	data	structure	 types	 include	arrays,	 files,	 linked
lists,	stacks,	queues,	trees,	graphs	and	so	on.

Depending	on	the	organization	of	the	elements,	data	structures	are	classified	into	two	types:

1) Linear	 data	 structures:	 Elements	 are	 accessed	 in	 a	 sequential	 order	 but	 it	 is	 not
compulsory	to	store	all	elements	sequentially.	Examples:	Linked	Lists,	Stacks	and
Queues.

2) Non	–	linear	data	structures:	Elements	of	this	data	structure	are	stored/accessed	in	a
non-linear	order.	Examples:	Trees	and	graphs.

1.4	Abstract	Data	Types	(ADTs)

Before	 defining	 abstract	 data	 types,	 let	 us	 consider	 the	 different	 view	 of	 system-defined	 data
types.	 We	 all	 know	 that,	 by	 default,	 all	 primitive	 data	 types	 (int,	 float,	 etc.)	 support	 basic
operations	 such	 as	 addition	 and	 subtraction.	 The	 system	 provides	 the	 implementations	 for	 the
primitive	 data	 types.	 For	 user-defined	 data	 types	 we	 also	 need	 to	 define	 operations.	 The
implementation	for	these	operations	can	be	done	when	we	want	to	actually	use	them.	That	means,
in	general,	user	defined	data	types	are	defined	along	with	their	operations.

To	simplify	the	process	of	solving	problems,	we	combine	the	data	structures	with	their	operations
and	we	call	this	Abstract	Data	Types	(ADTs).	An	ADT	consists	of	two	parts:

1. Declaration	of	data



2. Declaration	of	operations

Commonly	 used	 ADTs	 include:	 Linked	 Lists,	 Stacks,	 Queues,	 Priority	 Queues,	 Binary	 Trees,
Dictionaries,	 Disjoint	 Sets	 (Union	 and	 Find),	 Hash	 Tables,	 Graphs,	 and	 many	 others.	 For
example,	stack	uses	LIFO	(Last-In-First-Out)	mechanism	while	storing	the	data	in	data	structures.
The	last	element	inserted	into	the	stack	is	the	first	element	that	gets	deleted.	Common	operations
of	 it	 are:	 creating	 the	 stack,	pushing	an	element	onto	 the	 stack,	popping	an	element	 from	stack,
finding	the	current	top	of	the	stack,	finding	number	of	elements	in	the	stack,	etc.

While	 defining	 the	 ADTs	 do	 not	 worry	 about	 the	 implementation	 details.	 They	 come	 into	 the
picture	only	when	we	want	to	use	them.	Different	kinds	of	ADTs	are	suited	to	different	kinds	of
applications,	and	some	are	highly	specialized	to	specific	tasks.	By	the	end	of	this	book,	we	will
go	through	many	of	them	and	you	will	be	in	a	position	to	relate	the	data	structures	to	the	kind	of
problems	they	solve.

1.5	What	is	an	Algorithm?

Let	 us	 consider	 the	 problem	of	 preparing	 an	omelette.	 To	 prepare	 an	 omelette,	we	 follow	 the
steps	given	below:

1) Get	the	frying	pan.
2) Get	the	oil.

a. Do	we	have	oil?
		i.	If	yes,	put	it	in	the	pan.
ii.	If	no,	do	we	want	to	buy	oil?

1. If	yes,	then	go	out	and	buy.
2. If	no,	we	can	terminate.

3) Turn	on	the	stove,	etc...

What	we	are	doing	is,	for	a	given	problem	(preparing	an	omelette),	we	are	providing	a	step-by-
step	procedure	for	solving	it.	The	formal	definition	of	an	algorithm	can	be	stated	as:

An	algorithm	is	the	step-by-step	unambiguous	instructions	to	solve	a	given	problem.

In	 the	 traditional	 study	 of	 algorithms,	 there	 are	 two	 main	 criteria	 for	 judging	 the	 merits	 of
algorithms:	 correctness	 (does	 the	 algorithm	 give	 solution	 to	 the	 problem	 in	 a	 finite	 number	 of
steps?)	and	efficiency	(how	much	resources	(in	terms	of	memory	and	time)	does	it	take	to	execute
the).

Note:	We	do	not	have	to	prove	each	step	of	the	algorithm.

1.6	Why	the	Analysis	of	Algorithms?



To	go	from	city	“A”	to	city	“B”,	there	can	be	many	ways	of	accomplishing	this:	by	flight,	by	bus,
by	train	and	also	by	bicycle.	Depending	on	the	availability	and	convenience,	we	choose	the	one
that	 suits	 us.	 Similarly,	 in	 computer	 science,	multiple	 algorithms	 are	 available	 for	 solving	 the
same	problem	(for	example,	a	sorting	problem	has	many	algorithms,	like	insertion	sort,	selection
sort,	 quick	 sort	 and	many	more).	Algorithm	 analysis	 helps	 us	 to	 determine	which	 algorithm	 is
most	efficient	in	terms	of	time	and	space	consumed.

1.7	Goal	of	the	Analysis	of	Algorithms

The	goal	of	the	analysis	of	algorithms	is	to	compare	algorithms	(or	solutions)	mainly	in	terms	of
running	time	but	also	in	terms	of	other	factors	(e.g.,	memory,	developer	effort,	etc.)

1.8	What	is	Running	Time	Analysis?

It	is	the	process	of	determining	how	processing	time	increases	as	the	size	of	the	problem	(input
size)	increases.	Input	size	is	the	number	of	elements	in	the	input,	and	depending	on	the	problem
type,	the	input	may	be	of	different	types.	The	following	are	the	common	types	of	inputs.

• Size	of	an	array
• Polynomial	degree
• Number	of	elements	in	a	matrix
• Number	of	bits	in	the	binary	representation	of	the	input
• Vertices	and	edges	in	a	graph.

1.9	How	to	Compare	Algorithms

To	compare	algorithms,	let	us	define	a	few	objective	measures:

Execution	times?	Not	a	good	measure	as	execution	times	are	specific	to	a	particular	computer.

Number	of	statements	executed?	Not	a	good	measure,	 since	 the	number	of	statements	varies
with	the	programming	language	as	well	as	the	style	of	the	individual	programmer.

Ideal	solution?	Let	us	assume	that	we	express	the	running	time	of	a	given	algorithm	as	a	function
of	 the	 input	 size	 n	 (i.e.,	 f(n))	 and	 compare	 these	 different	 functions	 corresponding	 to	 running
times.	This	kind	of	comparison	is	independent	of	machine	time,	programming	style,	etc.

1.10	What	is	Rate	of	Growth?

The	rate	at	which	the	running	time	increases	as	a	function	of	input	is	called	rate	of	growth.	Let	us



assume	that	you	go	to	a	shop	to	buy	a	car	and	a	bicycle.	 If	your	friend	sees	you	there	and	asks
what	you	are	buying,	then	in	general	you	say	buying	a	car.	This	is	because	the	cost	of	the	car	is
high	compared	to	the	cost	of	the	bicycle	(approximating	the	cost	of	the	bicycle	to	the	cost	of	the
car).

For	the	above-mentioned	example,	we	can	represent	the	cost	of	the	car	and	the	cost	of	the	bicycle
in	 terms	 of	 function,	 and	 for	 a	 given	 function	 ignore	 the	 low	 order	 terms	 that	 are	 relatively
insignificant	(for	 large	value	of	 input	size,	n).	As	an	example,	 in	 the	case	below,	n4,	2n2,	100n
and	500	are	 the	individual	costs	of	some	function	and	approximate	to	n4	 since	n4	 is	 the	highest
rate	of	growth.

1.11	Commonly	Used	Rates	of	Growth

The	diagram	below	shows	the	relationship	between	different	rates	of	growth.



Below	is	the	list	of	growth	rates	you	will	come	across	in	the	following	chapters.



1.12	Types	of	Analysis

To	analyze	the	given	algorithm,	we	need	to	know	with	which	inputs	the	algorithm	takes	less	time
(performing	wel1)	and	with	which	inputs	the	algorithm	takes	a	long	time.	We	have	already	seen
that	an	algorithm	can	be	represented	in	 the	form	of	an	expression.	That	means	we	represent	 the
algorithm	with	multiple	expressions:	one	for	the	case	where	it	takes	less	time	and	another	for	the
case	where	it	takes	more	time.

In	general,	the	first	case	is	called	the	best	case	and	the	second	case	is	called	the	worst	case	 for
the	algorithm.	To	analyze	an	algorithm	we	need	some	kind	of	syntax,	and	that	forms	the	base	for
asymptotic	analysis/notation.	There	are	three	types	of	analysis:

• Worst	case
○ Defines	 the	 input	 for	which	 the	 algorithm	 takes	 a	 long	 time	 (slowest

time	to	complete).
○ Input	is	the	one	for	which	the	algorithm	runs	the	slowest.

• Best	case
○ Defines	 the	 input	 for	which	 the	algorithm	 takes	 the	 least	 time	 (fastest

time	to	complete).
○ Input	is	the	one	for	which	the	algorithm	runs	the	fastest.

• Average	case
○ Provides	a	prediction	about	the	running	time	of	the	algorithm.
○ Run	 the	 algorithm	many	 times,	 using	many	 different	 inputs	 that	 come

from	 some	distribution	 that	 generates	 these	 inputs,	 compute	 the	 total
running	 time	 (by	 adding	 the	 individual	 times),	 and	 divide	 by	 the
number	of	trials.

○ Assumes	that	the	input	is	random.

Lower	Bound	<=	Average	Time	<=	Upper	Bound



For	 a	 given	 algorithm,	 we	 can	 represent	 the	 best,	 worst	 and	 average	 cases	 in	 the	 form	 of
expressions.	As	an	example,	let	f(n)	be	the	function	which	represents	the	given	algorithm.

Similarly	for	the	average	case.	The	expression	defines	the	inputs	with	which	the	algorithm	takes
the	average	running	time	(or	memory).

1.13	Asymptotic	Notation

Having	 the	 expressions	 for	 the	 best,	 average	 and	worst	 cases,	 for	 all	 three	 cases	 we	 need	 to
identify	the	upper	and	lower	bounds.	To	represent	these	upper	and	lower	bounds,	we	need	some
kind	of	 syntax,	and	 that	 is	 the	 subject	of	 the	 following	discussion.	Let	us	assume	 that	 the	given
algorithm	is	represented	in	the	form	of	function	f(n).

1.14	Big-O	Notation	[Upper	Bounding	Function]

This	notation	gives	the	tight	upper	bound	of	the	given	function.	Generally,	it	is	represented	as	f(n)
=	O(g(n)).	That	means,	at	larger	values	of	n,	the	upper	bound	of	f(n)	is	g(n).	For	example,	if	f(n)
=	n4	 +	 100n2	 +	 10n	 +	 50	 is	 the	 given	 algorithm,	 then	 n4	 is	 g(n).	 That	 means	 g(n)	 gives	 the
maximum	rate	of	growth	for	f(n)	at	larger	values	of	n.



Let	us	see	the	O–notation	with	a	little	more	detail.	O–notation	defined	as	O(g(n))	=	{f(n):	 there
exist	positive	constants	c	and	n0	such	that	0	≤	f(n)	≤	cg(n)	for	all	n	>	n0}.	g(n)	is	an	asymptotic
tight	 upper	 bound	 for	 f(n).	 Our	 objective	 is	 to	 give	 the	 smallest	 rate	 of	 growth	g(n)	which	 is
greater	than	or	equal	to	the	given	algorithms’	rate	of	growth	/(n).

Generally	we	discard	lower	values	of	n.	That	means	the	rate	of	growth	at	lower	values	of	n	is	not
important.	In	the	figure,	n0	is	the	point	from	which	we	need	to	consider	the	rate	of	growth	for	a
given	algorithm.	Below	n0,	 the	 rate	of	growth	could	be	different.	n0	 is	 called	 threshold	 for	 the
given	function.

Big-O	Visualization

O(g(n))	 is	 the	set	of	 functions	with	smaller	or	 the	same	order	of	growth	as	g(n).	 For	 example;
O(n2)	includes	O(1),	O(n),	O(nlogn),	etc.

Note:	Analyze	the	algorithms	at	larger	values	of	n	only.	What	this	means	is,	below	n0	we	do	not
care	about	the	rate	of	growth.

Big-O	Examples

Example-1	Find	upper	bound	for	f(n)	=	3n	+	8

Solution:	3n	+	8	≤	4n,	for	all	n	≥	8
∴	3n	+	8	=	O(n)	with	c	=	4	and	n0	=	8



Example-2	Find	upper	bound	for	f(n)	=	n2	+	1

Solution:	n2	+	1	≤	2n2,	for	all	n	≥	1
∴	n2	+	1	=	O(n2)	with	c	=	2	and	n0	=	1

Example-3	Find	upper	bound	for	f(n)	=	n4	+	100n2	+	50

Solution:	n4	+	100n2	+	50	≤	2n4,	for	all	n	≥	11
∴	n4	+	100n2	+	50	=	O(n4	)	with	c	=	2	and	n0	=	11

Example-4	Find	upper	bound	for	f(n)	=	2n3	–	2n2

Solution:	2n3	–	2n2	≤	2n3,	for	all	n	>	1
∴	2n3	–	2n2	=	O(n3	)	with	c	=	2	and	n0	=	1

Example-5	Find	upper	bound	for	f(n)	=	n

Solution:	n	≤	n,	for	all	n	≥	1
∴	n	=	O(n)	with	c	=	1	and	n0	=	1

Example-6	Find	upper	bound	for	f(n)	=	410

Solution:	410	≤	410,	for	all	n	>	1
∴	410	=	O(1)	with	c	=	1	and	n0	=	1

No	Uniqueness?

There	is	no	unique	set	of	values	for	n0	and	c	in	proving	the	asymptotic	bounds.	Let	us	consider,
100n	+	5	=	O(n).	For	this	function	there	are	multiple	n0	and	c	values	possible.

Solution1:	100n	+	5	≤	100n	+	n	=	101n	≤	101n,	for	all	n	≥	5,	n0	=	5	and	c	=	101	is	a	solution.

Solution2:	100n	+	5	≤	100n	+	5n	=	105n	≤	105n,	 for	all	n	>	1,	n0	=	1	and	c	=	105	 is	also	a
solution.

1.15	Omega-Q	Notation	[Lower	Bounding	Function]

Similar	to	the	O	discussion,	this	notation	gives	the	tighter	lower	bound	of	the	given	algorithm	and
we	represent	it	as	 f(n)	=	Ω(g(n)).	That	means,	at	 larger	values	of	n,	 the	 tighter	 lower	bound	of
f(n)	is	g(n).	For	example,	if	f(n)	=	100n2	+	10n	+	50,	g(n)	is	Ω(n2).



The	Ω	notation	can	be	defined	as	Ω(g(n))	=	{f(n):	there	exist	positive	constants	c	and	n0	such	that
0	≤	cg(n)	≤	f(n)	for	all	n	≥	n0}.	g(n)	is	an	asymptotic	tight	lower	bound	for	f(n).	Our	objective	is
to	give	the	largest	rate	of	growth	g(n)	which	is	less	than	or	equal	to	the	given	algorithm’s	rate	of
growth	f(n).

Ω	Examples

Example-1	Find	lower	bound	for	f(n)	=	5n2.

Solution:	∃	c,	n0	Such	that:	0	≤	cn2≤	5n2	⇒	cn2	≤	5n2	⇒	c	=	5	and	n0	=	1
∴	5n2	=	Ω(n2)	with	c	=	5	and	n0	=	1

Example-2	Prove	f(n)	=	100n	+	5	≠	Ω(n2).

Solution:	∃	c,	n0	Such	that:	0	≤	cn2	≤	100n	+	5
100n	+	5	≤	100n	+	5n(∀n	≥	1)	=	105n
cn2	≤	105n	⇒	n(cn	-	105)	≤	0
Since	n	is	positive	⇒cn	-	105	≤0	⇒	n	≤105/c

⇒	Contradiction:	n	cannot	be	smaller	than	a	constant

Example-3	2n	=	Q(n),	n3	=	Q(n3),	=	O(logn).



1.16	Theta-Θ	Notation	[Order	Function]

This	notation	decides	whether	the	upper	and	lower	bounds	of	a	given	function	(algorithm)	are	the
same.	The	average	running	time	of	an	algorithm	is	always	between	the	lower	bound	and	the	upper
bound.	If	the	upper	bound	(O)	and	lower	bound	(Ω)	give	the	same	result,	then	the	Θ	notation	will
also	have	the	same	rate	of	growth.

As	an	example,	let	us	assume	that	f(n)	=	10n	+	n	 is	 the	expression.	Then,	 its	 tight	upper	bound
g(n)	is	O(n).	The	rate	of	growth	in	the	best	case	is	g(n)	=	O(n).

In	 this	 case,	 the	 rates	of	growth	 in	 the	best	 case	 and	worst	 case	 are	 the	 same.	As	 a	 result,	 the
average	 case	 will	 also	 be	 the	 same.	 For	 a	 given	 function	 (algorithm),	 if	 the	 rates	 of	 growth
(bounds)	for	O	and	Ω	are	not	the	same,	then	the	rate	of	growth	for	the	Θ	case	may	not	be	the	same.
In	this	case,	we	need	to	consider	all	possible	time	complexities	and	take	the	average	of	those	(for
example,	for	a	quick	sort	average	case,	refer	to	the	Sorting	chapter).

Now	consider	the	definition	of	Θ	notation.	It	 is	defined	as	Θ(g(n))	=	{f(n):	 there	exist	positive
constants	c1,c2	and	n0	such	that	0	≤	c1g(n)	≤	f(n)	≤	c2g(n)	for	all	n	≥	n0}.	g(n)	 is	an	asymptotic
tight	bound	for	f(n).	Θ(g(n))	is	the	set	of	functions	with	the	same	order	of	growth	as	g(n).

Θ	Examples



Example	1	Find	Θ	bound	for	

Solution:	 	for	all,	n	≥	2

∴	 	with	c1	=	1/5,c2	=	1	and	n0	=	2

Example	2	Prove	n	≠	Θ(n2)

Solution:	c1	n2	≤	n	≤	c2n2	⇒	only	holds	for:	n	≤	1/c1
∴	n	≠	Θ(n2)

Example	3	Prove	6n3	≠	Θ(n2)

Solution:	c1	n2≤	6n3	≤	c2	n2	⇒	only	holds	for:	n	≤	c2	/6
∴	6n3	≠	Θ(n2)

Example	4	Prove	n	≠	Θ(logn)

Solution:	c1logn	≤	n	≤	c2logn	⇒	c2	≥	 ,	∀	n	≥	n0	–	Impossible

1.17	Important	Notes

For	analysis	(best	case,	worst	case	and	average),	we	try	to	give	the	upper	bound	(O)	and	lower
bound	(Ω)	and	average	running	time	(Θ).	From	the	above	examples,	it	should	also	be	clear	that,
for	a	given	function	(algorithm),	getting	the	upper	bound	(O)	and	lower	bound	(Ω)	and	average
running	time	(Θ)	may	not	always	be	possible.	For	example,	if	we	are	discussing	the	best	case	of
an	algorithm,	we	try	to	give	the	upper	bound	(O)	and	lower	bound	(Ω)	and	average	running	time
(Θ).

In	the	remaining	chapters,	we	generally	focus	on	the	upper	bound	(O)	because	knowing	the	lower
bound	(Ω)	of	an	algorithm	is	of	no	practical	importance,	and	we	use	the	Θ	notation	if	the	upper
bound	(O)	and	lower	bound	(Ω)	are	the	same.

1.18	Why	is	it	called	Asymptotic	Analysis?

From	the	discussion	above	(for	all	three	notations:	worst	case,	best	case,	and	average	case),	we
can	easily	understand	 that,	 in	every	case	for	a	given	function	 f(n)	we	are	 trying	 to	 find	another
function	g(n)	which	 approximates	 f(n)	 at	 higher	 values	 of	 n.	 That	means	 g(n)	 is	 also	 a	 curve
which	approximates	f(n)	at	higher	values	of	n.

In	mathematics	we	call	such	a	curve	an	asymptotic	curve.	In	other	terms,	g(n)	is	the	asymptotic



curve	for	f(n).	For	this	reason,	we	call	algorithm	analysis	asymptotic	analysis.

1.19	Guidelines	for	Asymptotic	Analysis

There	are	some	general	rules	to	help	us	determine	the	running	time	of	an	algorithm.

1) Loops:	 The	 running	 time	 of	 a	 loop	 is,	 at	 most,	 the	 running	 time	 of	 the	 statements
inside	the	loop	(including	tests)	multiplied	by	the	number	of	iterations.

Total	time	=	a	constant	c	×	n	=	c	n	=	O(n).

2) Nested	loops:	Analyze	from	the	inside	out.	Total	running	time	is	 the	product	of	 the
sizes	of	all	the	loops.

Total	time	=	c	×	n	×	n	=	cn2	=	O(n2).

3) Consecutive	statements:	Add	the	time	complexities	of	each	statement.



Total	time	=	c0	+	c1n	+	c2n2	=	O(n2).

4) If-then-else	statements:	Worst-case	running	time:	the	test,	plus	either	the	then	part
or	the	else	part	(whichever	is	the	larger).

Total	time	=	c0	+	c1	+	(c2	+	c3)	*	n	=	O(n).

5) Logarithmic	complexity:	An	algorithm	is	O(logn)	 if	 it	 takes	a	constant	 time	 to	cut
the	problem	size	by	 a	 fraction	 (usually	by	½).	As	 an	 example	 let	 us	 consider	 the
following	program:



If	we	observe	carefully,	the	value	of	i	is	doubling	every	time.	Initially	i	=	1,	in	next	step	i
=	2,	and	in	subsequent	steps	 i	=	4,8	and	so	on.	Let	us	assume	that	 the	 loop	 is	executing
some	k	 times.	At	kth	 step	2k	=	n,	and	at	 (k	+	1)th	 step	we	come	out	 of	 the	 loop.	 Taking
logarithm	on	both	sides,	gives

Total	time	=	O(logn).

Note:	 Similarly,	 for	 the	 case	 below,	 the	 worst	 case	 rate	 of	 growth	 is	 O(logn).	 The	 same
discussion	holds	good	for	the	decreasing	sequence	as	well.

Another	example:	binary	search	(finding	a	word	in	a	dictionary	of	n	pages)

• Look	at	the	center	point	in	the	dictionary
• Is	the	word	towards	the	left	or	right	of	center?
• Repeat	the	process	with	the	left	or	right	part	of	the	dictionary	until	the	word	is	found.

1.20	Simplyfying	properties	of	asymptotic	notations

• Transitivity:	f(n)	=	Θ(g(n))	and	g(n)	=	Θ(h(n))	⇒	f(n)	=	Θ(h(n)).	Valid	for	O	and	Ω
as	well.

• Reflexivity:	f(n)	=	Θ(f(n)).	Valid	for	O	and	Ω.
• Symmetry:	f(n)	=	Θ(g(n))	if	and	only	if	g(n)	=	Θ(f(n)).
• Transpose	symmetry:	f(n)	=	O(g(n))	if	and	only	if	g(n)	=	Ω(f(n)).
• If	f(n)	is	in	O(kg(n))	for	any	constant	k	>	0,	then	f(n)	is	in	O(g(n)).
• If	f1(n)	is	in	O(g1(n))	and	f2(n)	is	in	O(g2(n)),	then	(f1	+	f2)(n)	 is	 in	O(max(g1(n)),

(g1(n))).
• If	f1(n)	is	in	O(g1(n))	and	f2(n)	is	in	O(g2(n))	then	f1(n)	f2(n)	is	in	O(g1(n)	g1(n)).

1.21	Commonly	used	Logarithms	and	Summations

Logarithms



Arithmetic	series

Geometric	series

Harmonic	series

Other	important	formulae

1.22	Master	Theorem	for	Divide	and	Conquer	Recurrences

All	divide	and	conquer	algorithms	(also	discussed	in	detail	in	the	Divide	and	Conquer	chapter)
divide	 the	problem	 into	 sub-problems,	 each	of	which	 is	 part	 of	 the	original	 problem,	 and	 then
perform	 some	 additional	 work	 to	 compute	 the	 final	 answer.	 As	 an	 example,	 a	 merge	 sort
algorithm	[for	details,	refer	to	Sorting	chapter]	operates	on	two	sub-problems,	each	of	which	is
half	the	size	of	the	original,	and	then	performs	O(n)	additional	work	for	merging.	This	gives	the



running	time	equation:

The	 following	 theorem	 can	 be	 used	 to	 determine	 the	 running	 time	 of	 divide	 and	 conquer
algorithms.	For	a	given	program	(algorithm),	 first	we	 try	 to	 find	 the	 recurrence	 relation	 for	 the
problem.	If	the	recurrence	is	of	the	below	form	then	we	can	directly	give	the	answer	without	fully
solving	it.	If	 the	recurrence	is	of	 the	form	 ,	where	a	≥	1,b	>
1,k	≥	0	and	p	is	a	real	number,	then:

1) If	a	>	bk,	then	
2) If	a=	bk

a. If	p	>	–1,	then	
b. If	p	=	–1,	then	
c. If	p	<	–1,	then	

3) If	a	<	bk

a. If	p	≥	0,	then	T(n)	=	Θ(nklogpn)
b. If	p	<	0,	then	T(n)	=	O(nk)

1.23	Divide	and	Conquer	Master	Theorem:	Problems	&	Solutions

For	each	of	the	following	recurrences,	give	an	expression	for	the	runtime	T(n)	if	the	recurrence
can	be	solved	with	 the	Master	Theorem.	Otherwise,	 indicate	 that	 the	Master	Theorem	does	not
apply.

Problem-1  T(n)	=	3T	(n/2)	+	n2

Solution:	T(n)	=	3T	(n/2)	+	n2	=>	T	(n)	=Θ(n2)	(Master	Theorem	Case	3.a)

Problem-2  T(n)	=	4T	(n/2)	+	n2

Solution:	T(n)	=	4T	(n/2)	+	n2	=>	T	(n)	=	Θ(n2logn)	(Master	Theorem	Case	2.a)

Problem-3  T(n)	=	T(n/2)	+	n2

Solution:	T(n)	=	T(n/2)	+	n2	=>	Θ(n2)	(Master	Theorem	Case	3.a)

Problem-4  T(n)	=	2nT(n/2)	+	nn

Solution:	T(n)	=	2nT(n/2)	+	nn	=>	Does	not	apply	(a	is	not	constant)

Problem-5  T(n)	=	16T(n/4)	+	n
Solution:	T(n)	=	16T	(n/4)	+	n	=>	T(n)	=	Θ(n2)	(Master	Theorem	Case	1)

Problem-6  T(n)	=	2T(n/2)	+	nlogn



Solution:	T(n)	=	2T(n/2)	+	nlogn	=>	T(n)	=	Θ(nlog2n)	(Master	Theorem	Case	2.a)

Problem-7  T(n)	=	2T(n/2)	+	n/logn
Solution:	T(n)	=	2T(n/2)+	n/logn	=>T(n)	=	Θ(nloglogn)	(Master	Theorem	Case	2.	b)

Problem-8  T(n)	=	2T	(n/4)	+	n051

Solution:	T(n)	=	2T(n/4)	+	n051	=>	T	(n)	=	Θ(n0.51)	(Master	Theorem	Case	3.b)

Problem-9  T(n)	=	0.5T(n/2)	+	1/n
Solution:	T(n)	=	0.5T(n/2)	+	1/n	=>	Does	not	apply	(a	<	1)

Problem-10  T	(n)	=	6T(n/3)+	n2	logn
Solution:	T(n)	=	6T(n/3)	+	n2logn	=>	T(n)	=	Θ(n2logn)	(Master	Theorem	Case	3.a)

Problem-11  T(n)	=	64T(n/8)	–	n2logn
Solution:	T(n)	=	64T(n/8)	–	n2logn	=>	Does	not	apply	(function	is	not	positive)

Problem-12  T(n)	=	7T(n/3)	+	n2

Solution:	T(n)	=	7T(n/3)	+	n2	=>	T(n)	=	Θ(n2)	(Master	Theorem	Case	3.as)

Problem-13  T(n)	=	4T(n/2)	+	logn
Solution:	T(n)	=	4T(n/2)	+	logn	=>	T(n)	=	Θ(n2)	(Master	Theorem	Case	1)

Problem-14  T(n)	=	16T	(n/4)	+	n!
Solution:	T(n)	=	16T	(n/4)	+	n!	=>	T(n)	=	Θ(n!)	(Master	Theorem	Case	3.a)

Problem-15  T(n)	=	 T(n/2)	+	logn
Solution:	T(n)	=	 T(n/2)	+	logn	=>	T(n)	=	Θ( )	(Master	Theorem	Case	1)

Problem-16  T(n)	=	3T(n/2)	+	n
Solution:	T(n)	=	3T(n/2)	+	n	=>T(n)	=	Θ(nlog3)	(Master	Theorem	Case	1)

Problem-17  T(n)	=	3T(n/3)	+	
Solution:	T(n)	=	3T(n/3)	+	 	=>	T(n)	=	Θ(n)	(Master	Theorem	Case	1)

Problem-18  T(n)	=	4T(n/2)	+	cn
Solution:	T(n)	=	4T(n/2)	+	cn	=>	T(n)	=	Θ(n2)	(Master	Theorem	Case	1)

Problem-19  T(n)	=	3T(n/4)	+	nlogn
Solution:	T(n)	=	3T(n/4)	+	nlogn	=>	T(n)	=	Θ(nlogn)	(Master	Theorem	Case	3.a)

Problem-20  T	(n)	=	3T(n/3)	+	n/2
Solution:	T(n)	=	3T(n/3)+	n/2	=>	T	(n)	=	Θ(nlogn)	(Master	Theorem	Case	2.a)

1.24	Master	Theorem	for	Subtract	and	Conquer	Recurrences



Let	T(n)	be	a	function	defined	on	positive	n,	and	having	the	property

for	some	constants	c,a	>	0,b	≥	0,k	≥	0,	and	function	f(n).	If	f(n)	is	in	O(nk),	then

1.25	Variant	of	Subtraction	and	Conquer	Master	Theorem

The	solution	to	the	equation	T(n)	=	T(α	n)	+	T((1	–	α)n)	+	βn,	where	0	<	α	<	1	and	β	>	0	are
constants,	is	O(nlogn).

1.26	Method	of	Guessing	and	Confirming

Now,	let	us	discuss	a	method	which	can	be	used	to	solve	any	recurrence.	The	basic	idea	behind
this	method	is:

guess	the	answer;	and	then	prove	it	correct	by	induction.

In	other	words,	it	addresses	the	question:	What	if	the	given	recurrence	doesn’t	seem	to	match	with
any	of	 these	 (master	 theorem)	methods?	 If	we	guess	a	 solution	and	 then	 try	 to	verify	our	guess
inductively,	usually	either	the	proof	will	succeed	(in	which	case	we	are	done),	or	the	proof	will
fail	(in	which	case	the	failure	will	help	us	refine	our	guess).

As	 an	 example,	 consider	 the	 recurrence	 .	 This	 doesn’t	 fit	 into	 the	 form
required	by	the	Master	Theorems.	Carefully	observing	the	recurrence	gives	us	the	impression	that
it	is	similar	to	the	divide	and	conquer	method	(dividing	the	problem	into	 	subproblems	each
with	size	 ).	As	we	can	see,	the	size	of	the	subproblems	at	the	first	level	of	recursion	is	n.	So,
let	us	guess	that	T(n)	=	O(nlogn),	and	then	try	to	prove	that	our	guess	is	correct.

Let’s	start	by	trying	to	prove	an	upper	bound	T(n)	<	cnlogn:



The	last	inequality	assumes	only	that	1	≤	c. .logn.	This	is	correct	if	n	is	sufficiently	large	and	for
any	constant	c,	no	matter	how	small.	From	the	above	proof,	we	can	see	that	our	guess	is	correct
for	the	upper	bound.	Now,	let	us	prove	the	lower	bound	for	this	recurrence.

The	last	inequality	assumes	only	that	1	≥	k. .logn.	This	is	incorrect	if	n	is	sufficiently	large	and
for	any	constant	k.	From	 the	above	proof,	we	can	 see	 that	our	guess	 is	 incorrect	 for	 the	 lower
bound.

From	the	above	discussion,	we	understood	that	Θ(nlogn)	is	too	big.	How	about	Θ(n)?	The	lower
bound	is	easy	to	prove	directly:

Now,	let	us	prove	the	upper	bound	for	this	Θ(n).

From	the	above	induction,	we	understood	that	Θ(n)	is	too	small	and	Θ(nlogn)	is	too	big.	So,	we
need	something	bigger	than	n	and	smaller	than	nlogn.	How	about	 ?

Proving	the	upper	bound	for	 :



Proving	the	lower	bound	for	 :

The	last	step	doesn’t	work.	So,	Θ( )	doesn’t	work.	What	else	is	between	n	and	nlogn?
How	about	nloglogn?	Proving	upper	bound	for	nloglogn:

Proving	lower	bound	for	nloglogn:

From	the	above	proofs,	we	can	see	that	T(n)	≤	cnloglogn,	if	c	≥	1	and	T(n)	≥	knloglogn,	if	k	≤	1.
Technically,	we’re	still	missing	the	base	cases	in	both	proofs,	but	we	can	be	fairly	confident	at
this	point	that	T(n)	=	Θ(nloglogn).

1.27	Amortized	Analysis



Amortized	 analysis	 refers	 to	 determining	 the	 time-averaged	 running	 time	 for	 a	 sequence	 of
operations.	It	is	different	from	average	case	analysis,	because	amortized	analysis	does	not	make
any	assumption	about	the	distribution	of	the	data	values,	whereas	average	case	analysis	assumes
the	data	are	not	“bad”	(e.g.,	some	sorting	algorithms	do	well	on	average	over	all	input	orderings
but	very	badly	on	certain	input	orderings).	That	 is,	amortized	analysis	 is	a	worst-case	analysis,
but	for	a	sequence	of	operations	rather	than	for	individual	operations.

The	 motivation	 for	 amortized	 analysis	 is	 to	 better	 understand	 the	 running	 time	 of	 certain
techniques,	where	standard	worst	case	analysis	provides	an	overly	pessimistic	bound.	Amortized
analysis	generally	applies	to	a	method	that	consists	of	a	sequence	of	operations,	where	the	vast
majority	of	the	operations	are	cheap,	but	some	of	the	operations	are	expensive.	If	we	can	show
that	the	expensive	operations	are	particularly	rare	we	can	change	them	 to	the	cheap	operations,
and	only	bound	the	cheap	operations.

The	general	approach	is	to	assign	an	artificial	cost	to	each	operation	in	the	sequence,	such	that	the
total	of	the	artificial	costs	for	the	sequence	of	operations	bounds	the	total	of	the	real	costs	for	the
sequence.	This	artificial	cost	is	called	the	amortized	cost	of	an	operation.	To	analyze	the	running
time,	the	amortized	cost	thus	is	a	correct	way	of	understanding	the	overall	running	time	–	but	note
that	particular	operations	can	still	take	longer	so	it	is	not	a	way	of	bounding	the	running	time	of
any	individual	operation	in	the	sequence.

When	one	event	in	a	sequence	affects	the	cost	of	later	events:

• One	particular	task	may	be	expensive.
• But	it	may	leave	data	structure	in	a	state	that	the	next	few	operations	become	easier.

Example:	 Let	 us	 consider	 an	 array	 of	 elements	 from	 which	 we	 want	 to	 find	 the	 kth	 smallest
element.	We	can	solve	this	problem	using	sorting.	After	sorting	the	given	array,	we	just	need	to
return	the	kth	element	from	it.	The	cost	of	performing	the	sort	(assuming	comparison	based	sorting
algorithm)	is	O(nlogn).	If	we	perform	n	such	selections	then	the	average	cost	of	each	selection	is
O(nlogn/n)	 =	 O(logn).	 This	 clearly	 indicates	 that	 sorting	 once	 is	 reducing	 the	 complexity	 of
subsequent	operations.

1.28	Algorithms	Analysis:	Problems	&	Solutions

Note:	 From	 the	 following	 problems,	 try	 to	 understand	 the	 cases	 which	 have	 different
complexities	(O(n),	O(logn),	O(loglogn)	etc.).

Problem-21  Find	the	complexity	of	the	below	recurrence:



Solution:	Let	us	try	solving	this	function	with	substitution.

T(n)	=	3T(n	–	1)

T(n)	=	3(3T(n	–	2))	=	32T(n	–	2)

T(n)	=	32(3T(n	–	3))

.

.

T(n)	=	3nT(n	–	n)	=	3nT(0)	=	3n

This	clearly	shows	that	the	complexity	of	this	function	is	O(3n).

Note:	We	can	use	the	Subtraction	and	Conquer	master	theorem	for	this	problem.

Problem-22  Find	the	complexity	of	the	below	recurrence:

Solution:	Let	us	try	solving	this	function	with	substitution.

T(n)	=	2T(n	–	1)	–	1

T(n)	=	2(2T(n	–	2)	–	1)	–	1	=	22T(n	–	2)	–	2	–	1

T(n)	=	22(2T(n	–	3)	–	2	–	1)	–	1	=	23T(n	–	4)	–	22	–	21	–	20

T(n)	=	2nT(n	–	n)	–	2n–1	–	2n–2	–	2n–3	....	22	–	21	–	20

T(n)	=2n	–	2n–1	–	2n–2	–	2n	–	3	....	22	–	21	–	20

T(n)	=2n	–	(2n	–	1)	[note:	2n–1	+	2n–2	+	···	+	20	=	2n]

T(n)	=	1

∴	 Time	 Complexity	 is	 O(1).	 Note	 that	 while	 the	 recurrence	 relation	 looks	 exponential,	 the
solution	to	the	recurrence	relation	here	gives	a	different	result.

Problem-23  What	is	the	running	time	of	the	following	function?



Solution:	Consider	the	comments	in	the	below	function:

We	can	define	the	‘s’	terms	according	to	the	relation	si	=	si–1	+	i.	The	value	oft’	increases	by	1
for	each	iteration.	The	value	contained	in	‘s’	at	the	ith	iteration	is	the	sum	of	the	first	‘(‘positive
integers.	If	k	is	the	total	number	of	iterations	taken	by	the	program,	then	the	while	loop	terminates
if:

Problem-24  Find	the	complexity	of	the	function	given	below.



Solution:

In	the	above-mentioned	function	the	loop	will	end,	if	i2	>	n	⇒	T(n)	=	O( ).	This	is	similar	to
Problem-23.

Problem-25  What	is	the	complexity	of	the	program	given	below:

Solution:	Consider	the	comments	in	the	following	function.

The	complexity	of	the	above	function	is	O(n2logn).

Problem-26  What	is	the	complexity	of	the	program	given	below:



Solution:	Consider	the	comments	in	the	following	function.

The	complexity	of	the	above	function	is	O(nlog2n).

Problem-27  Find	the	complexity	of	the	program	below.

Solution:	Consider	the	comments	in	the	function	below.



The	complexity	of	the	above	function	is	O(n).	Even	though	the	inner	loop	is	bounded	by	n,	due	to
the	break	statement	it	is	executing	only	once.

Problem-28  Write	a	recursive	function	for	the	running	time	T(n)	of	the	function	given	below.
Prove	using	the	iterative	method	that	T(n)	=	Θ(n3).

Solution:	Consider	the	comments	in	the	function	below:



The	recurrence	for	this	code	is	clearly	T(n)	=	T(n	–	3)	+	cn2	for	some	constant	c	>	0	since	each
call	prints	out	n2	asterisks	and	calls	itself	recursively	on	n	–	3.	Using	the	iterative	method	we	get:
T(n)	=	T(n	–	3)	+	cn2.	Using	the	Subtraction	and	Conquer	master	theorem,	we	get	T(n)	=	Θ(n3).

Problem-29  Determine	Θ	bounds	for	the	recurrence	relation:	

Solution:	Using	Divide	and	Conquer	master	theorem,	we	get	O(nlog2n).

Problem-30  Determine	 Θ	 bounds	 for	 the	 recurrence:	

Solution:	 Substituting	 in	 the	 recurrence	 equation,	 we	 get:	
,	 where	 k	 is	 a	 constant.	 This	 clearly

says	Θ(n).

Problem-31  Determine	Θ	bounds	for	the	recurrence	relation:	T(n)	=	T(⌈n/2⌉)	+	7.
Solution:	Using	Master	Theorem	we	get:	Θ(logn).

Problem-32  Prove	that	the	running	time	of	the	code	below	is	Ω(logn).

Solution:	The	while	loop	will	terminate	once	the	value	of	‘k’	is	greater	than	or	equal	to	the	value
of	‘n’.	In	each	iteration	the	value	of	‘k’	is	multiplied	by	3.	If	i	is	the	number	of	iterations,	then	‘k’
has	the	value	of	3i	after	i	iterations.	The	loop	is	terminated	upon	reaching	i	iterations	when	3i	≥	n



↔	i	≥	log3	n,	which	shows	that	i	=	Ω(logn).

Problem-33  Solve	the	following	recurrence.

Solution:	By	iteration:

Note:	We	can	use	the	Subtraction	and	Conquer	master	theorem	for	this	problem.

Problem-34  Consider	the	following	program:

Solution:	The	recurrence	relation	for	the	running	time	of	this	program	is:	T(n)	=	T(n	–	1)	+	T(n	–
2)	+	c.	Note	T(n)	has	two	recurrence	calls	indicating	a	binary	tree.	Each	step	recursively	calls	the
program	for	n	 reduced	by	1	 and	2,	 so	 the	depth	of	 the	 recurrence	 tree	 is	O(n).	 The	 number	 of
leaves	 at	 depth	 n	 is	 2n	 since	 this	 is	 a	 full	 binary	 tree,	 and	 each	 leaf	 takes	 at	 least	 O(1)
computations	for	the	constant	factor.	Running	time	is	clearly	exponential	in	n	and	it	is	O(2n).

Problem-35  Running	time	of	following	program?



Solution:	Consider	the	comments	in	the	function	below:

In	 the	 above	 code,	 inner	 loop	 executes	 n/i	 times	 for	 each	 value	 of	 i.	 Its	 running	 time	 is	
.

Problem-36  What	is	the	complexity	of	

Solution:	Using	the	logarithmic	property,	logxy	=	logx	+	logy,	we	can	see	 that	 this	problem	is
equivalent	to

This	shows	that	the	time	complexity	=	O(nlogn).

Problem-37  What	 is	 the	 running	 time	 of	 the	 following	 recursive	 function	 (specified	 as	 a
function	 of	 the	 input	 value	 n)?	 First	 write	 the	 recurrence	 formula	 and	 then	 find	 its
complexity.

Solution:	Consider	the	comments	in	the	below	function:



We	can	assume	that	for	asymptotical	analysis	k	=	⌈k⌉	for	every	integer	k	≥	1.	The	recurrence	for
this	code	is	 .	Using	master	theorem,	we	get	T(n)	=	Θ(n).

Problem-38  What	 is	 the	 running	 time	 of	 the	 following	 recursive	 function	 (specified	 as	 a
function	of	the	input	value	n)?	First	write	a	recurrence	formula,	and	show	its	solution	using
induction.

Solution:	Consider	the	comments	in	the	function	below:

The	if	statement	requires	constant	time	[O(1)].	With	the	for	 loop,	we	neglect	 the	loop	overhead
and	only	count	three	times	that	the	function	is	called	recursively.	This	implies	a	time	complexity
recurrence:

Using	the	Subtraction	and	Conquer	master	theorem,	we	get	T(n)	=	Θ(3n).



Problem-39  Write	a	recursion	formula	for	the	running	time	T(n)	of	the	function	whose	code
is	below.

Solution:	Consider	the	comments	in	the	function	below:

The	recurrence	for	this	piece	of	code	is	T(n)	=	T(.8n)	+	O(n)	=	T(4/5n)	+	O(n)	=4/5	T(n)	+	O(n).
Applying	master	theorem,	we	get	T(n)	=	O(n).

Problem-40  Find	the	complexity	of	the	recurrence:	T(n)	=	2T( )	+	logn

Solution:	The	given	recurrence	is	not	in	the	master	theorem	format.	Let	us	try	to	convert	this	to	the
master	theorem	format	by	assuming	n	=	2m.	Applying	the	logarithm	on	both	sides	gives,	 logn	=
mlogl	⇒	m	=	logn.	Now,	the	given	function	becomes:

To	 make	 it	 simple	 we	 assume	
.

Applying	the	master	theorem	format	would	result	in	S(m)	=	O(mlogm).
If	we	substitute	m	=	logn	back,	T(n)	=	S(logn)	=	O((logn)	loglogn).

Problem-41  Find	the	complexity	of	the	recurrence:	T(n)	=	T( )	+	1

Solution:	 Applying	 the	 logic	 of	 Problem-40	 gives	 .	 Applying	 the	 master



theorem	 would	 result	 in	 S(m)	 =	 O(logm).	 Substituting	 m	 =	 logn,	 gives	 T(n)	 =	 S(logn)	 =
O(loglogn).

Problem-42  Find	the	complexity	of	the	recurrence:	T(n)	=	2T( )	+	1

Solution:	 Applying	 the	 logic	 of	 Problem-40	 gives:	 .	 Using	 the	 master
theorem	results	S(m)	=	 .	Substituting	m	=	logn	gives	T(n)	=O(logn).

Problem-43  Find	the	complexity	of	the	below	function.

Solution:	Consider	the	comments	in	the	function	below:

For	the	above	code,	the	recurrence	function	can	be	given	as:	T(n)	=	T( )	+	1.	This	is	same	as
that	of	Problem-41.

Problem-44  Analyze	the	running	time	of	the	following	recursive	pseudo-code	as	a	function	of
n.

Solution:	Consider	 the	comments	 in	below	pseudo-code	and	call	running	time	of	function(n)	as
T(n).



T(n)	can	be	defined	as	follows:

Using	the	master	theorem	gives:	 .

Problem-45  Find	the	complexity	of	the	below	pseudocode:

Solution:	Consider	the	comments	in	the	pseudocode	below:

The	recurrence	for	this	function	is	T(n)	=	T(n/2)	+	n.	Using	master	theorem,	we	get	T(n)	=	O(n).



Problem-46  Running	time	of	the	following	program?

Solution:	Consider	the	comments	in	the	below	function:

Complexity	of	above	program	is:	O(nlogn).

Problem-47  Running	time	of	the	following	program?

Solution:	Consider	the	comments	in	the	below	function:

The	time	complexity	of	this	program	is:	O(n2).

Problem-48  Find	the	complexity	of	the	below	function:



Solution:	Consider	the	comments	in	the	below	function:

The	recurrence	for	this	function	is:	 .	Using	master	theorem,	we	get	T(n)	=
O(n).

Problem-49  Find	the	complexity	of	the	below	function:



Solution:

Time	Complexity:	O(logn	*	logn)	=	O(log2n).

Problem-50  ∑i≤k≤n	O(n),	where	O(n)	stands	for	order	n	is:
(A) O(n)
(B) O(n2)
(C) O(n3)
(D) O(3n2)
(E) O(1.5n2)

Solution:	(B).	∑i≤k≤n	O(n)	=	O(n)	∑i≤k≤n	1	=	O(n2).

Problem-51  Which	of	the	following	three	claims	are	correct?
I (n	+	k)m	=	Θ(nm),	where	k	and	m	are	constants
II 2n+1	=	O(2n)
III 22n+1	=	O(2n)
(A) I	and	II
(B) I	and	III
(C) II	and	III
(D) I,	II	and	III

Solution:	(A).	(I)	(n	+	k)m	=nh	+	c1*nk–1	+	...	km	=	Θ(nh)	and	(II)	2n+1	=	2*2n	=	O(2n)

Problem-52  Consider	the	following	functions:
f(n)	=	2n
g(n)	=	n!
h(n)	=	nlogn
Which	of	the	following	statements	about	the	asymptotic	behavior	of	f(n),	g(n),	and	h(n)	is
true?
(A) f(n)	=	O(g(n));	g(n)	=	O(h(n))
(B) f(n)	=	Ω	(g(n));	g(n)	=	O(h(n))



(C) g(n)	=	O(f(n));	h(n)	=	O(f(n))
(D) h(n)	=	O(f(n));	g(n)	=	Ω	(f(n))

Solution:	(D).	According	to	the	rate	of	growth:	h(n)	<	f(n)	<	g(n)	(g(n)	is	asymptotically	greater
than	 f(n),	 and	 f(n)	 is	 asymptotically	 greater	 than	 h(n)).	We	 can	 easily	 see	 the	 above	 order	 by
taking	logarithms	of	the	given	3	functions:	lognlogn	<	n	<	log(n!).	Note	that,	log(n!)	=	O(nlogn).

Problem-53  Consider	the	following	segment	of	C-code:

The	number	of	comparisons	made	in	the	execution	of	the	loop	for	any	n	>	0	is:
(A)
(B) n
(C)
(D)

Solution:	 (a).	Let	us	 assume	 that	 the	 loop	executes	k	 times.	After	kth	 step	 the	value	of	 j	 is	 2k.
Taking	logarithms	on	both	sides	gives	 .	Since	we	are	doing	one	more	comparison	for
exiting	from	the	loop,	the	answer	is	 .

Problem-54  Consider	the	following	C	code	segment.	Let	T(n)	denote	the	number	of	times	the
for	loop	is	executed	by	the	program	on	input	n.	Which	of	the	following	is	true?

(A) T(n)	=	O( )	and	T(n)	=	Ω( )
(B) T(n)	=	O( )	and	T(n)	=	Ω(1)
(C) T(n)	=	O(n)	and	T(n)	=	Ω( )
(D) None	of	the	above

Solution:	(B).	Big	O	notation	describes	the	tight	upper	bound	and	Big	Omega	notation	describes
the	tight	lower	bound	for	an	algorithm.	The	for	loop	in	the	question	is	run	maximum	 	times	and



minimum	1	time.	Therefore,	T(n)	=	O( )	and	T(n)	=	Ω(1).

Problem-55  In	the	following	C	function,	let	n	≥	m.	How	many	recursive	calls	are	made	by
this	function?

(A)
(B) Ω(n)
(C)
(D) Θ(n)

Solution:	No	option	 is	correct.	Big	O	notation	describes	 the	 tight	upper	bound	and	Big	Omega
notation	describes	the	tight	lower	bound	for	an	algorithm.	For	m	=	2	and	for	all	n	=	2i,	the	running
time	is	O(1)	which	contradicts	every	option.

Problem-56  Suppose	T(n)	=	2T(n/2)	+	n,	T(O)=T(1)=1.	Which	one	of	the	following	is	false?
(A) T(n)	=	O(n2)
(B) T(n)	=	Θ(nlogn)
(C) T(n)	=	Q(n2)
(D) T(n)	=	O(nlogn)

Solution:	(C).	Big	O	notation	describes	the	tight	upper	bound	and	Big	Omega	notation	describes
the	tight	lower	bound	for	an	algorithm.	Based	on	master	theorem,	we	get	T(n)	=	Θ(nlogn).	This
indicates	 that	 tight	 lower	bound	and	 tight	upper	bound	are	 the	same.	That	means,	O(nlogn)	and
Ω(nlogn)	are	correct	for	given	recurrence.	So	option	(C)	is	wrong.

Problem-57  Find	the	complexity	of	the	below	function:



Solution:

Time	Complexity:	O(n5).

Problem-58  To	calculate	9n,	give	an	algorithm	and	discuss	its	complexity.

Solution:	Start	with	1	and	multiply	by	9	until	reaching	9n.

Time	Complexity:	 There	 are	n	 –	 1	multiplications	 and	 each	 takes	 constant	 time	 giving	 a	Θ(n)
algorithm.

Problem-59  For	Problem-58,	can	we	improve	the	time	complexity?

Solution:	Refer	to	the	Divide	and	Conquer	chapter.

Problem-60  Find	the	time	complexity	of	recurrence	 .

Solution:	Let	us	 solve	 this	problem	by	method	of	guessing.	The	 total	 size	on	each	 level	of	 the
recurrance	tree	is	less	than	n,	so	we	guess	that	f(n)	=	n	will	dominate.	Assume	for	all	i	<	n	 that
c1n	≤	T(i)	<	c2n.	Then,



If	c1	≥	8k	and	c2	≤	8k,	then	c1n	=	T(n)	=	c2n.	So,	T(n)	=	Θ(n).	In	general,	if	you	have	multiple
recursive	calls,	the	sum	of	the	arguments	to	those	calls	is	less	than	n	(in	this	case	 ),
and	f(n)	is	reasonably	large,	a	good	guess	is	T(n)	=	Θ(f(n)).

Problem-61  Solve	 the	 following	 recurrence	 relation	 using	 the	 recursion	 tree	 method:	
.

Solution:	How	much	work	do	we	do	in	each	level	of	the	recursion	tree?

In	level	0,	we	take	n2	time.	At	level	1,	the	two	subproblems	take	time:

At	 level	 2	 the	 four	 subproblems	 are	 of	 size	 	 and	 	 respectively.	 These	 two
subproblems	take	time:



Similarly	the	amount	of	work	at	level	k	is	at	most	 .

Let	 ,	the	total	runtime	is	then:

That	is,	the	first	level	provides	a	constant	fraction	of	the	total	runtime.

Problem-62  Rank	the	following	functions	by	order	of	growth:	(n	+	1)!,	n!,	4n,	n	×	3n,	3n	+	n2

+	20n,	 ,	n2	+	200,	20n	+	500,	2lgn,	n2/3,	1.

Solution:



Problem-63  Find	the	complexity	of	the	below	function:

Solution:	Consider	the	worst-case.



Time	Complexity:	O(n2).

Problem-64  Can	we	say	 ?

Solution:	Yes:	because	

Problem-65  Can	we	say	23n	=	O(2n)?

Solution:	No:	because	23n	=	(23)n	=	8n	not	less	than	2n.



2.1	Introduction

In	this	chapter,	we	will	look	at	one	of	the	important	topics,	“recursion”,	which	will	be	used	in
almost	every	chapter,	and	also	its	relative	“backtracking”.

2.2	What	is	Recursion?

Any	 function	 which	 calls	 itself	 is	 called	 recursive.	 A	 recursive	 method	 solves	 a	 problem	 by
calling	 a	 copy	 of	 itself	 to	 work	 on	 a	 smaller	 problem.	 This	 is	 called	 the	 recursion	 step.	 The
recursion	step	can	result	in	many	more	such	recursive	calls.

It	 is	 important	 to	ensure	 that	 the	 recursion	 terminates.	Each	 time	 the	 function	calls	 itself	with	a
slightly	 simpler	 version	 of	 the	 original	 problem.	 The	 sequence	 of	 smaller	 problems	 must
eventually	converge	on	the	base	case.



2.3	Why	Recursion?

Recursion	is	a	useful	technique	borrowed	from	mathematics.	Recursive	code	is	generally	shorter
and	easier	to	write	than	iterative	code.	Generally,	loops	are	turned	into	recursive	functions	when
they	are	compiled	or	interpreted.

Recursion	is	most	useful	for	tasks	that	can	be	defined	in	terms	of	similar	subtasks.	For	example,
sort,	search,	and	traversal	problems	often	have	simple	recursive	solutions.

2.4	Format	of	a	Recursive	Function

A	 recursive	 function	performs	 a	 task	 in	 part	 by	 calling	 itself	 to	 perform	 the	 subtasks.	At	 some
point,	the	function	encounters	a	subtask	that	it	can	perform	without	calling	itself.	This	case,	where
the	function	does	not	recur,	is	called	the	base	case.	The	former,	where	the	function	calls	itself	to
perform	a	subtask,	is	referred	to	as	the	ecursive	case.	We	can	write	all	recursive	functions	using
the	format:

As	an	example	consider	the	factorial	function:	n!	is	the	product	of	all	integers	between	n	and	1.
The	definition	of	recursive	factorial	looks	like:

This	 definition	 can	 easily	 be	 converted	 to	 recursive	 implementation.	 Here	 the	 problem	 is
determining	 the	 value	 of	 n!,	 and	 the	 subproblem	 is	 determining	 the	 value	 of	 (n	 –	 l)!.	 In	 the
recursive	case,	when	n	is	greater	than	1,	the	function	calls	itself	to	determine	the	value	of	(n	–	l)!
and	multiplies	that	with	n.

In	the	base	case,	when	n	is	0	or	1,	the	function	simply	returns	1.	This	looks	like	the	following:



2.5	Recursion	and	Memory	(Visualization)

Each	 recursive	call	makes	a	new	copy	of	 that	method	 (actually	only	 the	variables)	 in	memory.
Once	 a	method	 ends	 (that	 is,	 returns	 some	data),	 the	 copy	of	 that	 returning	method	 is	 removed
from	memory.	The	recursive	solutions	 look	simple	but	visualization	and	 tracing	 takes	 time.	For
better	understanding,	let	us	consider	the	following	example.

For	 this	example,	 if	we	call	 the	print	 function	with	n=4,	visually	our	memory	assignments	may
look	like:



Now,	let	us	consider	our	factorial	function.	The	visualization	of	factorial	function	with	n=4	will
look	like:

2.6	Recursion	versus	Iteration

While	 discussing	 recursion,	 the	 basic	 question	 that	 comes	 to	mind	 is:	 which	way	 is	 better?	 –
iteration	 or	 recursion?	 The	 answer	 to	 this	 question	 depends	 on	 what	 we	 are	 trying	 to	 do.	 A
recursive	approach	mirrors	the	problem	that	we	are	trying	to	solve.	A	recursive	approach	makes
it	simpler	to	solve	a	problem	that	may	not	have	the	most	obvious	of	answers.	But,	recursion	adds



overhead	for	each	recursive	call	(needs	space	on	the	stack	frame).

Recursion

• Terminates	when	a	base	case	is	reached.
• Each	recursive	call	requires	extra	space	on	the	stack	frame	(memory).
• If	we	get	infinite	recursion,	the	program	may	run	out	of	memory	and	result	in	stack

overflow.
• Solutions	to	some	problems	are	easier	to	formulate	recursively.

Iteration

• Terminates	when	a	condition	is	proven	to	be	false.
• Each	iteration	does	not	require	extra	space.
• An	infinite	loop	could	loop	forever	since	there	is	no	extra	memory	being	created.
• Iterative	 solutions	 to	 a	 problem	 may	 not	 always	 be	 as	 obvious	 as	 a	 recursive

solution.

2.7	Notes	on	Recursion

• Recursive	algorithms	have	two	types	of	cases,	recursive	cases	and	base	cases.
• Every	recursive	function	case	must	terminate	at	a	base	case.
• Generally,	iterative	solutions	are	more	efficient	than	recursive	solutions	[due	to	the

overhead	of	function	calls].
• A	recursive	algorithm	can	be	 implemented	without	recursive	function	calls	using	a

stack,	but	it’s	usually	more	trouble	than	its	worth.	That	means	any	problem	that	can
be	solved	recursively	can	also	be	solved	iteratively.

• For	some	problems,	there	are	no	obvious	iterative	algorithms.
• Some	problems	are	best	suited	for	recursive	solutions	while	others	are	not.

2.8	Example	Algorithms	of	Recursion

• Fibonacci	Series,	Factorial	Finding
• Merge	Sort,	Quick	Sort
• Binary	Search
• Tree	Traversals	and	many	Tree	Problems:	InOrder,	PreOrder	PostOrder
• Graph	Traversals:	DFS	[Depth	First	Search]	and	BFS	[Breadth	First	Search]
• Dynamic	Programming	Examples
• Divide	and	Conquer	Algorithms
• Towers	of	Hanoi



• Backtracking	Algorithms	[we	will	discuss	in	next	section]

2.9	Recursion:	Problems	&	Solutions

In	 this	 chapter	we	 cover	 a	 few	problems	with	 recursion	 and	we	will	 discuss	 the	 rest	 in	 other
chapters.	By	 the	 time	you	complete	 reading	 the	entire	book,	you	will	encounter	many	recursion
problems.

Problem-1  Discuss	Towers	of	Hanoi	puzzle.

Solution:	The	Towers	 of	Hanoi	 is	 a	mathematical	 puzzle.	 It	 consists	 of	 three	 rods	 (or	 pegs	or
towers),	and	a	number	of	disks	of	different	sizes	which	can	slide	onto	any	rod.	The	puzzle	starts
with	the	disks	on	one	rod	in	ascending	order	of	size,	the	smallest	at	the	top,	thus	making	a	conical
shape.	 The	 objective	 of	 the	 puzzle	 is	 to	 move	 the	 entire	 stack	 to	 another	 rod,	 satisfying	 the
following	rules:

• Only	one	disk	may	be	moved	at	a	time.
• Each	move	consists	of	taking	the	upper	disk	from	one	of	the	rods	and	sliding	it	onto

another	rod,	on	top	of	the	other	disks	that	may	already	be	present	on	that	rod.
• No	disk	may	be	placed	on	top	of	a	smaller	disk.

Algorithm:

• Move	the	top	n	–	1	disks	from	Source	to	Auxiliary	tower,
• Move	the	nth	disk	from	Source	to	Destination	tower,
• Move	the	n	–	1	disks	from	Auxiliary	tower	to	Destination	tower.
• Transferring	the	top	n	–	1	disks	from	Source	to	Auxiliary	tower	can	again	be	thought

of	as	a	fresh	problem	and	can	be	solved	in	the	same	manner.	Once	we	solve	Towers
of	Hanoi	with	three	disks,	we	can	solve	it	with	any	number	of	disks	with	the	above
algorithm.



Problem-2  Given	an	array,	check	whether	the	array	is	in	sorted	order	with	recursion.

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n)	for	recursive	stack	space.

2.10	What	is	Backtracking?

Backtracking	 is	 an	 improvement	 of	 the	 brute	 force	 approach.	 It	 systematically	 searches	 for	 a
solution	 to	a	problem	among	all	 available	options.	 In	backtracking,	we	 start	with	one	possible
option	 out	 of	many	 available	 options	 and	 try	 to	 solve	 the	 problem	 if	we	 are	 able	 to	 solve	 the
problem	with	the	selected	move	then	we	will	print	the	solution	else	we	will	backtrack	and	select
some	other	option	and	try	to	solve	it.	If	none	if	the	options	work	out	we	will	claim	that	there	is	no
solution	for	the	problem.

Backtracking	 is	a	 form	of	 recursion.	The	usual	scenario	 is	 that	you	are	 faced	with	a	number	of
options,	and	you	must	choose	one	of	these.	After	you	make	your	choice	you	will	get	a	new	set	of



options;	 just	what	 set	of	options	you	get	depends	on	what	 choice	you	made.	This	procedure	 is
repeated	over	and	over	until	you	reach	a	final	state.	If	you	made	a	good	sequence	of	choices,	your
final	state	is	a	goal	state;	if	you	didn’t,	it	isn’t.

Backtracking	can	be	 thought	of	as	a	selective	 tree/graph	traversal	method.	The	tree	 is	a	way	of
representing	 some	 initial	 starting	 position	 (the	 root	 node)	 and	 a	 final	 goal	 state	 (one	 of	 the
leaves).	 Backtracking	 allows	 us	 to	 deal	 with	 situations	 in	 which	 a	 raw	 brute-force	 approach
would	explode	into	an	impossible	number	of	options	to	consider.	Backtracking	is	a	sort	of	refined
brute	force.	At	each	node,	we	eliminate	choices	that	are	obviously	not	possible	and	proceed	to
recursively	check	only	those	that	have	potential.

What’s	interesting	about	backtracking	is	that	we	back	up	only	as	far	as	needed	to	reach	a	previous
decision	point	with	an	as-yet-unexplored	alternative.	 In	general,	 that	will	be	at	 the	most	 recent
decision	point.	Eventually,	more	and	more	of	these	decision	points	will	have	been	fully	explored,
and	we	will	have	to	backtrack	further	and	further.	If	we	backtrack	all	the	way	to	our	initial	state
and	 have	 explored	 all	 alternatives	 from	 there,	 we	 can	 conclude	 the	 particular	 problem	 is
unsolvable.	In	such	a	case,	we	will	have	done	all	the	work	of	the	exhaustive	recursion	and	known
that	there	is	no	viable	solution	possible.

• Sometimes	the	best	algorithm	for	a	problem	is	to	try	all	possibilities.
• This	is	always	slow,	but	there	are	standard	tools	that	can	be	used	to	help.
• Tools:	 algorithms	 for	 generating	 basic	 objects,	 such	 as	 binary	 strings	 [2n

possibilities	 for	 n-bit	 string],	 permutations	 [n!],	 combinations	 [n!/r!(n	 –	 r)!],
general	strings	[k	–ary	strings	of	length	n	has	kn	possibilities],	etc...

• Backtracking	speeds	the	exhaustive	search	by	pruning.

2.11	Example	Algorithms	of	Backtracking

• Binary	Strings:	generating	all	binary	strings
• Generating	k	–	ary	Strings
• N-Queens	Problem
• The	Knapsack	Problem
• Generalized	Strings
• Hamiltonian	Cycles	[refer	to	Graphs	chapter]
• Graph	Coloring	Problem

2.12	Backtracking:	Problems	&	Solutions

Problem-3  Generate	all	the	strings	of	n	bits.	Assume	A[0..n	–	1]	is	an	array	of	size	n.

Solution:



Let	T(n)	be	the	running	time	of	binary(n).	Assume	function	printf	takes	time	O(1).

Using	Subtraction	and	Conquer	Master	theorem	we	get:	T(n)	=	O(2n).	This	means	the	algorithm
for	generating	bit-strings	is	optimal.

Problem-4  Generate	all	the	strings	of	length	n	drawn	from	0...	k	–	1.

Solution:	Let	us	assume	we	keep	current	k-ary	string	 in	an	array	A[0..	n	 –	1].	Call	 function	k-
string(n,	k):

Let	T(n)	be	the	running	time	of	k	–	string(n).	Then,



Using	Subtraction	and	Conquer	Master	theorem	we	get:	T(n)	=	O(kn).

Note:	For	more	problems,	refer	to	String	Algorithms	chapter.

Problem-5  Finding	the	length	of	connected	cells	of	1s	(regions)	in	an	matrix	of	Os	and
1s:	Given	a	matrix,	each	of	which	may	be	1	or	0.	The	filled	cells	that	are	connected	form	a
region.	Two	cells	are	said	to	be	connected	if	they	are	adjacent	to	each	other	horizontally,
vertically	or	diagonally.	There	may	be	several	regions	in	the	matrix.	How	do	you	find	the
largest	region	(in	terms	of	number	of	cells)	in	the	matrix?

Solution:	The	simplest	idea	is:	for	each	location	traverse	in	all	8	directions	and	in	each	of	those
directions	keep	track	of	maximum	region	found.





Sample	Call:

Problem-6  Solve	the	recurrence	T(n)	=	2T(n	–	1)	+	2n.

Solution:	 At	 each	 level	 of	 the	 recurrence	 tree,	 the	 number	 of	 problems	 is	 double	 from	 the
previous	level,	while	the	amount	of	work	being	done	in	each	problem	is	half	from	the	previous
level.	Formally,	the	ith	level	has	2i	problems,	each	requiring	2n–i	work.	Thus	the	ith	level	requires
exactly	2n	work.	The	depth	of	this	tree	is	n,	because	at	the	ith	level,	the	originating	call	will	be
T(n	–	i).	Thus	the	total	complexity	for	T(n)	is	T(n2n).



3.1	What	is	a	Linked	List?

A	linked	list	is	a	data	structure	used	for	storing	collections	of	data.	A	linked	list	has	the	following
properties.

• Successive	elements	are	connected	by	pointers
• The	last	element	points	to	NULL
• Can	grow	or	shrink	in	size	during	execution	of	a	program
• Can	be	made	just	as	long	as	required	(until	systems	memory	exhausts)
• Does	 not	 waste	 memory	 space	 (but	 takes	 some	 extra	 memory	 for	 pointers).	 It

allocates	memory	as	list	grows.



3.2	Linked	Lists	ADT

The	following	operations	make	linked	lists	an	ADT:

Main	Linked	Lists	Operations

• Insert:	inserts	an	element	into	the	list
• Delete:	removes	and	returns	the	specified	position	element	from	the	list

Auxiliary	Linked	Lists	Operations

• Delete	List:	removes	all	elements	of	the	list	(disposes	the	list)
• Count:	returns	the	number	of	elements	in	the	list
• Find	nth	node	from	the	end	of	the	list

3.3	Why	Linked	Lists?

There	 are	many	 other	 data	 structures	 that	 do	 the	 same	 thing	 as	 linked	 lists.	 Before	 discussing
linked	 lists	 it	 is	 important	 to	 understand	 the	 difference	 between	 linked	 lists	 and	 arrays.	 Both
linked	lists	and	arrays	are	used	to	store	collections	of	data,	and	since	both	are	used	for	the	same
purpose,	we	need	to	differentiate	their	usage.	That	means	in	which	cases	arrays	are	suitable	and
in	which	cases	linked	lists	are	suitable.

3.4	Arrays	Overview

One	memory	block	is	allocated	for	 the	entire	array	 to	hold	 the	elements	of	 the	array.	The	array
elements	 can	 be	 accessed	 in	 constant	 time	 by	 using	 the	 index	 of	 the	 particular	 element	 as	 the
subscript.



Why	Constant	Time	for	Accessing	Array	Elements?

To	 access	 an	 array	 element,	 the	 address	 of	 an	 element	 is	 computed	 as	 an	 offset	 from	 the	 base
address	of	the	array	and	one	multiplication	is	needed	to	compute	what	is	supposed	to	be	added	to
the	base	address	to	get	the	memory	address	of	the	element.	First	the	size	of	an	element	of	that	data
type	 is	 calculated	and	 then	 it	 is	multiplied	with	 the	 index	of	 the	element	 to	get	 the	value	 to	be
added	to	the	base	address.

This	process	takes	one	multiplication	and	one	addition.	Since	these	two	operations	take	constant
time,	we	can	say	the	array	access	can	be	performed	in	constant	time.

Advantages	of	Arrays

• Simple	and	easy	to	use
• Faster	access	to	the	elements	(constant	access)

Disadvantages	of	Arrays

• Preallocates	all	needed	memory	up	front	and	wastes	memory	space	for	indices	in	the
array	that	are	empty.

• Fixed	size:	The	size	of	the	array	is	static	(specify	the	array	size	before	using	it).
• One	block	allocation:	To	allocate	the	array	itself	at	the	beginning,	sometimes	it	may

not	be	possible	to	get	the	memory	for	the	complete	array	(if	the	array	size	is	big).
• Complex	position-based	insertion:	To	insert	an	element	at	a	given	position,	we	may

need	 to	 shift	 the	existing	elements.	This	will	 create	a	position	 for	us	 to	 insert	 the
new	 element	 at	 the	 desired	 position.	 If	 the	 position	 at	which	we	want	 to	 add	 an
element	is	at	the	beginning,	then	the	shifting	operation	is	more	expensive.

Dynamic	Arrays

Dynamic	array	(also	called	as	growable	array,	resizable	array,	dynamic	table,	or	array	list)	is	a
random	access,	variable-size	list	data	structure	that	allows	elements	to	be	added	or	removed.

One	simple	way	of	implementing	dynamic	arrays	is	to	initially	start	with	some	fixed	size	array.
As	 soon	 as	 that	 array	becomes	 full,	 create	 the	new	array	double	 the	 size	of	 the	original	 array.



Similarly,	reduce	the	array	size	to	half	if	the	elements	in	the	array	are	less	than	half.

Note:	We	will	 see	 the	 implementation	 for	dynamic	arrays	 in	 the	Stacks,	Queues	 and	Hashing
chapters.

Advantages	of	Linked	Lists

Linked	lists	have	both	advantages	and	disadvantages.	The	advantage	of	linked	lists	is	that	they	can
be	expanded	in	constant	time.	To	create	an	array,	we	must	allocate	memory	for	a	certain	number
of	elements.	To	add	more	elements	to	the	array	when	full,	we	must	create	a	new	array	and	copy
the	old	array	into	the	new	array.	This	can	take	a	lot	of	time.

We	can	prevent	this	by	allocating	lots	of	space	initially	but	then	we	might	allocate	more	than	we
need	and	waste	memory.	With	a	linked	list,	we	can	start	with	space	for	just	one	allocated	element
and	add	on	new	elements	easily	without	the	need	to	do	any	copying	and	reallocating.

Issues	with	Linked	Lists	(Disadvantages)

There	are	a	number	of	 issues	with	 linked	 lists.	The	main	disadvantage	of	 linked	 lists	 is	access
time	 to	 individual	 elements.	Array	 is	 random-access,	which	means	 it	 takes	O(1)	 to	 access	 any
element	in	the	array.	Linked	lists	take	O(n)	for	access	to	an	element	in	the	list	in	the	worst	case.
Another	advantage	of	arrays	in	access	time	is	spacial	locality	in	memory.	Arrays	are	defined	as
contiguous	blocks	of	memory,	and	so	any	array	element	will	be	physically	near	its	neighbors.	This
greatly	benefits	from	modern	CPU	caching	methods.

Although	 the	dynamic	allocation	of	storage	 is	a	great	advantage,	 the	overhead	with	 storing	and
retrieving	data	can	make	a	big	difference.	Sometimes	linked	lists	are	hard	to	manipulate.	 If	 the
last	item	is	deleted,	the	last	but	one	must	then	have	its	pointer	changed	to	hold	a	NULL	reference.
This	requires	that	the	list	is	traversed	to	find	the	last	but	one	link,	and	its	pointer	set	to	a	NULL
reference.

Finally,	linked	lists	waste	memory	in	terms	of	extra	reference	points.

3.5	Comparison	of	Linked	Lists	with	Arrays	&	Dynamic	Arrays



3.6	Singly	Linked	Lists

Generally	“linked	list”	means	a	singly	linked	list.	This	list	consists	of	a	number	of	nodes	in	which
each	 node	 has	 a	next	 pointer	 to	 the	 following	 element.	 The	 link	 of	 the	 last	 node	 in	 the	 list	 is
NULL,	which	indicates	the	end	of	the	list.

Following	is	a	type	declaration	for	a	linked	list	of	integers:

Basic	Operations	on	a	List



• Traversing	the	list
• Inserting	an	item	in	the	list
• Deleting	an	item	from	the	list

Traversing	the	Linked	List

Let	 us	 assume	 that	 the	head	 points	 to	 the	 first	 node	 of	 the	 list.	 To	 traverse	 the	 list	we	 do	 the
following

• Follow	the	pointers.
• Display	the	contents	of	the	nodes	(or	count)	as	they	are	traversed.
• Stop	when	the	next	pointer	points	to	NULL.

The	ListLength()	function	takes	a	linked	list	as	input	and	counts	the	number	of	nodes	in	the	list.
The	function	given	below	can	be	used	for	printing	the	list	data	with	extra	print	function.

Time	Complexity:	O(n),	for	scanning	the	list	of	size	n.
Space	Complexity:	O(1),	for	creating	a	temporary	variable.

Singly	Linked	List	Insertion

Insertion	into	a	singly-linked	list	has	three	cases:



• Inserting	a	new	node	before	the	head	(at	the	beginning)
• Inserting	a	new	node	after	the	tail	(at	the	end	of	the	list)
• Inserting	a	new	node	at	the	middle	of	the	list	(random	location)

Note:	To	 insert	an	element	 in	 the	 linked	 list	at	 some	position	p,	 assume	 that	after	 inserting	 the
element	the	position	of	this	new	node	is	p.

Inserting	a	Node	in	Singly	Linked	List	at	the	Beginning

In	this	case,	a	new	node	is	inserted	before	the	current	head	node.	Only	one	next	pointer	needs	to
be	modified	(new	node’s	next	pointer)	and	it	can	be	done	in	two	steps:

• Update	the	next	pointer	of	new	node,	to	point	to	the	current	head.

• Update	head	pointer	to	point	to	the	new	node.

Inserting	a	Node	in	Singly	Linked	List	at	the	Ending

In	 this	case,	we	need	 to	modify	 two	next	pointers	 (last	nodes	next	pointer	and	new	nodes	next
pointer).

• New	nodes	next	pointer	points	to	NULL.



• Last	nodes	next	pointer	points	to	the	new	node.

Inserting	a	Node	in	Singly	Linked	List	at	the	Middle

Let	us	assume	that	we	are	given	a	position	where	we	want	 to	 insert	 the	new	node.	 In	 this	case
also,	we	need	to	modify	two	next	pointers.

• If	we	want	to	add	an	element	at	position	3	then	we	stop	at	position	2.	That	means	we
traverse	 2	 nodes	 and	 insert	 the	 new	 node.	 For	 simplicity	 let	 us	 assume	 that	 the
second	node	is	called	position	node.	The	new	node	points	 to	 the	next	node	of	 the
position	where	we	want	to	add	this	node.



• Position	node’s	next	pointer	now	points	to	the	new	node.

Let	us	write	the	code	for	all	three	cases.	We	must	update	the	first	element	pointer	in	the	calling
function,	not	 just	 in	 the	called	 function.	For	 this	 reason	we	need	 to	 send	a	double	pointer.	The
following	code	inserts	a	node	in	the	singly	linked	list.



Note:	We	can	implement	the	three	variations	of	the	insert	operation	separately.

Time	Complexity:	O(n),	since,	in	the	worst	case,	we	may	need	to	insert	the	node	at	the	end	of	the
list.
Space	Complexity:	O(1),	for	creating	one	temporary	variable.

Singly	Linked	List	Deletion



Similar	to	insertion,	here	we	also	have	three	cases.

• Deleting	the	first	node
• Deleting	the	last	node
• Deleting	an	intermediate	node.

Deleting	the	First	Node	in	Singly	Linked	List

First	node	(current	head	node)	is	removed	from	the	list.	It	can	be	done	in	two	steps:

• Create	a	temporary	node	which	will	point	to	the	same	node	as	that	of	head.

• Now,	move	 the	head	nodes	pointer	 to	 the	next	 node	 and	dispose	of	 the	 temporary
node.

Deleting	the	Last	Node	in	Singly	Linked	List

In	this	case,	the	last	node	is	removed	from	the	list.	This	operation	is	a	bit	trickier	than	removing
the	first	node,	because	the	algorithm	should	find	a	node,	which	is	previous	to	the	tail.	It	can	be
done	in	three	steps:

• Traverse	the	list	and	while	traversing	maintain	the	previous	node	address	also.	By
the	time	we	reach	the	end	of	the	list,	we	will	have	two	pointers,	one	pointing	to	the
tail	node	and	the	other	pointing	to	the	node	before	the	tail	node.



• Update	previous	node’s	next	pointer	with	NULL.

• Dispose	of	the	tail	node.

Deleting	an	Intermediate	Node	in	Singly	Linked	List

In	this	case,	the	node	to	be	removed	is	always	located	between	 two	nodes.	Head	and	tail	 links
are	not	updated	in	this	case.	Such	a	removal	can	be	done	in	two	steps:

• Similar	 to	 the	previous	 case,	maintain	 the	previous	node	while	 traversing	 the	 list.
Once	we	find	the	node	to	be	deleted,	change	the	previous	node’s	next	pointer	to	the
next	pointer	of	the	node	to	be	deleted.



• Dispose	of	the	current	node	to	be	deleted.



Time	Complexity:	O(n).	In	the	worst	case,	we	may	need	to	delete	the	node	at	the	end	of	the	list.
Space	Complexity:	O(1),	for	one	temporary	variable.

Deleting	Singly	Linked	List



This	works	by	storing	the	current	node	in	some	temporary	variable	and	freeing	the	current	node.
After	 freeing	 the	 current	 node,	 go	 to	 the	 next	 node	 with	 a	 temporary	 variable	 and	 repeat	 this
process	for	all	nodes.

Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	creating	one	temporary	variable.

3.7	Doubly	Linked	Lists

The	advantage	of	a	doubly	linked	list	(also	called	two	–	way	linked	list)	is	that	given	a	node	in
the	 list,	we	 can	 navigate	 in	 both	 directions.	A	 node	 in	 a	 singly	 linked	 list	 cannot	 be	 removed
unless	we	have	the	pointer	to	its	predecessor.	But	in	a	doubly	linked	list,	we	can	delete	a	node
even	if	we	don’t	have	the	previous	node’s	address	(since	each	node	has	a	left	pointer	pointing	to
the	previous	node	and	can	move	backward).

The	primary	disadvantages	of	doubly	linked	lists	are:

• Each	node	requires	an	extra	pointer,	requiring	more	space.
• The	insertion	or	deletion	of	a	node	takes	a	bit	longer	(more	pointer	operations).

Similar	 to	 a	 singly	 linked	 list,	 let	 us	 implement	 the	 operations	 of	 a	 doubly	 linked	 list.	 If	 you
understand	 the	 singly	 linked	 list	 operations,	 then	 doubly	 linked	 list	 operations	 are	 obvious.
Following	is	a	type	declaration	for	a	doubly	linked	list	of	integers:



Doubly	Linked	List	Insertion

Insertion	into	a	doubly-linked	list	has	three	cases	(same	as	singly	linked	list):

• Inserting	a	new	node	before	the	head.
• Inserting	a	new	node	after	the	tail	(at	the	end	of	the	list).
• Inserting	a	new	node	at	the	middle	of	the	list.

Inserting	a	Node	in	Doubly	Linked	List	at	the	Beginning

In	 this	case,	new	node	 is	 inserted	before	 the	head	node.	Previous	and	next	pointers	need	 to	be
modified	and	it	can	be	done	in	two	steps:

• Update	 the	 right	pointer	of	 the	new	node	 to	point	 to	 the	current	head	node	 (dotted
link	in	below	figure)	and	also	make	left	pointer	of	new	node	as	NULL.

• Update	 head	 node’s	 left	 pointer	 to	 point	 to	 the	 new	 node	 and	make	 new	 node	 as
head.	Head



Inserting	a	Node	in	Doubly	Linked	List	at	the	Ending

In	this	case,	traverse	the	list	till	the	end	and	insert	the	new	node.

• New	node	right	pointer	points	to	NULL	and	left	pointer	points	to	the	end	of	the	list.

• Update	right	pointer	of	last	node	to	point	to	new	node.

Inserting	a	Node	in	Doubly	Linked	List	at	the	Middle

As	discussed	in	singly	linked	lists,	traverse	the	list	to	the	position	node	and	insert	the	new	node.

• New	node	right	pointer	points	to	the	next	node	of	the	position	node	where	we	want
to	insert	the	new	node.	Also,	new	node	left	pointer	points	to	the	position	node.



• Position	node	right	pointer	points	to	the	new	node	and	the	next	node	of	position	node
left	pointer	points	to	new	node.

Now,	let	us	write	the	code	for	all	of	these	three	cases.	We	must	update	the	first	element	pointer	in
the	 calling	 function,	 not	 just	 in	 the	 called	 function.	 For	 this	 reason	we	 need	 to	 send	 a	 double
pointer.	The	following	code	inserts	a	node	in	the	doubly	linked	list





Time	Complexity:	O(n).	In	the	worst	case,	we	may	need	to	insert	the	node	at	the	end	of	the	list.
Space	Complexity:	O(1),	for	creating	one	temporary	variable.

Doubly	Linked	List	Deletion

Similar	to	singly	linked	list	deletion,	here	we	have	three	cases:

• Deleting	the	first	node
• Deleting	the	last	node
• Deleting	an	intermediate	node

Deleting	the	First	Node	in	Doubly	Linked	List

In	 this	 case,	 the	 first	node	 (current	head	node)	 is	 removed	 from	 the	 list.	 It	 can	be	done	 in	 two
steps:

• Create	a	temporary	node	which	will	point	to	the	same	node	as	that	of	head.

• Now,	move	the	head	nodes	pointer	to	the	next	node	and	change	the	heads	left	pointer
to	NULL.	Then,	dispose	of	the	temporary	node.



Deleting	the	Last	Node	in	Doubly	Linked	List

This	operation	is	a	bit	trickier	than	removing	the	first	node,	because	the	algorithm	should	find	a
node,	which	is	previous	to	the	tail	first.	This	can	be	done	in	three	steps:

• Traverse	the	list	and	while	traversing	maintain	the	previous	node	address	also.	By
the	time	we	reach	the	end	of	the	list,	we	will	have	two	pointers,	one	pointing	to	the
tail	and	the	other	pointing	to	the	node	before	the	tail.

• Update	the	next	pointer	of	previous	node	to	the	tail	node	with	NULL.

• Dispose	the	tail	node.



Deleting	an	Intermediate	Node	in	Doubly	Linked	List

In	this	case,	the	node	to	be	removed	is	always	located	between	two	nodes,	and	the	head	and	tail
links	are	not	updated.	The	removal	can	be	done	in	two	steps:

• Similar	 to	 the	previous	case,	maintain	 the	previous	node	while	also	 traversing	 the
list.	Upon	locating	the	node	to	be	deleted,	change	the	previous	node’s	next	pointer
to	the	next	node	of	the	node	to	be	deleted.

• Dispose	of	the	current	node	to	be	deleted.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	creating	one	temporary	variable.

3.8	Circular	Linked	Lists



In	singly	linked	lists	and	doubly	linked	lists,	the	end	of	lists	are	indicated	with	NULL	value.	But
circular	 linked	 lists	 do	 not	 have	 ends.	While	 traversing	 the	 circular	 linked	 lists	we	 should	 be
careful;	otherwise	we	will	be	traversing	the	list	infinitely.	In	circular	linked	lists,	each	node	has	a
successor.	Note	that	unlike	singly	linked	lists,	there	is	no	node	with	NULL	pointer	in	a	circularly
linked	list.	In	some	situations,	circular	linked	lists	are	useful.

For	example,	when	several	processes	are	using	the	same	computer	resource	(CPU)	for	the	same
amount	 of	 time,	 we	 have	 to	 assure	 that	 no	 process	 accesses	 the	 resource	 before	 all	 other
processes	do	(round	robin	algorithm).	The	following	 is	a	 type	declaration	for	a	circular	 linked
list	of	integers:

In	 a	 circular	 linked	 list,	we	 access	 the	 elements	using	 the	head	 node	 (similar	 to	head	 node	 in
singly	linked	list	and	doubly	linked	lists).

Counting	Nodes	in	a	Circular	Linked	List

The	circular	list	is	accessible	through	the	node	marked	head.	To	count	the	nodes,	the	list	has	to	be
traversed	 from	 the	 node	 marked	 head,	 with	 the	 help	 of	 a	 dummy	 node	 current,	 and	 stop	 the
counting	when	current	reaches	the	starting	node	head.

If	the	list	is	empty,	head	will	be	NULL,	and	in	that	case	set	count	=	0.	Otherwise,	set	the	current
pointer	to	the	first	node,	and	keep	on	counting	till	the	current	pointer	reaches	the	starting	node.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	creating	one	temporary	variable.

Printing	the	Contents	of	a	Circular	Linked	List

We	assume	here	that	the	list	is	being	accessed	by	its	head	node.	Since	all	the	nodes	are	arranged
in	a	circular	fashion,	the	tail	node	of	the	list	will	be	the	node	previous	to	the	head	node.	Let	us
assume	we	want	to	print	the	contents	of	the	nodes	starting	with	the	head	node.	Print	its	contents,
move	to	the	next	node	and	continue	printing	till	we	reach	the	head	node	again.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	temporary	variable.

Inserting	a	Node	at	the	End	of	a	Circular	Linked	List

Let	us	add	a	node	containing	data,	at	 the	end	of	a	 list	 (circular	 list)	headed	by	head.	The	new
node	will	be	placed	just	after	the	tail	node	(which	is	the	last	node	of	the	list),	which	means	it	will
have	to	be	inserted	in	between	the	tail	node	and	the	first	node.

• Create	a	new	node	and	initially	keep	its	next	pointer	pointing	to	itself.

• Update	the	next	pointer	of	the	new	node	with	the	head	node	and	also	traverse	the	list
to	the	tail.	That	means	in	a	circular	list	we	should	stop	at	the	node	whose	next	node
is	head.



• Update	the	next	pointer	of	the	previous	node	to	point	to	the	new	node	and	we	get	the
list	as	shown	below.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	temporary	variable.

Inserting	a	Node	at	the	Front	of	a	Circular	Linked	List

The	only	difference	between	inserting	a	node	at	the	beginning	and	at	the	end	is	that,	after	inserting
the	new	node,	we	just	need	to	update	the	pointer.	The	steps	for	doing	this	are	given	below:

• Create	a	new	node	and	initially	keep	its	next	pointer	pointing	to	itself.



• Update	the	next	pointer	of	the	new	node	with	the	head	node	and	also	traverse	the	list
until	 the	tail.	That	means	in	a	circular	list	we	should	stop	at	the	node	which	is	its
previous	node	in	the	list.

• Update	the	previous	head	node	in	the	list	to	point	to	the	new	node.

• Make	the	new	node	as	the	head.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	temporary	variable.

Deleting	the	Last	Node	in	a	Circular	Linked	List

The	list	has	to	be	traversed	to	reach	the	last	but	one	node.	This	has	to	be	named	as	the	tail	node,
and	its	next	field	has	to	point	to	the	first	node.	Consider	the	following	list.

To	delete	the	last	node	40,	the	list	has	to	be	traversed	till	you	reach	7.	The	next	field	of	7	has	to



be	changed	to	point	to	60,	and	this	node	must	be	renamed	pTail.

• Traverse	the	list	and	find	the	tail	node	and	its	previous	node.

• Update	the	next	pointer	of	tail	node’s	previous	node	to	point	to	head.

• Dispose	of	the	tail	node.



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.	Space	Complexity:	O(1),	for	a
temporary	variable.

Deleting	the	First	Node	in	a	Circular	List

The	first	node	can	be	deleted	by	simply	replacing	the	next	field	of	the	tail	node	with	the	next	field
of	the	first	node.

• Find	the	tail	node	of	the	linked	list	by	traversing	the	list.	Tail	node	is	the	previous
node	to	the	head	node	which	we	want	to	delete.

• Create	a	 temporary	node	which	will	point	 to	 the	head.	Also,	update	 the	 tail	nodes
next	pointer	to	point	to	next	node	of	head	(as	shown	below).



• Now,	move	the	head	pointer	to	next	node.	Create	a	temporary	node	which	will	point
to	head.	Also,	update	 the	 tail	nodes	next	pointer	 to	point	 to	next	node	of	head	(as
shown	below).



Time	Complexity:	O(n),	for	scanning	the	complete	list	of	size	n.
Space	Complexity:	O(1),	for	a	temporary	variable.

Applications	of	Circular	List

Circular	 linked	 lists	 are	 used	 in	managing	 the	 computing	 resources	 of	 a	 computer.	We	 can	 use
circular	lists	for	implementing	stacks	and	queues.

3.9	A	Memory-efficient	Doubly	Linked	List

In	conventional	implementation,	we	need	to	keep	a	forward	pointer	to	the	next	item	on	the	list	and
a	 backward	 pointer	 to	 the	 previous	 item.	 That	 means	 elements	 in	 doubly	 linked	 list
implementations	consist	of	data,	a	pointer	to	the	next	node	and	a	pointer	to	the	previous	node	in
the	list	as	shown	below.

Conventional	Node	Definition



Recently	a	journal	(Sinha)	presented	an	alternative	implementation	of	the	doubly	linked	list	ADT,
with	 insertion,	 traversal	 and	 deletion	 operations.	 This	 implementation	 is	 based	 on	 pointer
difference.	Each	node	uses	only	one	pointer	field	to	traverse	the	list	back	and	forth.

New	Node	Definition

The	 ptrdiff	 pointer	 field	 contains	 the	 difference	 between	 the	 pointer	 to	 the	 next	 node	 and	 the
pointer	 to	 the	 previous	 node.	 The	 pointer	 difference	 is	 calculated	 by	 using	 exclusive-or	 (⊕)
operation.

ptrdiff	=	pointer	to	previous	node	⊕	pointer	to	next	node.

The	ptrdiff	of	 the	start	node	(head	node)	 is	 the	⊕	of	NULL	and	next	node	(next	node	 to	head).
Similarly,	the	ptrdiff	of	end	node	is	the	⊕	of	previous	node	(previous	to	end	node)	and	NULL.	As
an	example,	consider	the	following	linked	list.

In	the	example	above,

• The	next	pointer	of	A	is:	NULL	⊕	B
• The	next	pointer	of	B	is:	A	⊕	C
• The	next	pointer	of	C	is:	B	⊕	D
• The	next	pointer	of	D	is:	C	⊕	NULL



Why	does	it	work?

To	find	the	answer	to	this	question	let	us	consider	the	properties	of	⊕:

X	⊕	X=0
X	⊕	0	=	X
X	⊕	Y	=	Y	⊕	X	(symmetric)
(X	⊕	Y)	⊕	Z	=	X	⊕	(Y	⊕	Z)	(transitive)

For	the	example	above,	let	us	assume	that	we	are	at	C	node	and	want	to	move	to	B.	We	know	that
C’s	ptrdiff	 is	defined	as	B	⊕	D.	If	we	want	to	move	to	B,	performing	⊕	on	C’s	ptrdiff	with	D
would	give	B.	This	is	due	to	the	fact	that

(B	⊕	D)	⊕	D	=	B(since,	D	⊕	D=	0)

Similarly,	if	we	want	to	move	to	D,	then	we	have	to	apply	⊕	to	C’s	ptrdiff	with	B	to	give	D.

(B	⊕	D)	⊕	B	=	D	(since,	B	©	B=0)

From	the	above	discussion	we	can	see	that	just	by	using	a	single	pointer,	we	can	move	back	and
forth.	 A	 memory-efficient	 implementation	 of	 a	 doubly	 linked	 list	 is	 possible	 with	 minimal
compromising	of	timing	efficiency.

3.10	Unrolled	Linked	Lists

One	 of	 the	 biggest	 advantages	 of	 linked	 lists	 over	 arrays	 is	 that	 inserting	 an	 element	 at	 any
location	 takes	only	O(1)	 time.	However,	 it	 takes	O(n)	 to	search	for	an	element	 in	a	 linked	 list.
There	is	a	simple	variation	of	the	singly	linked	list	called	unrolled	linked	lists.

An	 unrolled	 linked	 list	 stores	 multiple	 elements	 in	 each	 node	 (let	 us	 call	 it	 a	 block	 for	 our
convenience).	In	each	block,	a	circular	linked	list	is	used	to	connect	all	nodes.

Assume	 that	 there	will	 be	 no	more	 than	 n	 elements	 in	 the	 unrolled	 linked	 list	 at	 any	 time.	 To
simplify	this	problem,	all	blocks,	except	the	last	one,	should	contain	exactly	 	elements.	Thus,



there	will	be	no	more	than	 	blocks	at	any	time.

Searching	for	an	element	in	Unrolled	Linked	Lists

In	unrolled	linked	lists,	we	can	find	the	kth	element	in	O( ):

1. Traverse	 the	 list	 of	 blocks	 to	 the	 one	 that	 contains	 the	 kth	 node,	 i.e.,	 the	

block.	 It	 takes	O( )	 since	 we	may	 find	 it	 by	 going	 through	 no	more	 than	
blocks.

2. Find	the	(k	mod	 )th	node	in	the	circular	linked	list	of	this	block.	It	also	takes	O(
)	since	there	are	no	more	than	 	nodes	in	a	single	block.

Inserting	an	element	in	Unrolled	Linked	Lists



When	inserting	a	node,	we	have	to	re-arrange	the	nodes	in	the	unrolled	linked	list	to	maintain	the
properties	previously	mentioned,	that	each	block	contains	 	nodes.	Suppose	that	we	insert	a
node	x	after	the	ith	node,	and	x	should	be	placed	in	the	jth	block.	Nodes	in	the	jth	block	and	in	the
blocks	after	 the	 jth	block	have	 to	be	shifted	 toward	 the	 tail	of	 the	 list	so	 that	each	of	 them	still
have	 	nodes.	In	addition,	a	new	block	needs	to	be	added	to	the	tail	if	the	last	block	of	the	list
is	out	of	space,	i.e.,	it	has	more	than	 	nodes.

Performing	Shift	Operation

Note	that	each	shift	operation,	which	includes	removing	a	node	from	the	tail	of	the	circular	linked
list	in	a	block	and	inserting	a	node	to	the	head	of	the	circular	linked	list	in	the	block	after,	takes
only	O(1).	The	total	time	complexity	of	an	insertion	operation	for	unrolled	linked	lists	is	therefore
O( );	there	are	at	most	O( )	blocks	and	therefore	at	most	O( )	shift	operations.

1. A	temporary	pointer	is	needed	to	store	the	tail	of	A.

2. In	block	A,	move	the	next	pointer	of	the	head	node	to	point	to	the	second-to-last
node,	so	that	the	tail	node	of	A	can	be	removed.

3. Let	the	next	pointer	of	the	node,	which	will	be	shifted	(the	tail	node	of	A),	point
to	the	tail	node	of	B.



4. Let	the	next	pointer	of	the	head	node	of	B	point	to	the	node	temp	points	to.

5. Finally,	set	the	head	pointer	of	B	to	point	to	the	node	temp	points	to.	Now	the
node	temp	points	to	becomes	the	new	head	node	of	B.

6. temp	 pointer	 can	 be	 thrown	 away.	We	have	 completed	 the	 shift	 operation	 to
move	the	original	tail	node	of	A	to	become	the	new	head	node	of	B.

Performance



With	unrolled	linked	lists,	there	are	a	couple	of	advantages,	one	in	speed	and	one	in	space.	First,
if	the	number	of	elements	in	each	block	is	appropriately	sized	(e.g.,	at	most	the	size	of	one	cache
line),	we	get	noticeably	better	cache	performance	 from	 the	 improved	memory	 locality.	Second,
since	we	have	O(n/m)	links,	where	n	is	the	number	of	elements	in	the	unrolled	linked	list	and	m	is
the	number	of	elements	we	can	store	 in	any	block,	we	can	also	save	an	appreciable	amount	of
space,	which	is	particularly	noticeable	if	each	element	is	small.

Comparing	Linked	Lists	and	Unrolled	Linked	Lists

To	 compare	 the	 overhead	 for	 an	 unrolled	 list,	 elements	 in	 doubly	 linked	 list	 implementations
consist	of	data,	a	pointer	to	the	next	node,	and	a	pointer	to	the	previous	node	in	the	list,	as	shown
below.

Assuming	we	have	4	byte	pointers,	each	node	is	going	to	take	8	bytes.	But	the	allocation	overhead
for	the	node	could	be	anywhere	between	8	and	16	bytes.	Let’s	go	with	the	best	case	and	assume	it
will	 be	 8	 bytes.	 So,	 if	we	want	 to	 store	 IK	 items	 in	 this	 list,	 we	 are	 going	 to	 have	 16KB	 of
overhead.

Now,	 let’s	 think	 about	 an	 unrolled	 linked	 list	 node	 (let	 us	 call	 it	 LinkedBlock).	 It	 will	 look
something	like	this:

Therefore,	 allocating	 a	 single	 node	 (12	 bytes	 +	 8	 bytes	 of	 overhead)	 with	 an	 array	 of	 100
elements	(400	bytes	+	8	bytes	of	overhead)	will	now	cost	428	bytes,	or	4.28	bytes	per	element.
Thinking	about	our	IK	items	from	above,	it	would	take	about	4.2KB	of	overhead,	which	is	close
to	4x	better	than	our	original	list.	Even	if	the	list	becomes	severely	fragmented	and	the	item	arrays
are	only	1/2	full	on	average,	 this	 is	still	an	 improvement.	Also,	note	 that	we	can	tune	 the	array
size	to	whatever	gets	us	the	best	overhead	for	our	application.



Implementation









3.11	Skip	Lists

Binary	 trees	 can	 be	 used	 for	 representing	 abstract	 data	 types	 such	 as	 dictionaries	 and	 ordered
lists.	 They	 work	 well	 when	 the	 elements	 are	 inserted	 in	 a	 random	 order.	 Some	 sequences	 of
operations,	such	as	 inserting	 the	elements	 in	order,	produce	degenerate	data	structures	 that	give
very	poor	performance.	If	it	were	possible	to	randomly	permute	the	list	of	items	to	be	inserted,
trees	would	work	well	with	high	probability	for	any	input	sequence.	In	most	cases	queries	must
be	answered	on-line,	so	randomly	permuting	the	input	is	impractical.	Balanced	tree	algorithms	re-
arrange	 the	 tree	 as	operations	 are	performed	 to	maintain	 certain	balance	 conditions	 and	assure
good	performance.

Skip	lists	are	a	probabilistic	alternative	to	balanced	trees.	Skip	list	is	a	data	structure	that	can	be
used	as	an	alternative	to	balanced	binary	trees	(refer	to	Trees	chapter).	As	compared	to	a	binary
tree,	skip	lists	allow	quick	search,	insertion	and	deletion	of	elements.	This	is	achieved	by	using
probabilistic	 balancing	 rather	 than	 strictly	 enforce	 balancing.	 It	 is	 basically	 a	 linked	 list	 with
additional	 pointers	 such	 that	 intermediate	 nodes	 can	 be	 skipped.	 It	 uses	 a	 random	 number
generator	to	make	some	decisions.

In	an	ordinary	sorted	 linked	 list,	 search,	 insert,	and	delete	are	 in	O(n)	because	 the	 list	must	be
scanned	node-by-node	from	the	head	to	find	the	relevant	node.	If	somehow	we	could	scan	down
the	list	in	bigger	steps	(skip	down,	as	it	were),	we	would	reduce	the	cost	of	scanning.	This	is	the
fundamental	idea	behind	Skip	Lists.

Skip	Lists	with	One	Level

Skip	Lists	with	Two	Levels

Skip	Lists	with	Three	Levels



Performance

In	a	simple	linked	list	that	consists	of	n	elements,	to	perform	a	search	n	comparisons	are	required
in	 the	 worst	 case.	 If	 a	 second	 pointer	 pointing	 two	 nodes	 ahead	 is	 added	 to	 every	 node,	 the
number	of	comparisons	goes	down	to	n/2	+	1	in	the	worst	case.

Adding	one	more	pointer	 to	 every	 fourth	node	and	making	 them	point	 to	 the	 fourth	node	ahead
reduces	the	number	of	comparisons	to	⌈n/2⌉	+	2.	If	this	strategy	is	continued	so	that	every	node
with	i	pointers	points	to	2	*	i	–	1	nodes	ahead,	O(logn)	performance	is	obtained	and	the	number
of	pointers	has	only	doubled	(n	+	n/2	+	n/4	+	n/8	+	n/16	+	....	=	2n).

The	 find,	 insert,	 and	 remove	operations	 on	ordinary	binary	 search	 trees	 are	 efficient,	O(logn),
when	the	input	data	is	random;	but	less	efficient,	O(n),	when	the	input	data	is	ordered.	Skip	List
performance	for	these	same	operations	and	for	any	data	set	is	about	as	good	as	that	of	randomly-
built	binary	search	trees	-	namely	O(logn).

Comparing	Skip	Lists	and	Unrolled	Linked	Lists

In	simple	terms,	Skip	Lists	are	sorted	linked	lists	with	two	differences:

• The	nodes	in	an	ordinary	list	have	one	next	reference.	The	nodes	in	a	Skip	List	have
many	next	references	(also	called	forward	references).

• The	number	of	forward	references	for	a	given	node	is	determined	probabilistically.

We	 speak	 of	 a	 Skip	 List	 node	 having	 levels,	 one	 level	 per	 forward	 reference.	 The	 number	 of
levels	in	a	node	is	called	the	size	of	the	node.	In	an	ordinary	sorted	list,	insert,	remove,	and	find
operations	require	sequential	traversal	of	the	list.	This	results	in	O(n)	performance	per	operation.
Skip	Lists	allow	intermediate	nodes	in	the	list	to	be	skipped	during	a	traversal	-	resulting	in	an
expected	performance	of	O(logn)	per	operation.

Implementation









3.12	Linked	Lists:	Problems	&	Solutions

Problem-1  Implement	Stack	using	Linked	List.

Solution:	Refer	to	Stacks	chapter.

Problem-2  Find	nth	node	from	the	end	of	a	Linked	List.

Solution:	Brute-Force	Method:	Start	with	the	first	node	and	count	the	number	of	nodes	present
after	that	node.	If	the	number	of	nodes	is	<	n	–	1	then	return	saying	“fewer	number	of	nodes	in	the
list”.	If	 the	number	of	nodes	is	>	n	–	1	 then	go	 to	next	node.	Continue	 this	until	 the	numbers	of
nodes	after	current	node	are	n	–	1.

Time	Complexity:	O(n2),	for	scanning	the	remaining	list	(from	current	node)	for	each	node.
Space	Complexity:	O(1).

Problem-3  Can	we	improve	the	complexity	of	Problem-2?

Solution:	Yes,	using	hash	table.	As	an	example	consider	the	following	list.

In	this	approach,	create	a	hash	table	whose	entries	are	<	position	of	node,	node	address	>.	That
means,	key	is	the	position	of	the	node	in	the	list	and	value	is	the	address	of	that	node.

Position	in	List Address	of	Node

1 Address	of	5	node

2 Address	of	1	node

3 Address	of	17	node

4 Address	of	4	node

By	the	time	we	traverse	the	complete	list	(for	creating	the	hash	table),	we	can	find	the	list	length.
Let	us	say	the	list	length	is	M.	To	find	nth	from	the	end	of	linked	list,	we	can	convert	this	to	M-	n
+	 1th	 from	 the	 beginning.	 Since	 we	 already	 know	 the	 length	 of	 the	 list,	 it	 is	 just	 a	 matter	 of



returning	M-	n	+	1th	key	value	from	the	hash	table.

Time	Complexity:	Time	for	creating	the	hash	table,	T(m)	=	O(m).
Space	Complexity:	Since	we	need	to	create	a	hash	table	of	size	m,	O(m).

Problem-4  Can	we	use	the	Problem-3	approach	for	solving	Problem-2	without	creating	 the
hash	table?

Solution:	Yes.	 If	we	observe	 the	Problem-3	solution,	what	we	are	actually	doing	 is	 finding	 the
size	of	the	linked	list.	That	means	we	are	using	the	hash	table	to	find	the	size	of	the	linked	list.	We
can	find	the	length	of	the	linked	list	just	by	starting	at	the	head	node	and	traversing	the	list.

So,	we	 can	 find	 the	 length	 of	 the	 list	without	 creating	 the	 hash	 table.	After	 finding	 the	 length,
compute	M	–	n	+	1	and	with	one	more	scan	we	can	get	the	M	–	n+	1th	node	from	the	beginning.
This	solution	needs	two	scans:	one	for	finding	the	length	of	the	list	and	the	other	for	finding	M	–
n+	1th	node	from	the	beginning.

Time	Complexity:	Time	for	finding	the	length	+	Time	for	finding	the	M	–	n	+	1th	node	from	the
beginning.	Therefore,	T(n)	=	O(n)	+	O(n)	≈	O(n).	Space	Complexity:	O(1).	Hence,	no	need	 to
create	the	hash	table.

Problem-5  Can	we	solve	Problem-2	in	one	scan?

Solution:	Yes.	Efficient	Approach:	Use	two	pointers	pNthNode	and	pTemp.	Initially,	both	point
to	head	node	of	the	list.	pNthNode	starts	moving	only	after	pTemp	has	made	n	moves.

From	 there	 both	move	 forward	 until	pTemp	 reaches	 the	 end	 of	 the	 list.	 As	 a	 result	pNthNode
points	to	nth	node	from	the	end	of	the	linked	list.

Note:	At	any	point	of	time	both	move	one	node	at	a	time.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-6  Check	whether	the	given	linked	list	is	either	NULL-terminated	or	ends	in	a	cycle
(cyclic).

Solution:	Brute-Force	Approach.	As	an	example,	consider	the	following	linked	list	which	has	a
loop	in	 it.	The	difference	between	this	 list	and	the	regular	 list	 is	 that,	 in	 this	 list,	 there	are	 two
nodes	whose	next	pointers	are	the	same.	In	regular	singly	linked	lists	(without	a	loop)	each	node’s
next	pointer	is	unique.

That	means	the	repetition	of	next	pointers	indicates	the	existence	of	a	loop.



One	simple	and	brute	force	way	of	solving	this	is,	start	with	the	first	node	and	see	whether	there
is	 any	node	whose	next	 pointer	 is	 the	 current	 node’s	 address.	 If	 there	 is	 a	 node	with	 the	 same
address	then	that	indicates	that	some	other	node	is	pointing	to	the	current	node	and	we	can	say	a
loop	exists.	Continue	this	process	for	all	the	nodes	of	the	linked	list.

Does	this	method	work?	As	per	the	algorithm,	we	are	checking	for	the	next	pointer	addresses,
but	how	do	we	find	the	end	of	the	linked	list	(otherwise	we	will	end	up	in	an	infinite	loop)?

Note:	If	we	start	with	a	node	in	a	loop,	this	method	may	work	depending	on	the	size	of	the	loop.

Problem-7  Can	we	use	the	hashing	technique	for	solving	Problem-6?

Solution:	Yes.	Using	Hash	Tables	we	can	solve	this	problem.

Algorithm:

• Traverse	the	linked	list	nodes	one	by	one.
• Check	if	the	address	of	the	node	is	available	in	the	hash	table	or	not.
• If	it	is	already	available	in	the	hash	table,	that	indicates	that	we	are	visiting	the	node

that	was	already	visited.	This	is	possible	only	if	the	given	linked	list	has	a	loop	in
it.

• If	the	address	of	the	node	is	not	available	in	the	hash	table,	insert	that	node’s	address
into	the	hash	table.

• Continue	this	process	until	we	reach	the	end	of	the	linked	list	or	we	find	the	loop.

Time	Complexity;	O(n)	 for	 scanning	 the	 linked	 list.	Note	 that	we	 are	 doing	 a	 scan	 of	 only	 the
input.
Space	Complexity;	O(n)	for	hash	table.

Problem-8  Can	we	solve	Problem-6	using	the	sorting	technique?

Solution:	No.	Consider	the	following	algorithm	which	is	based	on	sorting.	Then	we	see	why	this



algorithm	fails.

Algorithm:

• Traverse	the	linked	list	nodes	one	by	one	and	take	all	the	next	pointer	values	into	an
array.

• Sort	the	array	that	has	the	next	node	pointers.
• If	there	is	a	loop	in	the	linked	list,	definitely	two	next	node	pointers	will	be	pointing

to	the	same	node.
• After	sorting	if	there	is	a	loop	in	the	list,	the	nodes	whose	next	pointers	are	the	same

will	end	up	adjacent	in	the	sorted	list.
• If	any	such	pair	exists	in	the	sorted	list	then	we	say	the	linked	list	has	a	loop	in	it.

Time	Complexity;	O(nlogn)	for	sorting	the	next	pointers	array.
Space	Complexity;	O(n)	for	the	next	pointers	array.

Problem	with	the	above	algorithm:	The	above	algorithm	works	only	if	we	can	find	the	length	of
the	list.	But	if	the	list	has	a	loop	then	we	may	end	up	in	an	infinite	loop.	Due	to	this	reason	the
algorithm	fails.

Problem-9  Can	we	solve	the	Problem-6	in	O(n)?

Solution:	 Yes.	 Efficient	 Approach	 (Memoryless	 Approach):	 This	 problem	 was	 solved	 by
Floyd.	The	solution	 is	named	 the	Floyd	cycle	 finding	algorithm.	It	uses	 two	 pointers	moving	at
different	speeds	to	walk	the	linked	list.	Once	they	enter	the	loop	they	are	expected	to	meet,	which
denotes	that	there	is	a	loop.

This	works	because	the	only	way	a	faster	moving	pointer	would	point	to	the	same	location	as	a
slower	moving	pointer	is	if	somehow	the	entire	list	or	a	part	of	it	is	circular.	Think	of	a	tortoise
and	a	hare	running	on	a	track.	The	faster	running	hare	will	catch	up	with	the	tortoise	if	they	are
running	 in	 a	 loop.	 As	 an	 example,	 consider	 the	 following	 example	 and	 trace	 out	 the	 Floyd
algorithm.	From	the	diagrams	below	we	can	see	that	after	the	final	step	they	are	meeting	at	some
point	in	the	loop	which	may	not	be	the	starting	point	of	the	loop.

Note:	slowPtr	(tortoise)	moves	one	pointer	at	a	time	and	fastPtr	(hare)	moves	two	pointers	at	a
time.





Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-10  are	 given	 a	 pointer	 to	 the	 first	 element	 of	 a	 linked	 list	 L.	 There	 are	 two
possibilities	 for	 L:	 it	 either	 ends	 (snake)	 or	 its	 last	 element	 points	 back	 to	 one	 of	 the
earlier	elements	in	the	list	(snail).	Give	an	algorithm	that	tests	whether	a	given	list	L	is	a
snake	or	a	snail.

Solution:	It	is	the	same	as	Problem-6.

Problem-11  Check	 whether	 the	 given	 linked	 list	 is	 NULL-terminated	 or	 not.	 If	 there	 is	 a
cycle	find	the	start	node	of	the	loop.

Solution:	The	solution	is	an	extension	to	the	solution	in	Problem-9.	After	finding	the	loop	in	the
linked	list,	we	initialize	the	slowPtr	to	the	head	of	the	linked	list.	From	that	point	onwards	both
slowPtr	and	fastPtr	move	only	one	node	at	a	time.	The	point	at	which	they	meet	is	the	start	of	the
loop.	Generally	we	use	this	method	for	removing	the	loops.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-12  From	the	previous	discussion	and	problems	we	understand	 that	 the	meeting	of
tortoise	and	hare	concludes	the	existence	of	the	loop,	but	how	does	moving	the	tortoise	to
the	beginning	of	 the	 linked	 list	while	keeping	 the	hare	at	 the	meeting	place,	 followed	by
moving	both	one	step	at	a	time,	make	them	meet	at	the	starting	point	of	the	cycle?

Solution:	 This	 problem	 is	 at	 the	 heart	 of	 number	 theory.	 In	 the	 Floyd	 cycle	 finding	 algorithm,
notice	that	 the	 tortoise	and	the	hare	will	meet	when	they	are	n	×	L,	where	L	 is	 the	 loop	 length.
Furthermore,	 the	 tortoise	 is	at	 the	midpoint	between	 the	hare	and	 the	beginning	of	 the	sequence
because	of	 the	way	 they	move.	Therefore	 the	 tortoise	 is	n	 ×	L	 away	 from	 the	beginning	of	 the
sequence	as	well.	If	we	move	both	one	step	at	a	time,	from	the	position	of	the	tortoise	and	from
the	start	of	the	sequence,	we	know	that	they	will	meet	as	soon	as	both	are	in	the	loop,	since	they
are	n	×	L,	a	multiple	of	the	loop	length,	apart.	One	of	them	is	already	in	the	loop,	so	we	just	move
the	other	one	 in	single	step	until	 it	enters	 the	 loop,	keeping	 the	other	n	×	L	 away	 from	 it	 at	all
times.

Problem-13  In	 the	 Floyd	 cycle	 finding	 algorithm,	 does	 it	 work	 if	 we	 use	 steps	 2	 and	 3
instead	of	1	and	2?



Solution:	Yes,	but	the	complexity	might	be	high.	Trace	out	an	example.

Problem-14  Check	whether	the	given	linked	list	is	NULL-terminated.	If	there	is	a	cycle,	find
the	length	of	the	loop.

Solution:	This	solution	is	also	an	extension	of	the	basic	cycle	detection	problem.	After	finding	the
loop	in	the	linked	list,	keep	the	slowPtr	as	it	is.	The	fastPtr	keeps	on	moving	until	it	again	comes
back	to	slowPtr.	While	moving	fastPtr,	use	a	counter	variable	which	increments	at	the	rate	of	1.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-15  Insert	a	node	in	a	sorted	linked	list.

Solution:	Traverse	the	list	and	find	a	position	for	the	element	and	insert	it.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-16  Reverse	a	singly	linked	list.

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Recursive	version:	We	will	find	it	easier	to	start	from	the	bottom	up,	by	asking	and	answering
tiny	questions	(this	is	the	approach	in	The	Little	Lisper):

• What	is	the	reverse	of	NULL	(the	empty	list)?	NULL.
• What	is	the	reverse	of	a	one	element	list?	The	element	itself.



• What	is	the	reverse	of	an	n	element	list?	The	reverse	of	the	second	element	followed
by	the	first	element.

Time	Complexity:	O(n).	Space	Complexity:	O(n),for	recursive	stack.

Problem-17  Suppose	there	are	two	singly	linked	lists	both	of	which	intersect	at	some	point
and	become	a	single	linked	list.	The	head	or	start	pointers	of	both	the	lists	are	known,	but
the	 intersecting	node	is	not	known.	Also,	 the	number	of	nodes	 in	each	of	 the	 lists	before
they	intersect	is	unknown	and	may	be	different	in	each	list.	List1	may	have	n	nodes	before
it	 reaches	 the	 intersection	 point,	 and	 List2	 might	 have	 m	 nodes	 before	 it	 reaches	 the
intersection	point	where	m	and	n	may	be	m	=	n,m	<	n	or	m	>	n.	Give	an	algorithm	for
finding	the	merging	point.

Solution:	Brute-Force	Approach:	One	easy	solution	is	to	compare	every	node	pointer	in	the	first
list	with	every	other	node	pointer	in	the	second	list	by	which	the	matching	node	pointers	will	lead
us	 to	 the	 intersecting	node.	But,	 the	 time	complexity	 in	 this	 case	will	be	O(mn)	which	will	 be
high.



Time	Complexity:	O(mn).	Space	Complexity:	O(1).

Problem-18  Can	we	solve	Problem-17	using	the	sorting	technique?

Solution:	No.	 Consider	 the	 following	 algorithm	 which	 is	 based	 on	 sorting	 and	 see	 why	 this
algorithm	fails.

Algorithm:

• Take	first	list	node	pointers	and	keep	them	in	some	array	and	sort	them.
• Take	second	list	node	pointers	and	keep	them	in	some	array	and	sort	them.
• After	 sorting,	 use	 two	 indexes:	 one	 for	 the	 first	 sorted	 array	 and	 the	 other	 for	 the

second	sorted	array.
• Start	 comparing	 values	 at	 the	 indexes	 and	 increment	 the	 index	 according	 to

whichever	has	the	lower	value	(increment	only	if	the	values	are	not	equal).
• At	any	point,	if	we	are	able	to	find	two	indexes	whose	values	are	the	same,	then	that

indicates	 that	 those	 two	 nodes	 are	 pointing	 to	 the	 same	 node	 and	 we	 return	 that
node.

Time	Complexity:	Time	for	sorting	lists	+	Time	for	scanning	(for	comparing)
=	O(mlogm)	+O(nlogn)	+O(m	 +	n)	We	need	 to	 consider	 the	 one	 that	 gives	 the
maximum	value.

Space	Complexity:	O(1).

Any	 problem	 with	 the	 above	 algorithm?	 Yes.	 In	 the	 algorithm,	 we	 are	 storing	 all	 the	 node
pointers	of	both	the	lists	and	sorting.	But	we	are	forgetting	the	fact	that	there	can	be	many	repeated
elements.	This	is	because	after	the	merging	point,	all	node	pointers	are	the	same	for	both	the	lists.
The	algorithm	works	fine	only	in	one	case	and	it	is	when	both	lists	have	the	ending	node	at	their
merge	point.

Problem-19  Can	we	solve	Problem-17	using	hash	tables?

Solution:	Yes.

Algorithm:

• Select	 a	 list	 which	 has	 less	 number	 of	 nodes	 (If	 we	 do	 not	 know	 the	 lengths
beforehand	then	select	one	list	randomly).

• Now,	traverse	the	other	list	and	for	each	node	pointer	of	this	list	check	whether	the
same	node	pointer	exists	in	the	hash	table.

• If	there	is	a	merge	point	for	the	given	lists	then	we	will	definitely	encounter	the	node
pointer	in	the	hash	table.

Time	Complexity:	Time	for	creating	the	hash	table	+	Time	for	scanning	the	second	list	=	O(m)	+
O(n)	(or	O(n)	+	O(m),	depending	on	which	list	we	select	for	creating	the	hash	table.	But	in	both



cases	the	time	complexity	is	the	same.	Space	Complexity:	O(n)	or	O(m).

Problem-20  Can	we	use	stacks	for	solving	the	Problem-17?

Solution:	Yes.

Algorithm:

• Create	two	stacks:	one	for	the	first	list	and	one	for	the	second	list.
• Traverse	the	first	list	and	push	all	the	node	addresses	onto	the	first	stack.
• Traverse	the	second	list	and	push	all	the	node	addresses	onto	the	second	stack.
• Now	both	stacks	contain	the	node	address	of	the	corresponding	lists.
• Now	compare	the	top	node	address	of	both	stacks.
• If	 they	 are	 the	 same,	 take	 the	 top	 elements	 from	both	 the	 stacks	 and	 keep	 them	 in

some	 temporary	variable	 (since	both	node	addresses	are	node,	 it	 is	 enough	 if	we
use	one	temporary	variable).

• Continue	this	process	until	the	top	node	addresses	of	the	stacks	are	not	the	same.
• This	point	is	the	one	where	the	lists	merge	into	a	single	list.
• Return	the	value	of	the	temporary	variable.

Time	Complexity:	O(m	+	n),	for	scanning	both	the	lists.
Space	Complexity:	O(m	+	n),	for	creating	two	stacks	for	both	the	lists.

Problem-21  Is	there	any	other	way	of	solving	Problem-17?

Solution:	Yes.	 Using	 “finding	 the	 first	 repeating	 number”	 approach	 in	 an	 array	 (for	 algorithm
refer	to	Searching	chapter).

Algorithm:

• Create	an	array	A	and	keep	all	the	next	pointers	of	both	the	lists	in	the	array.
• In	 the	 array	 find	 the	 first	 repeating	 element	 [Refer	 to	 Searching	 chapter	 for

algorithm].
• The	first	repeating	number	indicates	the	merging	point	of	both	the	lists.

Time	Complexity:	O(m	+	n).	Space	Complexity:	O(m	+	n).

Problem-22  Can	we	still	think	of	finding	an	alternative	solution	for	Problem-17?

Solution:	Yes.	By	combining	sorting	and	search	techniques	we	can	reduce	the	complexity.

Algorithm:

• Create	an	array	A	and	keep	all	the	next	pointers	of	the	first	list	in	the	array.
• Sort	these	array	elements.
• Then,	for	each	of	the	second	list	elements,	search	in	the	sorted	array	(let	us	assume



that	we	are	using	binary	search	which	gives	O(logn)).
• Since	we	 are	 scanning	 the	 second	 list	 one	 by	 one,	 the	 first	 repeating	 element	 that

appears	in	the	array	is	nothing	but	the	merging	point.

Time	Complexity:	Time	for	sorting	+	Time	for	searching	=	O(Max(mlogm,	nlogn)).
Space	Complexity:	O(Max(m,	n)).

Problem-23  Can	we	improve	the	complexity	for	Problem-17?

Solution:	Yes.

Efficient	Approach:

• Find	lengths	(L1	and	L2)	of	both	lists	-	O(n)	+	O(m)	=	O(max(m,	n)).
• Take	the	difference	d	of	the	lengths	--	O(1).
• Make	d	steps	in	longer	list	--	O(d).
• Step	in	both	lists	in	parallel	until	links	to	next	node	match	--	O(min(m,	n)).
• Total	time	complexity	=	O(max(m,	n)).
• Space	Complexity	=	O(1).



Problem-24  How	will	you	find	the	middle	of	the	linked	list?

Solution:	Brute-Force	Approach:	For	each	of	the	node,	count	how	many	nodes	are	there	in	the
list,	and	see	whether	it	is	the	middle	node	of	the	list.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-25  Can	we	improve	the	complexity	of	Problem-24?



Solution:	Yes.

Algorithm:

• Traverse	the	list	and	find	the	length	of	the	list.
• After	finding	the	length,	again	scan	the	list	and	locate	n/2	node	from	the	beginning.

Time	Complexity:	Time	for	finding	the	length	of	the	list	+	Time	for	locating	middle	node	=	O(n)	+
O(n)	≈	O(n).
Space	Complexity:	O(1).

Problem-26  Can	we	use	the	hash	table	for	solving	Problem-24?

Solution:	Yes.	The	reasoning	is	the	same	as	that	of	Problem-3.

Time	Complexity:	Time	for	creating	the	hash	table.	Therefore,	T(n)	=	O(n).
Space	Complexity:	O(n).	Since	we	need	to	create	a	hash	table	of	size	n.

Problem-27  Can	we	solve	Problem-24	just	in	one	scan?

Solution:	Efficient	Approach:	 Use	 two	 pointers.	Move	 one	 pointer	 at	 twice	 the	 speed	 of	 the
second.	When	the	first	pointer	reaches	the	end	of	the	list,	the	second	pointer	will	be	pointing	to
the	middle	node.

Note:	If	the	list	has	an	even	number	of	nodes,	the	middle	node	will	be	of	⌊n/2⌋.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-28  How	will	you	display	a	Linked	List	from	the	end?

Solution:	Traverse	recursively	till	the	end	of	the	linked	list.	While	coming	back,	start	printing	the
elements.

Time	Complexity:	O(n).	Space	Complexity:	O(n)→	for	Stack.

Problem-29  Check	whether	the	given	Linked	List	length	is	even	or	odd?

Solution:	Use	a	2x	pointer.	Take	a	pointer	that	moves	at	2x	[two	nodes	at	a	time].	At	the	end,	if
the	length	is	even,	then	the	pointer	will	be	NULL;	otherwise	it	will	point	to	the	last	node.



Time	Complexity:	O(⌊n/2⌋)	≈	O(n).	Space	Complexity:	O(1).

Problem-30  If	the	head	of	a	Linked	List	is	pointing	to	kth	element,	then	how	will	you	get	the
elements	before	kth	element?

Solution:	Use	Memory	Efficient	Linked	Lists	[XOR	Linked	Lists].

Problem-31  Given	two	sorted	Linked	Lists,	how	to	merge	 them	into	 the	 third	 list	 in	sorted
order?

Solution:	Assume	the	sizes	of	lists	are	m	and	n.

Recursive:

Time	Complexity:	O(n	+	m),	where	n	and	m	are	lengths	of	two	lists.

Iterative:



Time	Complexity:	O(n	+	m),	where	n	and	m	are	lengths	of	two	lists.

Problem-32  Reverse	the	linked	list	in	pairs.	If	you	have	a	linked	list	that	holds	1	→	2	→	3
→	4	→	X,	then	after	the	function	has	been	called	the	linked	list	would	hold	2	→	1	→	4	→
3	→	X.

Solution:

Recursive:



Iterative:

Time	Complexity:	O(n).	Space	Complexity:	O(1).



Problem-33  Given	a	binary	tree	convert	it	to	doubly	linked	list.

Solution:	Refer	Trees	chapter.

Problem-34  How	do	we	sort	the	Linked	Lists?

Solution:	Refer	Sorting	chapter.

Problem-35  Split	a	Circular	Linked	List	into	two	equal	parts.	If	the	number	of	nodes	in	the
list	are	odd	then	make	first	list	one	node	extra	than	second	list.

Solution:

Algorithm:

• Store	the	mid	and	last	pointers	of	 the	circular	 linked	list	using	Floyd	cycle	finding
algorithm.

• Make	the	second	half	circular.
• Make	the	first	half	circular.
• Set	head	pointers	of	the	two	linked	lists.

As	an	example,	consider	the	following	circular	list.

After	the	split,	the	above	list	will	look	like:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-36  If	we	want	 to	 concatenate	 two	 linked	 lists	which	of	 the	 following	gives	O(1)
complexity?
1) Singly	linked	lists
2) Doubly	linked	lists
3) Circular	doubly	linked	lists

Solution:	Circular	Doubly	Linked	Lists.	This	 is	because	 for	 singly	and	doubly	 linked	 lists,	we



need	to	 traverse	 the	first	 list	 till	 the	end	and	append	the	second	list.	But	 in	 the	case	of	circular
doubly	linked	lists	we	don’t	have	to	traverse	the	lists.

Problem-37  How	will	you	check	if	the	linked	list	is	palindrome	or	not?

Solution:

Algorithm:
1. Get	the	middle	of	the	linked	list.
2. Reverse	the	second	half	of	the	linked	list.
3. Compare	the	first	half	and	second	half.
4. Construct	 the	 original	 linked	 list	 by	 reversing	 the	 second	 half	 again	 and

attaching	it	back	to	the	first	half.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-38  For	a	given	K	value	(K	>	0)	reverse	blocks	of	K	nodes	in	a	list.
Example:	Input:	1	2	3	4	5	6	7	8	9	10.	Output	for	different	K	values:
For	K	=	2:	2	1	4	3	6	5	8	7	10	9
For	K	=	3:	3	2	1	6	5	4	9	8	7	10
For	K	=	4:	4	3	2	1	8	7	6	5	9	10

Solution:

Algorithm:	This	is	an	extension	of	swapping	nodes	in	a	linked	list.

1) Check	if	remaining	list	has	K	nodes.
a. If	yes	get	the	pointer	of	K	+	1th	node.
b. Else	return.

2) Reverse	first	K	nodes.
3) Set	next	of	last	node	(after	reversal)	to	K	+	1th	node.
4) Move	to	K	+	1th	node.
5) Go	to	step	1.
6) K	–	1th	node	of	first	K	nodes	becomes	the	new	head	if	available.	Otherwise,	we	can

return	the	head.





Problem-39  Is	it	possible	to	get	O(1)	access	time	for	Linked	Lists?

Solution:	Yes.	Create	a	linked	list	and	at	the	same	time	keep	it	in	a	hash	table.	For	n	elements	we
have	to	keep	all	the	elements	in	a	hash	table	which	gives	a	preprocessing	time	of	O(n).To	read
any	element	we	require	only	constant	time	O(1)	and	to	read	n	elements	we	require	n	*	1	unit	of
time	 =	 n	 units.	 Hence	 by	 using	 amortized	 analysis	 we	 can	 say	 that	 element	 access	 can	 be
performed	within	O(1)	time.

Time	Complexity	–	O(1)	[Amortized].	Space	Complexity	-	O(n)	for	Hash	Table.

Problem-40  Josephus	 Circle:	 N	 people	 have	 decided	 to	 elect	 a	 leader	 by	 arranging
themselves	in	a	circle	and	eliminating	every	Mth	person	around	the	circle,	closing	ranks	as
each	person	drops	out.	Find	which	person	will	be	the	last	one	remaining	(with	rank	1).

Solution:	Assume	 the	 input	 is	 a	 circular	 linked	 list	with	N	 nodes	 and	 each	node	has	 a	number
(range	1	to	N)	associated	with	it.	The	head	node	has	number	1	as	data.



Problem-41  Given	a	 linked	 list	 consists	 of	data,	 a	 next	pointer	 and	 also	 a	 random	pointer
which	points	to	a	random	node	of	the	list.	Give	an	algorithm	for	cloning	the	list.

Solution:	We	can	use	a	hash	table	to	associate	newly	created	nodes	with	the	instances	of	node	in
the	given	list.

Algorithm:

• Scan	the	original	list	and	for	each	node	X,	create	a	new	node	Y	with	data	of	X,	then
store	the	pair	(X,	Y)	in	hash	table	using	X	as	a	key.	Note	that	during	this	scan	set	Y
→	next	and	Y	→	random	to	NULL	and	we	will	fix	them	in	the	next	scan.

• Now	for	each	node	X	in	the	original	list	we	have	a	copy	Y	stored	in	our	hash	table.
We	scan	the	original	list	again	and	set	the	pointers	building	the	new	list.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-42  Can	we	solve	Problem-41	without	any	extra	space?

Solution:	Yes.



Time	Complexity:	O(3n)	≈	O(n).	Space	Complexity:	O(1).

Problem-43  We	are	given	a	pointer	to	a	node	(not	the	tail	node)	in	a	singly	linked	list.	Delete
that	node	from	the	linked	list.

Solution:	To	delete	a	node,	we	have	to	adjust	the	next	pointer	of	the	previous	node	to	point	to	the



next	node	instead	of	the	current	one.	Since	we	don’t	have	a	pointer	to	the	previous	node,	we	can’t
redirect	its	next	pointer.	So	what	do	we	do?	We	can	easily	get	away	by	moving	the	data	from	the
next	node	into	the	current	node	and	then	deleting	the	next	node.

Time	Complexity:	O(1).	Space	Complexity:	O(1).

Problem-44  Given	a	linked	list	with	even	and	odd	numbers,	create	an	algorithm	for	making
changes	to	the	list	in	such	a	way	that	all	even	numbers	appear	at	the	beginning.

Solution:	To	solve	this	problem,	we	can	use	the	splitting	logic.	While	traversing	the	list,	split	the
linked	list	into	two:	one	contains	all	even	nodes	and	the	other	contains	all	odd	nodes.	Now,	to	get
the	final	list,	we	can	simply	append	the	odd	node	linked	list	after	the	even	node	linked	list.

To	 split	 the	 linked	 list,	 traverse	 the	 original	 linked	 list	 and	move	 all	 odd	 nodes	 to	 a	 separate
linked	list	of	all	odd	nodes.	At	the	end	of	the	loop,	the	original	list	will	have	all	the	even	nodes
and	the	odd	node	list	will	have	all	the	odd	nodes.	To	keep	the	ordering	of	all	nodes	the	same,	we
must	insert	all	the	odd	nodes	at	the	end	of	the	odd	node	list.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-45  In	a	linked	list	with	n	nodes,	the	time	taken	to	insert	an	element	after	an	element
pointed	by	some	pointer	is
(A) O(1)
(B) O(logn)
(C) O(n)
(D) O(nlogn)

Solution:	A.

Problem-46  Find	modular	node:	Given	a	singly	linked	list,	write	a	function	to	find	the	last
element	from	the	beginning	whose	n%k	==	0,	where	n	is	the	number	of	elements	in	the	list
and	k	is	an	integer	constant.	For	example,	if	n	=	19	and	k	=	3	then	we	should	return	18th
node.

Solution:	For	this	problem	the	value	of	n	is	not	known	in	advance.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-47  Find	modular	node	from	the	end:	Given	a	singly	linked	list,	write	a	function	to
find	the	first	from	the	end	whose	n%k	==	0,	where	n	is	the	number	of	elements	in	the	list
and	k	is	an	integer	constant.	If	n	=	19	and	k	=	3	then	we	should	return	16th	node.

Solution:	For	this	problem	the	value	of	n	is	not	known	in	advance	and	it	is	the	same	as	finding	the
kth	element	from	the	end	of	the	the	linked	list.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-48  Find	 fractional	node:	Given	 a	 singly	 linked	 list,	write	 a	 function	 to	 find	 the	
	element,	where	n	is	the	number	of	elements	in	the	list.

Solution:	For	this	problem	the	value	of	n	is	not	known	in	advance.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-49  Find	 	node:	Given	a	singly	linked	list,	write	a	function	to	find	the	
element,	where	n	is	the	number	of	elements	in	the	list.	Assume	the	value	of	n	is	not	known
in	advance.

Solution:	For	this	problem	the	value	of	n	is	not	known	in	advance.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-50  Given	two	lists	List	1	=	{A1,	A2,	.	.	.	,	An)	and	List2	=	{B1,	B2,	 .	 .	 .	 ,	Bm}	with
data	 (both	 lists)	 in	ascending	order.	Merge	 them	into	 the	 third	 list	 in	ascending	order	so
that	the	merged	list	will	be:

Solution:



Time	Complexity:	The	while	loop	takes	O(min(n,m))	time	as	it	will	run	for	min(n,m)	times.	The
other	steps	run	in	O(1).	Therefore	the	total	time	complexity	is	O(min(n,m)).	Space	Complexity:
O(1).

Problem-51  Median	in	an	infinite	series	of	integers

Solution:	Median	is	the	middle	number	in	a	sorted	list	of	numbers	(if	we	have	an	odd	number	of
elements).	 If	 we	 have	 an	 even	 number	 of	 elements,	 the	 median	 is	 the	 average	 of	 two	middle
numbers	in	a	sorted	list	of	numbers.	We	can	solve	this	problem	with	linked	lists	(with	both	sorted
and	unsorted	linked	lists).

First,	let	us	try	with	an	unsorted	linked	list.	In	an	unsorted	linked	list,	we	can	insert	the	element
either	at	 the	head	or	at	 the	 tail.	The	disadvantage	with	 this	approach	 is	 that	 finding	 the	median
takes	O(n).	Also,	the	insertion	operation	takes	O(1).

Now,	let	us	try	with	a	sorted	linked	list.	We	can	find	the	median	in	O(1)	time	if	we	keep	track	of



the	middle	elements.	Insertion	to	a	particular	location	is	also	O(1)	in	any	linked	list.	But,	finding
the	right	location	to	insert	is	not	O(logn)	as	in	a	sorted	array,	it	is	instead	O(n)	because	we	can’t
perform	binary	search	in	a	linked	list	even	if	it	is	sorted.	So,	using	a	sorted	linked	list	isn’t	worth
the	 effort	 as	 insertion	 is	O(n)	 and	 finding	median	 is	O(1),	 the	 same	 as	 the	 sorted	 array.	 In	 the
sorted	array	the	insertion	is	linear	due	to	shifting,	but	here	it’s	linear	because	we	can’t	do	a	binary
search	in	a	linked	list.

Note:	For	an	efficient	algorithm	refer	to	the	Priority	Queues	and	Heaps	chapter.

Problem-52  Given	a	linked	list,	how	do	you	modify	it	such	that	all	the	even	numbers	appear
before	all	the	odd	numbers	in	the	modified	linked	list?

Solution:





Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-53  Given	 two	 linked	 lists,	 each	 list	 node	 with	 one	 integer	 digit,	 add	 these	 two
linked	lists.	The	result	should	be	stored	in	the	third	linked	list.	Also	note	that	the	head	node
contains	the	most	significant	digit	of	the	number.

Solution:	Since	the	integer	addition	starts	from	the	least	significant	digit,	we	first	need	to	visit	the
last	node	of	both	lists	and	add	them	up,	create	a	new	node	to	store	the	result,	take	care	of	the	carry
if	any,	and	link	the	resulting	node	to	the	node	which	will	be	added	to	the	second	least	significant
node	and	continue.

First	of	all,	we	need	to	take	into	account	the	difference	in	the	number	of	digits	in	the	two	numbers.
So	before	starting	recursion,	we	need	to	do	some	calculation	and	move	the	longer	list	pointer	to
the	appropriate	place	so	that	we	need	the	last	node	of	both	lists	at	the	same	time.	The	other	thing
we	need	to	take	care	of	is	carry.	 If	 two	digits	add	up	to	more	than	10,	we	need	to	forward	the
carry	to	the	next	node	and	add	it.	If	the	most	significant	digit	addition	results	in	a	carry,	we	need
to	create	an	extra	node	to	store	the	carry.

The	 function	 below	 is	 actually	 a	 wrapper	 function	 which	 does	 all	 the	 housekeeping	 like
calculating	lengths	of	lists,	calling	recursive	implementation,	creating	an	extra	node	for	the	carry
in	the	most	significant	digit,	and	adding	any	remaining	nodes	left	in	the	longer	list.





Time	Complexity:	O(max(List1	length,List2	length)).
Space	Complexity:	O(min(List1	length,	List1	length))	for	recursive	stack.

Note:	It	can	also	be	solved	using	stacks.

Problem-54  Which	sorting	algorithm	is	easily	adaptable	to	singly	linked	lists?

Solution:	Simple	Insertion	sort	is	easily	adabtable	to	singly	linked	lists.	To	insert	an	element,	the
linked	list	is	traversed	until	the	proper	position	is	found,	or	until	the	end	of	the	list	is	reached.	It
is	inserted	into	the	list	by	merely	adjusting	the	pointers	without	shifting	any	elements,	unlike	in	the
array.	This	reduces	the	time	required	for	insertion	but	not	the	time	required	for	searching	for	the
proper	position.

Problem-55  Given	 a	 list,	 List1	 =	 {A1,	 A2,	 .	 .	 .	 An–1;	 An)	 with	 data,	 reorder	 it	 to	 {A1,
An,A2,An–1}	without	using	any	extra	space.

Solution:	Find	the	middle	of	the	linked	list.	We	can	do	it	by	slow	and	fast	pointer	approach.	After
finding	the	middle	node,	we	reverse	the	right	halfl	then	we	do	a	in	place	merge	of	the	two	halves
of	the	linked	list.

Problem-56  Given	 two	 sorted	 linked	 lists,	 given	 an	 algorithm	 for	 the	 printing	 common
elements	of	them.

Solution:	The	solution	is	based	on	merge	sort	logic.	Assume	the	given	two	linked	lists	are:	list1
and	list2.	Since	the	elements	are	in	sorted	order,	we	run	a	loop	till	we	reach	the	end	of	either	of
the	list.	We	compare	the	values	of	list1	and	list2.	If	the	values	are	equal,	we	add	it	to	the	common
list.	We	move	list1/list2/both	nodes	ahead	to	the	next	pointer	 if	 the	values	pointed	by	list1	was
less	/	more	/	equal	to	the	value	pointed	by	list2.

Time	 complexity	O(m	 +	 n),	 where	 m	 is	 the	 lengh	 of	 list1	 and	 n	 is	 the	 length	 of	 list2.	 Space
Complexity:	O(1).





4.1	What	is	a	Stack?

A	stack	is	a	simple	data	structure	used	for	storing	data	(similar	 to	Linked	Lists).	In	a	stack,	 the
order	in	which	the	data	arrives	is	important.	A	pile	of	plates	in	a	cafeteria	is	a	good	example	of	a
stack.	The	plates	are	added	to	the	stack	as	they	are	cleaned	and	they	are	placed	on	the	top.	When	a
plate,	is	required	it	is	taken	from	the	top	of	the	stack.	The	first	plate	placed	on	the	stack	is	the	last
one	to	be	used.

Definition:	A	stack	is	an	ordered	list	in	which	insertion	and	deletion	are	done	at	one	end,	called
top.	The	last	element	inserted	is	the	first	one	to	be	deleted.	Hence,	it	is	called	the	Last	in	First	out
(LIFO)	or	First	in	Last	out	(FILO)	list.

Special	 names	 are	 given	 to	 the	 two	 changes	 that	 can	 be	made	 to	 a	 stack.	When	 an	 element	 is
inserted	in	a	stack,	the	concept	is	called	push,	and	when	an	element	is	removed	from	the	stack,	the
concept	is	called	pop.	Trying	to	pop	out	an	empty	stack	is	called	underflow	and	trying	to	push	an
element	in	a	full	stack	is	called	overflow.	Generally,	we	treat	them	as	exceptions.	As	an	example,



consider	the	snapshots	of	the	stack.

4.2	How	Stacks	are	used

Consider	 a	 working	 day	 in	 the	 office.	 Let	 us	 assume	 a	 developer	 is	 working	 on	 a	 long-term
project.	 The	 manager	 then	 gives	 the	 developer	 a	 new	 task	 which	 is	 more	 important.	 The
developer	puts	the	long-term	project	aside	and	begins	work	on	the	new	task.	The	phone	rings,	and
this	is	the	highest	priority	as	it	must	be	answered	immediately.	The	developer	pushes	the	present
task	into	the	pending	tray	and	answers	the	phone.

When	the	call	is	complete	the	task	that	was	abandoned	to	answer	the	phone	is	retrieved	from	the
pending	 tray	and	work	progresses.	To	 take	another	call,	 it	may	have	 to	be	handled	 in	 the	same
manner,	but	eventually	the	new	task	will	be	finished,	and	the	developer	can	draw	the	long-term
project	from	the	pending	tray	and	continue	with	that.

4.3	Stack	ADT

The	following	operations	make	a	stack	an	ADT.	For	simplicity,	assume	the	data	is	an	integer	type.

Main	stack	operations

• Push	(int	data):	Inserts	data	onto	stack.
• int	Pop():	Removes	and	returns	the	last	inserted	element	from	the	stack.



Auxiliary	stack	operations

• int	Top():	Returns	the	last	inserted	element	without	removing	it.
• int	Size():	Returns	the	number	of	elements	stored	in	the	stack.
• int	IsEmptyStack():	Indicates	whether	any	elements	are	stored	in	the	stack	or	not.
• int	IsFullStack():	Indicates	whether	the	stack	is	full	or	not.

Exceptions

Attempting	 the	 execution	 of	 an	 operation	 may	 sometimes	 cause	 an	 error	 condition,	 called	 an
exception.	 Exceptions	 are	 said	 to	 be	 “thrown”	 by	 an	 operation	 that	 cannot	 be	 executed.	 In	 the
Stack	ADT,	 operations	 pop	 and	 top	 cannot	 be	 performed	 if	 the	 stack	 is	 empty.	Attempting	 the
execution	of	pop	(top)	on	an	empty	stack	throws	an	exception.	Trying	to	push	an	element	in	a	full
stack	throws	an	exception.

4.4	Applications

Following	are	some	of	the	applications	in	which	stacks	play	an	important	role.

Direct	applications

• Balancing	of	symbols
• Infix-to-postfix	conversion
• Evaluation	of	postfix	expression
• Implementing	function	calls	(including	recursion)
• Finding	of	spans	(finding	spans	in	stock	markets,	refer	to	Problems	section)
• Page-visited	history	in	a	Web	browser	[Back	Buttons]
• Undo	sequence	in	a	text	editor
• Matching	Tags	in	HTML	and	XML

Indirect	applications

• Auxiliary	data	structure	for	other	algorithms	(Example:	Tree	traversal	algorithms)
• Component	 of	 other	 data	 structures	 (Example:	 Simulating	 queues,	 refer	 Queues

chapter)

4.5	Implementation

There	are	many	ways	of	implementing	stack	ADT;	below	are	the	commonly	used	methods.



• Simple	array	based	implementation
• Dynamic	array	based	implementation
• Linked	lists	implementation

Simple	Array	Implementation

This	implementation	of	stack	ADT	uses	an	array.	In	the	array,	we	add	elements	from	left	to	right
and	use	a	variable	to	keep	track	of	the	index	of	the	top	element.

The	array	 storing	 the	 stack	elements	may	become	 full.	A	push	operation	will	 then	 throw	a	 full
stack	exception.	Similarly,	if	we	try	deleting	an	element	from	an	empty	stack	it	will	throw	stack
empty	exception.





Performance	&	Limitations

Performance

Let	 n	 be	 the	 number	 of	 elements	 in	 the	 stack.	 The	 complexities	 of	 stack	 operations	 with	 this
representation	can	be	given	as:

Space	Complexity	(for	n	push	operations) O(n)

Time	Complexity	of	Push() O(1)

Time	Complexity	of	Pop() O(1)

Time	Complexity	of	Size() O(1)

Time	Complexity	of	IsEmptyStack() O(1)

Time	Complexity	of	IsFullStackf) O(1)

Time	Complexity	of	DeleteStackQ O(1)

Limitations

The	maximum	size	of	 the	stack	must	first	be	defined	and	it	cannot	be	changed.	Trying	to	push	a
new	element	into	a	full	stack	causes	an	implementation-specific	exception.

Dynamic	Array	Implementation

First,	let’s	consider	how	we	implemented	a	simple	array	based	stack.	We	took	one	index	variable
top	which	points	to	the	index	of	the	most	recently	inserted	element	in	the	stack.	To	insert	(or	push)
an	element,	we	increment	top	index	and	then	place	the	new	element	at	that	index.

Similarly,	to	delete	(or	pop)	an	element	we	take	the	element	at	top	index	and	then	decrement	the
top	index.	We	represent	an	empty	queue	with	top	value	equal	to	–1.	The	issue	that	still	needs	to
be	resolved	is	what	we	do	when	all	the	slots	in	the	fixed	size	array	stack	are	occupied?

First	try:	What	if	we	increment	the	size	of	the	array	by	1	every	time	the	stack	is	full?
• Push();	increase	size	of	S[]	by	1
• Pop():	decrease	size	of	S[]	by	1

Problems	with	this	approach?



This	 way	 of	 incrementing	 the	 array	 size	 is	 too	 expensive.	 Let	 us	 see	 the	 reason	 for	 this.	 For
example,	at	n	 =	1,	 to	 push	 an	 element	 create	 a	 new	array	of	 size	2	 and	 copy	 all	 the	old	 array
elements	to	the	new	array,	and	at	the	end	add	the	new	element.	At	n	=	2,	to	push	an	element	create
a	new	array	of	size	3	and	copy	all	the	old	array	elements	to	the	new	array,	and	at	the	end	add	the
new	element.

Similarly,	at	n	=	n	–	1,	if	we	want	to	push	an	element	create	a	new	array	of	size	n	and	copy	all	the
old	array	elements	to	the	new	array	and	at	the	end	add	the	new	element.	After	n	push	operations
the	total	time	T(n)	(number	of	copy	operations)	is	proportional	to	1	+	2	+	...	+	n	≈	O(n2).

Alternative	Approach:	Repeated	Doubling

Let	us	improve	the	complexity	by	using	the	array	doubling	technique.	If	the	array	is	full,	create	a
new	array	of	twice	the	size,	and	copy	the	items.	With	this	approach,	pushing	n	 items	 takes	 time
proportional	to	n	(not	n2).

For	simplicity,	 let	us	assume	that	 initially	we	started	with	n	=	1	and	moved	up	to	n	=	32.	That
means,	we	do	the	doubling	at	1,2,4,8,16.	The	other	way	of	analyzing	the	same	approach	is:	at	n	=
1,	 if	we	want	 to	 add	 (push)	 an	 element,	 double	 the	 current	 size	 of	 the	 array	 and	 copy	 all	 the
elements	of	the	old	array	to	the	new	array.

At	n	=	1,	we	do	1	copy	operation,	at	n	=	2,	we	do	2	copy	operations,	and	at	n	=	4,	we	do	4	copy
operations	and	so	on.	By	the	time	we	reach	n	=	32,	the	total	number	of	copy	operations	is	1+2	+	4
+	 8+16	=	 31	which	 is	 approximately	 equal	 to	 2n	 value	 (32).	 If	we	 observe	 carefully,	we	 are
doing	 the	 doubling	 operation	 logn	 times.	 Now,	 let	 us	 generalize	 the	 discussion.	 For	 n	 push
operations	we	 double	 the	 array	 size	 logn	 times.	 That	 means,	 we	 will	 have	 logn	 terms	 in	 the
expression	below.	The	total	time	T(n)	of	a	series	of	n	push	operations	is	proportional	to

T(n)	is	O(n)	and	the	amortized	time	of	a	push	operation	is	O(1)	.





Performance

Let	 n	 be	 the	 number	 of	 elements	 in	 the	 stack.	 The	 complexities	 for	 operations	 with	 this
representation	can	be	given	as:

Space	Complexity	(for	n	push	operations) O(n)

Time	Complexity	of	CreateStack() O(1)

Time	Complexity	of	PushQ O(1)	(Average)

Time	Complexity	of	PopQ O(1)

Time	Complexity	of	Top() O(1)

Time	Complexity	of	IsEmpryStackf) O(1))

Time	Complexity	of	IsFullStackf) O(1)

Time	Complexity	of	DeleteStackQ O(1)

Note:	Too	many	doublings	may	cause	memory	overflow	exception.

Linked	List	Implementation

The	other	way	of	implementing	stacks	is	by	using	Linked	lists.	Push	operation	is	implemented	by
inserting	element	at	the	beginning	of	the	list.	Pop	operation	is	implemented	by	deleting	the	node
from	the	beginning	(the	header/top	node).





Performance

Let	 n	 be	 the	 number	 of	 elements	 in	 the	 stack.	 The	 complexities	 for	 operations	 with	 this
representation	can	be	given	as:

Space	Complexity	(for	n	push	operations) O(n)

Time	Complexity	of	CreateStack() O(1)

Time	Complexity	of	Push() O(1)	(Average)

Time	Complexity	of	Pop() O(1)

Time	Complexity	of	Top() O(1)

Time	Complexity	of	IsEmptyStack() O(1)

Time	Complexity	of	DeleteStack() O(n)

4.6	Comparison	of	Implementations

Comparing	Incremental	Strategy	and	Doubling	Strategy

We	 compare	 the	 incremental	 strategy	 and	 doubling	 strategy	 by	 analyzing	 the	 total	 time	 T(n)
needed	to	perform	a	series	of	n	push	operations.	We	start	with	an	empty	stack	represented	by	an
array	of	size	1.

We	call	amortized	time	of	a	push	operation	is	the	average	time	taken	by	a	push	over	the	series	of
operations,	that	is,	T(n)/n.

Incremental	Strategy

The	amortized	time	(average	time	per	operation)	of	a	push	operation	is	O(n)	[O(n2)/n].

Doubling	Strategy

In	this	method,	the	amortized	time	of	a	push	operation	is	O(1)	[O(n)/n].

Note:	For	analysis,	refer	to	the	Implementation	section.

Comparing	Array	Implementation	and	Linked	List	Implementation



Array	Implementation

• Operations	take	constant	time.
• Expensive	doubling	operation	every	once	in	a	while.
• Any	sequence	of	n	operations	(starting	from	empty	stack)	–	“amortized”	bound	takes

time	proportional	to	n.

Linked	List	Implementation

• Grows	and	shrinks	gracefully.
• Every	operation	takes	constant	time	O(1).
• Every	operation	uses	extra	space	and	time	to	deal	with	references.

4.7	Stacks:	Problems	&	Solutions

Problem-1  Discuss	how	stacks	can	be	used	for	checking	balancing	of	symbols.

Solution:	Stacks	can	be	used	to	check	whether	the	given	expression	has	balanced	symbols.	This
algorithm	is	very	useful	 in	compilers.	Each	time	the	parser	reads	one	character	at	a	 time.	If	 the
character	is	an	opening	delimiter	such	as	(,	{,	or	[-	then	it	is	written	to	the	stack.	When	a	closing
delimiter	is	encountered	like	),	},	or	]-the	stack	is	popped.

The	 opening	 and	 closing	 delimiters	 are	 then	 compared.	 If	 they	match,	 the	 parsing	 of	 the	 string
continues.	If	they	do	not	match,	the	parser	indicates	that	there	is	an	error	on	the	line.	A	linear-time
O(n)	algorithm	based	on	stack	can	be	given	as:

Algorithm:
a) Create	a	stack.
b) while	(end	of	input	is	not	reached)	{

1) If	the	character	read	is	not	a	symbol	to	be	balanced,	ignore	it.
2) If	the	character	is	an	opening	symbol	like	(,	[,	{,	push	it	onto	the	stack
3) If	 it	 is	a	closing	symbol	 like	 ),],},	 then	 if	 the	stack	 is	empty	 report	an

error.	Otherwise	pop	the	stack.
4) If	the	symbol	popped	is	not	the	corresponding	opening	symbol,	report	an

error.
}

c) At	end	of	input,	if	the	stack	is	not	empty	report	an	error

Examples:



For	tracing	the	algorithm	let	us	assume	that	the	input	is:	()	(()	[()])



Time	Complexity:	O(n).	Since	we	are	scanning	the	input	only	once.	Space	Complexity:	O(n)	[for
stack].

Problem-2  Discuss	infix	to	postfix	conversion	algorithm	using	stack.

Solution:	 Before	 discussing	 the	 algorithm,	 first	 let	 us	 see	 the	 definitions	 of	 infix,	 prefix	 and
postfix	expressions.

Infix:	An	 infix	 expression	 is	 a	 single	 letter,	 or	 an	 operator,	 proceeded	 by	 one	 infix	 string	 and
followed	by	another	Infix	string.

Prefix:	 A	 prefix	 expression	 is	 a	 single	 letter,	 or	 an	 operator,	 followed	 by	 two	 prefix	 strings.
Every	prefix	string	 longer	 than	a	single	variable	contains	an	operator,	 first	operand	and	second
operand.

Postfix:	 A	 postfix	 expression	 (also	 called	 Reverse	 Polish	 Notation)	 is	 a	 single	 letter	 or	 an
operator,	 preceded	 by	 two	 postfix	 strings.	 Every	 postfix	 string	 longer	 than	 a	 single	 variable
contains	first	and	second	operands	followed	by	an	operator.

Prefix	and	postfix	notions	are	methods	of	writing	mathematical	expressions	without	parenthesis.
Time	to	evaluate	a	postfix	and	prefix	expression	is	O(n),	where	n	is	the	number	of	elements	in	the
array.

Now,	 let	 us	 focus	 on	 the	 algorithm.	 In	 infix	 expressions,	 the	 operator	 precedence	 is	 implicit



unless	we	use	parentheses.	Therefore,	 for	 the	 infix	 to	postfix	 conversion	 algorithm	we	have	 to
define	the	operator	precedence	(or	priority)	inside	the	algorithm.

The	table	shows	the	precedence	and	their	associativity	(order	of	evaluation)	among	operators.



Important	Properties

• Let	us	consider	the	infix	expression	2	+	3*4	and	its	postfix	equivalent	234*+.	Notice
that	between	infix	and	postfix	the	order	of	the	numbers	(or	operands)	is	unchanged.
It	is	2	3	4	in	both	cases.	But	the	order	of	the	operators	*	and	+	is	affected	in	the	two
expressions.

• Only	one	stack	 is	enough	 to	convert	an	 infix	expression	 to	postfix	expression.	The
stack	that	we	use	in	the	algorithm	will	be	used	to	change	the	order	of	operators	from
infix	 to	 postfix.	 The	 stack	 we	 use	 will	 only	 contain	 operators	 and	 the	 open
parentheses	symbol	‘(‘.

Postfix	expressions	do	not	contain	parentheses.	We	shall	not	output	the	parentheses	in	the	postfix
output.

Algorithm:
a) Create	a	stack
b) for	each	character	t	in	the	input	stream}

c) pop	and	output	tokens	until	the	stack	is	empty

For	better	understanding	let	us	trace	out	an	example:	A	*	B-	(C	+	D)	+	E



Problem-3  Discuss	postfix	evaluation	using	stacks?

Solution:

Algorithm:
1 Scan	the	Postfix	string	from	left	to	right.
2 Initialize	an	empty	stack.
3 Repeat	steps	4	and	5	till	all	the	characters	are	scanned.
4 If	the	scanned	character	is	an	operand,	push	it	onto	the	stack.
5 If	 the	 scanned	character	 is	an	operator,	 and	 if	 the	operator	 is	a	unary	operator,	 then

pop	 an	 element	 from	 the	 stack.	 If	 the	 operator	 is	 a	 binary	 operator,	 then	 pop	 two
elements	 from	 the	 stack.	 After	 popping	 the	 elements,	 apply	 the	 operator	 to	 those
popped	elements.	Let	the	result	of	this	operation	be	retVal	onto	the	stack.

6 After	all	characters	are	scanned,	we	will	have	only	one	element	in	the	stack.
7 Return	top	of	the	stack	as	result.

Example:	Let	us	see	how	the	above-mentioned	algorithm	works	using	an	example.	Assume	that
the	postfix	string	is	123*+5-.

Initially	 the	 stack	 is	 empty.	Now,	 the	 first	 three	 characters	 scanned	 are	 1,	 2	 and	 3,	which	 are
operands.	They	will	be	pushed	into	the	stack	in	that	order.



The	next	character	scanned	is	“*”,	which	is	an	operator.	Thus,	we	pop	the	top	two	elements	from
the	stack	and	perform	the	“*”	operation	with	the	two	operands.	The	second	operand	will	be	the
first	element	that	is	popped.

The	value	of	the	expression	(2*3)	that	has	been	evaluated	(6)	is	pushed	into	the	stack.

The	next	character	scanned	is	“+”,	which	is	an	operator.	Thus,	we	pop	the	top	two	elements	from



the	stack	and	perform	the	“+”	operation	with	the	two	operands.	The	second	operand	will	be	the
first	element	that	is	popped.

The	value	of	the	expression	(1+6)	that	has	been	evaluated	(7)	is	pushed	into	the	stack.

The	next	character	scanned	is	“5”,	which	is	added	to	the	stack.



The	next	character	scanned	is	“-”,	which	is	an	operator.	Thus,	we	pop	the	top	two	elements	from
the	stack	and	perform	the	“-”	operation	with	the	two	operands.	The	second	operand	will	be	the
first	element	that	is	popped.

The	value	of	the	expression(7-5)	that	has	been	evaluated(23)	is	pushed	into	the	stack.

Now,	since	all	the	characters	are	scanned,	the	remaining	element	in	the	stack	(there	will	be	only
one	element	in	the	stack)	will	be	returned.	End	result:

• Postfix	String	:	123*+5-
• Result	:	2

Problem-4  Can	we	evaluate	the	infix	expression	with	stacks	in	one	pass?

Solution:	 Using	 2	 stacks	we	 can	 evaluate	 an	 infix	 expression	 in	 1	 pass	without	 converting	 to
postfix.

Algorithm:

1) Create	an	empty	operator	stack
2) Create	an	empty	operand	stack



3) For	each	token	in	the	input	string
a. Get	the	next	token	in	the	infix	string
b. If	next	token	is	an	operand,	place	it	on	the	operand	stack
c. If	next	token	is	an	operator

		i. Evaluate	the	operator	(next	op)
4) While	 operator	 stack	 is	 not	 empty,	 pop	 operator	 and	 operands	 (left	 and	 right),

evaluate	left	operator	right	and	push	result	onto	operand	stack
5) Pop	result	from	operator	stack

Problem-5  How	to	design	a	stack	such	that	GetMinimum(	)	should	be	O(1)?

Solution:	 Take	 an	 auxiliary	 stack	 that	maintains	 the	minimum	 of	 all	 values	 in	 the	 stack.	Also,
assume	that	each	element	of	the	stack	is	less	than	its	below	elements.	For	simplicity	let	us	call	the
auxiliary	stack	min	stack.

When	we	pop	the	main	stack,	pop	the	min	stack	too.	When	we	push	the	main	stack,	push	either	the
new	 element	 or	 the	 current	minimum,	whichever	 is	 lower.	At	 any	 point,	 if	we	want	 to	 get	 the
minimum,	then	we	just	need	to	return	the	top	element	from	the	min	stack.	Let	us	take	an	example
and	trace	it	out.	Initially	let	us	assume	that	we	have	pushed	2,	6,	4,	1	and	5.	Based	on	the	above-
mentioned	algorithm	the	min	stack	will	look	like:

Main	stack Min	stack

5	→	top 1	→	top

1 1

4 2

6 2

2 2

After	popping	twice	we	get:

Main	stack Min	stack

4	-→	top 2	→	top

6 2

2 2

Based	on	the	discussion	above,	now	let	us	code	the	push,	pop	and	GetMinimum()	operations.



Time	complexity:	O(1).	Space	complexity:	O(n)	[for	Min	stack].	This	algorithm	has	much	better
space	usage	if	we	rarely	get	a	“new	minimum	or	equal”.



Problem-6  For	Problem-5	is	it	possible	to	improve	the	space	complexity?

Solution:	Yes.	The	main	problem	of	 the	previous	approach	 is,	 for	 each	push	operation	we	are
pushing	the	element	on	to	min	stack	also	(either	the	new	element	or	existing	minimum	element).
That	means,	we	are	pushing	the	duplicate	minimum	elements	on	to	the	stack.

Now,	let	us	change	the	algorithm	to	improve	the	space	complexity.	We	still	have	the	min	stack,	but
we	only	pop	from	it	when	the	value	we	pop	from	the	main	stack	is	equal	 to	the	one	on	the	min
stack.	We	only	push	to	the	min	stack	when	the	value	being	pushed	onto	the	main	stack	is	less	than
or	equal	to	the	current	min	value.	In	this	modified	algorithm	also,	if	we	want	to	get	the	minimum
then	we	just	need	to	return	the	top	element	from	the	min	stack.	For	example,	 taking	the	original
version	and	pushing	1	again,	we’d	get:

Main	stack Min	stack

1	→	top

	5

1

4 1	→	top

6 1

2 2

Popping	from	the	above	pops	from	both	stacks	because	1	==	1,	leaving:

Main	stack Min	stack

5	→	top
	

1

4

6 1	→	top

2 2

Popping	again	only	pops	from	the	main	stack,	because	5	>	1:

Main	stack Min	stack

1	→	top
	

4



6 1	→	top

2 2

Popping	again	pops	both	stacks	because	1	==	1:

Main	stack Min	stack

4	→	top 	

6 	

2 2	→	top

Note:	The	difference	is	only	in	push	&	pop	operations.



Time	 complexity:	O(1).	 Space	 complexity:	O(n)	 [for	Min	 stack].	 But	 this	 algorithm	 has	much
better	space	usage	if	we	rarely	get	a	“new	minimum	or	equal”.

Problem-7  For	a	given	array	with	n	symbols	how	many	stack	permutations	are	possible?



Solution:	The	number	of	stack	permutations	with	n	symbols	is	represented	by	Catalan	number	and
we	will	discuss	this	in	the	Dynamic	Programming	chapter.

Problem-8  Given	an	array	of	characters	formed	with	a’s	and	b’s.	The	string	is	marked	with
special	 character	 X	 which	 represents	 the	 middle	 of	 the	 list	 (for	 example:
ababa...ababXbabab	baaa).	Check	whether	the	string	is	palindrome.

Solution:	This	 is	 one	 of	 the	 simplest	 algorithms.	What	we	do	 is,	 start	 two	 indexes,	 one	 at	 the
beginning	of	the	string	and	the	other	at	the	end	of	the	string.	Each	time	compare	whether	the	values
at	both	the	indexes	are	the	same	or	not.	If	the	values	are	not	the	same	then	we	say	that	the	given
string	is	not	a	palindrome.

If	 the	values	are	 the	same	then	 increment	 the	 left	 index	and	decrement	 the	right	 index.	Continue
this	process	until	both	the	indexes	meet	at	the	middle	(at	X)	or	if	the	string	is	not	palindrome.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-9  For	Problem-8,	if	the	input	is	in	singly	linked	list	then	how	do	we	check	whether
the	list	elements	form	a	palindrome	(That	means,	moving	backward	is	not	possible).

Solution:	Refer	Linked	Lists	chapter.

Problem-10  Can	we	solve	Problem-8	using	stacks?

Solution:	Yes.



Algorithm:

• Traverse	the	list	till	we	encounter	X	as	input	element.
• During	the	traversal	push	all	the	elements	(until	X)	on	to	the	stack.
• For	the	second	half	of	the	list,	compare	each	element’s	content	with	top	of	the	stack.

If	they	are	the	same	then	pop	the	stack	and	go	to	the	next	element	in	the	input	list.
• If	they	are	not	the	same	then	the	given	string	is	not	a	palindrome.
• Continue	this	process	until	the	stack	is	empty	or	the	string	is	not	a	palindrome.

Time	Complexity:	O(n).	Space	Complexity:	O(n/2)	≈	O(n).

Problem-11  Given	 a	 stack,	 how	 to	 reverse	 the	 elements	 of	 the	 stack	 using	 only	 stack
operations	(push	&	pop)?

Solution:

Algorithm:

• First	pop	all	the	elements	of	the	stack	till	it	becomes	empty.
• For	each	upward	step	in	recursion,	insert	the	element	at	the	bottom	of	the	stack.



Time	Complexity:	O(n2).	Space	Complexity:	O(n),	for	recursive	stack.

Problem-12  Show	 how	 to	 implement	 one	 queue	 efficiently	 using	 two	 stacks.	 Analyze	 the
running	time	of	the	queue	operations.

Solution:	Refer	Queues	chapter.

Problem-13  Show	 how	 to	 implement	 one	 stack	 efficiently	 using	 two	 queues.	 Analyze	 the
running	time	of	the	stack	operations.

Solution:	Refer	Queues	chapter.

Problem-14  How	 do	 we	 implement	 two	 stacks	 using	 only	 one	 array?	 Our	 stack	 routines
should	not	indicate	an	exception	unless	every	slot	in	the	array	is	used?

Solution:



Algorithm:

• Start	two	indexes	one	at	the	left	end	and	the	other	at	the	right	end.
• The	left	index	simulates	the	first	stack	and	the	right	index	simulates	the	second	stack.
• If	we	want	 to	 push	 an	 element	 into	 the	 first	 stack	 then	 put	 the	 element	 at	 the	 left

index.
• Similarly,	if	we	want	to	push	an	element	into	the	second	stack	then	put	the	element	at

the	right	index.
• The	first	stack	grows	towards	the	right,	and	the	second	stack	grows	towards	the	left.

Time	Complexity	of	push	and	pop	for	both	stacks	is	O(1).	Space	Complexity	is	O(1).

Problem-15  3	stacks	in	one	array:	How	to	implement	3	stacks	in	one	array?

Solution:	 For	 this	 problem,	 there	 could	 be	 other	 ways	 of	 solving	 it.	 Given	 below	 is	 one
possibility	and	it	works	as	long	as	there	is	an	empty	space	in	the	array.

To	implement	3	stacks	we	keep	the	following	information.

• The	index	of	the	first	stack	(Topi):	this	indicates	the	size	of	the	first	stack.
• The	index	of	the	second	stack	(Top2):	this	indicates	the	size	of	the	second	stack.
• Starting	index	of	the	third	stack	(base	address	of	third	stack).
• Top	index	of	the	third	stack.

Now,	let	us	define	the	push	and	pop	operations	for	this	implementation.

Pushing:

• For	pushing	on	to	the	first	stack,	we	need	to	see	if	adding	a	new	element	causes	it	to
bump	into	the	third	stack.	If	so,	try	to	shift	 the	third	stack	upwards.	Insert	the	new



element	at	(start1	+	Top1).
• For	pushing	to	the	second	stack,	we	need	to	see	if	adding	a	new	element	causes	it	to

bump	into	the	third	stack.	If	so,	try	to	shift	the	third	stack	downward.	Insert	the	new
element	at	(start2	-	Top2).

• When	pushing	 to	 the	 third	stack,	see	 if	 it	bumps	 into	 the	second	stack.	 If	 so,	 try	 to
shift	 the	 third	 stack	 downward	 and	 try	 pushing	 again.	 Insert	 the	 new	 element	 at
(start3	+	Top3).

Time	Complexity:	O(n).	Since	we	may	need	to	adjust	the	third	stack.	Space	Complexity:	O(1).

Popping:	For	popping,	we	don’t	need	to	shift,	just	decrement	the	size	of	the	appropriate	stack.

Time	Complexity:	O(1).	Space	Complexity:	O(1).

Problem-16  For	Problem-15,	is	there	any	other	way	implementing	the	middle	stack?

Solution:	Yes.	When	 either	 the	 left	 stack	 (which	 grows	 to	 the	 right)	 or	 the	 right	 stack	 (which
grows	to	the	left)	bumps	into	the	middle	stack,	we	need	to	shift	the	entire	middle	stack	to	make
room.	The	same	happens	if	a	push	on	the	middle	stack	causes	it	to	bump	into	the	right	stack.

To	solve	the	above-mentioned	problem	(number	of	shifts)	what	we	can	do	is:	alternating	pushes
can	be	added	at	alternating	sides	of	the	middle	list	(For	example,	even	elements	are	pushed	to	the
left,	 odd	 elements	 are	 pushed	 to	 the	 right).	 This	would	 keep	 the	middle	 stack	 balanced	 in	 the
center	of	the	array	but	it	would	still	need	to	be	shifted	when	it	bumps	into	the	left	or	right	stack,
whether	 by	 growing	 on	 its	 own	 or	 by	 the	 growth	 of	 a	 neighboring	 stack.	We	 can	 optimize	 the
initial	locations	of	the	three	stacks	if	they	grow/shrink	at	different	rates	and	if	they	have	different
average	sizes.	For	example,	suppose	one	stack	doesn’t	change	much.	If	we	put	it	at	the	left,	then
the	middle	 stack	will	 eventually	get	pushed	against	 it	 and	 leave	a	gap	between	 the	middle	and
right	stacks,	which	grow	toward	each	other.	If	they	collide,	then	it’s	likely	we’ve	run	out	of	space
in	the	array.	There	is	no	change	in	the	time	complexity	but	the	average	number	of	shifts	will	get
reduced.

Problem-17  Multiple	 (m)	 stacks	 in	 one	 array:	 Similar	 to	 Problem-15,	what	 if	we	want	 to
implement	m	stacks	in	one	array?

Solution:	Let	us	assume	that	array	indexes	are	from	1	to	n.	Similar	to	the	discussion	in	Problem-
15,	to	implement	m	stacks	in	one	array,	we	divide	the	array	into	m	parts	(as	shown	below).	The
size	of	each	part	is	 .



From	the	above	representation	we	can	see	that,	first	stack	is	starting	at	index	1	(starting	index	is
stored	in	Base[l]),	second	stack	is	starting	at	index	 	(starting	index	is	stored	in	Base[2]),	third

stack	is	starting	at	index	 	(starting	index	is	stored	in	Base[3]),	and	so	on.	Similar	to	Base	array,
let	us	assume	that	Top	array	stores	the	top	indexes	for	each	of	the	stack.	Consider	the	following
terminology	for	the	discussion.

• Top[i],	for	1	≤	i	≤	m	will	point	to	the	topmost	element	of	the	stack	i.
• If	Base[i]	==	Top[i],	then	we	can	say	the	stack	i	is	empty.
• If	Top[i]	==	Base[i+1],	then	we	can	say	the	stack	i	is	full.

Initially	Base[i]	=	Top[i]	=	 	(i	–	1),	for	1	≤	i	≤	m.

• The	ith	stack	grows	from	Base[i]+1	to	Base[i+1].

Pushing	on	to	ith	stack:

1) For	pushing	on	 to	 the	 ith	 stack,	we	check	whether	 the	 top	of	 ith	 stack	 is	pointing	 to
Base[i+1]	 (this	 case	 defines	 that	 ith	 stack	 is	 full).	That	means,	we	 need	 to	 see	 if
adding	a	new	element	causes	it	to	bump	into	the	i	+	1th	stack.	If	so,	try	to	shift	the
stacks	 from	 i	+	1th	 stack	 to	mth	 stack	 toward	 the	 right.	 Insert	 the	 new	 element	 at
(Base[i]	+	Top[i]).

2) If	right	shifting	is	not	possible	then	try	shifting	the	stacks	from	1	to	i	–1th	stack	toward
the	left.

3) If	both	of	them	are	not	possible	then	we	can	say	that	all	stacks	are	full.



Time	Complexity:	O(n).	Since	we	may	need	to	adjust	the	stacks.	Space	Complexity:	O(1).

Popping	 from	 ith	 stack:	 For	 popping,	 we	 don’t	 need	 to	 shift,	 just	 decrement	 the	 size	 of	 the
appropriate	stack.	The	only	case	to	check	is	stack	empty	case.

Time	Complexity:	O(1).	Space	Complexity:	O(1).

Problem-18  Consider	an	empty	stack	of	integers.	Let	the	numbers	1,2,3,4,5,6	be	pushed	on	to
this	stack	in	the	order	they	appear	from	left	to	right.	Let	5	indicate	a	push	and	X	indicate	a
pop	operation.	Can	they	be	permuted	in	to	the	order	325641(output)	and	order	154623?

Solution:	 SSSXXSSXSXXX	 outputs	 325641.	 154623	 cannot	 be	 output	 as	 2	 is	 pushed	 much
before	3	so	can	appear	only	after	3	is	output.

Problem-19  Earlier	 in	 this	chapter,	we	discussed	 that	 for	dynamic	array	 implementation	of
stacks,	 the	 ‘repeated	 doubling’	 approach	 is	 used.	 For	 the	 same	 problem,	 what	 is	 the
complexity	if	we	create	a	new	array	whose	size	is	n	+	if	instead	of	doubling?

Solution:	Let	us	assume	that	the	initial	stack	size	is	0.	For	simplicity	let	us	assume	that	K	=	10.
For	 inserting	the	element	we	create	a	new	array	whose	size	 is	0	+	10	=	10.	Similarly,	after	10
elements	we	again	create	a	new	array	whose	size	is	10	+	10	=	20	and	this	process	continues	at
values:	 30,40	 ...	 That	 means,	 for	 a	 given	 n	 value,	 we	 are	 creating	 the	 new	 arrays	 at:	

	The	total	number	of	copy	operations	is:

If	we	are	performing	n	push	operations,	the	cost	per	operation	is	O(logn).

Problem-20  Given	a	string	containing	n	S’s	and	n	X’s	where	5	indicates	a	push	operation	and



X	 indicates	a	pop	operation,	and	with	the	stack	initially	empty,	formulate	a	rule	to	check
whether	a	given	string	5	of	operations	is	admissible	or	not?

Solution:	Given	a	string	of	length	2n,	we	wish	to	check	whether	the	given	string	of	operations	is
permissible	or	not	with	respect	to	its	functioning	on	a	stack.	The	only	restricted	operation	is	pop
whose	prior	requirement	is	that	the	stack	should	not	be	empty.	So	while	traversing	the	string	from
left	 to	 right,	 prior	 to	 any	 pop	 the	 stack	 shouldn’t	 be	 empty,	which	means	 the	 number	 of	S’s	 is
always	greater	than	or	equal	to	that	of	X’s.	Hence	the	condition	is	at	any	stage	of	processing	of	the
string,	the	number	of	push	operations	(S)	should	be	greater	than	the	number	of	pop	operations	(X).

Problem-21  Suppose	 there	 are	 two	 singly	 linked	 lists	 which	 intersect	 at	 some	 point	 and
become	a	single	linked	list.	The	head	or	start	pointers	of	both	the	lists	are	known,	but	the
intersecting	node	is	not	known.	Also,	the	number	of	nodes	in	each	of	the	lists	before	they
intersect	are	unknown	and	both	lists	may	have	a	different	number.	List1	may	have	n	nodes
before	it	reaches	the	intersection	point	and	List2	may	have	m	nodes	before	it	reaches	the
intersection	point	where	m	and	n	may	be	m	=	n,m	<	n	or	m	>	n.	Can	we	find	the	merging
point	using	stacks?

Solution:	Yes.	For	algorithm	refer	to	Linked	Lists	chapter.

Problem-22  Finding	Spans:	Given	an	array	A,	the	span	S[i]	of	A[i]	is	the	maximum	number
of	consecutive	elements	A[j]	immediately	preceding	A[i]	and	such	that	A[j]	<	A[i]?
Other	way	of	asking:	Given	an	array	A	of	integers,	find	the	maximum	of	j	–	i	subjected	to
the	constraint	of	A[i]	<	A[j].

Solution:



This	 is	a	very	common	problem	in	stock	markets	 to	 find	 the	peaks.	Spans	are	used	 in	 financial
analysis	 (E.g.,	 stock	 at	 52-week	 high).	 The	 span	 of	 a	 stock	 price	 on	 a	 certain	 day,	 i,	 is	 the
maximum	number	of	consecutive	days	(up	to	the	current	day)	the	price	of	the	stock	has	been	less
than	or	equal	to	its	price	on	i.

As	an	example,	 let	us	consider	 the	 table	and	the	corresponding	spans	diagram.	In	 the	figure	 the
arrows	indicate	the	length	of	the	spans.	Now,	let	us	concentrate	on	the	algorithm	for	finding	the
spans.	One	simple	way	is,	each	day,	check	how	many	contiguous	days	have	a	stock	price	that	is



less	than	the	current	price.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-23  Can	we	improve	the	complexity	of	Problem-22?

Solution:	From	the	example	above,	we	can	see	that	span	S[i]	on	day	i	can	be	easily	calculated	if
we	know	the	closest	day	preceding	i,	such	that	the	price	is	greater	on	that	day	than	the	price	on
day	i.	Let	us	call	such	a	day	as	P.	If	such	a	day	exists	then	the	span	is	now	defined	as	S[i]	=	i	–	P.



Time	Complexity:	Each	index	of	the	array	is	pushed	into	the	stack	exactly	once	and	also	popped
from	the	stack	at	most	once.	The	statements	in	the	while	loop	are	executed	at	most	n	times.	Even
though	the	algorithm	has	nested	loops,	the	complexity	is	O(n)	as	the	inner	loop	is	executing	only	n
times	during	the	course	of	the	algorithm	(trace	out	an	example	and	see	how	many	times	the	inner
loop	becomes	successful).	Space	Complexity:	O(n)	[for	stack].

Problem-24  Largest	rectangle	under	histogram:	A	histogram	is	a	polygon	composed	of	a
sequence	 of	 rectangles	 aligned	 at	 a	 common	 base	 line.	 For	 simplicity,	 assume	 that	 the
rectangles	have	equal	widths	but	may	have	different	heights.	For	example,	the	figure	on	the
left	shows	a	histogram	that	consists	of	rectangles	with	the	heights	3,2,5,6,1,4,4,	measured
in	units	where	1	is	the	width	of	the	rectangles.	Here	our	problem	is:	given	an	array	with
heights	of	rectangles	(assuming	width	is	1),	we	need	to	find	the	largest	rectangle	possible.
For	the	given	example,	the	largest	rectangle	is	the	shared	part.

Solution:	A	straightforward	answer	is	 to	go	to	each	bar	in	the	histogram	and	find	the	maximum
possible	area	in	the	histogram	for	it.	Finally,	find	the	maximum	of	these	values.	This	will	require
O(n2).

Problem-25  For	Problem-24,	can	we	improve	the	time	complexity?

Solution:	Linear	search	using	a	stack	of	 incomplete	sub	problems:	There	are	many	ways	of
solving	this	problem.	Judge	has	given	a	nice	algorithm	for	this	problem	which	is	based	on	stack.
Process	the	elements	in	left-to-right	order	and	maintain	a	stack	of	information	about	started	but	yet
unfinished	sub	histograms.

If	the	stack	is	empty,	open	a	new	sub	problem	by	pushing	the	element	onto	the	stack.	Otherwise
compare	it	to	the	element	on	top	of	the	stack.	If	the	new	one	is	greater	we	again	push	it.	If	the	new
one	is	equal	we	skip	it.	In	all	these	cases,	we	continue	with	the	next	new	element.	If	the	new	one
is	 less,	we	 finish	 the	 topmost	 sub	 problem	 by	 updating	 the	maximum	 area	with	 respect	 to	 the
element	at	the	top	of	the	stack.	Then,	we	discard	the	element	at	the	top,	and	repeat	the	procedure
keeping	the	current	new	element.

This	way,	all	sub	problems	are	finished	when	the	stack	becomes	empty,	or	its	top	element	is	less
than	or	 equal	 to	 the	 new	element,	 leading	 to	 the	 actions	 described	 above.	 If	 all	 elements	 have
been	processed,	and	the	stack	is	not	yet	empty,	we	finish	the	remaining	sub	problems	by	updating
the	maximum	area	with	respect	to	the	elements	at	the	top.



At	 the	 first	 impression,	 this	 solution	 seems	 to	 be	 having	 O(n2)	 complexity.	 But	 if	 we	 look
carefully,	every	element	is	pushed	and	popped	at	most	once,	and	in	every	step	of	the	function	at
least	one	element	is	pushed	or	popped.	Since	the	amount	of	work	for	the	decisions	and	the	update
is	 constant,	 the	 complexity	 of	 the	 algorithm	 is	O(n)	 by	 amortized	 analysis.	 Space	Complexity:
O(n)	[for	stack].

Problem-26  On	a	given	machine,	how	do	you	check	whether	the	stack	grows	up	or	down?

Solution:	 Try	 noting	 down	 the	 address	 of	 a	 local	 variable.	 Call	 another	 function	with	 a	 local
variable	declared	in	it	and	check	the	address	of	that	local	variable	and	compare.



Time	Complexity:	O(1).	Space	Complexity:	O(1).

Problem-27  Given	a	 stack	of	 integers,	how	do	you	check	whether	 each	 successive	pair	of
numbers	in	the	stack	is	consecutive	or	not.	The	pairs	can	be	increasing	or	decreasing,	and
if	the	stack	has	an	odd	number	of	elements,	the	element	at	the	top	is	left	out	of	a	pair.	For
example,	if	the	stack	of	elements	are	[4,	5,	-2,	-3,	11,	10,	5,	6,	20],	then	the	output	should
be	 true	 because	 each	 of	 the	 pairs	 (4,	 5),	 (-2,	 -3),	 (11,	 10),	 and	 (5,	 6)	 consists	 of
consecutive	numbers.

Solution:	Refer	to	Queues	chapter.

Problem-28  Recursively	 remove	 all	 adjacent	 duplicates:	 Given	 a	 string	 of	 characters,
recursively	remove	adjacent	duplicate	characters	from	string.	The	output	string	should	not
have	any	adjacent	duplicates.

Input:	careermonk
Output:	camonk

Input:	mississippi
Output:	m

Solution:	This	solution	runs	with	 the	concept	of	 in-place	stack.	When	element	on	stack	doesn’t
match	the	current	character,	we	add	it	to	stack.	When	it	matches	to	stack	top,	we	skip	characters
until	the	element	matches	the	top	of	stack	and	remove	the	element	from	stack.



Time	Complexity:	O(n).	Space	Complexity:	O(1)	as	the	stack	simulation	is	done	inplace.

Problem-29  Given	an	array	of	elements,	replace	every	element	with	nearest	greater	element
on	the	right	of	that	element.

Solution:	One	 simple	approach	would	 involve	 scanning	 the	array	elements	and	 for	 each	of	 the
elements,	scan	the	remaining	elements	and	find	the	nearest	greater	element.



Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-30  For	Problem-29,	can	we	improve	the	complexity?

Solution:	The	approach	is	pretty	much	similar	 to	Problem-22.	Create	a	stack	and	push	 the	first
element.	For	the	rest	of	the	elements,	mark	the	current	element	as	nextNearestGreater.	If	stack	is
not	 empty,	 then	 pop	 an	 element	 from	 stack	 and	 compare	 it	 with	 nextNearestGreater.	 If
nextNearestGreater	 is	 greater	 than	 the	 popped	 element,	 then	 nextNearestGreater	 is	 the	 next
greater	element	for	the	popped	element.	Keep	popping	from	the	stack	while	the	popped	element	is
smaller	 than	nextNearestGreater.	nextNearestGreater	 becomes	 the	next	 greater	 element	 for	 all
such	popped	elements.	If	nextNearestGreater	 is	smaller	 than	the	popped	element,	 then	push	the
popped	element	back.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-31  How	to	implement	a	stack	which	will	support	following	operations	in	O(1)	time
complexity?

• Push	which	adds	an	element	to	the	top	of	stack.
• Pop	which	removes	an	element	from	top	of	stack.
• Find	Middle	which	will	return	middle	element	of	the	stack.
• Delete	Middle	which	will	delete	the	middle	element.

Solution:	We	 can	 use	 a	 LinkedList	 data	 structure	with	 an	 extra	 pointer	 to	 the	middle	 element.



Also,	we	need	another	variable	 to	 store	whether	 the	LinkedList	has	 an	 even	or	odd	number	of
elements.

• Push:	 Add	 the	 element	 to	 the	 head	 of	 the	 LinkedList.	 Update	 the	 pointer	 to	 the
middle	element	according	to	variable.

• Pop:	Remove	the	head	of	 the	LinkedList.	Update	the	pointer	 to	the	middle	element
according	to	variable.

• Find	Middle:	Find	Middle	which	will	return	middle	element	of	the	stack.
• Delete	Middle:	Delete	Middle	which	will	delete	the	middle	element	use	the	logic	of

Problem-43	from	Linked	Lists	chapter.



5.1	What	is	a	Queue?

A	queue	is	a	data	structure	used	for	storing	data	(similar	to	Linked	Lists	and	Stacks).	In	queue,	the
order	in	which	data	arrives	is	important.	In	general,	a	queue	is	a	line	of	people	or	things	waiting
to	be	served	in	sequential	order	starting	at	the	beginning	of	the	line	or	sequence.

Definition:	 A	 queue	 is	 an	 ordered	 list	 in	 which	 insertions	 are	 done	 at	 one	 end	 (rear)	 and
deletions	 are	 done	 at	 other	 end	 (front).	 The	 first	 element	 to	 be	 inserted	 is	 the	 first	 one	 to	 be
deleted.	Hence,	it	is	called	First	in	First	out	(FIFO)	or	Last	in	Last	out	(LILO)	list.

Similar	to	Stacks,	special	names	are	given	to	the	two	changes	that	can	be	made	to	a	queue.	When
an	 element	 is	 inserted	 in	 a	 queue,	 the	 concept	 is	 called	 EnQueue,	 and	 when	 an	 element	 is
removed	from	the	queue,	the	concept	is	called	DeQueue.

DeQueueing	an	empty	queue	 is	called	underflow	and	EnQueuing	 an	element	 in	a	 full	queue	 is
called	overflow.	Generally,	we	treat	them	as	exceptions.	As	an	example,	consider	the	snapshot	of



the	queue.

5.2	How	are	Queues	Used?

The	concept	of	a	queue	can	be	explained	by	observing	a	line	at	a	reservation	counter.	When	we
enter	the	line	we	stand	at	the	end	of	the	line	and	the	person	who	is	at	the	front	of	the	line	is	the	one
who	will	be	served	next.	He	will	exit	the	queue	and	be	served.

As	this	happens,	the	next	person	will	come	at	the	head	of	the	line,	will	exit	the	queue	and	will	be
served.	As	each	person	at	the	head	of	the	line	keeps	exiting	the	queue,	we	move	towards	the	head
of	the	line.	Finally	we	will	reach	the	head	of	the	line	and	we	will	exit	the	queue	and	be	served.
This	behavior	is	very	useful	in	cases	where	there	is	a	need	to	maintain	the	order	of	arrival.

5.3	Queue	ADT

The	 following	 operations	 make	 a	 queue	 an	 ADT.	 Insertions	 and	 deletions	 in	 the	 queue	 must
follow	the	FIFO	scheme.	For	simplicity	we	assume	the	elements	are	integers.

Main	Queue	Operations

• EnQueue(int	data):	Inserts	an	element	at	the	end	of	the	queue
• int	DeQueue():	Removes	and	returns	the	element	at	the	front	of	the	queue

Auxiliary	Queue	Operations

• int	Front():	Returns	the	element	at	the	front	without	removing	it
• int	QueueSize():	Returns	the	number	of	elements	stored	in	the	queue
• int	IsEmptyQueueQ:	Indicates	whether	no	elements	are	stored	in	the	queue	or	not

5.4	Exceptions



Similar	 to	 other	 ADTs,	 executing	 DeQueue	 on	 an	 empty	 queue	 throws	 an	 “Empty	 Queue
Exception”	and	executing	EnQueue	on	a	full	queue	throws	“Full	Queue	Exception”.

5.5	Applications

Following	are	some	of	the	applications	that	use	queues.

Direct	Applications

• Operating	systems	schedule	jobs	(with	equal	priority)	in	the	order	of	arrival	(e.g.,	a
print	queue).

• Simulation	of	real-world	queues	such	as	lines	at	a	ticket	counter	or	any	other	first-
come	first-served	scenario	requires	a	queue.

• Multiprogramming.
• Asynchronous	data	transfer	(file	IO,	pipes,	sockets).
• Waiting	times	of	customers	at	call	center.
• Determining	number	of	cashiers	to	have	at	a	supermarket.

Indirect	Applications

• Auxiliary	data	structure	for	algorithms
• Component	of	other	data	structures

5.6	Implementation

There	 are	 many	 ways	 (similar	 to	 Stacks)	 of	 implementing	 queue	 operations	 and	 some	 of	 the
commonly	used	methods	are	listed	below.

• Simple	circular	array	based	implementation
• Dynamic	circular	array	based	implementation
• Linked	list	implementation

Why	Circular	Arrays?

First,	let	us	see	whether	we	can	use	simple	arrays	for	implementing	queues	as	we	have	done	for
stacks.	 We	 know	 that,	 in	 queues,	 the	 insertions	 are	 performed	 at	 one	 end	 and	 deletions	 are
performed	at	the	other	end.	After	performing	some	insertions	and	deletions	the	process	becomes
easy	to	understand.

In	 the	example	shown	below,	 it	can	be	seen	clearly	 that	 the	 initial	slots	of	 the	array	are	getting
wasted.	 So,	 simple	 array	 implementation	 for	 queue	 is	 not	 efficient.	 To	 solve	 this	 problem	we
assume	 the	 arrays	 as	 circular	 arrays.	 That	means,	we	 treat	 the	 last	 element	 and	 the	 first	 array



elements	as	contiguous.	With	 this	representation,	 if	 there	are	any	free	slots	at	 the	beginning,	 the
rear	pointer	can	easily	go	to	its	next	free	slot.

Note:	The	simple	circular	array	and	dynamic	circular	array	implementations	are	very	similar	to
stack	array	implementations.	Refer	to	Stacks	chapter	for	analysis	of	these	implementations.

Simple	Circular	Array	Implementation

This	simple	implementation	of	Queue	ADT	uses	an	array.	In	the	array,	we	add	elements	circularly
and	use	two	variables	to	keep	track	of	the	start	element	and	end	element.	Generally,	front	is	used
to	indicate	the	start	element	and	rear	is	used	to	indicate	the	end	element	in	the	queue.	The	array
storing	the	queue	elements	may	become	full.	An	EnQueue	operation	will	then	throw	a	full	queue
exception.	 Similarly,	 if	 we	 try	 deleting	 an	 element	 from	 an	 empty	 queue	 it	 will	 throw	 empty
queue	exception.

Note:	Initially,	both	front	and	rear	points	to	-1	which	indicates	that	the	queue	is	empty.





Performance	and	Limitations

Performance:	Let	n	be	the	number	of	elements	in	the	queue:

Space	Complexity	(for	n	EnQueue	operations) O(n)

Time	Complexity	of	EnQueue() O(1)

Time	Complexity	of	DeQueue() O(1)

Time	Complexity	of	IsEmptyQueue() O(1)

Time	Complexity	of	IsFullQueue() O(1)

Time	Complexity	of	QueueSize() O(1)

Time	Complexity	of	DeleteQueue() O(1)

Limitations:	The	maximum	size	of	 the	queue	must	be	defined	as	prior	 and	cannot	be	 changed.
Trying	to	EnQueue	a	new	element	into	a	full	queue	causes	an	implementation-specific	exception.

Dynamic	Circular	Array	Implementation





Performance

Let	n	be	the	number	of	elements	in	the	queue.

Space	Complexity	(for	n	EnQueue	operations) O(n)

Time	Complexity	of	EnQueue() O(1)	(Average)

Time	Complexity	of	DeQueue() O(1)

Time	Complexity	of	QueueSize() O(1)

Time	Complexity	of	IsEmptyQueue() O(1)

Time	Complexity	of	IsFullQueue() O(1)

Time	Complexity	of	QueueSize() O(1)

Time	Complexity	of	DeleteQueue() O(1)

Linked	List	Implementation

Another	way	of	implementing	queues	is	by	using	Linked	lists.	EnQueue	operation	is	implemented
by	inserting	an	element	at	the	end	of	the	list.	DeQueue	operation	is	 implemented	by	deleting	an
element	from	the	beginning	of	the	list.





Performance

Let	n	be	the	number	of	elements	in	the	queue,	then

Space	Complexity	(for	n	EnQueue	operations) O(n)

Time	Complexity	of	EnQueue() O(1)	(Average)

Time	Complexity	of	DeQueue() O(1)

Time	Complexity	of	IsEmptyQueue() O(1)

Time	Complexity	of	DeleteQueue() O(1)

Comparison	of	Implementations

Note:	Comparison	is	very	similar	to	stack	implementations	and	Stacks	chapter.

5.7	Queues:	Problems	&	Solutions

Problem-1  Give	 an	 algorithm	 for	 reversing	 a	 queue	Q.	 To	 access	 the	 queue,	we	 are	 only
allowed	to	use	the	methods	of	queue	ADT.

Solution:

Time	Complexity:	O(n).

Problem-2  How	can	you	implement	a	queue	using	two	stacks?

Solution:	Let	SI	and	S2	be	the	two	stacks	to	be	used	in	the	implementation	of	queue.	All	we	have
to	do	is	to	define	the	EnQueue	and	DeQueue	operations	for	the	queue.



EnQueue	Algorithm

• Just	push	on	to	stack	S1

Time	Complexity:	O(1).

DeQueue	Algorithm

• If	stack	S2	is	not	empty	then	pop	from	S2	and	return	that	element.
• If	 stack	 is	empty,	 then	 transfer	all	elements	 from	SI	 to	S2	and	pop	 the	 top	element

from	 S2	 and	 return	 that	 popped	 element	 [we	 can	 optimize	 the	 code	 a	 little	 by
transferring	only	n	–	1	elements	from	SI	to	S2	and	pop	the	nth	element	from	SI	and
return	that	popped	element].

• If	stack	S1	is	also	empty	then	throw	error.

Time	Complexity:	From	the	algorithm,	if	the	stack	S2	is	not	empty	then	the	complexity	is	O(1).	If
the	stack	S2	 is	empty,	 then	we	need	 to	 transfer	 the	elements	 from	SI	 to	S2.	But	 if	we	carefully
observe,	 the	 number	 of	 transferred	 elements	 and	 the	 number	 of	 popped	 elements	 from	 S2	 are
equal.	Due	 to	 this	 the	 average	 complexity	 of	 pop	operation	 in	 this	 case	 is	O(1).The	 amortized
complexity	of	pop	operation	is	O(1).

Problem-3  Show	how	you	can	efficiently	implement	one	stack	using	two	queues.	Analyze	the



running	time	of	the	stack	operations.

Solution:	Yes,	it	is	possible	to	implement	the	Stack	ADT	using	2	implementations	of	the	Queue
ADT.	One	of	the	queues	will	be	used	to	store	the	elements	and	the	other	to	hold	them	temporarily
during	 the	pop	 and	 top	methods.	 The	push	method	would	 enqueue	 the	 given	 element	 onto	 the
storage	queue.	The	top	method	would	transfer	all	but	the	last	element	from	the	storage	queue	onto
the	temporary	queue,	save	the	front	element	of	the	storage	queue	to	be	returned,	transfer	the	last
element	 to	 the	 temporary	 queue,	 then	 transfer	 all	 elements	 back	 to	 the	 storage	 queue.	 The	pop
method	 would	 do	 the	 same	 as	 top,	 except	 instead	 of	 transferring	 the	 last	 element	 onto	 the
temporary	queue	after	saving	it	for	return,	that	last	element	would	be	discarded.	Let	Q1	and	Q2	be
the	two	queues	to	be	used	in	the	implementation	of	stack.	All	we	have	to	do	is	to	define	the	push
and	pop	operations	for	the	stack.

In	the	algorithms	below,	we	make	sure	that	one	queue	is	always	empty.

Push	Operation	Algorithm:	Insert	the	element	in	whichever	queue	is	not	empty.

• Check	whether	queue	Q1	is	empty	or	not.	If	Q1	is	empty	then	Enqueue	the	element
into	Q2.

• Otherwise	EnQueue	the	element	into	Q1.

Time	Complexity:	O(1).

Pop	Operation	Algorithm:	Transfer	n	–	1	elements	to	the	other	queue	and	delete	last	from	queue
for	performing	pop	operation.

• If	 queue	 Q1	 is	 not	 empty	 then	 transfer	 n	 –	 1	 elements	 from	 Q1	 to	 Q2	 and	 then,
DeQueue	the	last	element	of	Q1	and	return	it.

• If	 queue	 Q2	 is	 not	 empty	 then	 transfer	 n	 –	 1	 elements	 from	 Q2	 to	 Q1	 and	 then,
DeQueue	the	last	element	of	Q2	and	return	it.



Time	Complexity:	 Running	 time	 of	 pop	 operation	 is	 O(n)	 as	 each	 time	 pop	 is	 called,	 we	 are
transferring	all	the	elements	from	one	queue	to	the	other.

Problem-4  Maximum	sum	in	sliding	window:	Given	array	A[]	with	sliding	window	of	size
w	which	 is	moving	from	the	very	 left	of	 the	array	 to	 the	very	right.	Assume	that	we	can
only	see	the	w	numbers	in	the	window.	Each	time	the	sliding	window	moves	rightwards	by
one	position.	For	example:	The	array	is	[1	3	-1	-3	5	3	6	7],	and	w	is	3.

Window	position Max

[1	3	-1]	-3	5	3	6	7 3

1	[3	-1	-3]	5	3	6	7 3

1	3	[-1	-3	5]	3	6	7 5

1	3	-1	[-3	5	3]	6	7 5

1	3	-1	-3	[5	3	6]	7 6

1	3	-1	-3	5	[3	6	7] 7



Input:	 A	 long	 array	 A[],	 and	 a	 window	 width	 w.	Output:	 An	 array	 B[],	 B[i]	 is	 the
maximum	value	 from	A[i]	 to	A[i+w-1].	Requirement:	 Find	 a	 good	 optimal	way	 to	 get
B[i]

Solution:	This	problem	can	be	 solved	with	doubly	 ended	queue	 (which	 supports	 insertion	 and
deletion	at	both	ends).	Refer	Priority	Queues	chapter	for	algorithms.

Problem-5  Given	 a	 queue	 Q	 containing	 n	 elements,	 transfer	 these	 items	 on	 to	 a	 stack	 S
(initially	empty)	so	that	front	element	of	Q	appears	at	the	top	of	the	stack	and	the	order	of
all	other	items	is	preserved.	Using	enqueue	and	dequeue	operations	for	the	queue,	and	push
and	 pop	 operations	 for	 the	 stack,	 outline	 an	 efficient	 O(n)	 algorithm	 to	 accomplish	 the
above	task,	using	only	a	constant	amount	of	additional	storage.

Solution:	Assume	 the	 elements	 of	 queue	Q	are	a1:a2	 ...an.	Dequeuing	 all	 elements	 and	 pushing
them	onto	the	stack	will	result	in	a	stack	with	an	at	the	top	and	a1	at	the	bottom.	This	is	done	in
O(n)	time	as	dequeue	and	each	push	require	constant	time	per	operation.	The	queue	is	now	empty.
By	popping	all	elements	and	pushing	them	on	the	queue	we	will	get	a1	at	the	top	of	the	stack.	This
is	done	again	in	O(n)	time.

As	in	big-oh	arithmetic	we	can	ignore	constant	factors.	The	process	is	carried	out	in	O(n)	 time.
The	amount	of	additional	storage	needed	here	has	to	be	big	enough	to	temporarily	hold	one	item.

Problem-6  A	queue	is	set	up	 in	a	circular	array	A[O..n	-	1]	with	front	and	rear	defined	as
usual.	Assume	that	n	–	1	locations	in	the	array	are	available	for	storing	the	elements	(with
the	other	element	being	used	to	detect	full/empty	condition).	Give	a	formula	for	the	number
of	elements	in	the	queue	in	terms	of	rear,	front,	and	n.

Solution:	Consider	the	following	figure	to	get	a	clear	idea	of	the	queue.



• Rear	of	the	queue	is	somewhere	clockwise	from	the	front.
• To	enqueue	an	element,	we	move	rear	one	position	clockwise	and	write	the	element

in	that	position.
• To	dequeue,	we	simply	move	front	one	position	clockwise.
• Queue	migrates	in	a	clockwise	direction	as	we	enqueue	and	dequeue.
• Emptiness	and	fullness	to	be	checked	carefully.
• Analyze	 the	possible	 situations	 (make	some	drawings	 to	 see	where	 front	 and	 rear

are	when	the	queue	is	empty,	and	partially	and	totally	filled).	We	will	get	this:

Problem-7  What	is	the	most	appropriate	data	structure	to	print	elements	of	queue	in	reverse
order?

Solution:	Stack.

Problem-8  Implement	 doubly	 ended	 queues.	 A	 double-ended	 queue	 is	 an	 abstract	 data
structure	 that	 implements	 a	 queue	 for	which	 elements	 can	 only	 be	 added	 to	 or	 removed
from	the	front	(head)	or	back	(tail).	It	is	also	often	called	a	head-tail	linked	list.

Solution:





Problem-9  Given	 a	 stack	 of	 integers,	 how	 do	 you	 check	whether	 each	 successive	 pair	 of
numbers	in	the	stack	is	consecutive	or	not.	The	pairs	can	be	increasing	or	decreasing,	and
if	the	stack	has	an	odd	number	of	elements,	the	element	at	the	top	is	left	out	of	a	pair.	For
example,	if	the	stack	of	elements	are	[4,	5,	-2,	-3,	11,	10,	5,	6,	20],	then	the	output	should
be	 true	 because	 each	 of	 the	 pairs	 (4,	 5),	 (-2,	 -3),	 (11,	 10),	 and	 (5,	 6)	 consists	 of
consecutive	numbers.

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-10  Given	a	queue	of	integers,	rearrange	the	elements	by	interleaving	the	first	half	of
the	list	with	the	second	half	of	the	list.	For	example,	suppose	a	queue	stores	the	following
sequence	of	values:	 [11,	12,	13,	14,	15,	16,	17,	18,	19,	20].	Consider	 the	 two	halves	of
this	 list:	 first	 half:	 [11,	 12,	 13,	 14,	 15]	 second	 half:	 [16,	 17,	 18,	 19,	 20].	 These	 are



combined	in	an	alternating	fashion	to	form	a	sequence	of	interleave	pairs:	the	first	values
from	each	half	 (11	and	16),	 then	 the	second	values	 from	each	half	 (12	and	17),	 then	 the
third	values	from	each	half	(13	and	18),	and	so	on.	In	each	pair,	 the	value	from	the	first
half	appears	before	the	value	from	the	second	half.	Thus,	after	the	call,	the	queue	stores	the
following	values:	[11,	16,	12,	17,	13,	18,	14,	19,	15,	20].

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-11  Given	an	integer	k	and	a	queue	of	integers,	how	do	you	reverse	the	order	of	the
first	k	 elements	of	 the	queue,	 leaving	 the	other	elements	 in	 the	 same	 relative	order?	For
example,	if	k=4	and	queue	has	the	elements	[10,	20,	30,	40,	50,	60,	70,	80,	90];	the	output
should	be	[40,	30,	20,	10,	50,	60,	70,	80,	90].

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(n).



6.1	What	is	a	Tree?

A	tree	 is	a	data	structure	similar	to	a	linked	list	but	instead	of	each	node	pointing	simply	to	the
next	node	in	a	linear	fashion,	each	node	points	to	a	number	of	nodes.	Tree	is	an	example	of	a	non-
linear	data	structure.	A	tree	structure	is	a	way	of	representing	the	hierarchical	nature	of	a	structure
in	a	graphical	form.

In	trees	ADT	(Abstract	Data	Type),	the	order	of	the	elements	is	not	important.	If	we	need	ordering
information,	linear	data	structures	like	linked	lists,	stacks,	queues,	etc.	can	be	used.

6.2	Glossary



• The	root	of	a	tree	is	the	node	with	no	parents.	There	can	be	at	most	one	root	node	in
a	tree	(node	A	in	the	above	example).

• An	edge	refers	to	the	link	from	parent	to	child	(all	links	in	the	figure).
• A	node	with	no	children	is	called	leaf	node	(E,J,K,H	and	I).
• Children	of	same	parent	are	called	siblings	(B,C,D	are	siblings	of	A,	and	E,F	are	the

siblings	of	B).
• A	node	p	is	an	ancestor	of	node	q	if	there	exists	a	path	from	root	to	q	and	p	appears

on	the	path.	The	node	q	is	called	a	descendant	of	p.	For	example,	A,C	and	G	are	the
ancestors	of	if.

• The	set	of	all	nodes	at	a	given	depth	is	called	the	level	of	the	tree	(B,	C	and	D	are
the	same	level).	The	root	node	is	at	level	zero.



• The	depth	of	a	node	is	the	length	of	the	path	from	the	root	to	the	node	(depth	of	G	is
2,	A	–	C	–	G).

• The	height	of	a	node	is	the	length	of	the	path	from	that	node	to	the	deepest	node.	The
height	of	a	tree	is	the	length	of	the	path	from	the	root	to	the	deepest	node	in	the	tree.
A	(rooted)	tree	with	only	one	node	(the	root)	has	a	height	of	zero.	In	the	previous
example,	the	height	of	B	is	2	(B	–	F	–	J).

• Height	of	the	tree	is	the	maximum	height	among	all	the	nodes	in	the	tree	and	depth	of
the	 tree	 is	 the	maximum	depth	 among	 all	 the	 nodes	 in	 the	 tree.	 For	 a	 given	 tree,
depth	 and	 height	 returns	 the	 same	 value.	 But	 for	 individual	 nodes	 we	 may	 get
different	results.

• The	size	of	a	node	is	the	number	of	descendants	it	has	including	itself	(the	size	of	the
subtree	C	is	3).

• If	every	node	in	a	tree	has	only	one	child	(except	leaf	nodes)	then	we	call	such	trees
skew	 trees.	 If	 every	 node	 has	 only	 left	 child	 then	 we	 call	 them	 left	 skew	 trees.
Similarly,	if	every	node	has	only	right	child	then	we	call	them	right	skew	trees.



6.3	Binary	Trees

A	tree	is	called	binary	tree	if	each	node	has	zero	child,	one	child	or	two	children.	Empty	tree	is
also	a	valid	binary	tree.	We	can	visualize	a	binary	tree	as	consisting	of	a	root	and	two	disjoint
binary	trees,	called	the	left	and	right	subtrees	of	the	root.

Generic	Binary	Tree



6.4	Types	of	Binary	Trees

Strict	 Binary	 Tree:	 A	 binary	 tree	 is	 called	 strict	 binary	 tree	 if	 each	 node	 has	 exactly	 two
children	or	no	children.

Full	Binary	Tree:	A	binary	tree	is	called	full	binary	tree	if	each	node	has	exactly	two	children
and	all	leaf	nodes	are	at	the	same	level.

Complete	Binary	Tree:	Before	defining	the	complete	binary	tree,	let	us	assume	that	the	height	of
the	binary	tree	is	h.	In	complete	binary	trees,	if	we	give	numbering	for	the	nodes	by	starting	at	the
root	 (let	us	 say	 the	 root	node	has	1)	 then	we	get	a	complete	 sequence	 from	1	 to	 the	number	of
nodes	in	the	tree.	While	traversing	we	should	give	numbering	for	NULL	pointers	also.	A	binary
tree	is	called	complete	binary	tree	if	all	leaf	nodes	are	at	height	h	or	h	–	1	and	also	without	any
missing	number	in	the	sequence.



6.5	Properties	of	Binary	Trees

For	the	following	properties,	let	us	assume	that	the	height	of	the	tree	is	h.	Also,	assume	that	root
node	is	at	height	zero.



From	the	diagram	we	can	infer	the	following	properties:

• The	number	of	nodes	n	in	a	full	binary	tree	is	2h+1	–	1.	Since,	there	are	h	levels	we
need	to	add	all	nodes	at	each	level	[20	+	21+	22	+	···	+	2h	=	2h+1	–	1].

• The	number	of	nodes	n	in	a	complete	binary	tree	is	between	2h	(minimum)	and	2h+1
–	1	(maximum).	For	more	information	on	this,	refer	to	Priority	Queues	chapter.

• The	number	of	leaf	nodes	in	a	full	binary	tree	is	2h.
• The	number	of	NULL	links	(wasted	pointers)	in	a	complete	binary	tree	of	n	nodes	is

n	+	1.



Structure	of	Binary	Trees

Now	let	us	define	structure	of	the	binary	tree.	For	simplicity,	assume	that	the	data	of	the	nodes	are
integers.	One	way	to	represent	a	node	(which	contains	data)	is	to	have	two	links	which	point	to
left	and	right	children	along	with	data	fields	as	shown	below:

Note:	In	trees,	the	default	flow	is	from	parent	to	children	and	it	is	not	mandatory	to	show	directed
branches.	For	our	discussion,	we	assume	both	the	representations	shown	below	are	the	same.

Operations	on	Binary	Trees

Basic	Operations

• Inserting	an	element	into	a	tree
• Deleting	an	element	from	a	tree
• Searching	for	an	element
• Traversing	the	tree

Auxiliary	Operations

• Finding	the	size	of	the	tree
• Finding	the	height	of	the	tree
• Finding	the	level	which	has	maximum	sum
• Finding	the	least	common	ancestor	(LCA)	for	a	given	pair	of	nodes,	and	many	more.

Applications	of	Binary	Trees



Following	are	the	some	of	the	applications	where	binary	trees	play	an	important	role:

• Expression	trees	are	used	in	compilers.
• Huffman	coding	trees	that	are	used	in	data	compression	algorithms.
• Binary	 Search	 Tree	 (BST),	 which	 supports	 search,	 insertion	 and	 deletion	 on	 a

collection	of	items	in	O(logn)	(average).
• Priority	Queue	(PQ),	which	supports	search	and	deletion	of	minimum	(or	maximum)

on	a	collection	of	items	in	logarithmic	time	(in	worst	case).

6.6	Binary	Tree	Traversals

In	order	to	process	trees,	we	need	a	mechanism	for	traversing	them,	and	that	forms	the	subject	of
this	 section.	The	 process	 of	 visiting	 all	 nodes	 of	 a	 tree	 is	 called	 tree	 traversal.	 Each	 node	 is
processed	only	once	but	it	may	be	visited	more	than	once.	As	we	have	already	seen	in	linear	data
structures	(like	linked	lists,	stacks,	queues,	etc.),	the	elements	are	visited	in	sequential	order.	But,
in	tree	structures	there	are	many	different	ways.

Tree	traversal	 is	 like	searching	the	tree,	except	that	 in	traversal	 the	goal	 is	 to	move	through	the
tree	 in	 a	 particular	 order.	 In	 addition,	 all	 nodes	 are	 processed	 in	 the	 traversal	 but	 searching
stops	when	the	required	node	is	found.

Traversal	Possibilities

Starting	at	the	root	of	a	binary	tree,	there	are	three	main	steps	that	can	be	performed	and	the	order
in	which	they	are	performed	defines	the	traversal	type.	These	steps	are:	performing	an	action	on
the	current	node	(referred	to	as	“visiting”	the	node	and	denoted	with	“D”),	traversing	to	the	left
child	node	 (denoted	with	“L”),	 and	 traversing	 to	 the	 right	child	node	 (denoted	with	“R”).	 This
process	 can	 be	 easily	 described	 through	 recursion.	 Based	 on	 the	 above	 definition	 there	 are	 6
possibilities:

1. LDR:	 Process	 left	 subtree,	 process	 the	 current	 node	 data	 and	 then	 process	 right
subtree

2. LRD:	 Process	 left	 subtree,	 process	 right	 subtree	 and	 then	 process	 the	 current	 node
data

3. DLR:	 Process	 the	 current	 node	 data,	 process	 left	 subtree	 and	 then	 process	 right
subtree

4. DRL:	 Process	 the	 current	 node	 data,	 process	 right	 subtree	 and	 then	 process	 left
subtree

5. RDL:	 Process	 right	 subtree,	 process	 the	 current	 node	 data	 and	 then	 process	 left
subtree

6. RLD:	 Process	 right	 subtree,	 process	 left	 subtree	 and	 then	 process	 the	 current	 node
data



Classifying	the	Traversals

The	sequence	in	which	these	entities	(nodes)	are	processed	defines	a	particular	traversal	method.
The	classification	is	based	on	the	order	in	which	current	node	is	processed.	That	means,	if	we	are
classifying	 based	 on	 current	 node	 (D)	 and	 if	D	 comes	 in	 the	 middle	 then	 it	 does	 not	 matter
whether	L	is	on	left	side	of	D	or	R	is	on	left	side	of	D.

Similarly,	it	does	not	matter	whether	L	is	on	right	side	of	D	or	R	is	on	right	side	of	D.	Due	to	this,
the	total	6	possibilities	are	reduced	to	3	and	these	are:

• Preorder	(DLR)	Traversal
• Inorder	(LDR)	Traversal
• Postorder	(LRD)	Traversal

There	is	another	traversal	method	which	does	not	depend	on	the	above	orders	and	it	is:

• Level	Order	Traversal:	This	method	is	inspired	from	Breadth	First	Traversal	(BFS
of	Graph	algorithms).

Let	us	use	the	diagram	below	for	the	remaining	discussion.

PreOrder	Traversal

In	 preorder	 traversal,	 each	 node	 is	 processed	 before	 (pre)	 either	 of	 its	 subtrees.	 This	 is	 the
simplest	 traversal	 to	 understand.	 However,	 even	 though	 each	 node	 is	 processed	 before	 the
subtrees,	it	still	requires	that	some	information	must	be	maintained	while	moving	down	the	tree.
In	the	example	above,	1	is	processed	first,	then	the	left	subtree,	and	this	is	followed	by	the	right
subtree.

Therefore,	 processing	must	 return	 to	 the	 right	 subtree	 after	 finishing	 the	 processing	 of	 the	 left
subtree.	To	move	to	the	right	subtree	after	processing	the	left	subtree,	we	must	maintain	the	root



information.	The	obvious	ADT	for	such	information	is	a	stack.	Because	of	its	LIFO	structure,	it	is
possible	to	get	the	information	about	the	right	subtrees	back	in	the	reverse	order.

Preorder	traversal	is	defined	as	follows:

• Visit	the	root.
• Traverse	the	left	subtree	in	Preorder.
• Traverse	the	right	subtree	in	Preorder.

The	nodes	of	tree	would	be	visited	in	the	order:	1	2	4	5	3	6	7

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Non-Recursive	Preorder	Traversal

In	the	recursive	version,	a	stack	is	required	as	we	need	to	remember	the	current	node	so	that	after
completing	the	left	subtree	we	can	go	to	the	right	subtree.	To	simulate	the	same,	first	we	process
the	current	node	and	before	going	 to	 the	 left	 subtree,	we	 store	 the	current	node	on	 stack.	After
completing	the	left	subtree	processing,	pop	 the	element	and	go	to	its	right	subtree.	Continue	this
process	until	stack	is	nonempty.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

InOrder	Traversal

In	 Inorder	 Traversal	 the	 root	 is	 visited	 between	 the	 subtrees.	 Inorder	 traversal	 is	 defined	 as
follows:

• Traverse	the	left	subtree	in	Inorder.
• Visit	the	root.
• Traverse	the	right	subtree	in	Inorder.

The	nodes	of	tree	would	be	visited	in	the	order:	4	2	5	1	6	3	7



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Non-Recursive	Inorder	Traversal

The	Non-recursive	version	of	Inorder	traversal	is	similar	to	Preorder.	The	only	change	is,	instead
of	processing	the	node	before	going	to	left	subtree,	process	it	after	popping	(which	is	indicated
after	completion	of	left	subtree	processing).

Time	Complexity:	O(n).	Space	Complexity:	O(n).



PostOrder	Traversal

In	 postorder	 traversal,	 the	 root	 is	 visited	 after	 both	 subtrees.	 Postorder	 traversal	 is	 defined	 as
follows:

• Traverse	the	left	subtree	in	Postorder.
• Traverse	the	right	subtree	in	Postorder.
• Visit	the	root.

The	nodes	of	the	tree	would	be	visited	in	the	order:	4	5	2	6	7	3	1

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Non-Recursive	Postorder	Traversal

In	preorder	 and	 inorder	 traversals,	 after	popping	 the	 stack	element	we	do	not	need	 to	visit	 the
same	 vertex	 again.	 But	 in	 postorder	 traversal,	 each	 node	 is	 visited	 twice.	 That	 means,	 after
processing	the	left	subtree	we	will	visit	the	current	node	and	after	processing	the	right	subtree	we
will	visit	 the	same	current	node.	But	we	should	be	processing	the	node	during	the	second	visit.
Here	 the	problem	 is	 how	 to	differentiate	whether	we	 are	 returning	 from	 the	 left	 subtree	or	 the
right	subtree.

We	use	a	previous	variable	to	keep	track	of	the	earlier	traversed	node.	Let’s	assume	current	is	the
current	 node	 that	 is	 on	 top	 of	 the	 stack.	When	previous	 is	 current’s	 parent,	we	 are	 traversing
down	the	 tree.	 In	 this	case,	we	 try	 to	 traverse	 to	current’s	 left	child	 if	available	 (i.e.,	push	 left
child	to	the	stack).	If	it	is	not	available,	we	look	at	current’s	right	child.	If	both	left	and	right	child
do	not	exist	(ie,	current	is	a	leaf	node),	we	print	current’s	value	and	pop	it	off	the	stack.

If	prev	is	current’s	left	child,	we	are	traversing	up	the	tree	from	the	left.	We	look	at	current’s	right
child.	 If	 it	 is	 available,	 then	 traverse	 down	 the	 right	 child	 (i.e.,	 push	 right	 child	 to	 the	 stack);
otherwise	print	current’s	value	and	pop	it	off	the	stack.	If	previous	is	current’s	right	child,	we	are
traversing	up	the	tree	from	the	right.	In	this	case,	we	print	current’s	value	and	pop	it	off	the	stack.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Level	Order	Traversal

Level	order	traversal	is	defined	as	follows:

• Visit	the	root.
• While	traversing	level	(,	keep	all	the	elements	at	level	(	+	1	in	queue.
• Go	to	the	next	level	and	visit	all	the	nodes	at	that	level.
• Repeat	this	until	all	levels	are	completed.

The	nodes	of	the	tree	are	visited	in	the	order:	1	2	3	4	5	6	7



Time	Complexity:	O(n).	Space	Complexity:	O(n).	Since,	in	the	worst	case,	all	 the	nodes	on	the
entire	last	level	could	be	in	the	queue	simultaneously.

Binary	Trees:	Problems	&	Solutions

Problem-1  Give	an	algorithm	for	finding	maximum	element	in	binary	tree.

Solution:	One	simple	way	of	solving	this	problem	is:	find	the	maximum	element	in	left	subtree,
find	the	maximum	element	in	right	sub	tree,	compare	them	with	root	data	and	select	the	one	which
is	giving	the	maximum	value.	This	approach	can	be	easily	implemented	with	recursion.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-2  Give	 an	 algorithm	 for	 finding	 the	 maximum	 element	 in	 binary	 tree	 without
recursion.

Solution:	Using	level	order	traversal:	just	observe	the	element’s	data	while	deleting.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-3  Give	an	algorithm	for	searching	an	element	in	binary	tree.

Solution:	Given	a	binary	tree,	return	true	if	a	node	with	data	is	found	in	the	tree.	Recurse	down
the	tree,	choose	the	left	or	right	branch	by	comparing	data	with	each	node’s	data.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-4  Give	an	algorithm	for	searching	an	element	in	binary	tree	without	recursion.

Solution:	We	can	use	level	order	traversal	for	solving	this	problem.	The	only	change	required	in
level	order	traversal	is,	instead	of	printing	the	data,	we	just	need	to	check	whether	the	root	data	is
equal	to	the	element	we	want	to	search.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-5  Give	an	algorithm	for	inserting	an	element	into	binary	tree.

Solution:	Since	the	given	tree	is	a	binary	tree,	we	can	insert	the	element	wherever	we	want.	To
insert	an	element,	we	can	use	the	level	order	traversal	and	insert	the	element	wherever	we	find
the	node	whose	left	or	right	child	is	NULL.





Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-6  Give	an	algorithm	for	finding	the	size	of	binary	tree.

Solution:	Calculate	the	size	of	left	and	right	subtrees	recursively,	add	1	(current	node)	and	return
to	its	parent.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-7  Can	we	solve	Problem-6	without	recursion?

Solution:	Yes,	using	level	order	traversal.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-8  Give	an	algorithm	for	printing	the	level	order	data	in	reverse	order.	For	example,
the	output	for	the	below	tree	should	be:	4	5	6	7	2	3	1

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-9  Give	an	algorithm	for	deleting	the	tree.

Solution:

To	delete	a	tree,	we	must	traverse	all	the	nodes	of	the	tree	and	delete	them	one	by	one.	So	which
traversal	should	we	use:	Inorder,	Preorder,	Postorder	or	Level	order	Traversal?

Before	deleting	the	parent	node	we	should	delete	its	children	nodes	first.	We	can	use	postorder
traversal	as	 it	does	 the	work	without	 storing	anything.	We	can	delete	 tree	with	other	 traversals
also	with	extra	space	complexity.	For	the	following,	tree	nodes	are	deleted	in	order	–	4,5,2,3,1.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-10  Give	an	algorithm	for	finding	the	height	(or	depth)	of	the	binary	tree.

Solution:	Recursively	calculate	height	of	left	and	right	subtrees	of	a	node	and	assign	height	to	the
node	as	max	of	the	heights	of	two	children	plus	1.	This	is	similar	to	PreOrder	tree	traversal	(and
DFS	of	Graph	algorithms).



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-11  Can	we	solve	Problem-10	without	recursion?

Solution:	Yes,	 using	 level	order	 traversal.	This	 is	 similar	 to	BFS	 of	Graph	algorithms.	End	of
level	is	identified	with	NULL.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-12  Give	an	algorithm	for	finding	the	deepest	node	of	the	binary	tree.

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-13  Give	an	algorithm	for	deleting	an	element	(assuming	data	is	given)	from	binary
tree.

Solution:	The	deletion	of	a	node	in	binary	tree	can	be	implemented	as

• Starting	at	root,	find	the	node	which	we	want	to	delete.
• Find	the	deepest	node	in	the	tree.
• Replace	the	deepest	node’s	data	with	node	to	be	deleted.
• Then	delete	the	deepest	node.

Problem-14  Give	 an	 algorithm	 for	 finding	 the	 number	 of	 leaves	 in	 the	 binary	 tree	without
using	recursion.

Solution:	The	set	of	nodes	whose	both	left	and	right	children	are	NULL	are	called	leaf	nodes.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-15  Give	an	algorithm	for	finding	the	number	of	full	nodes	in	the	binary	tree	without
using	recursion.

Solution:	The	set	of	all	nodes	with	both	left	and	right	children	are	called	full	nodes.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-16  Give	 an	 algorithm	 for	 finding	 the	 number	 of	 half	 nodes	 (nodes	with	 only	 one
child)	in	the	binary	tree	without	using	recursion.

Solution:	The	set	of	all	nodes	with	either	left	or	right	child	(but	not	both)	are	called	half	nodes.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-17  Given	two	binary	trees,	return	true	if	they	are	structurally	identical.

Solution:

Algorithm:

• If	both	trees	are	NULL	then	return	true.
• If	both	 trees	are	not	NULL,	 then	compare	data	and	recursively	check	 left	and	right

subtree	structures.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	recursive	stack.

Problem-18  Give	an	algorithm	for	finding	the	diameter	of	the	binary	tree.	The	diameter	of	a
tree	(sometimes	called	the	width)	is	the	number	of	nodes	on	the	longest	path	between	two
leaves	in	the	tree.

Solution:	 To	 find	 the	 diameter	 of	 a	 tree,	 first	 calculate	 the	 diameter	 of	 left	 subtree	 and	 right
subtrees	 recursively.	 Among	 these	 two	 values,	 we	 need	 to	 send	 maximum	 value	 along	 with
current	level	(+1).



There	is	another	solution	and	the	complexity	is	O(n).	The	main	idea	of	this	approach	is	that	the
node	stores	its	left	child’s	and	right	child’s	maximum	diameter	if	 the	node’s	child	is	the	“root”,
therefore,	there	is	no	need	to	recursively	call	the	height	method.	The	drawback	is	we	need	to	add
two	extra	variables	in	the	node	structure.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-19  Give	an	algorithm	for	finding	the	level	that	has	the	maximum	sum	in	the	binary
tree.

Solution:	The	logic	is	very	much	similar	to	finding	the	number	of	levels.	The	only	change	is,	we



need	to	keep	track	of	the	sums	as	well.





Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-20  Given	a	binary	tree,	print	out	all	its	root-to-leaf	paths.

Solution:	Refer	to	comments	in	functions.

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	recursive	stack.

Problem-21  Give	 an	 algorithm	 for	 checking	 the	 existence	 of	 path	 with	 given	 sum.	 That
means,	given	a	sum,	check	whether	there	exists	a	path	from	root	to	any	of	the	nodes.

Solution:	For	this	problem,	the	strategy	is:	subtract	the	node	value	from	the	sum	before	calling	its
children	recursively,	and	check	to	see	if	the	sum	is	0	when	we	run	out	of	tree.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-22  Give	an	algorithm	for	finding	the	sum	of	all	elements	in	binary	tree.

Solution:	 Recursively,	 call	 left	 subtree	 sum,	 right	 subtree	 sum	 and	 add	 their	 values	 to	 current
nodes	data.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-23  Can	we	solve	Problem-22	without	recursion?

Solution:	 We	 can	 use	 level	 order	 traversal	 with	 simple	 change.	 Every	 time	 after	 deleting	 an
element	from	queue,	add	the	nodes	data	value	to	sum	variable.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-24  Give	an	algorithm	for	converting	a	tree	to	its	mirror.	Mirror	of	a	tree	is	another
tree	with	 left	 and	 right	children	of	all	non-leaf	nodes	 interchanged.	The	 trees	below	are
mirrors	to	each	other.



Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-25  Given	 two	 trees,	 give	 an	 algorithm	 for	 checking	 whether	 they	 are	mirrors	 of
each	other.

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-26  Give	an	algorithm	for	finding	LCA	(Least	Common	Ancestor)	of	two	nodes	in	a
Binary	Tree.

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n)	for	recursion.

Problem-27  Give	an	algorithm	for	constructing	binary	tree	from	given	Inorder	and	Preorder
traversals.

Solution:	Let	us	consider	the	traversals	below:

Inorder	sequence:	D	B	E	A	F	C
Preorder	sequence:	A	B	D	E	C	F



In	a	Preorder	sequence,	leftmost	element	denotes	the	root	of	the	tree.	So	we	know	‘A’	is	the	root
for	given	sequences.	By	searching	‘A’	in	Inorder	sequence	we	can	find	out	all	elements	on	the	left
side	of	‘A’,	which	come	under	the	left	subtree,	and	elements	on	the	right	side	of	‘A’,	which	come
under	the	right	subtree.	So	we	get	the	structure	as	seen	below.

We	recursively	follow	the	above	steps	and	get	the	following	tree.

Algorithm:	BuildTree()

1 Select	 an	 element	 from	 Preorder.	 Increment	 a	 Preorder	 index	 variable
(preOrderIndex	in	code	below)	to	pick	next	element	in	next	recursive	call.

2 Create	a	new	tree	node	(newNode)	from	heap	with	the	data	as	selected	element.
3 Find	the	selected	element’s	index	in	Inorder.	Let	the	index	be	inOrderIndex.
4 Call	BuildBinaryTree	for	elements	before	inOrderIndex	and	make	the	built	tree	as	left

subtree	of	newNode.
5 Call	BuildBinaryTree	for	elements	after	inOrderIndex	and	make	the	built	tree	as	right

subtree	of	newNode.
6 return	newNode.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-28  If	 we	 are	 given	 two	 traversal	 sequences,	 can	 we	 construct	 the	 binary	 tree
uniquely?

Solution:	It	depends	on	what	traversals	are	given.	If	one	of	the	traversal	methods	is	Inorder	then
the	tree	can	be	constructed	uniquely,	otherwise	not.

Therefore,	the	following	combinations	can	uniquely	identify	a	tree:

• Inorder	and	Preorder
• Inorder	and	Postorder
• Inorder	and	Level-order



The	following	combinations	do	not	uniquely	identify	a	tree.

• Postorder	and	Preorder
• Preorder	and	Level-order
• Postorder	and	Level-order

For	example,	Preorder,	Level-order	and	Postorder	traversals	are	the	same	for	the	above	trees:

So,	 even	 if	 three	of	 them	(PreOrder,	Level-Order	and	PostOrder)	 are	given,	 the	 tree	cannot	be
constructed	uniquely.

Problem-29  Give	an	algorithm	for	printing	all	the	ancestors	of	a	node	in	a	Binary	tree.	For
the	tree	below,	for	7	the	ancestors	are	1	3	7.

Solution:	Apart	from	the	Depth	First	Search	of	this	tree,	we	can	use	the	following	recursive	way
to	print	the	ancestors.



Time	Complexity:	O(n).	Space	Complexity:	O(n)	for	recursion.

Problem-30  Zigzag	Tree	Traversal:	Give	an	algorithm	to	 traverse	a	binary	 tree	 in	Zigzag
order.	For	example,	the	output	for	the	tree	below	should	be:	1	3	2	4	5	6	7

Solution:	 This	 problem	 can	 be	 solved	 easily	 using	 two	 stacks.	 Assume	 the	 two	 stacks	 are:
currentLevel	 and	nextLevel.	We	would	 also	 need	 a	 variable	 to	 keep	 track	of	 the	 current	 level
order	(whether	it	is	left	to	right	or	right	to	left).

We	pop	from	currentLevel	stack	and	print	the	node’s	value.	Whenever	the	current	level	order	is
from	left	to	right,	push	the	node’s	left	child,	then	its	right	child,	to	stack	nextLevel.	Since	a	stack
is	a	Last	In	First	Out	(LIFO)	structure,	the	next	time	that	nodes	are	popped	off	nextLevel,	it	will
be	in	the	reverse	order.

On	the	other	hand,	when	the	current	 level	order	 is	from	right	 to	 left,	we	would	push	the	node’s
right	child	first,	then	its	left	child.	Finally,	don’t	forget	to	swap	those	two	stacks	at	the	end	of	each
level	(i.	e.,	when	currentLevel	is	empty).



Time	Complexity:	O(n).	Space	Complexity:	Space	for	two	stacks	=	O(n)	+	O(n)	=	O(n).

Problem-31  Give	an	algorithm	for	finding	the	vertical	sum	of	a	binary	tree.	For	example,	The
tree	has	5	vertical	lines

Vertical-1:	nodes-4	=>	vertical	sum	is	4
Vertical-2:	nodes-2	=>	vertical	sum	is	2
Vertical-3:	nodes-1,5,6	=>	vertical	sum	is	1	+	5	+	6	=	12
Vertical-4:	nodes-3	=>	vertical	sum	is	3
Vertical-5:	nodes-7	=>	vertical	sum	is	7
We	need	to	output:	4	2	12	3	7



Solution:	 We	 can	 do	 an	 inorder	 traversal	 and	 hash	 the	 column.	 We	 call
VerticalSumlnBinaryTreefroot,	0)	which	means	the	root	is	at	column	0.	While	doing	the	traversal,
hash	the	column	and	increase	its	value	by	root	→	data.

Problem-32  How	many	different	binary	trees	are	possible	with	n	nodes?

Solution:	 For	 example,	 consider	 a	 tree	 with	 3	 nodes	 (n	 =	 3).	 It	 will	 have	 the	 maximum
combination	of	5	different	(i.e.,	23	-3	=	5)	trees.



In	general,	if	there	are	n	nodes,	there	exist	2n	–n	different	trees.

Problem-33  Given	a	tree	with	a	special	property	where	leaves	are	represented	with	‘L’	and
internal	 node	 with	 ‘I’.	 Also,	 assume	 that	 each	 node	 has	 either	 0	 or	 2	 children.	 Given
preorder	traversal	of	this	tree,	construct	the	tree.
Example:	Given	preorder	string	=>	ILILL

Solution:	 First,	 we	 should	 see	 how	 preorder	 traversal	 is	 arranged.	 Pre-order	 traversal	means
first	put	 root	node,	 then	pre-order	 traversal	of	 left	 subtree	and	 then	pre-order	 traversal	of	 right
subtree.	In	a	normal	scenario,	it’s	not	possible	to	detect	where	left	subtree	ends	and	right	subtree
starts	using	only	pre-order	traversal.	Since	every	node	has	either	2	children	or	no	child,	we	can
surely	say	that	if	a	node	exists	then	its	sibling	also	exists.	So	every	time	when	we	are	computing	a
subtree,	we	need	to	compute	its	sibling	subtree	as	well.

Secondly,	whenever	we	get	‘L’	in	the	input	string,	that	is	a	leaf	and	we	can	stop	for	a	particular
subtree	at	that	point.	After	this	‘L’	node	(left	child	of	its	parent	‘L’),	its	sibling	starts.	If	‘L’	node	is
right	child	of	its	parent,	then	we	need	to	go	up	in	the	hierarchy	to	find	the	next	subtree	to	compute.

Keeping	the	above	invariant	in	mind,	we	can	easily	determine	when	a	subtree	ends	and	the	next
one	starts.	It	means	that	we	can	give	any	start	node	to	our	method	and	it	can	easily	complete	the
subtree	 it	generates	going	outside	of	 its	nodes.	We	just	need	 to	 take	care	of	passing	 the	correct
start	nodes	to	different	sub-trees.



Time	Complexity:	O(n).

Problem-34  Given	 a	 binary	 tree	 with	 three	 pointers	 (left,	 right	 and	 nextSibling),	 give	 an
algorithm	for	filling	the	nextSibling	pointers	assuming	they	are	NULL	initially.

Solution:	We	can	use	simple	queue	(similar	to	the	solution	of	Problem-11).	Let	us	assume	that	the
structure	of	binary	tree	is:



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-35  Is	there	any	other	way	of	solving	Problem-34?

Solution:	The	trick	is	to	re-use	the	populated	nextSibling	pointers.	As	mentioned	earlier,	we	just



need	one	more	 step	 for	 it	 to	work.	Before	we	pass	 the	 left	 and	 right	 to	 the	 recursion	 function
itself,	we	connect	the	right	child’s	nextSibling	to	the	current	node’s	nextSibling	left	child.	In	order
for	 this	 to	work,	 the	 current	 node	nextSibling	 pointer	must	 be	 populated,	which	 is	 true	 in	 this
case.

Time	Complexity:	O(n).

6.7	Generic	Trees	(N-ary	Trees)

In	the	previous	section	we	discussed	binary	trees	where	each	node	can	have	a	maximum	of	two
children	and	these	are	represented	easily	with	two	pointers.	But	suppose	if	we	have	a	tree	with
many	children	at	every	node	and	also	if	we	do	not	know	how	many	children	a	node	can	have,	how
do	we	represent	them?

For	example,	consider	the	tree	shown	below.



How	do	we	represent	the	tree?

In	the	above	tree,	there	are	nodes	with	6	children,	with	3	children,	with	2	children,	with	1	child,
and	 with	 zero	 children	 (leaves).	 To	 present	 this	 tree	 we	 have	 to	 consider	 the	 worst	 case	 (6
children)	 and	 allocate	 that	 many	 child	 pointers	 for	 each	 node.	 Based	 on	 this,	 the	 node
representation	can	be	given	as:

Since	we	are	not	using	all	the	pointers	in	all	the	cases,	there	is	a	lot	of	memory	wastage.	Another
problem	 is	 that	we	do	not	 know	 the	 number	 of	 children	 for	 each	node	 in	 advance.	 In	 order	 to



solve	this	problem	we	need	a	representation	that	minimizes	the	wastage	and	also	accepts	nodes
with	any	number	of	children.

Representation	of	Generic	Trees

Since	our	objective	is	to	reach	all	nodes	of	the	tree,	a	possible	solution	to	this	is	as	follows:

• At	each	node	link	children	of	same	parent	(siblings)	from	left	to	right.
• Remove	the	links	from	parent	to	all	children	except	the	first	child.

What	these	above	statements	say	is	if	we	have	a	link	between	children	then	we	do	not	need	extra
links	from	parent	to	all	children.	This	is	because	we	can	traverse	all	the	elements	by	starting	at
the	 first	 child	of	 the	parent.	So	 if	we	have	a	 link	between	parent	and	 first	 child	and	also	 links
between	all	children	of	same	parent	then	it	solves	our	problem.

This	 representation	 is	 sometimes	 called	 first	 child/next	 sibling	 representation.	 First	 child/next
sibling	representation	of	the	generic	tree	is	shown	above.	The	actual	representation	for	this	tree
is:



Based	on	this	discussion,	the	tree	node	declaration	for	general	tree	can	be	given	as:

Note:	Since	we	are	able	to	convert	any	generic	tree	to	binary	representation;	in	practice	we	use
binary	trees.	We	can	treat	all	generic	trees	with	a	first	child/next	sibling	representation	as	binary
trees.

Generic	Trees:	Problems	&	Solutions

Problem-36  Given	a	tree,	give	an	algorithm	for	finding	the	sum	of	all	the	elements	of	the	tree.

Solution:	 The	 solution	 is	 similar	 to	 what	 we	 have	 done	 for	 simple	 binary	 trees.	 That	 means,
traverse	the	complete	list	and	keep	on	adding	the	values.	We	can	either	use	level	order	traversal



or	simple	recursion.

Time	Complexity:	O(n).	Space	Complexity:	O(1)	(if	we	do	not	consider	stack	space),	otherwise
O(n).

Note:	All	problems	which	we	have	discussed	 for	binary	 trees	are	applicable	 for	generic	 trees
also.	Instead	of	left	and	right	pointers	we	just	need	to	use	firstChild	and	nextSibling.

Problem-37  For	 a	 4-ary	 tree	 (each	 node	 can	 contain	maximum	of	 4	 children),	what	 is	 the
maximum	possible	height	with	100	nodes?	Assume	height	of	a	single	node	is	0.

Solution:	In	4-ary	tree	each	node	can	contain	0	to	4	children,	and	to	get	maximum	height,	we	need
to	keep	only	one	child	for	each	parent.	With	100	nodes,	the	maximum	possible	height	we	can	get
is	99.

If	 we	 have	 a	 restriction	 that	 at	 least	 one	 node	 has	 4	 children,	 then	we	 keep	 one	 node	with	 4
children	and	the	remaining	nodes	with	1	child.	In	this	case,	 the	maximum	possible	height	is	96.
Similarly,	with	n	nodes	the	maximum	possible	height	is	n	–	4.

Problem-38  For	 a	 4-ary	 tree	 (each	 node	 can	 contain	maximum	of	 4	 children),	what	 is	 the
minimum	possible	height	with	n	nodes?

Solution:	Similar	to	the	above	discussion,	if	we	want	to	get	minimum	height,	then	we	need	to	fill
all	 nodes	 with	 maximum	 children	 (in	 this	 case	 4).	 Now	 let’s	 see	 the	 following	 table,	 which
indicates	the	maximum	number	of	nodes	for	a	given	height.

For	 a	 given	 height	 h	 the	 maximum	 possible	 nodes	 are:	 .	 To	 get	 minimum	 height,	 take

logarithm	on	both	sides:



Problem-39  Given	a	parent	array	P,	where	P[i]	 indicates	 the	parent	of	 ith	 node	 in	 the	 tree
(assume	parent	of	root	node	is	indicated	with	–1).	Give	an	algorithm	for	finding	the	height
or	depth	of	the	tree.

Solution:

For	example:	if	the	P	is

Its	corresponding	tree	is:

From	the	problem	definition,	the	given	array	represents	the	parent	array.	That	means,	we	need	to
consider	the	tree	for	that	array	and	find	the	depth	of	the	tree.	The	depth	of	this	given	tree	is	4.	If
we	carefully	observe,	we	 just	need	 to	start	at	every	node	and	keep	going	 to	 its	parent	until	we
reach	–1	and	also	keep	track	of	the	maximum	depth	among	all	nodes.



Time	 Complexity:	 O(n2).	 For	 skew	 trees	 we	 will	 be	 re-calculating	 the	 same	 values.	 Space
Complexity:	O(1).

Note:	We	can	optimize	 the	 code	by	 storing	 the	previous	 calculated	nodes’	depth	 in	 some	hash
table	or	other	array.	This	reduces	the	time	complexity	but	uses	extra	space.

Problem-40  Given	a	node	in	the	generic	tree,	give	an	algorithm	for	counting	the	number	of
siblings	for	that	node.

Solution:	Since	tree	is	represented	with	the	first	child/next	sibling	method,	the	tree	structure	can
be	given	as:

For	a	given	node	in	the	tree,	we	just	need	to	traverse	all	its	next	siblings.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-41  Given	a	node	in	the	generic	tree,	give	an	algorithm	for	counting	the	number	of
children	for	that	node.

Solution:	Since	the	tree	is	represented	as	first	child/next	sibling	method,	the	tree	structure	can	be
given	as:

For	a	given	node	in	the	tree,	we	just	need	to	point	to	its	first	child	and	keep	traversing	all	its	next
siblings.

Time	Complexity:	O(n).	Space	Complexity:	O(1).



Problem-42  Given	 two	 trees	 how	 do	we	 check	whether	 the	 trees	 are	 isomorphic	 to	 each
other	or	not?

Solution:

Two	binary	trees	root1	and	root2	are	isomorphic	if	 they	have	the	same	structure.	The	values	of
the	nodes	does	not	affect	whether	two	trees	are	isomorphic	or	not.	In	the	diagram	below,	the	tree
in	the	middle	is	not	isomorphic	to	the	other	trees,	but	the	tree	on	the	right	is	isomorphic	to	the	tree
on	the	left.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-43  Given	 two	 trees	how	do	we	check	whether	 they	are	quasi-isomorphic	 to	each
other	or	not?

Solution:



Two	 trees	 root1	 and	 root2	 are	 quasi-isomorphic	 if	 root1	 can	 be	 transformed	 into	 root2	 by
swapping	 the	 left	 and	 right	 children	 of	 some	 of	 the	 nodes	 of	 root1.	Data	 in	 the	 nodes	 are	 not
important	 in	 determining	 quasi-isomorphism;	 only	 the	 shape	 is	 important.	 The	 trees	 below	 are
quasi-isomorphic	because	if	the	children	of	the	nodes	on	the	left	are	swapped,	the	tree	on	the	right
is	obtained.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-44  A	full	k	–ary	tree	is	a	tree	where	each	node	has	either	0	or	k	children.	Given	an
array	 which	 contains	 the	 preorder	 traversal	 of	 full	 k	 –ary	 tree,	 give	 an	 algorithm	 for
constructing	the	full	k	–ary	tree.

Solution:	In	k	–ary	tree,	for	a	node	at	ith	position	its	children	will	be	at	k	*	i	+	1	to	k	*	i	+	k.	For
example,	the	example	below	is	for	full	3-ary	tree.



As	we	have	seen,	in	preorder	traversal	first	left	subtree	is	processed	then	followed	by	root	node
and	right	subtree.	Because	of	this,	to	construct	a	full	k-ary,	we	just	need	to	keep	on	creating	the
nodes	without	bothering	about	the	previous	constructed	nodes.	We	can	use	this	trick	to	build	the
tree	recursively	by	using	one	global	index.	The	declaration	for	k-ary	tree	can	be	given	as:



Time	Complexity:	O(n),	where	n	is	the	size	of	the	pre-order	array.	This	is	because	we	are	moving
sequentially	and	not	visiting	the	already	constructed	nodes.

6.8	Threaded	Binary	Tree	Traversals	(Stack	or	Queue-less	Traversals)

In	earlier	sections	we	have	seen	that,	preorder,	inorder	and	postorder	binary	tree	traversals	used
stacks	and	 level	order	 traversals	 used	queues	 as	 an	 auxiliary	data	 structure.	 In	 this	 section	we
will	discuss	new	traversal	algorithms	which	do	not	need	both	stacks	and	queues.	Such	traversal



algorithms	are	called	threaded	binary	tree	traversals	or	stack/queue	–	less	traversals.

Issues	with	Regular	Binary	Tree	Traversals

• The	storage	space	required	for	the	stack	and	queue	is	large.
• The	majority	of	 pointers	 in	 any	binary	 tree	 are	NULL.	For	 example,	 a	binary	 tree

with	n	nodes	has	n	+	1	NULL	pointers	and	these	were	wasted.

• It	is	difficult	to	find	successor	node	(preorder,	inorder	and	postorder	successors)	for
a	given	node.

Motivation	for	Threaded	Binary	Trees

To	solve	 these	problems,	one	 idea	 is	 to	store	some	useful	 information	 in	NULL	pointers.	 If	we
observe	the	previous	traversals	carefully,	stack/	queue	is	required	because	we	have	to	record	the
current	position	in	order	to	move	to	the	right	subtree	after	processing	the	left	subtree.	If	we	store
the	useful	 information	 in	NULL	pointers,	 then	we	don’t	have	 to	store	such	 information	 in	stack/
queue.

The	binary	trees	which	store	such	information	in	NULL	pointers	are	called	threaded	binary	trees.
From	the	above	discussion,	let	us	assume	that	we	want	to	store	some	useful	information	in	NULL



pointers.	The	next	question	is	what	to	store?

The	 common	 convention	 is	 to	 put	 predecessor/successor	 information.	 That	 means,	 if	 we	 are
dealing	with	preorder	traversals,	then	for	a	given	node,	NULL	left	pointer	will	contain	preorder
predecessor	 information	 and	 NULL	 right	 pointer	 will	 contain	 preorder	 successor	 information.
These	special	pointers	are	called	threads.

Classifying	Threaded	Binary	Trees

The	classification	is	based	on	whether	we	are	storing	useful	information	in	both	NULL	pointers	or
only	in	one	of	them.

• If	we	 store	 predecessor	 information	 in	NULL	 left	 pointers	 only,	 then	we	 can	 call
such	binary	trees	left	threaded	binary	trees.

• If	we	store	successor	information	in	NULL	right	pointers	only,	then	we	can	call	such
binary	trees	right	threaded	binary	trees.

• If	we	store	predecessor	information	in	NULL	left	pointers	and	successor	information
in	NULL	 right	 pointers,	 then	we	 can	 call	 such	binary	 trees	 fully	 threaded	 binary
trees	or	simply	threaded	binary	trees.

Note:	For	the	remaining	discussion	we	consider	only	(fully)	threaded	binary	trees.

Types	of	Threaded	Binary	Trees

Based	on	above	discussion	we	get	three	representations	for	threaded	binary	trees.

• Preorder	 Threaded	 Binary	 Trees:	 NULL	 left	 pointer	 will	 contain	 PreOrder
predecessor	 information	 and	NULL	 right	 pointer	will	 contain	PreOrder	 successor
information.

• Inorder	 Threaded	 Binary	 Trees:	 NULL	 left	 pointer	 will	 contain	 InOrder
predecessor	 information	 and	 NULL	 right	 pointer	 will	 contain	 InOrder	 successor
information.

• Postorder	 Threaded	 Binary	 Trees:	 NULL	 left	 pointer	 will	 contain	 PostOrder
predecessor	information	and	NULL	right	pointer	will	contain	PostOrder	successor
information.

Note:	 As	 the	 representations	 are	 similar,	 for	 the	 remaining	 discussion	 we	 will	 use	 InOrder
threaded	binary	trees.

Threaded	Binary	Tree	structure

Any	program	examining	the	tree	must	be	able	to	differentiate	between	a	regular	left/right	pointer



and	a	thread.	To	do	this,	we	use	two	additional	fields	in	each	node,	giving	us,	for	threaded	trees,
nodes	of	the	following	form:

Difference	between	Binary	Tree	and	Threaded	Binary	Tree	Structures

Note:	Similarly,	we	can	define	preorder/postorder	differences	as	well.

As	an	example,	let	us	try	representing	a	tree	in	inorder	threaded	binary	tree	form.	The	tree	below
shows	 what	 an	 inorder	 threaded	 binary	 tree	 will	 look	 like.	 The	 dotted	 arrows	 indicate	 the
threads.	If	we	observe,	the	left	pointer	of	left	most	node	(2)	and	right	pointer	of	right	most	node
(31)	are	hanging.



What	should	leftmost	and	rightmost	pointers	point	to?

In	 the	 representation	 of	 a	 threaded	 binary	 tree,	 it	 is	 convenient	 to	 use	 a	 special	 node	Dummy
which	is	always	present	even	for	an	empty	tree.	Note	that	right	tag	of	Dummy	node	is	1	and	its
right	child	points	to	itself.

With	this	convention	the	above	tree	can	be	represented	as:



Finding	Inorder	Successor	in	Inorder	Threaded	Binary	Tree

To	find	inorder	successor	of	a	given	node	without	using	a	stack,	assume	that	the	node	for	which
we	want	to	find	the	inorder	successor	is	P.

Strategy:	If	P	has	a	no	right	subtree,	then	return	the	right	child	of	P.	If	P	has	right	subtree,	then
return	the	left	of	the	nearest	node	whose	left	subtree	contains	P.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Inorder	Traversal	in	Inorder	Threaded	Binary	Tree

We	 can	 start	with	dummy	 node	 and	 call	 InorderSuccessor()	 to	 visit	 each	 node	 until	 we	 reach
dummy	node.

Alternative	coding:

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Finding	PreOrder	Successor	in	InOrder	Threaded	Binary	Tree

Strategy:	If	P	has	a	left	subtree,	then	return	the	left	child	of	P.	If	P	has	no	left	subtree,	then	return
the	right	child	of	the	nearest	node	whose	right	subtree	contains	P.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

PreOrder	Traversal	of	InOrder	Threaded	Binary	Tree

As	in	inorder	traversal,	start	with	dummy	node	and	call	PreorderSuccessorf)	 to	visit	each	node
until	we	get	dummy	node	again.

Alternative	coding:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Note:	From	the	above	discussion,	it	should	be	clear	that	inorder	and	preorder	successor	finding
is	easy	with	threaded	binary	trees.	But	finding	postorder	successor	is	very	difficult	if	we	do	not
use	stack.

Insertion	of	Nodes	in	InOrder	Threaded	Binary	Trees

For	simplicity,	let	us	assume	that	there	are	two	nodes	P	and	Q	and	we	want	to	attach	Q	to	right	of
P.	For	this	we	will	have	two	cases.

• Node	P	 does	 not	 have	 right	 child:	 In	 this	 case	we	 just	 need	 to	 attach	Q	 to	P	 and
change	its	left	and	right	pointers.

• Node	P	has	right	child	(say,	R):	In	this	case	we	need	to	traverse	R’s	left	subtree	and
find	 the	 left	most	 node	 and	 then	update	 the	 left	 and	 right	 pointer	 of	 that	 node	 (as
shown	below).



Time	Complexity:	O(n).	Space	Complexity:	O(1).



Threaded	Binary	Trees:	Problems	&	Solutions

Problem-45  For	a	given	binary	tree	(not	threaded)	how	do	we	find	the	preorder	successor?

Solution:	 For	 solving	 this	 problem,	we	 need	 to	 use	 an	 auxiliary	 stack	S.	On	 the	 first	 call,	 the
parameter	node	is	a	pointer	to	the	head	of	the	tree,	and	thereafter	its	value	is	NULL.	Since	we	are
simply	asking	for	the	successor	of	the	node	we	got	the	last	time	we	called	the	function.

It	 is	 necessary	 that	 the	 contents	 of	 the	 stack	S	 and	 the	pointer	P	 to	 the	 last	 node	 “visited”	 are
preserved	from	one	call	of	the	function	to	the	next;	they	are	defined	as	static	variables.

Problem-46  For	a	given	binary	tree	(not	threaded)	how	do	we	find	the	inorder	successor?

Solution:	Similar	to	the	above	discussion,	we	can	find	the	inorder	successor	of	a	node	as:



6.9	Expression	Trees

A	tree	representing	an	expression	is	called	an	expression	tree.	In	expression	trees,	leaf	nodes	are
operands	and	non-leaf	nodes	are	operators.	That	means,	an	expression	tree	is	a	binary	tree	where
internal	 nodes	 are	 operators	 and	 leaves	 are	 operands.	 An	 expression	 tree	 consists	 of	 binary
expression.	 But	 for	 a	 u-nary	 operator,	 one	 subtree	 will	 be	 empty.	 The	 figure	 below	 shows	 a
simple	expression	tree	for	(A	+	B	*	C)	/	D.



Algorithm	for	Building	Expression	Tree	from	Postfix	Expression



Example:	Assume	that	one	symbol	is	read	at	a	time.	If	the	symbol	is	an	operand,	we	create	a	tree
node	and	push	a	pointer	to	it	onto	a	stack.	If	the	symbol	is	an	operator,	pop	pointers	to	two	trees
T1	and	T2	from	the	stack	(T1	is	popped	first)	and	form	a	new	tree	whose	root	is	the	operator	and
whose	left	and	right	children	point	 to	T2	and	T1	 respectively.	A	pointer	 to	 this	new	tree	 is	 then
pushed	onto	the	stack.



As	an	example,	assume	the	input	is	A	B	C	*	+	D	/.	The	first	three	symbols	are	operands,	so	create
tree	nodes	and	push	pointers	to	them	onto	a	stack	as	shown	below.

Next,	an	operator	 ‘*’	 is	 read,	 so	 two	pointers	 to	 trees	are	popped,	a	new	 tree	 is	 formed	and	a
pointer	to	it	is	pushed	onto	the	stack.

Next,	an	operator	 ‘+’	 is	 read,	so	 two	pointers	 to	 trees	are	popped,	a	new	tree	 is	 formed	and	a
pointer	to	it	is	pushed	onto	the	stack.

Next,	an	operand	‘D’	is	read,	a	one-node	tree	is	created	and	a	pointer	to	the	corresponding	tree	is
pushed	onto	the	stack.



Finally,	the	last	symbol	(‘/’)	is	read,	two	trees	are	merged	and	a	pointer	to	the	final	tree	is	left	on
the	stack.

6.10	XOR	Trees

This	concept	is	similar	to	memory	efficient	doubly	linked	lists	of	Linked	Lists	chapter.	Also,	like
threaded	binary	trees	this	representation	does	not	need	stacks	or	queues	for	traversing	the	trees.
This	 representation	 is	 used	 for	 traversing	 back	 (to	 parent)	 and	 forth	 (to	 children)	 using	 ⊕
operation.	 To	 represent	 the	 same	 in	 XOR	 trees,	 for	 each	 node	 below	 are	 the	 rules	 used	 for
representation:

• Each	nodes	left	will	have	the	⊕	of	its	parent	and	its	left	children.
• Each	nodes	right	will	have	the	⊕	of	its	parent	and	its	right	children.
• The	root	nodes	parent	is	NULL	and	also	leaf	nodes	children	are	NULL	nodes.



Based	on	the	above	rules	and	discussion,	the	tree	can	be	represented	as:

The	major	objective	of	this	presentation	is	the	ability	to	move	to	parent	as	well	to	children.	Now,



let	us	see	how	to	use	this	representation	for	traversing	the	tree.	For	example,	if	we	are	at	node	B
and	want	to	move	to	its	parent	node	A,	then	we	just	need	to	perform	⊕	on	its	left	content	with	its
left	child	address	(we	can	use	right	child	also	for	going	to	parent	node).

Similarly,	if	we	want	to	move	to	its	child	(say,	left	child	D)	then	we	have	to	perform	⊕	on	its	left
content	with	its	parent	node	address.	One	important	point	 that	we	need	to	understand	about	 this
representation	is:	When	we	are	at	node	B,	how	do	we	know	the	address	of	its	children	D?	Since
the	 traversal	 starts	 at	node	 root	node,	we	can	apply	⊕	 on	 root’s	 left	 content	with	NULL.	As	a
result	we	 get	 its	 left	 child,	 B.	When	we	 are	 at	 B,	we	 can	 apply	⊕	 on	 its	 left	 content	with	A
address.

6.11	Binary	Search	Trees	(BSTs)

Why	Binary	Search	Trees?

In	previous	sections	we	have	discussed	different	 tree	representations	and	in	all	of	 them	we	did
not	 impose	 any	 restriction	on	 the	nodes	data.	As	a	 result,	 to	 search	 for	 an	 element	we	need	 to
check	both	 in	 left	subtree	and	in	right	subtree.	Due	to	 this,	 the	worst	case	complexity	of	search
operation	is	O(n).

In	this	section,	we	will	discuss	another	variant	of	binary	trees:	Binary	Search	Trees	(BSTs).	As
the	name	suggests,	the	main	use	of	this	representation	is	for	searching.	In	this	representation	we
impose	restriction	on	the	kind	of	data	a	node	can	contain.	As	a	result,	it	reduces	the	worst	case
average	search	operation	to	O(logn).

Binary	Search	Tree	Property

In	binary	search	trees,	all	the	left	subtree	elements	should	be	less	than	root	data	and	all	the	right
subtree	elements	should	be	greater	than	root	data.	This	is	called	binary	search	tree	property.	Note
that,	this	property	should	be	satisfied	at	every	node	in	the	tree.

• The	left	subtree	of	a	node	contains	only	nodes	with	keys	less	than	the	nodes	key.
• The	right	subtree	of	a	node	contains	only	nodes	with	keys	greater	than	the	nodes	key.
• Both	the	left	and	right	subtrees	must	also	be	binary	search	trees.



Example:	The	 left	 tree	 is	a	binary	search	 tree	and	 the	 right	 tree	 is	not	a	binary	search	 tree	 (at
node	6	it’s	not	satisfying	the	binary	search	tree	property).

Binary	Search	Tree	Declaration

There	is	no	difference	between	regular	binary	tree	declaration	and	binary	search	tree	declaration.
The	difference	is	only	in	data	but	not	in	structure.	But	for	our	convenience	we	change	the	structure
name	as:



Operations	on	Binary	Search	Trees

Main	operations:	Following	are	the	main	operations	that	are	supported	by	binary	search	trees:

• Find/	Find	Minimum	/	Find	Maximum	element	in	binary	search	trees
• Inserting	an	element	in	binary	search	trees
• Deleting	an	element	from	binary	search	trees

Auxiliary	operations:	Checking	whether	the	given	tree	is	a	binary	search	tree	or	not

• Finding	kth-smallest	element	in	tree
• Sorting	the	elements	of	binary	search	tree	and	many	more

Important	Notes	on	Binary	Search	Trees

• Since	 root	 data	 is	 always	 between	 left	 subtree	 data	 and	 right	 subtree	 data,
performing	inorder	traversal	on	binary	search	tree	produces	a	sorted	list.

• While	 solving	problems	on	binary	 search	 trees,	 first	we	process	 left	 subtree,	 then
root	 data,	 and	 finally	 we	 process	 right	 subtree.	 This	 means,	 depending	 on	 the
problem,	only	 the	 intermediate	step	(processing	root	data)	changes	and	we	do	not
touch	the	first	and	third	steps.

• If	we	are	searching	for	an	element	and	 if	 the	 left	 subtree	 root	data	 is	 less	 than	 the
element	we	want	to	search,	then	skip	it.	The	same	is	the	case	with	the	right	subtree..
Because	 of	 this,	 binary	 search	 trees	 take	 less	 time	 for	 searching	 an	 element	 than
regular	binary	trees.	In	other	words,	the	binary	search	trees	consider	either	left	or
right	subtrees	for	searching	an	element	but	not	both.

• The	 basic	 operations	 that	 can	 be	 performed	 on	 binary	 search	 tree	 (BST)	 are
insertion	 of	 element,	 deletion	 of	 element,	 and	 searching	 for	 an	 element.	 While
performing	these	operations	on	BST	the	height	of	 the	 tree	gets	changed	each	time.
Hence	there	exists	variations	 in	 time	complexities	of	best	case,	average	case,	and
worst	case.

• The	basic	operations	on	a	binary	search	tree	take	time	proportional	to	the	height	of
the	 tree.	 For	 a	 complete	 binary	 tree	with	 node	 n,	 such	 operations	 runs	 in	O(lgn)
worst-case	 time.	If	 the	 tree	 is	a	 linear	chain	of	n	nodes	(skew-tree),	however,	 the
same	operations	takes	O(n)	worst-case	time.

Finding	an	Element	in	Binary	Search	Trees

Find	operation	is	straightforward	in	a	BST.	Start	with	the	root	and	keep	moving	left	or	right	using
the	BST	property.	If	the	data	we	are	searching	is	same	as	nodes	data	then	we	return	current	node.

If	 the	 data	 we	 are	 searching	 is	 less	 than	 nodes	 data	 then	 search	 left	 subtree	 of	 current	 node;
otherwise	search	right	subtree	of	current	node.	If	 the	data	 is	not	present,	we	end	up	in	a	NULL



link.

Time	Complexity:	O(n),	in	worst	case	(when	BST	is	a	skew	tree).	Space	Complexity:	O(n),	 for
recursive	stack.

Non	recursive	version	of	the	above	algorithm	can	be	given	as:

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Finding	Minimum	Element	in	Binary	Search	Trees

In	BSTs,	 the	minimum	element	 is	 the	 left-most	node,	which	does	not	has	 left	 child.	 In	 the	BST
below,	the	minimum	element	is	4.



Time	Complexity:	O(n),	in	worst	case	(when	BST	is	a	left	skew	tree).
Space	Complexity:	O(n),	for	recursive	stack.

Non	recursive	version	of	the	above	algorithm	can	be	given	as:

Time	Complexity:	O(n).	Space	Complexity:	O(1).



Finding	Maximum	Element	in	Binary	Search	Trees

In	BSTs,	the	maximum	element	is	the	right-most	node,	which	does	not	have	right	child.	In	the	BST
below,	the	maximum	element	is	16.

Time	Complexity:	O(n),	in	worst	case	(when	BST	is	a	right	skew	tree).
Space	Complexity:	O(n),	for	recursive	stack.

Non	recursive	version	of	the	above	algorithm	can	be	given	as:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Where	is	Inorder	Predecessor	and	Successor?

Where	is	 the	inorder	predecessor	and	successor	of	node	X	 in	a	binary	search	 tree	assuming	all
keys	are	distinct?

If	X	has	two	children	then	its	inorder	predecessor	is	the	maximum	value	in	its	left	subtree	and	its
inorder	successor	the	minimum	value	in	its	right	subtree.

If	it	does	not	have	a	left	child,	then	a	node’s	inorder	predecessor	is	its	first	left	ancestor.



Inserting	an	Element	from	Binary	Search	Tree

To	insert	data	into	binary	search	tree,	first	we	need	to	find	the	location	for	that	element.	We	can
find	the	location	of	insertion	by	following	the	same	mechanism	as	that	of	 find	operation.	While
finding	 the	 location,	 if	 the	 data	 is	 already	 there	 then	 we	 can	 simply	 neglect	 and	 come	 out.
Otherwise,	insert	data	at	the	last	location	on	the	path	traversed.

As	an	example	let	us	consider	the	following	tree.	The	dotted	node	indicates	the	element	(5)	to	be
inserted.	To	insert	5,	traverse	the	tree	using	find	function.	At	node	with	key	4,	we	need	to	go	right,
but	there	is	no	subtree,	so	5	is	not	in	the	tree,	and	this	is	the	correct	location	for	insertion.



Note:	In	the	above	code,	after	inserting	an	element	in	subtrees,	the	tree	is	returned	to	its	parent.
As	a	result,	the	complete	tree	will	get	updated.

Time	Complexity:O(n).
Space	Complexity:O(n),	for	recursive	stack.	For	iterative	version,	space	complexity	is	O(1).

Deleting	an	Element	from	Binary	Search	Tree

The	delete	operation	is	more	complicated	than	other	operations.	This	is	because	the	element	to	be
deleted	may	not	be	the	leaf	node.	In	this	operation	also,	first	we	need	to	find	the	location	of	the
element	which	we	want	to	delete.

Once	we	have	found	the	node	to	be	deleted,	consider	the	following	cases:

• If	 the	 element	 to	be	deleted	 is	 a	 leaf	node:	 return	NULL	 to	 its	parent.	That	means
make	the	corresponding	child	pointer	NULL.	In	the	tree	below	to	delete	5,	set	NULL



to	its	parent	node	2.

• If	 the	 element	 to	 be	 deleted	 has	 one	 child:	 In	 this	 case	 we	 just	 need	 to	 send	 the
current	node’s	child	to	its	parent.	In	the	tree	below,	to	delete	4,	4	left	subtree	is	set
to	its	parent	node	2.

• If	the	element	to	be	deleted	has	both	children:	The	general	strategy	is	to	replace	the
key	of	this	node	with	the	largest	element	of	 the	left	subtree	and	recursively	delete
that	node	(which	is	now	empty).	The	largest	node	in	the	left	subtree	cannot	have	a
right	child,	so	the	second	delete	is	an	easy	one.	As	an	example,	let	us	consider	the
following	tree.	In	the	tree	below,	to	delete	8,	it	is	the	right	child	of	the	root.	The	key
value	 is	8.	 It	 is	 replaced	with	 the	 largest	key	 in	 its	 left	 subtree	 (7),	 and	 then	 that
node	is	deleted	as	before	(second	case).



Note:	We	can	replace	with	minimum	element	in	right	subtree	also.



Time	Complexity:	O(n).	Space	Complexity:	O(n)	for	recursive	stack.	For	iterative	version,	space
complexity	is	O(1).

Binary	Search	Trees:	Problems	&	Solutions

Note:	For	ordering	related	problems	with	binary	search	trees	and	balanced	binary	search	trees,



Inorder	traversal	has	advantages	over	others	as	it	gives	the	sorted	order.

Problem-47  Given	pointers	 to	 two	nodes	 in	 a	 binary	 search	 tree,	 find	 the	 lowest	 common
ancestor	(LCA).	Assume	that	both	values	already	exist	in	the	tree.

Solution:

The	main	 idea	 of	 the	 solution	 is:	while	 traversing	BST	 from	 root	 to	 bottom,	 the	 first	 node	we
encounter	 with	 value	 between	 α	 and	 β,	 i.e.,	 α	 <	 node	 →	 data	 <	 β,	 is	 the	 Least	 Common
Ancestor(LCA)	of	α	and	β	(where	α	<	β).	So	just	traverse	the	BST	in	pre-order,	and	if	we	find	a
node	with	value	in	between	α	and	β,	then	that	node	is	the	LCA.	If	its	value	is	greater	than	both	α
and	β,	then	the	LCA	lies	on	the	left	side	of	the	node,	and	if	its	value	is	smaller	than	both	α	and	β,
then	the	LCA	lies	on	the	right	side.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	skew	trees.

Problem-48  Give	an	algorithm	for	finding	the	shortest	path	between	two	nodes	in	a	BST.

Solution:	It’s	nothing	but	finding	the	LCA	of	two	nodes	in	BST.

Problem-49  Give	an	algorithm	for	counting	the	number	of	BSTs	possible	with	n	nodes.

Solution:	This	is	a	DP	problem.	Refer	to	chapter	on	Dynamic	Programming	for	the	algorithm.

Problem-50  Give	an	algorithm	to	check	whether	the	given	binary	tree	is	a	BST	or	not.

Solution:

Consider	the	following	simple	program.	For	each	node,	check	if	the	node	on	its	left	is	smaller	and
check	if	the	node	on	its	right	is	greater.	This	approach	is	wrong	as	this	will	return	true	for	binary
tree	below.	Checking	only	at	current	node	is	not	enough.



Problem-51  Can	we	think	of	getting	the	correct	algorithm?

Solution:	For	each	node,	check	if	max	value	in	left	subtree	is	smaller	than	the	current	node	data
and	 min	 value	 in	 right	 subtree	 greater	 than	 the	 node	 data.	 It	 is	 assumed	 that	 we	 have	 helper
functions	FindMin()	and	FindMax()	 that	 return	 the	min	or	max	 integer	value	 from	a	non-empty
tree.



Time	Complexity:	O(n2).	Space	Complexity:	O(n).

Problem-52  Can	we	improve	the	complexity	of	Problem-51?

Solution:	Yes.	A	better	solution	is	to	look	at	each	node	only	once.	The	trick	is	to	write	a	utility
helper	function	IsBSTUtil(struct	BinaryTreeNode*	root,	int	min,	int	max)	that	traverses	down	the
tree	keeping	track	of	the	narrowing	min	and	max	allowed	values	as	it	goes,	looking	at	each	node
only	once.	The	initial	values	for	min	and	max	should	be	INT_MIN	and	INT_MAX	–	they	narrow
from	there.

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.



Problem-53  Can	we	further	improve	the	complexity	of	Problem-51?

Solution:	Yes,	by	using	inorder	traversal.	The	idea	behind	this	solution	is	that	inorder	traversal	of
BST	produces	sorted	lists.	While	traversing	the	BST	in	inorder,	at	each	node	check	the	condition
that	its	key	value	should	be	greater	than	the	key	value	of	its	previous	visited	node.	Also,	we	need
to	initialize	the	prev	with	possible	minimum	integer	value	(say,	INT_MIN).

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.

Problem-54  Give	an	algorithm	 for	 converting	BST	 to	 circular	DLL	with	 space	 complexity
O(1).

Solution:	Convert	left	and	right	subtrees	to	DLLs	and	maintain	end	of	those	lists.	Then,	adjust	the
pointers.



Time	Complexity:	O(n).

Problem-55  For	Problem-54,	is	there	any	other	way	of	solving	it?

Solution:	Yes.	There	is	an	alternative	solution	based	on	the	divide	and	conquer	method	which	is
quite	neat.



Time	Complexity:	O(n).

Problem-56  Given	 a	 sorted	 doubly	 linked	 list,	 give	 an	 algorithm	 for	 converting	 it	 into
balanced	binary	search	tree.

Solution:	Find	the	middle	node	and	adjust	the	pointers.



Time	Complexity:	2T(n/2)	+	O(n)	[for	finding	the	middle	node]	=	O(nlogn).

Note:	For	FindMiddleNode	function	refer	Linked	Lists	chapter.

Problem-57  Given	a	sorted	array,	give	an	algorithm	for	converting	the	array	to	BST.

Solution:	If	we	have	to	choose	an	array	element	to	be	the	root	of	a	balanced	BST,	which	element
should	we	pick?	The	root	of	a	balanced	BST	should	be	the	middle	element	from	the	sorted	array.
We	would	pick	the	middle	element	from	the	sorted	array	in	each	iteration.	We	then	create	a	node
in	 the	 tree	 initialized	 with	 this	 element.	 After	 the	 element	 is	 chosen,	 what	 is	 left?	 Could	 you
identify	the	sub-problems	within	the	problem?

There	are	two	arrays	left	–	the	one	on	its	left	and	the	one	on	its	right.	These	two	arrays	are	the
sub-problems	 of	 the	 original	 problem,	 since	 both	 of	 them	 are	 sorted.	 Furthermore,	 they	 are
subtrees	of	the	current	node’s	left	and	right	child.

The	code	below	creates	a	balanced	BST	from	the	sorted	array	in	O(n)	time	(n	is	the	number	of
elements	in	the	array).	Compare	how	similar	the	code	is	 to	a	binary	search	algorithm.	Both	are
using	the	divide	and	conquer	methodology.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.

Problem-58  Given	a	singly	linked	list	where	elements	are	sorted	in	ascending	order,	convert
it	to	a	height	balanced	BST.

Solution:	A	naive	way	 is	 to	apply	 the	Problem-56	solution	directly.	 In	each	 recursive	call,	we
would	have	to	traverse	half	of	the	list’s	length	to	find	the	middle	element.	The	run	time	complexity
is	clearly	O(nlogn),	where	n	is	the	total	number	of	elements	in	the	list.	This	is	because	each	level
of	 recursive	call	 requires	a	 total	of	n/2	 traversal	 steps	 in	 the	 list,	 and	 there	are	a	 total	of	 logn
number	of	levels	(ie,	the	height	of	the	balanced	tree).

Problem-59  For	Problem-58,	can	we	improve	the	complexity?

Solution:	Hint:	How	about	inserting	nodes	following	the	list	order?	If	we	can	achieve	this,	we	no
longer	need	to	find	the	middle	element	as	we	are	able	to	traverse	the	list	while	inserting	nodes	to
the	tree.



Best	Solution:	As	usual,	the	best	solution	requires	us	to	think	from	another	perspective.	In	other
words,	we	no	longer	create	nodes	in	the	tree	using	the	top-down	approach.	Create	nodes	bottom-
up,	and	assign	them	to	their	parents.	The	bottom-up	approach	enables	us	to	access	the	list	in	its
order	while	creating	nodes	[42].

Isn’t	the	bottom-up	approach	precise?	Any	time	we	are	stuck	with	the	top-down	approach,	we	can
give	bottom-up	a	try.	Although	the	bottom-up	approach	is	not	the	most	natural	way	we	think,	it	is
helpful	 in	 some	 cases.	 However,	 we	 should	 prefer	 top-down	 instead	 of	 bottom-up	 in	 general,
since	the	latter	is	more	difficult	to	verify.

Below	 is	 the	 code	 for	 converting	 a	 singly	 linked	 list	 to	 a	 balanced	BST.	 Please	 note	 that	 the
algorithm	requires	the	list	length	to	be	passed	in	as	the	function	parameters.	The	list	length	can	be
found	 in	O(n)	 time	 by	 traversing	 the	 entire	 list	 once.	 The	 recursive	 calls	 traverse	 the	 list	 and
create	 tree	nodes	by	 the	 list	order,	which	also	 takes	O(n)	 time.	Therefore,	 the	overall	 run	 time
complexity	is	still	O(n).



Problem-60  Give	an	algorithm	for	finding	the	kth	smallest	element	in	BST.

Solution:	The	 idea	behind	 this	 solution	 is	 that,	 inorder	 traversal	of	BST	produces	 sorted	 lists.
While	traversing	the	BST	in	inorder,	keep	track	of	the	number	of	elements	visited.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-61  Floor	and	ceiling:	If	a	given	key	is	less	than	the	key	at	the	root	of	a	BST	then	the
floor	of	the	key	(the	largest	key	in	the	BST	less	than	or	equal	to	the	key)	must	be	in	the	left
subtree.	If	the	key	is	greater	than	the	key	at	the	root,	then	the	floor	of	the	key	could	be	in	the
right	subtree,	but	only	if	there	is	a	key	smaller	than	or	equal	to	the	key	in	the	right	subtree;
if	not	(or	if	the	key	is	equal	to	the	the	key	at	the	root)	then	the	key	at	the	root	is	the	floor	of
the	key.	Finding	the	ceiling	is	similar,	with	interchanging	right	and	left.	For	example,	if	the
sorted	with	input	array	is	{1,	2,	8,	10,	10,	12,	19},	then

For	x	=	0:	floor	doesn’t	exist	in	array,	ceil	=	1,	For	x	=	1:	floor	=	1,	ceil	=	1
For	x	=	5:	floor	=2,	ceil	=	8,	For	x	=	20:	floor	=	19,	ceil	doesn’t	exist	in	array

Solution:	The	 idea	behind	 this	 solution	 is	 that,	 inorder	 traversal	of	BST	produces	 sorted	 lists.
While	 traversing	 the	BST	in	 inorder,	keep	 track	of	 the	values	being	visited.	 If	 the	 roots	data	 is
greater	 than	 the	 given	 value	 then	 return	 the	 previous	 value	 which	 we	 have	 maintained	 during
traversal.	If	the	roots	data	is	equal	to	the	given	data	then	return	root	data.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.

For	ceiling,	we	just	need	to	call	the	right	subtree	first,	followed	by	left	subtree.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.

Problem-62  Give	an	algorithm	for	finding	the	union	and	intersection	of	BSTs.	Assume	parent
pointers	are	available	(say	threaded	binary	trees).	Also,	assume	the	lengths	of	two	BSTs
are	m	and	n	respectively.

Solution:	If	parent	pointers	are	available	then	the	problem	is	same	as	merging	of	two	sorted	lists.
This	is	because	if	we	call	inorder	successor	each	time	we	get	the	next	highest	element.	It’s	just	a
matter	of	which	InorderSuccessor	to	call.

Time	Complexity:	O(m	+	n).	Space	complexity:	O(1).

Problem-63  For	Problem-62,	what	if	parent	pointers	are	not	available?

Solution:	If	parent	pointers	are	not	available,	the	BSTs	can	be	converted	to	linked	lists	and	then
merged.

1 Convert	both	the	BSTs	into	sorted	doubly	linked	lists	in	O(n	+	m)	time.	This	produces
2	sorted	lists.

2 Merge	 the	 two	 double	 linked	 lists	 into	 one	 and	 also	 maintain	 the	 count	 of	 total
elements	in	O(n	+	m)	time.

3 Convert	the	sorted	doubly	linked	list	into	height	balanced	tree	in	O(n	+	m)	time.

Problem-64  For	Problem-62,	is	there	any	alternative	way	of	solving	the	problem?



Solution:	Yes,	by	using	inorder	traversal.

• Perform	inorder	traversal	on	one	of	the	BSTs.
• While	performing	the	traversal	store	them	in	table	(hash	table).
• After	 completion	 of	 the	 traversal	 of	 first	BST,	 start	 traversal	 of	 second	BST	 and

compare	them	with	hash	table	contents.

Time	Complexity:	O(m	+	n).	Space	Complexity:	O(Max(m,n)).

Problem-65  Given	a	BST	and	two	numbers	K1	and	K2,	give	an	algorithm	for	printing	all	the
elements	of	BST	in	the	range	K1	and	K2.

Solution:

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	stack	space.

Problem-66  For	Problem-65,	is	there	any	alternative	way	of	solving	the	problem?

Solution:	We	 can	 use	 level	 order	 traversal:	while	 adding	 the	 elements	 to	 queue	 check	 for	 the
range.



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	queue.

Problem-67  For	Problem-65,	can	we	still	think	of	an	alternative	way	to	solve	the	problem?

Solution:	First	locate	K1	with	normal	binary	search	and	after	that	use	InOrder	successor	until	we
encounter	K2.	For	algorithm,	refer	to	problems	section	of	threaded	binary	trees.

Problem-68  Given	root	of	a	Binary	Search	tree,	trim	the	tree,	so	that	all	elements	returned	in
the	new	tree	are	between	the	inputs	A	and	B.

Solution:	It’s	just	another	way	of	asking	Problem-65.

Problem-69  Given	two	BSTs,	check	whether	the	elements	of	them	are	the	same	or	not.	For
example:	two	BSTs	with	data	10	5	20	15	30	and	10	20	15	30	5	should	return	true	and	the
dataset	with	10	5	20	15	30	and	10	15	30	20	5	should	return	false.	Note:	BSTs	data	can	be
in	any	order.

Solution:	One	simple	way	is	performing	an	inorder	traversal	on	first	tree	and	storing	its	data	in
hash	 table.	As	 a	 second	 step,	perform	 inorder	 traversal	 on	 second	 tree	 and	check	whether	 that
data	is	already	there	in	hash	table	or	not	(if	 it	exists	in	hash	table	then	mark	it	with	-1	or	some
unique	value).



During	the	traversal	of	second	tree	if	we	find	any	mismatch	return	false.	After	traversal	of	second
tree	 check	whether	 it	 has	 all	 -1s	 in	 the	 hash	 table	 or	 not	 (this	 ensures	 extra	 data	 available	 in
second	tree).

Time	Complexity:	O(max(m,	n)),	where	m	and	n	are	the	number	of	elements	in	first	and	second
BST.	Space	Complexity:	O(max(m,n)).	This	depends	on	the	size	of	the	first	tree.

Problem-70  For	Problem-69,	can	we	reduce	the	time	complexity?

Solution:	 Instead	 of	 performing	 the	 traversals	 one	 after	 the	 other,	 we	 can	 perform	 in	 –	 order
traversal	of	both	the	trees	in	parallel.	Since	the	in	–	order	traversal	gives	the	sorted	list,	we	can
check	whether	both	the	trees	are	generating	the	same	sequence	or	not.

Time	Complexity:	O(max(m,n)).	Space	Complexity:	O(1).	This	depends	on	 the	 size	of	 the	 first
tree.

Problem-71  For	the	key	values	1...	n,	how	many	structurally	unique	BSTs	are	possible	that
store	those	keys.

Solution:	Strategy:	consider	that	each	value	could	be	the	root.	Recursively	find	the	size	of	the	left
and	right	subtrees.

Problem-72  Given	a	BST	of	size	n,	in	which	each	node	r	has	an	additional	field	r	→	size,



the	number	of	the	keys	in	the	sub-tree	rooted	at	r	(including	the	root	node	r).	Give	an	O(h)
algorithm	GreaterthanConstant(r,k)	to	find	the	number	of	keys	that	are	strictly	greater	than
k	(h	is	the	height	of	the	binary	search	tree).

Solution:

The	suggested	algorithm	works	well	if	the	key	is	a	unique	value	for	each	node.	Otherwise	when
reaching	k=r→data,	we	should	start	a	process	of	moving	to	the	right	until	reaching	a	node	y	with
a	key	 that	 is	bigger	 then	k,	 and	 then	we	should	 return	keysCount	+	 y→size.	Time	Complexity:
O(h)	where	h=O(n)	in	the	worst	case	and	O(logn)	in	the	average	case.

6.12	Balanced	Binary	Search	Trees

In	earlier	sections	we	have	seen	different	trees	whose	worst	case	complexity	is	O(n),	where	n	is
the	number	of	nodes	in	the	tree.	This	happens	when	the	trees	are	skew	trees.	In	this	section	we
will	try	to	reduce	this	worst	case	complexity	to	O(logn)	by	imposing	restrictions	on	the	heights.

In	 general,	 the	 height	 balanced	 trees	 are	 represented	 with	 HB(k),	 where	 k	 is	 the	 difference
between	left	subtree	height	and	right	subtree	height.	Sometimes	k	is	called	balance	factor.

Full	Balanced	Binary	Search	Trees



In	HB(k),	 if	 k	 =	 0	 (if	 balance	 factor	 is	 zero),	 then	 we	 call	 such	 binary	 search	 trees	 as	 full
balanced	binary	search	trees.	That	means,	in	HB(0)	binary	search	tree,	the	difference	between	left
subtree	height	and	right	subtree	height	should	be	at	most	zero.	This	ensures	that	the	tree	is	a	full
binary	tree.	For	example,

Note:	For	constructing	HB(0)	tree	refer	to	Problems	section.

6.13	AVL	(Adelson-Velskii	and	Landis)	Trees

In	HB(k),	if	k	=	1	(if	balance	factor	is	one),	such	a	binary	search	tree	is	called	an	AVL	tree.	That
means	an	AVL	tree	is	a	binary	search	tree	with	a	balance	condition:	the	difference	between	left
subtree	height	and	right	subtree	height	is	at	most	1.

Properties	of	AVL	Trees

A	binary	tree	is	said	to	be	an	AVL	tree,	if:

• It	is	a	binary	search	tree,	and
• For	any	node	X,	the	height	of	left	subtree	of	X	and	height	of	right	subtree	of	X	differ

by	at	most	1.



As	an	example,	among	the	above	binary	search	trees,	the	left	one	is	not	an	AVL	tree,	whereas	the
right	binary	search	tree	is	an	AVL	tree.

Minimum/Maximum	Number	of	Nodes	in	AVL	Tree

For	simplicity	let	us	assume	that	the	height	of	an	AVL	tree	is	h	and	N(K)	indicates	the	number	of
nodes	in	AVL	tree	with	height	h.	To	get	the	minimum	number	of	nodes	with	height	h,	we	should
fill	 the	 tree	with	 the	minimum	number	of	nodes	possible.	That	means	 if	we	 fill	 the	 left	 subtree
with	height	h	–	1	then	we	should	fill	the	right	subtree	with	height	h	–	2.	As	a	result,	the	minimum
number	of	nodes	with	height	h	is:

N(h)	=	N(h	–	1)	+	N(h	–	2)	+	1

In	the	above	equation:

• N(h	–	1)	indicates	the	minimum	number	of	nodes	with	height	h	–	1.
• N(h	–	2)	indicates	the	minimum	number	of	nodes	with	height	h	–	2.
• In	the	above	expression,	“1”	indicates	the	current	node.

We	can	give	N(h	–	1)	either	for	left	subtree	or	right	subtree.	Solving	the	above	recurrence	gives:

N(h)	=	O(1.618h)	⇒	h	=	1.44logn	≈	O(logn)

Where	n	 is	 the	number	of	nodes	in	AVL	tree.	Also,	 the	above	derivation	says	that	 the	maximum
height	in	AVL	trees	is	O(logn).	Similarly,	to	get	maximum	number	of	nodes,	we	need	to	fill	both
left	and	right	subtrees	with	height	h	–	1.	As	a	result,	we	get:



N(h)	=	N(h	–	1)	+	N(h	–	1)	+	1	=	2N(h	–	1)	+	1

The	above	expression	defines	the	case	of	full	binary	tree.	Solving	the	recurrence	we	get:

N(h)	=	O(2h)	⇒	h	=	logn	≈	O(logn)

∴	In	both	the	cases,	AVL	tree	property	is	ensuring	that	the	height	of	an	AVL	tree	with	n	nodes	is
O(logn).

AVL	Tree	Declaration

Since	AVL	tree	is	a	BST,	the	declaration	of	AVL	is	similar	to	that	of	BST.	But	just	to	simplify	the
operations,	we	also	include	the	height	as	part	of	the	declaration.

Finding	the	Height	of	an	AVL	tree



Time	Complexity:	O(1).

Rotations

When	the	tree	structure	changes	(e.g.,	with	insertion	or	deletion),	we	need	to	modify	the	tree	to
restore	the	AVL	tree	property.	This	can	be	done	using	single	rotations	or	double	rotations.	Since
an	insertion/deletion	involves	adding/deleting	a	single	node,	this	can	only	increase/decrease	the
height	of	a	subtree	by	1.

So,	 if	 the	 AVL	 tree	 property	 is	 violated	 at	 a	 node	X,	 it	 means	 that	 the	 heights	 of	 left(X)	 and
right(X)	differ	by	exactly	2.	This	is	because,	if	we	balance	the	AVL	tree	every	time,	then	at	any
point,	 the	 difference	 in	 heights	 of	 left(X)	 and	 right(X)	 differ	 by	 exactly	 2.	 Rotations	 is	 the
technique	used	for	restoring	the	AVL	tree	property.	This	means,	we	need	to	apply	the	rotations	for
the	node	X.

Observation:	One	important	observation	is	that,	after	an	insertion,	only	nodes	that	are	on	the	path
from	the	 insertion	point	 to	 the	root	might	have	 their	balances	altered,	because	only	 those	nodes
have	their	subtrees	altered.	To	restore	the	AVL	tree	property,	we	start	at	 the	insertion	point	and
keep	going	to	the	root	of	the	tree.

While	 moving	 to	 the	 root,	 we	 need	 to	 consider	 the	 first	 node	 that	 is	 not	 satisfying	 the	 AVL
property.	From	that	node	onwards,	every	node	on	the	path	to	the	root	will	have	the	issue.

Also,	 if	 we	 fix	 the	 issue	 for	 that	 first	 node,	 then	 all	 other	 nodes	 on	 the	 path	 to	 the	 root	 will
automatically	satisfy	the	AVL	tree	property.	That	means	we	always	need	to	care	for	the	first	node
that	is	not	satisfying	the	AVL	property	on	the	path	from	the	insertion	point	to	the	root	and	fix	it.

Types	of	Violations

Let	us	assume	the	node	that	must	be	rebalanced	is	X.	Since	any	node	has	at	most	two	children,	and
a	 height	 imbalance	 requires	 that	X’s	 two	 subtree	 heights	 differ	 by	 two,	we	 can	 observe	 that	 a
violation	might	occur	in	four	cases:

1. An	insertion	into	the	left	subtree	of	the	left	child	of	X.
2. An	insertion	into	the	right	subtree	of	the	left	child	of	X.



3. An	insertion	into	the	left	subtree	of	the	right	child	of	X.
4. An	insertion	into	the	right	subtree	of	the	right	child	of	X.

Cases	1	and	4	are	symmetric	and	easily	solved	with	single	rotations.	Similarly,	cases	2	and	3	are
also	symmetric	and	can	be	solved	with	double	rotations	(needs	two	single	rotations).

Single	Rotations

Left	Left	Rotation	(LL	Rotation)	[Case-1]:	In	the	case	below,	node	X	is	not	satisfying	the	AVL
tree	property.	As	discussed	earlier,	the	rotation	does	not	have	to	be	done	at	the	root	of	a	tree.	In
general,	we	start	at	the	node	inserted	and	travel	up	the	tree,	updating	the	balance	information	at
every	node	on	the	path.



For	example,	in	the	figure	above,	after	the	insertion	of	7	in	the	original	AVL	tree	on	the	left,	node
9	becomes	unbalanced.	So,	we	do	a	single	left-left	rotation	at	9.	As	a	result	we	get	the	tree	on	the
right.



Time	Complexity:	O(1).	Space	Complexity:	O(1).

Right	Right	Rotation	 (RR	Rotation)	 [Case-4]:	 In	 this	case,	node	X	 is	not	 satisfying	 the	AVL
tree	property.

For	example,	in	the	figure,	after	the	insertion	of	29	in	the	original	AVL	tree	on	the	left,	node	15
becomes	unbalanced.	So,	we	do	a	single	right-right	rotation	at	15.	As	a	result	we	get	the	tree	on
the	right.



Time	Complexity:	O(1).	Space	Complexity:	O(1).

Double	Rotations

Left	Right	Rotation	(LR	Rotation)	[Case-2]:	For	case-2	and	case-3	single	rotation	does	not	fix
the	problem.	We	need	to	perform	two	rotations.



As	 an	 example,	 let	 us	 consider	 the	 following	 tree:	 The	 insertion	 of	 7	 is	 creating	 the	 case-2
scenario	and	the	right	side	tree	is	the	one	after	the	double	rotation.



Code	for	left-right	double	rotation	can	be	given	as:

Right	 Left	 Rotation	 (RL	 Rotation)	 [Case-3]:	 Similar	 to	 case-2,	 we	 need	 to	 perform	 two
rotations	to	fix	this	scenario.



As	 an	 example,	 let	 us	 consider	 the	 following	 tree:	 The	 insertion	 of	 6	 is	 creating	 the	 case-3
scenario	and	the	right	side	tree	is	the	one	after	the	double	rotation.



Insertion	into	an	AVL	tree

Insertion	into	an	AVL	tree	is	similar	to	a	BST	insertion.	After	inserting	the	element,	we	just	need
to	 check	whether	 there	 is	 any	 height	 imbalance.	 If	 there	 is	 an	 imbalance,	 call	 the	 appropriate
rotation	functions.



Time	Complexity:	O(logn).	Space	Complexity:	O(logn).

AVL	Trees:	Problems	&	Solutions



Problem-73  Given	a	height	h,	give	an	algorithm	for	generating	the	HB(0).

Solution:	As	we	have	discussed,	HB(0)	 is	nothing	but	generating	full	binary	tree.	In	full	binary
tree	the	number	of	nodes	with	height	h	is:	2h+1	–	1	(let	us	assume	that	the	height	of	a	tree	with	one
node	is	0).	As	a	result	the	nodes	can	be	numbered	as:	1	to	2h+1	–	1.

Time	Complexity:	O(n).
Space	 Complexity:	 O(logn),	 where	 logn	 indicates	 the	 maximum	 stack	 size	 which	 is	 equal	 to
height	of	tree.

Problem-74  Is	there	any	alternative	way	of	solving	Problem-73?

Solution:	Yes,	we	can	solve	it	following	Mergesort	 logic.	That	means,	 instead	of	working	with
height,	 we	 can	 take	 the	 range.	 With	 this	 approach	 we	 do	 not	 need	 any	 global	 counter	 to	 be
maintained.

The	 initial	call	 to	 the	BuildHBO	 function	could	be:	BuildHB0(1,	1	≪	h).	1	≪	h	 does	 the	 shift
operation	for	calculating	the	2h+1	–	1.



Time	Complexity:	O(n).	Space	Complexity:	O(login).	Where	logn	indicates	maximum	stack	size
which	is	equal	to	the	height	of	the	tree.

Problem-75  Construct	minimal	AVL	trees	of	height	0,1,2,3,4,	and	5.	What	 is	 the	number	of
nodes	in	a	minimal	AVL	tree	of	height	6?

Solution	Let	N(h)	be	the	number	of	nodes	in	a	minimal	AVL	tree	with	height	h.

Problem-76  For	Problem-73,	how	many	different	shapes	can	there	be	of	a	minimal	AVL	tree



of	height	h?

Solution:	Let	NS(h)	be	the	number	of	different	shapes	of	a	minimal	AVL	tree	of	height	h.

Problem-77  Given	a	binary	search	tree,	check	whether	it	is	an	AVL	tree	or	not?

Solution:	Let	us	assume	that	IsAVL	is	the	function	which	checks	whether	the	given	binary	search
tree	is	an	AVL	tree	or	not.	IsAVL	returns	–1	if	the	tree	is	not	an	AVL	tree.	During	the	checks	each
node	sends	its	height	to	its	parent.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-78  Given	 a	 height	 h,	 give	 an	 algorithm	 to	 generate	 an	 AVL	 tree	 with	 minimum
number	of	nodes.

Solution:	To	get	minimum	number	of	nodes,	fill	one	level	with	h	–	1	and	the	other	with	h	–	2.

Problem-79  Given	an	AVL	tree	with	n	integer	items	and	two	integers	a	and	b,	where	a	and	b
can	be	any	integers	with	a	<=	b.	Implement	an	algorithm	to	count	the	number	of	nodes	in
the	range	[a,b].

Solution:



The	idea	is	to	make	use	of	the	recursive	property	of	binary	search	trees.	There	are	three	cases	to
consider:	whether	the	current	node	is	in	the	range	[a,	b],	on	the	left	side	of	the	range	[a,	b],	or	on
the	right	side	of	the	range	[a,b].	Only	subtrees	that	possibly	contain	the	nodes	will	be	processed
under	each	of	the	three	cases.

The	complexity	 is	similar	 to	 in	–	order	 traversal	of	 the	 tree	but	skipping	 left	or	 right	sub-trees
when	they	do	not	contain	any	answers.	So	in	the	worst	case,	if	the	range	covers	all	the	nodes	in
the	 tree,	we	 need	 to	 traverse	 all	 the	n	 nodes	 to	 get	 the	 answer.	 The	worst	 time	 complexity	 is
therefore	O(n).

If	the	range	is	small,	which	only	covers	a	few	elements	in	a	small	subtree	at	the	bottom	of	the	tree,
the	time	complexity	will	be	O(h)	=	O(logn),	where	h	is	the	height	of	the	tree.	This	is	because	only
a	single	path	is	traversed	to	reach	the	small	subtree	at	the	bottom	and	many	higher	level	subtrees



have	been	pruned	along	the	way.

Note:	Refer	similar	problem	in	BST.

Problem-80  Given	a	BST	(applicable	to	AVL	trees	as	well)	where	each	node	contains	two
data	 elements	 (its	 data	 and	 also	 the	 number	 of	 nodes	 in	 its	 subtrees)	 as	 shown	 below.
Convert	the	tree	to	another	BST	by	replacing	the	second	data	element	(number	of	nodes	in
its	subtrees)	with	previous	node	data	in	inorder	traversal.	Note	that	each	node	is	merged
with	inorder	previous	node	data.	Also	make	sure	that	conversion	happens	in-place.

Solution:	The	simplest	way	is	to	use	level	order	traversal.	If	the	number	of	elements	in	the	left
subtree	is	greater	than	the	number	of	elements	in	the	right	subtree,	find	the	maximum	element	in
the	left	subtree	and	replace	the	current	node	second	data	element	with	it.	Similarly,	if	the	number
of	 elements	 in	 the	 left	 subtree	 is	 less	 than	 the	number	of	 elements	 in	 the	 right	 subtree,	 find	 the
minimum	element	in	the	right	subtree	and	replace	the	current	node	second	data	element	with	it.



Time	Complexity:	O(nlogn)	on	average	since	BST	takes	O(logn)	on	average	to	find	the	maximum
or	minimum	element.	Space	Complexity:	O(n).	Since,	in	the	worst	case,	all	the	nodes	on	the	entire
last	level	could	be	in	the	queue	simultaneously.

Problem-81  Can	we	reduce	time	complexity	for	the	previous	problem?

Solution:	Let	us	 try	using	an	approach	 that	 is	similar	 to	what	we	followed	in	Problem-60.	The
idea	behind	this	solution	is	that	inorder	traversal	of	BST	produces	sorted	lists.	While	traversing
the	BST	in	inorder,	keep	track	of	the	elements	visited	and	merge	them.



Time	Complexity:	O(n).

Space	 Complexity:	 O(1).	 Note	 that,	 we	 are	 still	 having	 recursive	 stack	 space	 for	 inorder
traversal.

Problem-82  Given	a	BST	and	a	key,	find	the	element	in	the	BST	which	is	closest	to	the	given
key.

Solution:	As	a	simple	solution,	we	can	use	level-order	traversal	and	for	every	element	compute
the	difference	between	 the	given	key	and	 the	element’s	value.	 If	 that	difference	 is	 less	 than	 the
previous	maintained	 difference,	 then	 update	 the	 difference	with	 this	 new	minimum	value.	With
this	approach,	at	the	end	of	the	traversal	we	will	get	the	element	which	is	closest	to	the	given	key.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-83  For	Problem-82,	can	we	solve	it	using	the	recursive	approach?

Solution:	The	approach	is	similar	to	Problem-18.	Following	is	a	simple	algorithm	for	finding	the
closest	Value	in	BST.

1. If	the	root	is	NULL,	then	the	closest	value	is	zero	(or	NULL).
2. If	the	root’s	data	matches	the	given	key,	then	the	closest	is	the	root.
3. Else,	consider	the	root	as	the	closest	and	do	the	following:

a. If	 the	key	is	smaller	 than	the	root	data,	 find	the	closest	on	the	 left	side
tree	of	the	root	recursively	and	call	it	temp.

b. If	 the	key	 is	 larger	 than	 the	root	data,	 find	 the	closest	on	 the	right	side
tree	of	the	root	recursively	and	call	it	temp.

4. Return	the	root	or	temp	depending	on	whichever	is	nearer	to	the	given	key.



Time	Complexity:	O(n)	in	worst	case,	and	in	average	case	it	is	O(logn).
Space	Complexity:	O(n)	in	worst	case,	and	in	average	case	it	is	O(logn).

Problem-84  Median	in	an	infinite	series	of	integers

Solution:	Median	 is	 the	middle	number	 in	a	 sorted	 list	of	numbers	 (if	we	have	odd	number	of
elements).	If	we	have	even	number	of	elements,	median	is	the	average	of	two	middle	numbers	in	a
sorted	list	of	numbers.

For	 solving	 this	 problem	we	 can	 use	 a	 binary	 search	 tree	with	 additional	 information	 at	 each
node,	and	the	number	of	children	on	the	left	and	right	subtrees.	We	also	keep	the	number	of	total
nodes	in	the	tree.	Using	this	additional	information	we	can	find	the	median	in	O(logn)	time,	taking
the	 appropriate	 branch	 in	 the	 tree	 based	 on	 the	 number	 of	 children	 on	 the	 left	 and	 right	 of	 the
current	 node.	 But,	 the	 insertion	 complexity	 is	 O(n)	 because	 a	 standard	 binary	 search	 tree	 can
degenerate	into	a	linked	list	if	we	happen	to	receive	the	numbers	in	sorted	order.

So,	let’s	use	a	balanced	binary	search	tree	to	avoid	worst	case	behavior	of	standard	binary	search
trees.	For	 this	problem,	 the	balance	 factor	 is	 the	number	of	nodes	 in	 the	 left	 subtree	minus	 the
number	of	nodes	 in	 the	 right	 subtree.	And	only	 the	nodes	with	 a	balance	 factor	of+	1	or	0	 are
considered	to	be	balanced.



So,	the	number	of	nodes	on	the	left	subtree	is	either	equal	to	or	1	more	than	the	number	of	nodes
on	the	right	subtree,	but	not	less.

If	we	ensure	this	balance	factor	on	every	node	in	the	tree,	then	the	root	of	the	tree	is	the	median,	if
the	number	of	elements	is	odd.	In	the	number	of	elements	is	even,	the	median	is	the	average	of	the
root	and	its	inorder	successor,	which	is	the	leftmost	descendent	of	its	right	subtree.

So,	the	complexity	of	insertion	maintaining	a	balanced	condition	is	O(logn)	and	finding	a	median
operation	is	O(1)	assuming	we	calculate	the	inorder	successor	of	the	root	at	every	insertion	if	the
number	of	nodes	is	even.

Insertion	and	balancing	is	very	similar	to	AVL	trees.	Instead	of	updating	the	heights,	we	update	the
number	of	nodes	information.	Balanced	binary	search	trees	seem	to	be	the	most	optimal	solution,
insertion	is	O(logn)	and	find	median	is	O(1).

Note:	For	an	efficient	algorithm	refer	to	the	Priority	Queues	and	Heaps	chapter.

Problem-85  Given	a	binary	tree,	how	do	you	remove	all	the	half	nodes	(which	have	only	one
child)?	Note	that	we	should	not	touch	leaves.

Solution:	By	using	post-order	 traversal	we	can	solve	 this	problem	efficiently.	We	first	process
the	 left	 children,	 then	 the	 right	 children,	 and	 finally	 the	 node	 itself.	 So	we	 form	 the	 new	 tree
bottom	up,	 starting	 from	 the	 leaves	 towards	 the	 root.	By	 the	 time	we	process	 the	current	node,
both	its	left	and	right	subtrees	have	already	been	processed.

Time	Complexity:	O(n).

Problem-86  Given	a	binary	tree,	how	do	you	remove	its	leaves?



Solution:	By	using	post-order	traversal	we	can	solve	this	problem	(other	traversals	would	also
work).

Time	Complexity:	O(n).

Problem-87  Given	a	BST	and	two	integers	(minimum	and	maximum	integers)	as	parameters,
how	do	you	remove	(prune)	elements	that	are	not	within	that	range?



Solution:	Observation:	 Since	 we	 need	 to	 check	 each	 and	 every	 element	 in	 the	 tree,	 and	 the
subtree	changes	should	be	reflected	in	the	parent,	we	can	think	about	using	post	order	traversal.
So	we	process	the	nodes	starting	from	the	leaves	towards	the	root.	As	a	result,	while	processing
the	node	itself,	both	its	left	and	right	subtrees	are	valid	pruned	BSTs.	At	each	node	we	will	return



a	pointer	based	on	its	value,	which	will	then	be	assigned	to	its	parent’s	left	or	right	child	pointer,
depending	on	whether	the	current	node	is	the	left	or	right	child	of	the	parent.	If	the	current	node’s
value	is	between	A	and	B	(A	<=	node’s	data	<=	B)	then	no	action	needs	to	be	taken,	so	we	return
the	reference	to	the	node	itself.

If	 the	 current	 node’s	 value	 is	 less	 than	A,	 then	we	 return	 the	 reference	 to	 its	 right	 subtree	 and
discard	 the	 left	 subtree.	 Because	 if	 a	 node’s	 value	 is	 less	 than	 A,	 then	 its	 left	 children	 are
definitely	less	than	A	since	this	is	a	binary	search	tree.	But	its	right	children	may	or	may	not	be
less	than	A;	we	can’t	be	sure,	so	we	return	the	reference	to	it.	Since	we’re	performing	bottom-up
post-order	 traversal,	 its	 right	 subtree	 is	 already	 a	 trimmed	 valid	 binary	 search	 tree	 (possibly
NULL),	and	its	left	subtree	is	definitely	NULL	because	those	nodes	were	surely	less	than	A	and
they	were	eliminated	during	the	post-order	traversal.

A	similar	situation	occurs	when	the	node’s	value	is	greater	than	B,	so	we	now	return	the	reference
to	its	left	subtree.	Because	if	a	node’s	value	is	greater	than	B,	then	its	right	children	are	definitely
greater	 than	B.	But	 its	 left	 children	may	or	may	not	be	greater	 than	B;	So	we	discard	 the	 right
subtree	and	return	the	reference	to	the	already	valid	left	subtree.

Time	Complexity:	O(n)	in	worst	case	and	in	average	case	it	is	O(logn).

Note:	If	the	given	BST	is	an	AVL	tree	then	O(n)	is	the	average	time	complexity.

Problem-88  Given	 a	 binary	 tree,	 how	 do	 you	 connect	 all	 the	 adjacent	 nodes	 at	 the	 same
level?	Assume	that	given	binary	tree	has	next	pointer	along	with	left	and	right	pointers	as
shown	below.



Solution:	 One	 simple	 approach	 is	 to	 use	 level-order	 traversal	 and	 keep	 updating	 the	 next
pointers.	While	traversing,	we	will	link	the	nodes	on	the	next	level.	If	the	node	has	left	and	right
node,	we	will	link	left	to	right.	If	node	has	next	node,	then	link	rightmost	child	of	current	node	to
leftmost	child	of	next	node.





Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-89  Can	we	improve	space	complexity	for	Problem-88?

Solution:	We	can	process	 the	 tree	 level	by	 level,	 but	without	 a	queue.	The	 logical	 part	 is	 that
when	we	process	the	nodes	of	the	next	level,	we	make	sure	that	the	current	level	has	already	been
linked.

Time	Complexity:	O(n).	Space	Complexity:	O(depth	of	tree)	for	stack	space.



Problem-90  Assume	that	a	set	S	of	n	numbers	are	 stored	 in	 some	 form	of	balanced	binary
search	 tree;	 i.e.	 the	 depth	 of	 the	 tree	 is	 O(logn).	 In	 addition	 to	 the	 key	 value	 and	 the
pointers	 to	children,	assume	that	every	node	contains	 the	number	of	nodes	 in	 its	subtree.
Specify	 a	 reason(s)	why	 a	 balanced	 binary	 tree	 can	 be	 a	 better	 option	 than	 a	 complete
binary	tree	for	storing	the	set	S.

Solution:	Implementation	of	a	balanced	binary	tree	requires	less	RAM	space	as	we	do	not	need
to	keep	the	complete	tree	in	RAM	(since	they	use	pointers).

Problem-91  For	the	Problem-90,	specify	a	reason	(s)	why	a	complete	binary	tree	can	be	a
better	option	than	a	balanced	binary	tree	for	storing	the	set	S.

Solution:	A	complete	binary	 tree	 is	more	 space	efficient	as	we	do	not	need	any	extra	 flags.	A
balanced	binary	tree	usually	takes	more	space	since	we	need	to	store	some	flags.	For	example,	in
a	Red-Black	tree	we	need	to	store	a	bit	for	the	color.	Also,	a	complete	binary	tree	can	be	stored
in	a	RAM	as	an	array	without	using	pointers.

Problem-92  Given	a	binary	tree,	find	the	maximum	path	sum.	The	path	may	start	and	end	at
any	node	in	the	tree.

Solution:



Problem-93  Let	T	be	a	proper	binary	tree	with	root	r.	Consider	the	following	algorithm.

What	does	the	algorithm	do?
A.	It	always	returns	the	value	1.
B.	It	computes	the	number	of	nodes	in	the	tree.



C.	It	computes	the	depth	of	the	nodes.
D.	It	computes	the	height	of	the	tree.
E.	It	computes	the	number	of	leaves	in	the	tree.

Solution:	E.

6.14	Other	Variations	on	Trees

In	this	section,	let	us	enumerate	the	other	possible	representations	of	trees.	In	the	earlier	sections,
we	have	looked	at	AVL	trees,	which	is	a	binary	search	tree	(BST)	with	balancing	property.	Now,
let	us	look	at	a	few	more	balanced	binary	search	trees:	Red-black	Trees	and	Splay	Trees.

6.14.1	Red-Black	Trees

In	Red-black	trees	each	node	is	associated	with	an	extra	attribute:	the	color,	which	is	either	red
or	black.	To	get	logarithmic	complexity	we	impose	the	following	restrictions.

Definition:	A	Red-black	tree	is	a	binary	search	tree	that	satisfies	the	following	properties:

• Root	Property:	the	root	is	black
• External	Property:	every	leaf	is	black
• Internal	Property:	the	children	of	a	red	node	are	black
• Depth	Property:	all	the	leaves	have	the	same	black

Similar	 to	AVL	 trees,	 if	 the	Red-black	 tree	 becomes	 imbalanced,	 then	we	perform	 rotations	 to
reinforce	the	balancing	property.	With	Red-black	trees,	we	can	perform	the	following	operations
in	O(logn)	in	worst	case,	where	n	is	the	number	of	nodes	in	the	trees.

• Insertion,	Deletion
• Finding	predecessor,	successor
• Finding	minimum,	maximum

6.14.2	Splay	Trees

Splay-trees	are	BSTs	with	a	self-adjusting	property.	Another	 interesting	property	of	splay-trees
is:	 starting	with	 an	 empty	 tree,	 any	 sequence	 of	K	 operations	with	maximum	 of	n	 nodes	 takes
O(Klogn)	time	complexity	in	worst	case.	Splay	trees	are	easier	to	program	and	also	ensure	faster
access	to	recently	accessed	items.	Similar	to	AVL	and	Red-Black	trees,	at	any	point	that	the	splay
tree	becomes	imbalanced,	we	can	perform	rotations	to	reinforce	the	balancing	property.

Splay-trees	 cannot	 guarantee	 the	 O(logn)	 complexity	 in	 worst	 case.	 But	 it	 gives	 amortized
O(logn)	 complexity.	 Even	 though	 individual	 operations	 can	 be	 expensive,	 any	 sequence	 of
operations	 gets	 the	 complexity	 of	 logarithmic	 behavior.	 One	 operation	may	 take	more	 time	 (a



single	 operation	 may	 take	 O(n)	 time)	 but	 the	 subsequent	 operations	 may	 not	 take	 worst	 case
complexity	and	on	the	average	per	operation	complexity	is	O{logn).

6.14.3	B-Trees

B-Tree	is	like	other	self-balancing	trees	such	as	AVL	and	Red-black	tree	such	that	it	maintains	its
balance	of	nodes	while	opertions	are	performed	against	it.	B-Tree	has	the	following	properties:

• Minimum	degree	“£”	where,	except	root	node,	all	other	nodes	must	have	no	less	than
t	–	1	keys

• Each	node	with	n	keys	has	n	+	1	children
• Keys	in	each	node	are	lined	up	where	k1	<	k2	<	..	kn
• Each	node	cannot	have	more	than	2t-l	keys,	thus	2t	children
• Root	node	at	least	must	contain	one	key.	There	is	no	root	node	if	the	tree	is	empty.
• Tree	grows	in	depth	only	when	root	node	is	split.

Unlike	a	binary-tree,	each	node	of	a	b-tree	may	have	a	variable	number	of	keys	and	children.	The
keys	 are	 stored	 in	non-decreasing	order.	Each	key	has	 an	 associated	 child	 that	 is	 the	 root	of	 a
subtree	containing	all	nodes	with	keys	less	than	or	equal	to	the	key	but	greater	than	the	preceeding
key.	A	node	also	has	an	additional	rightmost	child	that	is	the	root	for	a	subtree	containing	all	keys
greater	than	any	keys	in	the	node.

A	b-tree	has	a	minumum	number	of	allowable	children	for	each	node	known	as	the	minimization
factor.	If	t	 is	this	minimization	 factor,	every	node	must	have	at	 least	 t	–	1	keys.	Under	certain
circumstances,	the	root	node	is	allowed	to	violate	this	property	by	having	fewer	than	t	–	1	keys.
Every	node	may	have	at	most	2t	–	1	keys	or,	equivalently,	2t	children.

Since	each	node	tends	to	have	a	large	branching	factor	(a	large	number	of	children),	it	is	typically
neccessary	to	traverse	relatively	few	nodes	before	locating	the	desired	key.	If	access	to	each	node
requires	 a	disk	 access,	 then	a	B-tree	will	minimize	 the	number	of	disk	 accesses	 required.	The
minimzation	factor	is	usually	chosen	so	that	the	total	size	of	each	node	corresponds	to	a	multiple
of	 the	 block	 size	 of	 the	 underlying	 storage	 device.	 This	 choice	 simplifies	 and	 optimizes	 disk
access.	 Consequently,	 a	 B-tree	 is	 an	 ideal	 data	 structure	 for	 situations	 where	 all	 data	 cannot
reside	in	primary	storage	and	accesses	to	secondary	storage	are	comparatively	expensive	(or	time
consuming).

To	search	the	tree,	it	is	similar	to	binary	tree	except	that	the	key	is	compared	multiple	times	in	a
given	node	because	the	node	contains	more	than	1	key.	If	the	key	is	found	in	the	node,	the	search
terminates.	Otherwise,	it	moves	down	where	at	child	pointed	by	ci	where	key	k	<	ki.

Key	insertions	of	a	B-tree	happens	from	the	bottom	fasion.	This	means	that	it	walk	down	the	tree
from	root	to	the	target	child	node	first.	If	the	child	is	not	full,	the	key	is	simply	inserted.	If	it	is
full,	the	child	node	is	split	in	the	middle,	the	median	key	moves	up	to	the	parent,	then	the	new	key



is	inserted.	When	inserting	and	walking	down	the	tree,	if	the	root	node	is	found	to	be	full,	it’s	split
first	and	we	have	a	new	root	node.	Then	the	normal	insertion	operation	is	performed.

Key	deletion	is	more	complicated	as	it	needs	to	maintain	the	number	of	keys	in	each	node	to	meet
the	constraint.	If	a	key	is	found	in	leaf	node	and	deleting	it	still	keeps	the	number	of	keys	in	the
nodes	not	too	low,	it’s	simply	done	right	away.	If	it’s	done	to	the	inner	node,	the	predecessor	of
the	key	in	the	corresonding	child	node	is	moved	to	replace	the	key	in	the	inner	node.	If	moving	the
predecessor	will	cause	the	child	node	to	violate	the	node	count	constraint,	the	sibling	child	nodes
are	combined	and	the	key	in	the	inner	node	is	deleted.

6.14.4	Augmented	Trees

In	earlier	sections,	we	have	seen	various	problems	like	finding	the	Kth	–	smallest	-	element	in	the
tree	 and	 other	 similar	 ones.	Of	 all	 the	 problems	 the	worst	 complexity	 is	O(n),	 where	 n	 is	 the
number	of	nodes	in	the	tree.	To	perform	such	operations	in	O(logn),	augmented	trees	are	useful.	In
these	trees,	extra	information	is	added	to	each	node	and	that	extra	data	depends	on	the	problem
we	are	trying	to	solve.

For	example,	to	find	the	Kth	element	in	a	binary	search	tree,	let	us	see	how	augmented	trees	solve
the	problem.	Let	us	assume	that	we	are	using	Red-Black	trees	as	balanced	BST	(or	any	balanced
BST)	and	augmenting	the	size	information	in	the	nodes	data.	For	a	given	node	X	in	Red-Black	tree
with	a	field	size(X)	equal	to	the	number	of	nodes	in	the	subtree	and	can	be	calculated	as:

size(X)	=	size(X	→	left)	+	size(X	→	right))	+	1

Kth	-	smallest	-	operation	can	be	defined	as:

Time	Complexity:	O(logn).	Space	Complexity:	O(logn).

Example:	With	the	extra	size	information,	the	augmented	tree	will	look	like:



6.14.5	Interval	Trees	[Segment	Trees]

We	often	face	questions	that	involve	queries	made	in	an	array	based	on	range.	For	example,	for	a
given	array	of	integers,	what	is	 the	maximum	number	in	the	range	α	to	β,	where	α	and	β	are	of
course	 within	 array	 limits.	 To	 iterate	 over	 those	 entries	 with	 intervals	 containing	 a	 particular
value,	 we	 can	 use	 a	 simple	 array.	 But	 if	 we	 need	 more	 efficient	 access,	 we	 need	 a	 more
sophisticated	data	structure.

An	 array-based	 storage	 scheme	 and	 a	 brute-force	 search	 through	 the	 entire	 array	 is	 acceptable
only	if	a	single	search	is	to	be	performed,	or	if	the	number	of	elements	is	small.	For	example,	if
you	know	all	the	array	values	of	interest	in	advance,	you	need	to	make	only	one	pass	through	the
array.	However,	if	you	can	interactively	specify	different	search	operations	at	different	times,	the
brute-force	 search	 becomes	 impractical	 because	 every	 element	 in	 the	 array	must	 be	 examined
during	each	search	operation.

If	 you	 sort	 the	 array	 in	 ascending	 order	 of	 the	 array	 values,	 you	 can	 terminate	 the	 sequential
search	when	you	reach	the	object	whose	low	value	is	greater	than	the	element	we	are	searching.
Unfortunately,	 this	 technique	 becomes	 increasingly	 ineffective	 as	 the	 low	 value	 increases,
because	fewer	search	operations	are	eliminated.	That	means,	what	if	we	have	to	answer	a	large
number	of	queries	like	this?	–	is	brute	force	still	a	good	option?

Another	example	is	when	we	need	to	return	a	sum	in	a	given	range.	We	can	brute	force	this	too,
but	 the	problem	for	a	 large	number	of	queries	still	 remains.	So,	what	can	we	do?	With	a	bit	of
thinking	we	can	come	up	with	an	approach	like	maintaining	a	separate	array	of	n	elements,	where



n	is	the	size	of	the	original	array,	where	each	index	stores	the	sum	of	all	elements	from	0	to	that
index.	So	essentially	we	have	with	a	bit	of	preprocessing	brought	down	 the	query	 time	 from	a
worst	case	O(n)	to	O(1).	Now	this	is	great	as	far	as	static	arrays	are	concerned,	but,	what	if	we
are	required	to	perform	updates	on	the	array	too?

The	first	approach	gives	us	an	O(n)	query	time,	but	an	O(1)	update	time.	The	second	approach,	on
the	other	hand,	gives	us	O(1)	query	time,	but	an	O(n)	update	time.	So,	which	one	do	we	choose?

Interval	trees	are	also	binary	search	trees	and	they	store	interval	information	in	the	node	structure.
That	means,	we	maintain	a	 set	of	n	 intervals	 [i1,	 i2]	 such	 that	 one	of	 the	 intervals	 containing	 a
query	 point	Q	 (if	 any)	 can	 be	 found	 efficiently.	 Interval	 trees	 are	 used	 for	 performing	 range
queries	efficiently.

A	segment	tree	is	a	heap-like	data	structure	that	can	be	used	for	making	update/query	operations
upon	array	intervals	in	logarithmical	time.	We	define	the	segment	tree	for	the	interval	[i,j]	in	the
following	recursive	manner:

• The	root	(first	node	in	the	array)	node	will	hold	the	information	for	the	interval	[i,j]
• If	i	<	y	the	left	and	right	children	will	hold	the	information	for	the	intervals	

and	

Segment	trees	(also	called	segtrees	and	interval	trees)	is	a	cool	data	structure,	primarily	used	for
range	queries.	It	is	a	height	balanced	binary	tree	with	a	static	structure.	The	nodes	of	a	segment
tree	 correspond	 to	 various	 intervals,	 and	 can	 be	 augmented	 with	 appropriate	 information
pertaining	to	those	intervals.	It	is	somewhat	less	powerful	than	a	balanced	binary	tree	because	of
its	 static	 structure,	 but	due	 to	 the	 recursive	nature	of	operations	on	 the	 segtree,	 it	 is	 incredibly
easy	to	think	about	and	code.

We	can	use	segment	trees	to	solve	range	minimum/maximum	query	problems.	The	time	complexity
is	T(nlogn)	where	O(n)	is	the	time	required	to	build	the	tree	and	each	query	takes	O(logn)	time.

Example:	Given	a	set	of	intervals:	S=	{[2-5],	[6-7],	[6-10],	[8-9],	[12-15],	[15-23],	[25-30]}.	A
query	with	Q	=	9	returns	[6,10]	or	[8,9]	(assume	these	are	the	intervals	which	contain	9	among
all	the	intervals).	A	query	with	Q	=	23	returns	[15,	23].



Construction	of	Interval	Trees:	Let	us	assume	that	we	are	given	a	set	S	of	n	 intervals	 (called
segments).	 These	 n	 intervals	 will	 have	 2n	 endpoints.	 Now,	 let	 us	 see	 how	 to	 construct	 the
interval	tree.

Algorithm:

Recursively	build	tree	on	interval	set	5	as	follows:

• Sort	the	2n	endpoints
• Let	Xmid	be	the	median	point

Time	 Complexity	 for	 building	 interval	 trees:	 O(nlogn).	 Since	 we	 are	 choosing	 the	 median,
Interval	Trees	will	be	approximately	balanced.	This	ensures	that,	we	split	the	set	of	end	points	up
in	half	each	time.	The	depth	of	the	tree	is	O(logn).	To	simplify	the	search	process,	generally	Xmid
is	stored	with	each	node.

6.14.6	Scapegoat	Trees

Scapegoat	tree	is	a	self-balancing	binary	search	tree,	discovered	by	Arne	Andersson.	It	provides
worst-case	O(logn)	search	time,	and	O(logn)	amortized	(average)	insertion	and	deletion	time.

AVL	 trees	 rebalance	 whenever	 the	 height	 of	 two	 sibling	 subtrees	 differ	 by	 more	 than	 one;



scapegoat	 trees	 rebalance	whenever	 the	size	of	a	child	exceeds	a	certain	 ratio	of	 its	parents,	a
ratio	 known	 as	 a.	 After	 inserting	 the	 element,	 we	 traverse	 back	 up	 the	 tree.	 If	 we	 find	 an
imbalance	where	a	child’s	size	exceeds	the	parent’s	size	times	alpha,	we	must	rebuild	the	subtree
at	the	parent,	the	scapegoat.

There	might	be	more	than	one	possible	scapegoat,	but	we	only	have	to	pick	one.	The	most	optimal
scapegoat	is	actually	determined	by	height	balance.	When	removing	it,	we	see	if	the	total	size	of
the	tree	is	less	than	alpha	of	the	largest	size	since	the	last	rebuilding	of	the	tree.	If	so,	we	rebuild
the	entire	tree.	The	alpha	for	a	scapegoat	tree	can	be	any	number	between	0.5	and	1.0.	The	value
0.5	 will	 force	 perfect	 balance,	 while	 1.0	 will	 cause	 rebalancing	 to	 never	 occur,	 effectively
turning	it	into	a	BST.



7.1	What	is	a	Priority	Queue?

In	 some	 situations	we	may	 need	 to	 find	 the	minimum/maximum	 element	 among	 a	 collection	 of
elements.	We	can	do	this	with	the	help	of	Priority	Queue	ADT.	A	priority	queue	ADT	is	a	data
structure	 that	 supports	 the	 operations	 Insert	 and	 DeleteMin	 (which	 returns	 and	 removes	 the
minimum	element)	or	DeleteMax	(which	returns	and	removes	the	maximum	element).

These	operations	are	equivalent	to	EnQueue	and	DeQueue	operations	of	a	queue.	The	difference
is	that,	in	priority	queues,	the	order	in	which	the	elements	enter	the	queue	may	not	be	the	same	in
which	they	were	processed.	An	example	application	of	a	priority	queue	is	job	scheduling,	which
is	prioritized	instead	of	serving	in	first	come	first	serve.



A	priority	queue	is	called	an	ascending	–	priority	queue,	if	the	item	with	the	smallest	key	has	the
highest	priority	 (that	means,	 delete	 the	 smallest	 element	 always).	Similarly,	 a	priority	queue	 is
said	to	be	a	descending	–priority	queue	if	 the	item	with	the	largest	key	has	 the	highest	priority
(delete	 the	 maximum	 element	 always).	 Since	 these	 two	 types	 are	 symmetric	 we	 will	 be
concentrating	on	one	of	them:	ascending-priority	queue.

7.2	Priority	Queue	ADT

The	following	operations	make	priority	queues	an	ADT.

Main	Priority	Queues	Operations

A	priority	queue	is	a	container	of	elements,	each	having	an	associated	key.

• Insert	(key,	data):	Inserts	data	with	key	 to	the	priority	queue.	Elements	are	ordered
based	on	key.

• DeleteMin/DeleteMax:	Remove	and	return	the	element	with	the	smallest/largest	key.
• GetMinimum/GetMaximum:	Return	the	element	with	the	smallest/largest	key	without

deleting	it.

Auxiliary	Priority	Queues	Operations

• kth	 -	 Smallest/kth	 –	 Largest:	 Returns	 the	 kth	 -Smallest/kth	 –Largest	 key	 in	 priority
queue.

• Size:	Returns	number	of	elements	in	priority	queue.
• Heap	Sort:	Sorts	the	elements	in	the	priority	queue	based	on	priority	(key).

7.3	Priority	Queue	Applications

Priority	queues	have	many	applications	-	a	few	of	them	are	listed	below:

• Data	compression:	Huffman	Coding	algorithm
• Shortest	path	algorithms:	Dijkstra’s	algorithm
• Minimum	spanning	tree	algorithms:	Prim’s	algorithm
• Event-driven	simulation:	customers	in	a	line



• Selection	problem:	Finding	kth-	smallest	element

7.4	Priority	Queue	Implementations

Before	discussing	the	actual	implementation,	let	us	enumerate	the	possible	options.

Unordered	Array	Implementation

Elements	are	inserted	into	the	array	without	bothering	about	the	order.	Deletions	(DeleteMax)	are
performed	by	searching	the	key	and	then	deleting.

Insertions	complexity:	O(1).	DeleteMin	complexity:	O(n).

Unordered	List	Implementation

It	is	very	similar	to	array	implementation,	but	instead	of	using	arrays,	linked	lists	are	used.

Insertions	complexity:	O(1).	DeleteMin	complexity:	O(n).

Ordered	Array	Implementation

Elements	are	inserted	into	the	array	in	sorted	order	based	on	key	field.	Deletions	are	performed	at
only	one	end.

Insertions	complexity:	O(n).	DeleteMin	complexity:	O(1).

Ordered	List	Implementation

Elements	are	inserted	into	the	list	in	sorted	order	based	on	key	field.	Deletions	are	performed	at
only	one	end,	hence	preserving	the	status	of	the	priority	queue.	All	other	functionalities	associated
with	a	linked	list	ADT	are	performed	without	modification.

Insertions	complexity:	O(n).	DeleteMin	complexity:	O(1).

Binary	Search	Trees	Implementation

Both	 insertions	 and	deletions	 take	O(logn)	 on	 average	 if	 insertions	 are	 random	 (refer	 to	Trees
chapter).



Balanced	Binary	Search	Trees	Implementation

Both	insertions	and	deletion	take	O(logn)	in	the	worst	case	(refer	to	Trees	chapter).

Binary	Heap	Implementation

In	 subsequent	 sections	 we	 will	 discuss	 this	 in	 full	 detail.	 For	 now,	 assume	 that	 binary	 heap
implementation	 gives	 O(logn)	 complexity	 for	 search,	 insertions	 and	 deletions	 and	 O(1)	 for
finding	the	maximum	or	minimum	element.

Comparing	Implementations

7.5	Heaps	and	Binary	Heaps

What	is	a	Heap?

A	heap	is	a	tree	with	some	special	properties.	The	basic	requirement	of	a	heap	is	that	the	value	of
a	node	must	be	≥	(or	≤)	than	the	values	of	its	children.	This	is	called	heap	property.	A	heap	also
has	the	additional	property	that	all	leaves	should	be	at	h	or	h	–	1	levels	(where	h	is	the	height	of
the	tree)	for	some	h	>	0	(complete	binary	trees).	That	means	heap	should	form	a	complete	binary
tree	(as	shown	below).



In	the	examples	below,	the	left	tree	is	a	heap	(each	element	is	greater	than	its	children)	and	the
right	tree	is	not	a	heap	(since	11	is	greater	than	2).

Types	of	Heaps?

Based	on	the	property	of	a	heap	we	can	classify	heaps	into	two	types:

• Min	 heap:	 The	 value	 of	 a	 node	 must	 be	 less	 than	 or	 equal	 to	 the	 values	 of	 its
children



• Max	heap:	The	value	of	a	node	must	be	greater	 than	or	equal	 to	 the	values	of	 its
children

7.6	Binary	Heaps

In	binary	heap	each	node	may	have	up	to	two	children.	In	practice,	binary	heaps	are	enough	and
we	concentrate	on	binary	min	heaps	and	binary	max	heaps	for	the	remaining	discussion.

Representing	 Heaps:	 Before	 looking	 at	 heap	 operations,	 let	 us	 see	 how	 heaps	 can	 be
represented.	One	possibility	is	using	arrays.	Since	heaps	are	forming	complete	binary	trees,	there
will	not	be	any	wastage	of	 locations.	For	 the	discussion	below	let	us	assume	that	elements	are



stored	in	arrays,	which	starts	at	index	0.	The	previous	max	heap	can	be	represented	as:

Note:	For	the	remaining	discussion	let	us	assume	that	we	are	doing	manipulations	in	max	heap.

Declaration	of	Heap

Creating	Heap



Time	Complexity:	O(1).

Parent	of	a	Node

For	a	node	at	ith	location,	its	parent	is	at	 	location.	In	the	previous	example,	the	element	6	is	at

second	location	and	its	parent	is	at	0th	location.

Time	Complexity:	O(1).

Children	of	a	Node

Similar	to	the	above	discussion,	for	a	node	at	ith	location,	its	children	are	at	2	*	i	+	1	and	2	*	i	+



2	locations.	For	example,	in	the	above	tree	the	element	6	is	at	second	location	and	its	children	2
and	5	are	at	5	(2	*	i	+	1	=	2	*	2	+	1)	and	6(2	*	i	+	2	=	2	*	2)	locations.

Getting	the	Maximum	Element

Since	the	maximum	element	in	max	heap	is	always	at	root,	it	will	be	stored	at	h→array[O].

Time	Complexity:	O(1).

Heapifying	an	Element

After	inserting	an	element	into	heap,	it	may	not	satisfy	the	heap	property.	In	that	case	we	need	to
adjust	the	locations	of	the	heap	to	make	it	heap	again.	This	process	is	called	heapifying.	In	max-
heap,	 to	heapify	an	element,	we	have	 to	 find	 the	maximum	of	 its	children	and	swap	 it	with	 the
current	element	and	continue	this	process	until	the	heap	property	is	satisfied	at	every	node.



Observation:	 One	 important	 property	 of	 heap	 is	 that,	 if	 an	 element	 is	 not	 satisfying	 the	 heap
property,	 then	all	 the	elements	from	that	element	 to	 the	root	will	have	 the	same	problem.	In	 the
example	below,	element	1	is	not	satisfying	the	heap	property	and	its	parent	31	is	also	having	the
issue.	Similarly,	if	we	heapify	an	element,	then	all	the	elements	from	that	element	to	the	root	will
also	satisfy	the	heap	property	automatically.	Let	us	go	through	an	example.	In	the	above	heap,	the
element	1	is	not	satisfying	the	heap	property.	Let	us	try	heapifying	this	element.

To	heapify	1,	find	the	maximum	of	its	children	and	swap	with	that.



We	need	to	continue	this	process	until	the	element	satisfies	the	heap	properties.	Now,	swap	1	with
8.

Now	 the	 tree	 is	 satisfying	 the	 heap	 property.	 In	 the	 above	 heapifying	 process,	 since	 we	 are



moving	 from	 top	 to	 bottom,	 this	 process	 is	 sometimes	 called	percolate	down.	 Similarly,	 if	we
start	 heapifying	 from	 any	 other	 node	 to	 root,	we	 can	 that	 process	percolate	 up	 as	 move	 from
bottom	to	top.

Time	Complexity:	O(logn).	Heap	is	a	complete	binary	tree	and	in	the	worst	case	we	start	at	the
root	 and	come	down	 to	 the	 leaf.	This	 is	 equal	 to	 the	height	of	 the	 complete	binary	 tree.	Space
Complexity:	O(1).

Deleting	an	Element

To	delete	an	element	from	heap,	we	just	need	to	delete	the	element	from	the	root.	This	is	the	only
operation	(maximum	element)	supported	by	standard	heap.	After	deleting	the	root	element,	copy
the	last	element	of	the	heap	(tree)	and	delete	that	last	element.

After	replacing	the	last	element,	the	tree	may	not	satisfy	the	heap	property.	To	make	it	heap	again,
call	the	PercolateDown	function.

• Copy	the	first	element	into	some	variable



• Copy	the	last	element	into	first	element	location
• PercolateDown	the	first	element

Note:	 Deleting	 an	 element	 uses	 PercolateDown,	 and	 inserting	 an	 element	 uses	 PercolateUp.
Time	Complexity:	same	as	Heapify	function	and	it	is	O(logn).

Inserting	an	Element

Insertion	of	an	element	is	similar	to	the	heapify	and	deletion	process.

• Increase	the	heap	size
• Keep	the	new	element	at	the	end	of	the	heap	(tree)
• Heapify	the	element	from	bottom	to	top	(root)

Before	going	through	code,	let	us	look	at	an	example.	We	have	inserted	the	element	19	at	the	end
of	the	heap	and	this	is	not	satisfying	the	heap	property.



In	 order	 to	 heapify	 this	 element	 (19),	 we	 need	 to	 compare	 it	 with	 its	 parent	 and	 adjust	 them.
Swapping	19	and	14	gives:



Again,	swap	19	andl6:

Now	the	tree	is	satisfying	the	heap	property.	Since	we	are	following	the	bottom-up	approach	we
sometimes	call	this	process	percolate	up.



Time	Complexity:	O(logn).	The	explanation	is	the	same	as	that	of	the	Heapify	function.

Destroying	Heap



Heapifying	the	Array

One	simple	approach	 for	building	 the	heap	 is,	 take	n	 input	 items	and	place	 them	 into	an	empty
heap.	This	can	be	done	with	n	successive	inserts	and	takes	O(nlogn)	 in	 the	worst	case.	This	 is
due	to	the	fact	that	each	insert	operation	takes	O(logn).

To	finish	our	discussion	of	binary	heaps,	we	will	look	at	a	method	to	build	an	entire	heap	from	a
list	of	keys.	The	first	method	you	might	think	of	may	be	like	the	following.	Given	a	list	of	keys,
you	could	easily	build	a	heap	by	inserting	each	key	one	at	a	time.	Since	you	are	starting	with	a	list
of	one	item,	the	list	is	sorted	and	you	could	use	binary	search	to	find	the	right	position	to	insert	the
next	key	at	a	cost	of	approximately	O(logn)	operations.

However,	remember	that	inserting	an	item	in	the	middle	of	the	list	may	require	O(n)	operations	to
shift	 the	rest	of	 the	 list	over	 to	make	room	for	 the	new	key.	Therefore,	 to	 insert	n	keys	 into	 the
heap	would	require	a	total	of	O(nlogn)	operations.	However,	if	we	start	with	an	entire	list	then
we	can	build	the	whole	heap	in	O(n)	operations.

Observation:	Leaf	nodes	always	satisfy	the	heap	property	and	do	not	need	to	care	for	them.	The
leaf	 elements	 are	 always	 at	 the	 end	 and	 to	 heapify	 the	 given	 array	 it	 should	 be	 enough	 if	 we
heapify	 the	 non-leaf	 nodes.	Now	 let	 us	 concentrate	 on	 finding	 the	 first	 non-leaf	 node.	The	 last
element	of	the	heap	is	at	location	h	→	count	–	1,	and	to	find	the	first	non-leaf	node	it	is	enough	to
find	the	parent	of	the	last	element.



Time	Complexity:	The	linear	time	bound	of	building	heap	can	be	shown	by	computing	the	sum	of
the	heights	of	all	the	nodes.	For	a	complete	binary	tree	of	height	h	containing	n	=	2h+1-	1	nodes,
the	 sum	of	 the	 heights	 of	 the	 nodes	 is	n	 –	 h	 -	 1	=	n	 –	 logn	 –	 1	 (for	 proof	 refer	 to	Problems
Section).	That	means,	building	the	heap	operation	can	be	done	in	linear	time	(O(n))	by	applying	a
PercolateDown	function	to	the	nodes	in	reverse	level	order.

7.7	Heapsort

One	main	 application	 of	 heap	ADT	 is	 sorting	 (heap	 sort).	 The	 heap	 sort	 algorithm	 inserts	 all
elements	(from	an	unsorted	array)	into	a	heap,	then	removes	them	from	the	root	of	a	heap	until	the
heap	 is	empty.	Note	 that	heap	sort	can	be	done	 in	place	with	 the	array	 to	be	sorted.	 Instead	of
deleting	an	element,	exchange	 the	first	element	(maximum)	with	 the	 last	element	and	reduce	 the
heap	size	(array	size).	Then,	we	heapify	the	first	element.	Continue	this	process	until	the	number
of	remaining	elements	is	one.



Time	 complexity:	As	we	 remove	 the	 elements	 from	 the	 heap,	 the	 values	 become	 sorted	 (since
maximum	 elements	 are	 always	 root	 only).	 Since	 the	 time	 complexity	 of	 both	 the	 insertion
algorithm	and	deletion	algorithm	is	O(logn)	(where	n	is	the	number	of	items	in	the	heap),	the	time
complexity	of	the	heap	sort	algorithm	is	O(nlogn).

7.8	Priority	Queues	[Heaps]:	Problems	&	Solutions

Problem-1  What	are	the	minimum	and	maximum	number	of	elements	in	a	heap	of	height	h?

Solution:	Since	heap	is	a	complete	binary	tree	(all	levels	contain	full	nodes	except	possibly	the
lowest	level),	it	has	at	most	2h+1	–	1	elements	(if	it	is	complete).	This	is	because,	to	get	maximum
nodes,	we	need	to	fill	all	the	h	levels	completely	and	the	maximum	number	of	nodes	is	nothing	but
the	sum	of	all	nodes	at	all	h	levels.

To	 get	minimum	 nodes,	we	 should	 fill	 the	h	 –	 1	 levels	 fully	 and	 the	 last	 level	with	 only	 one
element.	As	a	result,	the	minimum	number	of	nodes	is	nothing	but	the	sum	of	all	nodes	from	h	–	1
levels	plus	1	(for	the	last	level)	and	we	get	2h	–	1	+	1	=	2h	elements	(if	the	lowest	level	has	just	1
element	and	all	the	other	levels	are	complete).

Problem-2  Is	there	a	min-heap	with	seven	distinct	elements	so	that	the	preorder	traversal	of
it	gives	the	elements	in	sorted	orde?

Solution:	Yes.	For	the	tree	below,	preorder	traversal	produces	ascending	order.



Problem-3  Is	there	a	max-heap	with	seven	distinct	elements	so	that	the	preorder	traversal	of
it	gives	the	elements	in	sorted	order?

Solution:	Yes.	For	the	tree	below,	preorder	traversal	produces	descending	order.

Problem-4  Is	 there	 a	 min-heap/max-heap	 with	 seven	 distinct	 elements	 so	 that	 the	 inorder
traversal	of	it	gives	the	elements	in	sorted	order?

Solution:	No.	 Since	 a	 heap	 must	 be	 either	 a	 min-heap	 or	 a	 max-heap,	 the	 root	 will	 hold	 the
smallest	element	or	the	largest.	An	inorder	traversal	will	visit	 the	root	of	the	tree	as	its	second
step,	which	is	not	the	appropriate	place	if	the	tree’s	root	contains	the	smallest	or	largest	element.

Problem-5  Is	there	a	min-heap/max-heap	with	seven	distinct	elements	so	that	 the	postorder
traversal	of	it	gives	the	elements	in	sorted	order?

Solution:



Yes,	if	the	tree	is	a	max-heap	and	we	want	descending	order	(below	left),	or	if	the	tree	is	a	min-
heap	and	we	want	ascending	order	(below	right).

Problem-6  Show	that	the	height	of	a	heap	with	n	elements	is	logn?

Solution:	A	heap	is	a	complete	binary	tree.	All	the	levels,	except	the	lowest,	are	completely	full.
A	heap	has	at	least	2h	elements	and	at	most	elements	2h	≤	n	≤	2h+1	–	1.	This	implies,	h	≤	logn	≤	h
+	1.	Since	h	is	an	integer,	h	=	logn.

Problem-7  Given	a	min-heap,	give	an	algorithm	for	finding	the	maximum	element.

Solution:	For	a	given	min	heap,	the	maximum	element	will	always	be	at	leaf	only.	Now,	the	next
question	is	how	to	find	the	leaf	nodes	in	the	tree.



If	we	carefully	observe,	the	next	node	of	the	last	element’s	parent	is	the	first	leaf	node.	Since	the
last	 element	 is	 always	 at	 the	 h	→	 count	 –	 1th	 location,	 the	 next	 node	 of	 its	 parent	 (parent	 at
location	 	can	be	calculated	as:

Now,	the	only	step	remaining	is	scanning	the	leaf	nodes	and	finding	the	maximum	among	them.

Time	Complexity:	 .

Problem-8  Give	an	algorithm	for	deleting	an	arbitrary	element	from	min	heap.



Solution:	To	delete	an	element,	first	we	need	to	search	for	an	element.	Let	us	assume	that	we	are
using	level	order	 traversal	for	finding	the	element.	After	finding	the	element	we	need	to	follow
the	DeleteMin	process.

Time	Complexity	=	Time	for	finding	the	element	+	Time	for	deleting	an	element
=	 O(n)	 +	 O	 (logn)	 ≈	 O(n).	 //Time	 for	 searching	 is
dominated.

Problem-9  Give	an	algorithm	for	deleting	the	ith	indexed	element	in	a	given	min-heap.

Solution:

Time	Complexity	=	O(logn).

Problem-10  Prove	 that,	 for	 a	 complete	binary	 tree	of	 height	h	 the	 sum	of	 the	 height	 of	 all
nodes	is	O(n	–	h).

Solution:	A	complete	binary	tree	has	2i	nodes	on	level	(.Also,	a	node	on	level	i	has	depth	i	and
height	h	–	i.	Let	us	assume	that	S	denotes	the	sum	of	the	heights	of	all	these	nodes	and	S	can	be
calculated	as:

Multiplying	with	2	on	both	sides	gives:	2S	=	2h	+	4(h	–	1)	+	8(h	–	2)	+	···+	2h	–	1(1)

Now,	subtract	S	from	2S:	2S	–	S	=	–	h	+	2	+	4	+	···	+	2h	⇒	S	=	(2h+1	–	1)	–	(h	–	1)



But,	we	already	know	that	the	total	number	of	nodes	n	in	a	complete	binary	tree	with	height	h	is	n
=	2h+1	–	1.	This	gives	us:	h	=	log(n	+	1).

Finally,	replacing	2h+1	–	1	with	n,	gives:	S	=	n	–	(h	–	1)	=	O(n	–	logn)	=	O(n	-	h).

Problem-11  Give	an	algorithm	to	find	all	elements	less	than	some	value	of	k	in	a	binary	heap.

Solution:	Start	from	the	root	of	 the	heap.	If	 the	value	of	the	root	 is	smaller	 than	k	 then	print	 its
value	and	call	recursively	once	for	its	left	child	and	once	for	its	right	child.	If	the	value	of	a	node
is	greater	or	equal	than	k	then	the	function	stops	without	printing	that	value.

The	complexity	of	this	algorithm	is	O(n),	where	n	is	the	total	number	of	nodes	in	the	heap.	This
bound	takes	place	in	the	worst	case,	where	the	value	of	every	node	in	the	heap	will	be	smaller
than	k,	so	the	function	has	to	call	each	node	of	the	heap.

Problem-12  Give	an	algorithm	for	merging	two	binary	max-heaps.	Let	us	assume	that	the	size
of	the	first	heap	is	m	+	n	and	the	size	of	the	second	heap	is	n.

Solution:	One	simple	way	of	solving	this	problem	is:

• Assume	 that	 the	elements	of	 the	 first	array	 (with	size	m	+	n)	 are	at	 the	beginning.
That	means,	first	m	cells	are	filled	and	remaining	n	cells	are	empty.

• Without	changing	the	first	heap,	just	append	the	second	heap	and	heapify	the	array.
• Since	the	total	number	of	elements	in	the	new	array	is	m	+	n,	each	heapify	operation

takes	O(log(m	+	n)).

The	complexity	of	this	algorithm	is	:	O((m	+	n)log(m	+	n)).

Problem-13  Can	we	improve	the	complexity	of	Problem-12?

Solution:	Instead	of	heapifying	all	the	elements	of	the	m	+	n	array,	we	can	use	the	technique	of
“building	heap	with	an	array	of	elements	 (heapifying	array)”.	We	can	start	with	non-leaf	nodes
and	heapify	them.	The	algorithm	can	be	given	as:

• Assume	 that	 the	elements	of	 the	 first	array	 (with	size	m	+	n)	 are	at	 the	beginning.
That	means,	the	first	m	cells	are	filled	and	the	remaining	n	cells	are	empty.

• Without	changing	the	first	heap,	just	append	the	second	heap.
• Now,	find	the	first	non-leaf	node	and	start	heapifying	from	that	element.

In	 the	 theory	 section,	 we	 have	 already	 seen	 that	 building	 a	 heap	 with	 n	 elements	 takes	 O(n)
complexity.	The	complexity	of	merging	with	this	technique	is:	O(m	+	n).

Problem-14  Is	 there	 an	 efficient	 algorithm	 for	merging	 2	max-heaps	 (stored	 as	 an	 array)?
Assume	both	arrays	have	n	elements.

Solution:	The	alternative	solution	for	 this	problem	depends	on	what	 type	of	heap	 it	 is.	 If	 it’s	a
standard	heap	where	every	node	has	up	to	two	children	and	which	gets	filled	up	so	that	the	leaves
are	on	a	maximum	of	two	different	rows,	we	cannot	get	better	than	O(n)	for	the	merge.



There	is	an	O(logm	×	logn)	algorithm	for	merging	two	binary	heaps	with	sizes	m	and	n.	For	m	=
n,	this	algorithm	takes	O(log2n)	time	complexity.	We	will	be	skipping	it	due	to	its	difficulty	and
scope.

For	 better	merging	 performance,	we	 can	 use	 another	 variant	 of	 binary	 heap	 like	 a	Fibonacci-
Heap	which	can	merge	in	O(1)	on	average	(amortized).

Problem-15  Give	an	algorithm	for	finding	the	kth	smallest	element	in	min-heap.

Solution:	One	simple	solution	to	this	problem	is:	perform	deletion	k	times	from	min-heap.

Time	 Complexity:	 O(klogn).	 Since	 we	 are	 performing	 deletion	 operation	 k	 times	 and	 each
deletion	takes	O(logn).

Problem-16  For	Problem-15,	can	we	improve	the	time	complexity?

Solution:	Assume	that	the	original	min-heap	is	called	HOrig	and	the	auxiliary	min-heap	is	named
HAux.	Initially,	the	element	at	the	top	of	HOrig,	the	minimum	one,	is	inserted	into	HAux.	Here	we
don’t	do	the	operation	of	DeleteMin	with	HOrig.



Every	 while-loop	 iteration	 gives	 the	 kth	 smallest	 element	 and	 we	 need	 k	 loops	 to	 get	 the	 kth
smallest	elements.	Because	the	size	of	the	auxiliary	heap	is	always	less	than	k,	every	while-loop
iteration	 the	 size	 of	 the	 auxiliary	 heap	 increases	 by	 one,	 and	 the	 original	 heap	HOrig	 has	 no
operation	during	the	finding,	the	running	time	is	O(klogk).

Note:	The	above	algorithm	is	useful	if	the	k	value	is	too	small	compared	to	n.	If	the	k	value	 is
approximately	equal	to	n,	then	we	can	simply	sort	the	array	(let’s	say,	using	couting	sort	or	any
other	 linear	sorting	algorithm)	and	return	kth	 smallest	element	 from	the	sorted	array.	This	gives
O(n)	solution.

Problem-17  Find	k	max	elements	from	max	heap.

Solution:	One	simple	solution	to	this	problem	is:	build	max-heap	and	perform	deletion	k	times.

T(n)	=	DeleteMin	from	heap	k	times	=	Θ(klogn).

Problem-18  For	Problem-17,	is	there	any	alternative	solution?

Solution:	We	 can	 use	 the	 Problem-16	 solution.	 At	 the	 end,	 the	 auxiliary	 heap	 contains	 the	 k-
largest	elements.	Without	deleting	the	elements	we	should	keep	on	adding	elements	to	HAux.

Problem-19  How	do	we	implement	stack	using	heap?



Solution:	To	implement	a	stack	using	a	priority	queue	PQ	(using	min	heap),	let	us	assume	that	we
are	using	one	extra	integer	variable	c.	Also,	assume	that	c	is	initialized	equal	to	any	known	value
(e.g.,	 0).	 The	 implementation	 of	 the	 stack	ADT	 is	 given	 below.	Here	 c	 is	 used	 as	 the	 priority
while	inserting/deleting	the	elements	from	PQ.

We	could	also	increment	c	back	when	popping.

Observation:	 We	 could	 use	 the	 negative	 of	 the	 current	 system	 time	 instead	 of	 c	 (to	 avoid
overflow).	The	implementation	based	on	this	can	be	given	as:

Problem-20  How	do	we	implement	Queue	using	heap?

Solution:	To	implement	a	queue	using	a	priority	queue	PQ	(using	min	heap),	as	similar	to	stacks
simulation,	 let	us	assume	that	we	are	using	one	extra	integer	variable,	c.	Also,	assume	 that	c	 is
initialized	 equal	 to	 any	 known	 value	 (e.g.,	 0).	 The	 implementation	 of	 the	 queue	ADT	 is	 given
below.	Here	the	c	is	used	as	the	priority	while	inserting/deleting	the	elements	from	PQ.



Note:	We	could	also	decrement	c	when	popping.

Observation:	We	 could	use	 just	 the	negative	of	 the	 current	 system	 time	 instead	of	c	 (to	 avoid
overflow).	The	implementation	based	on	this	can	be	given	as:

Note:	The	only	change	is	that	we	need	to	take	a	positive	c	value	instead	of	negative.

Problem-21  Given	 a	 big	 file	 containing	 billions	 of	 numbers,	 how	 can	 you	 find	 the	 10
maximum	numbers	from	that	file?

Solution:	Always	remember	that	when	you	need	to	find	max	n	elements,	the	best	data	structure	to
use	is	priority	queues.

One	solution	for	this	problem	is	to	divide	the	data	in	sets	of	1000	elements	(let’s	say	1000)	and
make	a	heap	of	them,	and	then	take	10	elements	from	each	heap	one	by	one.	Finally	heap	sort	all
the	 sets	 of	 10	 elements	 and	 take	 the	 top	 10	 among	 those.	 But	 the	 problem	 in	 this	 approach	 is
where	to	store	10	elements	from	each	heap.	That	may	require	a	 large	amount	of	memory	as	we



have	billions	of	numbers.

Reusing	 the	 top	 10	 elements	 (from	 the	 earlier	 heap)	 in	 subsequent	 elements	 can	 solve	 this
problem.	That	means	take	the	first	block	of	1000	elements	and	subsequent	blocks	of	990	elements
each.	Initially,	Heapsort	the	first	set	of	1000	numbers,	take	max	10	elements,	and	mix	them	with
990	elements	of	the	2nd	set.	Again,	Heapsort	these	1000	numbers	(10	from	the	first	set	and	990
from	the	2nd	set),	take	10	max	elements,	and	mix	them	with	990	elements	of	the	3rd	set.	Repeat	till
the	 last	 set	 of	 990	 (or	 less)	 elements	 and	 take	max	10	 elements	 from	 the	 final	 heap.	These	 10
elements	will	be	your	answer.

Time	Complexity:	O(n)	=	n/1000	×(complexity	of	Heapsort	1000	elements)	Since	complexity	of
heap	sorting	1000	elements	will	be	a	constant	so	the	O(n)	=	n	i.e.	linear	complexity.

Problem-22  Merge	k	sorted	lists	with	total	of	n	elements:	We	are	given	k	sorted	lists	with
total	n	inputs	in	all	the	lists.	Give	an	algorithm	to	merge	them	into	one	single	sorted	list.

Solution:	Since	there	are	k	equal	size	lists	with	a	total	of	n	elements,	the	size	of	each	list	is	 	One
simple	way	of	solving	this	problem	is:

• Take	the	first	list	and	merge	it	with	the	second	list.	Since	the	size	of	each	list	is	 ,
this	step	produces	a	sorted	list	with	size	 .	This	is	similar	to	merge	sort	logic.	The

time	complexity	of	this	step	is:	 .	This	is	because	we	need	to	scan	all	the	elements
of	both	the	lists.

• Then,	merge	the	second	list	output	with	the	third	list.	As	a	result,	this	step	produces	a
sorted	list	with	size	 .	The	time	complexity	of	this	step	is:	 .	This	is	because	we

need	to	scan	all	the	elements	of	both	lists	(one	with	size	 	and	the	other	with	size	
).

• Continue	this	process	until	all	the	lists	are	merged	to	one	list.

Total	 time	 complexity:	

Space	Complexity:	O(1).

Problem-23  For	Problem-22,	can	we	improve	the	time	complexity?

Solution:
1 Divide	the	lists	 into	pairs	and	merge	them.	That	means,	first	 take	two	lists	at	a	 time

and	merge	them	so	that	the	total	elements	parsed	for	all	lists	is	O(n).	This	operation
gives	k/2	lists.

2 Repeat	step-1	until	the	number	of	lists	becomes	one.

Time	complexity:	Step-1	executes	logk	times	and	each	operation	parses	all	n	elements	in	all	the
lists	for	making	k/2	lists.	For	example,	if	we	have	8	lists,	then	the	first	pass	would	make	4	lists	by



parsing	all	n	elements.	The	second	pass	would	make	2	lists	by	again	parsing	n	elements	and	the
third	pass	would	give	1	list	by	again	parsing	n	elements.	As	a	result	the	total	time	complexity	is
O(nlogn).
Space	Complexity:	O(n).

Problem-24  For	Problem-23,	can	we	improve	the	space	complexity?

Solution:	Let	us	use	heaps	for	reducing	the	space	complexity.

1. Build	the	max-heap	with	all	the	first	elements	from	each	list	in	O(k).
2. In	 each	 step,	 extract	 the	maximum	element	 of	 the	 heap	 and	 add	 it	 at	 the	 end	of	 the

output.
3. Add	the	next	element	from	the	list	of	the	one	extracted.	That	means	we	need	to	select

the	 next	 element	 of	 the	 list	 which	 contains	 the	 extracted	 element	 of	 the	 previous
step.

4. Repeat	step-2	and	step-3	until	all	the	elements	are	completed	from	all	the	lists.

Time	Complexity	=	O(nlogk	).	At	a	time	we	have	k	elements	max-heap	and	for	all	n	elements	we
have	to	read	just	the	heap	in	logk	time,	so	total	time	=	O(nlogk).
Space	Complexity:	O(k)	[for	Max-heap].

Problem-25  Given	 2	 arrays	A	 and	B	 each	with	n	 elements.	Give	 an	 algorithm	 for	 finding
largest	n	pairs	(A[i],B[j]).

Solution:

Algorithm:

• Heapify	A	and	B.	This	step	takes	O(2n)	≈	O(n).
• Then	keep	on	deleting	the	elements	from	both	the	heaps.	Each	step	takes	O(2logn)	≈

O(logn).

Total	Time	complexity:	O(nlogn).

Problem-26  Min-Max	 heap:	 Give	 an	 algorithm	 that	 supports	 min	 and	 max	 in	 O(1)	 time,
insert,	 delete	min,	 and	 delete	max	 in	O(logn)	 time.	 That	means,	 design	 a	 data	 structure
which	supports	the	following	operations:

Operation Complexity

Init O(n)

Insert O(logn)

FindMin O(1)

FindMax O(1)

Delete	Min O(logn)



Delete	Max O(logri)

Solution:	This	problem	can	be	solved	using	two	heaps.	Let	us	say	two	heaps	are:	Minimum-Heap
Hmin	 and	 Maximum-Heap	 Hmax.	 Also,	 assume	 that	 elements	 in	 both	 the	 arrays	 have	 mutual
pointers.	That	means,	an	element	in	Hmin	will	have	a	pointer	to	the	same	element	in	Hmax	and	an
element	in	Hmax	will	have	a	pointer	to	the	same	element	in	Hmin.

Init Build	Hmin	in	O(n)	and	Hmax	in	O(n)

Insert(x)
Insert	x	to	Hmin	in	O(logn).	Insert	x	to	Hmax	in	O(logn).	Update	the
pointers	in	O(1)

FindMin() Return	root(Hmin)	in	O(1)

FindMax Return	root(Hmax)	in	O(1)

Delete
Min

Delete	the	minimum	from	Hmin	in	O(logn).	Delete	the	same	element	from
Hmax	by	using	the	mutual	pointer	in	O(logn)

DeleteMax
Delete	the	maximum	from	Hmax	in	O(logn).	Delete	the	same	element	from
Hmin	by	using	the	mutual	pointer	in	O(logn)

Problem-27  Dynamic	median	finding.	Design	a	heap	data	structure	that	supports	finding	the
median.

Solution:	In	a	set	of	n	elements,	median	is	the	middle	element,	such	that	the	number	of	elements
lesser	than	the	median	is	equal	to	the	number	of	elements	larger	than	the	median.	If	n	is	odd,	we
can	find	the	median	by	sorting	the	set	and	taking	the	middle	element.	If	n	 is	even,	the	median	is
usually	defined	as	the	average	of	the	two	middle	elements.	This	algorithm	works	even	when	some
of	the	elements	in	the	list	are	equal.	For	example,	the	median	of	the	multiset	{1,	1,	2,	3,	5}	is	2,
and	the	median	of	the	multiset	{1,	1,	2,	3,	5,	8}	is	2.5.

“Median	heaps”	are	the	variant	of	heaps	that	give	access	to	the	median	element.	A	median	heap
can	 be	 implemented	 using	 two	 heaps,	 each	 containing	 half	 the	 elements.	 One	 is	 a	 max-heap,
containing	the	smallest	elements;	the	other	is	a	min-heap,	containing	the	largest	elements.	The	size
of	the	max-heap	may	be	equal	to	the	size	of	the	min-heap,	if	the	total	number	of	elements	is	even.
In	this	case,	the	median	is	the	average	of	the	maximum	element	of	the	max-heap	and	the	minimum
element	of	 the	min-heap.	 If	 there	 is	 an	odd	number	of	elements,	 the	max-heap	will	 contain	one
more	element	than	the	min-heap.	The	median	in	this	case	is	simply	the	maximum	element	of	the
max-heap.

Problem-28  Maximum	sum	in	sliding	window:	Given	array	A[]	with	sliding	window	of	size
w	which	 is	moving	from	the	very	 left	of	 the	array	 to	 the	very	right.	Assume	that	we	can
only	see	the	w	numbers	in	the	window.	Each	time	the	sliding	window	moves	rightwards	by



one	position.	For	example:	The	array	is	[1	3	-1	-3	5	3	6	7],	and	w	is	3.

Window	position Max

[1	3	-1]	-3	5	3	6	7 3

1	[3	-1	-3]	5	3	6	7 3

1	3	[-1	-3	5]	3	6	7 5

1	3	-1	[-3	5	3]	6	7 5

1	3	-1	-3	[5	3	6]	7 6

1	3	-1	-3	5	[3	6	7] 7

Input:	 A	 long	 array	 A[],	 and	 a	 window	 width	 w.	Output:	 An	 array	 B[],	 B[i]	 is	 the
maximum	value	of	from	A[i]	to	A[i+w-1]
Requirement:	Find	a	good	optimal	way	to	get	B[i]

Solution:	Brute	force	solution	is,	every	time	the	window	is	moved	we	can	search	for	a	total	of	w
elements	in	the	window.

Time	complexity:	O(nw).

Problem-29  For	Problem-28,	can	we	reduce	the	complexity?

Solution:	Yes,	we	 can	 use	 heap	 data	 structure.	This	 reduces	 the	 time	 complexity	 to	O(nlogw).
Insert	 operation	 takes	 O(logw)	 time,	 where	 w	 is	 the	 size	 of	 the	 heap.	 However,	 getting	 the
maximum	value	is	cheap;	it	merely	takes	constant	time	as	the	maximum	value	is	always	kept	in	the
root	(head)	of	the	heap.	As	the	window	slides	to	the	right,	some	elements	in	the	heap	might	not	be
valid	anymore	(range	is	outside	of	the	current	window).	How	should	we	remove	them?	We	would
need	to	be	somewhat	careful	here.	Since	we	only	remove	elements	that	are	out	of	the	window’s
range,	we	would	need	to	keep	track	of	the	elements’	indices	too.

Problem-30  For	Problem-28,	can	we	further	reduce	the	complexity?

Solution:	Yes,	The	double-ended	queue	is	the	perfect	data	structure	for	this	problem.	It	supports
insertion/deletion	from	the	front	and	back.	The	trick	is	to	find	a	way	such	that	the	largest	element
in	 the	 window	would	 always	 appear	 in	 the	 front	 of	 the	 queue.	 How	would	 you	maintain	 this
requirement	as	you	push	and	pop	elements	in	and	out	of	the	queue?

Besides,	you	will	notice	 that	 there	are	some	redundant	elements	 in	 the	queue	 that	we	shouldn’t
even	consider.	For	example,	if	the	current	queue	has	the	elements:	[10	5	3],	and	a	new	element	in
the	 window	 has	 the	 element	 11.	 Now,	 we	 could	 have	 emptied	 the	 queue	 without	 considering
elements	10,	5,	and	3,	and	insert	only	element	11	into	the	queue.



Typically,	most	people	try	to	maintain	the	queue	size	the	same	as	the	window’s	size.	Try	to	break
away	from	this	 thought	and	 think	out	of	 the	box.	Removing	redundant	elements	and	storing	only
elements	that	need	to	be	considered	in	the	queue	is	the	key	to	achieving	the	efficient	O(n)	solution
below.	 This	 is	 because	 each	 element	 in	 the	 list	 is	 being	 inserted	 and	 removed	 at	 most	 once.
Therefore,	the	total	number	of	insert	+	delete	operations	is	2n.

Problem-31  A	priority	queue	 is	a	 list	of	 items	 in	which	each	 item	has	associated	with	 it	a
priority.	Items	are	withdrawn	from	a	priority	queue	in	order	of	their	priorities	starting	with
the	 highest	 priority	 item	 first.	 If	 the	 maximum	 priority	 item	 is	 required,	 then	 a	 heap	 is
constructed	such	than	priority	of	every	node	is	greater	than	the	priority	of	its	children.

Design	such	a	heap	where	the	item	with	the	middle	priority	is	withdrawn	first.	If	there	are
n	 items	 in	 the	 heap,	 then	 the	 number	 of	 items	with	 the	 priority	 smaller	 than	 the	middle
priority	is	 	if	n	is	odd,	else	 	∓	1.

Explain	how	withdraw	and	insert	operations	work,	calculate	their	complexity,	and	how	the
data	structure	is	constructed.

Solution:	We	can	use	one	min	heap	and	one	max	heap	such	that	root	of	the	min	heap	is	larger	than



the	root	of	the	max	heap.	The	size	of	the	min	heap	should	be	equal	or	one	less	than	the	size	of	the
max	heap.	So	the	middle	element	is	always	the	root	of	the	max	heap.

For	the	insert	operation,	if	the	new	item	is	less	than	the	root	of	max	heap,	then	insert	it	 into	the
max	heap;	else	 insert	 it	 into	 the	min	heap.	After	 the	withdraw	or	 insert	operation,	 if	 the	size	of
heaps	are	not	as	specified	above	 than	 transfer	 the	root	element	of	 the	max	heap	 to	min	heap	or
vice-versa.

With	this	implementation,	insert	and	withdraw	operation	will	be	in	O(logn)	time.

Problem-32  Given	two	heaps,	how	do	you	merge	(union)	them?

Solution:	Binary	heap	supports	various	operations	quickly:	Find-min,	insert,	decrease-key.	If	we
have	two	min-heaps,	H1	and	H2,	there	is	no	efficient	way	to	combine	them	into	a	single	min-heap.

For	 solving	 this	 problem	 efficiently,	 we	 can	 use	 mergeable	 heaps.	 Mergeable	 heaps	 support
efficient	union	operation.	It	is	a	data	structure	that	supports	the	following	operations:

• Create-Heap():	creates	an	empty	heap
• Insert(H,X,K)	:	insert	an	item	x	with	key	K	into	a	heap	H
• Find-Min(H)	:	return	item	with	min	key
• Delete-Min(H)	:	return	and	remove
• Union(H1,	H2)	:	merge	heaps	H1	and	H2

Examples	of	mergeable	heaps	are:

• Binomial	Heaps
• Fibonacci	Heaps

Both	heaps	also	support:

• Decrease-Key(H,X,K):	assign	item	Y	with	a	smaller	key	K
• Delete(H,X)	:	remove	item	X

Binomial	Heaps:	Unlike	binary	heap	which	consists	of	a	single	tree,	a	binomial	heap	consists	of
a	small	set	of	component	trees	and	no	need	to	rebuild	everything	when	union	is	performed.	Each
component	tree	is	in	a	special	format,	called	a	binomial	tree.

A	binomial	tree	of	order	k,	denoted	by	Bk	is	defined	recursively	as	follows:

• B0	is	a	tree	with	a	single	node
• For	k	≥	1,	Bk	is	formed	by	joining	two	Bk–1,	such	that	the	root	of	one	tree	becomes

the	leftmost	child	of	the	root	of	the	other.

Example:



Fibonacci	Heaps:	Fibonacci	heap	is	another	example	of	mergeable	heap.	It	has	no	good	worst-
case	 guarantee	 for	 any	 operation	 (except	 Insert/Create-Heap).	 Fibonacci	Heaps	 have	 excellent
amortized	cost	to	perform	each	operation.	Like	binomial	heap,	fibonacci	heap	consists	of	a	set	of
min-heap	ordered	component	trees.	However,	unlike	binomial	heap,	it	has

• No	limit	on	number	of	trees	(up	to	O(n)),	and
• No	limit	on	height	of	a	tree	(up	to	O(n))

Also,	Find-Min,	Delete-Min,	Union,	Decrease-Key,	Delete	 all	 have	 worst-case	 O(n)	 running
time.	However,	in	the	amortized	sense,	each	operation	performs	very	quickly.

Problem-33  Median	in	an	infinite	series	of	integers

Solution:	Median	 is	 the	middle	number	 in	a	 sorted	 list	of	numbers	 (if	we	have	odd	number	of
elements).	If	we	have	even	number	of	elements,	median	is	the	average	of	two	middle	numbers	in	a
sorted	list	of	numbers.



We	can	solve	this	problem	efficiently	by	using	2	heaps:	One	MaxHeap	and	one	MinHeap.

1. MaxHeap	contains	the	smallest	half	of	the	received	integers
2. MinHeap	contains	the	largest	half	of	the	received	integers

The	 integers	 in	MaxHeap	 are	 always	 less	 than	 or	 equal	 to	 the	 integers	 in	MinHeap.	Also,	 the
number	of	elements	in	MaxHeap	is	either	equal	to	or	1	more	than	the	number	of	elements	in	the
MinHeap.

In	 the	 stream	 if	we	 get	 2n	 elements	 (at	 any	 point	 of	 time),	MaxHeap	 and	MinHeap	will	 both
contain	equal	number	of	elements	(in	this	case,	n	elements	in	each	heap).	Otherwise,	if	we	have
received	2n	+	1	elements,	MaxHeap	will	contain	n	+	1	and	MinHeap	n.

Let	us	find	the	Median:	If	we	have	2n	+	1	elements	(odd),	the	Median	of	received	elements	will
be	the	largest	element	in	the	MaxHeap	(nothing	but	the	root	of	MaxHeap).	Otherwise,	the	Median
of	received	elements	will	be	the	average	of	largest	element	in	the	MaxHeap	(nothing	but	the	root
of	MaxHeap)	and	smallest	element	in	the	MinHeap	(nothing	but	the	root	of	MinHeap).	This	can	be
calculated	in	O(1).

Inserting	 an	 element	 into	 heap	 can	 be	 done	 in	 O(logn).	 Note	 that,	 any	 heap	 containing	 n	 +	 1
elements	might	need	one	delete	operation	(and	insertion	to	other	heap)	as	well.

Example:
Insert	1:	Insert	to	MaxHeap.
MaxHeap:	{1},	MinHeap:{}

Insert	9:	Insert	to	MinHeap.	Since	9	is	greater	than	1	and	MinHeap	maintains	the	maximum
elements.
MaxHeap:	{1},	MinHeap:{9}

Insert	2:	Insert	MinHeap.	Since	2	is	less	than	all	elements	of	MinHeap.
MaxHeap:	{1,2},	MinHeap:{9}

Insert	 0:	 Since	MaxHeap	 already	 has	more	 than	 half;	we	 have	 to	 drop	 the	max	 element
from	 MaxHeap	 and	 insert	 it	 to	 MinHeap.	 So,	 we	 have	 to	 remove	 2	 and	 insert	 into
MinHeap.	With	that	it	becomes:
MaxHeap:	{1},	MinHeap:{2,9}
Now,	insert	0	to	MaxHeap.

Total	Time	Complexity:	O(logn).

Problem-34  Suppose	the	elements	7,	2,	10	and	4	are	inserted,	in	that	order,	into	the	valid	3-
ary	max	heap	found	in	the	above	question,	Which	one	of	the	following	is	the	sequence	of
items	in	the	array	representing	the	resultant	heap?
(A) 10,	7,	9,	8,	3,	1,	5,	2,	6,	4
(B) 10,	9,	8,	7,	6,	5,	4,	3,	2,	1



(C) 10,	9,	4,	5,	7,	6,	8,	2,	1,	3
(D) 10,	8,	6,	9,	7,	2,	3,	4,	1,	5

Solution:	The	3-ary	max	heap	with	elements	9,	5,	6,	8,	3,	1	is:

After	Insertion	of	7:

After	Insertion	of	2:



After	Insertion	of	10:

After	Insertion	of	4:



Problem-35  A	 complete	 binary	 min-heap	 is	 made	 by	 including	 each	 integer	 in	 [1,1023]
exactly	once.	The	depth	of	a	node	in	the	heap	is	the	length	of	the	path	from	the	root	of	the
heap	to	that	node.	Thus,	the	root	is	at	depth	0.	The	maximum	depth	at	which	integer	9	can
appear	is.

Solution:	As	shown	in	the	figure	below,	for	a	given	number	i,	we	can	fix	the	element	i	at	ith	level
and	 arrange	 the	 numbers	 1	 to	 i	 –	 1	 to	 the	 levels	 above.	 Since	 the	 root	 is	 at	 depth	 zero,	 the
maximum	depth	of	 the	 ith	 element	 in	 a	min-heap	 is	 i	 –	 1.	Hence,	 the	maximum	depth	 at	which
integer	9	can	appear	is	8.



Problem-36  A	 d-ary	 heap	 is	 like	 a	 binary	 heap,	 but	 instead	 of	 2	 children,	 nodes	 have	 d
children.	How	would	you	represent	a	d-ary	heap	with	n	elements	in	an	array?	What	are	the
expressions	for	determining	the	parent	of	a	given	element,	Parent(i),	and	a	 jth	child	of	a
given	element,	Child(i,j),	where	1	≤	j	≤	d?

Solution:	The	following	expressions	determine	the	parent	and	jth	child	of	element	i	(where	1	≤	j
≤	d):



8.1	Introduction

In	 this	 chapter,	we	will	 represent	 an	 important	mathematics	 concept:	 sets.	 This	means	 how	 to
represent	a	group	of	elements	which	do	not	need	any	order.	The	disjoint	sets	ADT	is	the	one	used
for	this	purpose.	It	is	used	for	solving	the	equivalence	problem.	It	is	very	simple	to	implement.	A
simple	array	can	be	used	for	the	implementation	and	each	function	takes	only	a	few	lines	of	code.
Disjoint	 sets	ADT	 acts	 as	 an	 auxiliary	 data	 structure	 for	many	 other	 algorithms	 (for	 example,
Kruskal’s	algorithm	in	graph	theory).	Before	starting	our	discussion	on	disjoint	sets	ADT,	let	us
look	at	some	basic	properties	of	sets.

8.2	Equivalence	Relations	and	Equivalence	Classes

For	the	discussion	below	let	us	assume	that	5	is	a	set	containing	the	elements	and	a	relation	R	is
defined	on	it.	That	means	for	every	pair	of	elements	in	a,b	∈	5,	a	R	b	is	either	true	or	false.	If	a	R



b	is	true,	then	we	say	a	is	related	to	b,	otherwise	a	is	not	related	to	b.	A	relation	R	 is	called	an
equivalence	relation	if	it	satisfies	the	following	properties:

• Reflexive:	For	every	element	a	∈	S.aR	a	is	true.
• Symmetric:	For	any	two	elements	a,	b	∈	S,	if	a	R	b	is	true	then	b	R	a	is	true.
• Transitive:	For	any	three	elements	a,	b,	c	∈	S,	if	a	R	b	and	b	R	c	are	true	then	a	R	c

is	true.

As	an	 example,	 relations	≤	 (less	 than	or	 equal	 to)	 and	≥	 (greater	 than	or	 equal	 to)	on	 a	 set	 of
integers	are	not	equivalence	relations.	They	are	reflexive	(since	a	≤	a)	and	transitive	(a	≤	b	and	b
≤	c	implies	a	≤	c)	but	not	symmetric	(a	≤	b	does	not	imply	b	≤	a).

Similarly,	 rail	 connectivity	 is	 an	 equivalence	 relation.	 This	 relation	 is	 reflexive	 because	 any
location	is	connected	to	itself.	If	 there	is	connectivity	from	city	a	 to	city	b,	 then	city	b	also	has
connectivity	to	city	a,	so	the	relation	is	symmetric.	Finally,	if	city	a	is	connected	to	city	b	and	city
b	is	connected	to	city	c,	then	city	a	is	also	connected	to	city	c.

The	equivalence	class	of	an	element	a	∈	S	is	a	subset	of	S	that	contains	all	the	elements	that	are
related	to	a.	Equivalence	classes	create	a	partition	of	S.	Every	member	of	S	appears	in	exactly
one	equivalence	class.	To	decide	if	a	R	b,	we	just	need	to	check	whether	a	and	b	are	in	the	same
equivalence	class	(group)	or	not.

In	the	above	example,	two	cities	will	be	in	same	equivalence	class	if	they	have	rail	connectivity.
If	they	do	not	have	connectivity	then	they	will	be	part	of	different	equivalence	classes.

Since	 the	 intersection	of	any	 two	equivalence	classes	 is	empty	(ϕ),	 the	equivalence	classes	are
sometimes	called	disjoint	sets.	In	the	subsequent	sections,	we	will	try	to	see	the	operations	that
can	be	performed	on	equivalence	classes.	The	possible	operations	are:

• Creating	an	equivalence	class	(making	a	set)
• Finding	the	equivalence	class	name	(Find)
• Combining	the	equivalence	classes	(Union)

8.3	Disjoint	Sets	ADT

To	manipulate	 the	 set	 elements	 we	 need	 basic	 operations	 defined	 on	 sets.	 In	 this	 chapter,	 we
concentrate	on	the	following	set	operations:

• MAKESET(X):	Creates	a	new	set	containing	a	single	element	X.
• UNION(X,	Y):	Creates	a	new	set	containing	the	elements	X	and	Y	in	their	union	and

deletes	the	sets	containing	the	elements	X	and	Y.
• FIND(X):	Returns	the	name	of	the	set	containing	the	element	X.



8.4	Applications

Disjoint	sets	ADT	have	many	applications	and	a	few	of	them	are:

• To	represent	network	connectivity
• Image	processing
• To	find	least	common	ancestor
• To	define	equivalence	of	finite	state	automata
• Kruskal’s	minimum	spanning	tree	algorithm	(graph	theory)
• In	game	algorithms

8.5	Tradeoffs	in	Implementing	Disjoint	Sets	ADT

Let	 us	 see	 the	 possibilities	 for	 implementing	 disjoint	 set	 operations.	 Initially,	 assume	 the	 input
elements	 are	 a	 collection	 of	 n	 sets,	 each	 with	 one	 element.	 That	 means,	 initial	 representation
assumes	all	 relations	(except	reflexive	relations)	are	false.	Each	set	has	a	different	element,	so
that	Si	∩	Sj=	ф.	This	makes	the	sets	disjoint.

To	add	the	relation	a	R	b	(UNION),	we	first	need	to	check	whether	a	and	b	are	already	related	or
not.	This	can	be	verified	by	performing	FINDs	on	both	a	and	b	and	checking	whether	they	are	in
the	same	equivalence	class	(set)	or	not.

If	 they	 are	 not,	 then	 we	 apply	 UNION.	 This	 operation	 merges	 the	 two	 equivalence	 classes
containing	a	and	b	into	a	new	equivalence	class	by	creating	a	new	set	Sk	=	Si	∪	Sj	and	deletes	Si
and	Sj.	Basically	there	are	two	ways	to	implement	the	above	FIND/UNION	operations:

• Fast	FIND	implementation	(also	called	Quick	FIND)
• Fast	UNION	operation	implementation	(also	called	Quick	UNION)

8.6	Fast	FIND	Implementation	(Quick	FIND)

In	this	method,	we	use	an	array.	As	an	example,	in	the	representation	below	the	array	contains	the
set	 name	 for	 each	 element.	 For	 simplicity,	 let	 us	 assume	 that	 all	 the	 elements	 are	 numbered
sequentially	from	0	to	n	–	1.

In	the	example	below,	element	0	has	the	set	name	3,	element	1	has	the	set	name	5,	and	so	on.	With
this	 representation	 FIND	 takes	 only	 O(1)	 since	 for	 any	 element	 we	 can	 find	 the	 set	 name	 by
accessing	its	array	location	in	constant	time.



In	this	representation,	to	perform	UNION(a,	b)	[assuming	that	a	 is	 in	set	 i	and	b	 is	 in	set	 j]	we
need	to	scan	the	complete	array	and	change	all	i’s	to	j.	This	takes	O(n).

A	sequence	of	n	–	1	unions	take	O(n2)	time	in	the	worst	case.	If	there	are	O(n2)	FIND	operations,
this	 performance	 is	 fine,	 as	 the	 average	 time	 complexity	 is	 O(1)	 for	 each	 UNION	 or	 FIND
operation.	If	there	are	fewer	FINDs,	this	complexity	is	not	acceptable.

8.7	Fast	UNION	Implementation	(Quick	UNION)

In	 this	 and	 subsequent	 sections,	 we	 will	 discuss	 the	 faster	 UNION	 implementations	 and	 its
variants.	There	are	different	ways	of	implementing	this	approach	and	the	following	is	a	list	of	a
few	of	them.

• Fast	UNION	implementations	(Slow	FIND)
• Fast	UNION	implementations	(Quick	FIND)
• Fast	UNION	implementations	with	path	compression

8.8	Fast	UNION	Implementation	(Slow	FIND)

As	we	have	discussed,	FIND	operation	returns	the	same	answer	(set	name)	if	and	only	if	they	are
in	the	same	set.	In	representing	disjoint	sets,	our	main	objective	is	to	give	a	different	set	name	for
each	group.	In	general	we	do	not	care	about	the	name	of	the	set.	One	possibility	for	implementing
the	set	is	tree	as	each	element	has	only	one	root	and	we	can	use	it	as	the	set	name.

How	are	these	represented?	One	possibility	is	using	an	array:	for	each	element	keep	the	root	as
its	set	name.	But	with	this	representation,	we	will	have	the	same	problem	as	that	of	FIND	array
implementation.	To	solve	this	problem,	instead	of	storing	the	root	we	can	keep	the	parent	of	the
element.	Therefore,	using	an	array	which	stores	the	parent	of	each	element	solves	our	problem.

To	differentiate	 the	 root	node,	 let	us	assume	 its	parent	 is	 the	same	as	 that	of	 the	element	 in	 the
array.	Based	on	this	representation,	MAKESET,	FIND,	UNION	operations	can	be	defined	as:

• (X):	 Creates	 a	 new	 set	 containing	 a	 single	 element	X	 and	 in	 the	 array	 update	 the
parent	of	X	as	X.	That	means	root	(set	name)	of	X	is	X.



• UNION(X,	Y):	Replaces	 the	 two	sets	containing	X	and	Y	 by	 their	union	and	 in	 the
array	updates	the	parent	of	X	as	Y.

• FIND(X):	 Returns	 the	 name	 of	 the	 set	 containing	 the	 element	 X.	 We	 keep	 on
searching	for	X’s	set	name	until	we	come	to	the	root	of	the	tree.



For	the	elements	0	to	n	–	1	the	initial	representation	is:

To	perform	a	UNION	on	two	sets,	we	merge	the	two	trees	by	making	the	root	of	one	tree	point	to
the	root	of	the	other.

Initial	Configuration	for	the	elements	0	to	6



After	UNION(5,6)

After	UNION(	1,2)



After	UNION(0,2)

One	important	thing	to	observe	here	is,	UNION	operation	is	changing	the	root’s	parent	only,	but
not	for	all	the	elements	in	the	sets.	Due	to	this,	the	time	complexity	of	UNION	operation	is	O(1).

A	FIND(X)	on	element	X	is	performed	by	returning	the	root	of	the	tree	containing	X.	The	time	to
perform	this	operation	is	proportional	to	the	depth	of	the	node	representing	X.

Using	 this	method,	 it	 is	possible	 to	 create	 a	 tree	of	depth	n	-	 1	 (Skew	Trees).	The	worst-case
running	time	of	a	FIND	is	O(n)	and	m	consecutive	FIND	operations	take	O(mn)	time	in	the	worst
case.



MAKESET

FIND

UNION

8.9	Fast	UNION	Implementations	(Quick	FIND)

The	main	problem	with	the	previous	approach	is	that,	in	the	worst	case	we	are	getting	the	skew
trees	and	as	a	result	the	FIND	operation	is	taking	O(n)	time	complexity.	There	are	two	ways	to
improve	it:

• UNION	by	Size	(also	called	UNION	by	Weight):	Make	the	smaller	tree	a	subtree	of
the	larger	tree

• UNION	by	Height	(also	called	UNION	by	Rank):	Make	the	 tree	with	 less	height	a
subtree	of	the	tree	with	more	height



UNION	by	Size

In	the	earlier	representation,	for	each	element	i	we	have	stored	i	(in	the	parent	array)	for	the	root
element	 and	 for	 other	 elements	we	 have	 stored	 the	 parent	 of	 i.	 But	 in	 this	 approach	we	 store
negative	of	the	size	of	the	tree	(that	means,	if	the	size	of	the	tree	is	3	then	store	–3	in	the	parent
array	for	the	root	element).	For	the	previous	example	(after	UNION(0,2)),	the	new	representation
will	look	like:

Assume	that	the	size	of	one	element	set	is	1	and	store	–	1.	Other	than	this	there	is	no	change.

MAKESET

FIND



UNION	by	Size

Note:	There	is	no	change	in	FIND	operation	implementation.

UNION	by	Height	(UNION	by	Rank)



As	 in	UNION	by	size,	 in	 this	method	we	store	negative	of	height	of	 the	 tree	 (that	means,	 if	 the
height	of	the	tree	is	3	then	we	store	–3	in	the	parent	array	for	the	root	element).	We	assume	the
height	of	a	tree	with	one	element	set	is	1.	For	the	previous	example	(after	UNION(0,2)),	the	new
representation	will	look	like:

UNION	by	Height



Note:	For	FIND	operation	there	is	no	change	in	the	implementation.

Comparing	UNION	by	Size	and	UNION	by	Height

With	UNION	by	size,	the	depth	of	any	node	is	never	more	than	 logn.	This	 is	because	a	node	is
initially	at	depth	0.	When	its	depth	increases	as	a	result	of	a	UNION,	it	is	placed	in	a	tree	that	is
at	least	twice	as	large	as	before.	That	means	its	depth	can	be	increased	at	most	logn	times.	This
means	 that	 the	 running	 time	 for	 a	FIND	operation	 is	O(logn),	 and	 a	 sequence	 of	m	 operations
takes	O(m	logn).

Similarly	with	UNION	by	height,	if	we	take	the	UNION	of	two	trees	of	the	same	height,	the	height
of	the	UNION	is	one	larger	than	the	common	height,	and	otherwise	equal	 to	the	max	of	the	two
heights.	This	will	keep	the	height	of	tree	of	n	nodes	from	growing	past	O(logn).	A	sequence	of	m
UNIONs	and	FINDs	can	then	still	cost	O(m	logn).

Path	Compression

FIND	 operation	 traverses	 a	 list	 of	 nodes	 on	 the	 way	 to	 the	 root.	 We	 can	 make	 later	 FIND
operations	efficient	by	making	each	of	 these	vertices	point	directly	 to	 the	 root.	This	process	 is
called	path	compression.	For	example,	in	the	FIND(X)	operation,	we	travel	from	X	to	the	root	of
the	tree.	The	effect	of	path	compression	is	that	every	node	on	the	path	from	X	to	the	root	has	its
parent	changed	to	the	root.



With	path	 compression	 the	 only	 change	 to	 the	FIND	 function	 is	 that	S[X]	 is	made	 equal	 to	 the
value	returned	by	FIND.	That	means,	after	the	root	of	the	set	is	found	recursively,	X	 is	made	to
point	directly	to	it.	This	happen	recursively	to	every	node	on	the	path	to	the	root.

FIND	with	path	compression

Note:	 Path	 compression	 is	 compatible	with	UNION	by	 size	 but	 not	with	UNION	by	 height	 as



there	is	no	efficient	way	to	change	the	height	of	the	tree.

8.10	Summary

Performing	m	union-find	operations	on	a	set	of	n	objects.

Algorithm Worst-case	time

Quick-Find mn

Quick-Union mn

Quick-Union	by	Size/Height n	+	m	logn

Path	compression n	+	m	logn

Quick-Union	by	Size/Height	+	Path	Compression (m	+	n)	logn

8.11	Disjoint	Sets:	Problems	&	Solutions

Problem-1  Consider	a	list	of	cities	c1;	c2,...,cn.	Assume	that	we	have	a	relation	R	such	that,
for	any	 i,j,	R(ci,cj)	 is	1	 if	cities	ci	and	cj	 are	 in	 the	 same	state,	 and	0	otherwise.	 If	R	 is
stored	as	a	table,	how	much	space	does	it	require?

Solution:	R	must	have	an	entry	for	every	pair	of	cities.	There	are	Θ(n2)	of	these.

Problem-2  For	Problem-1,	using	a	Disjoint	sets	ADT,	give	an	algorithm	that	puts	each	city	in
a	set	such	that	ci	and	cj	are	in	the	same	set	if	and	only	if	they	are	in	the	same	state.

Solution:



Problem-3  For	Problem-1,	when	 the	 cities	 are	 stored	 in	 the	Disjoint	 sets	ADT,	 if	we	 are
given	two	cities	ci	and	cj,	how	do	we	check	if	they	are	in	the	same	state?

Solution:	Cities	ci	and	cj	are	in	the	same	state	if	and	only	if	FIND(ci)	=	FIND(cj).

Problem-4  For	 Problem-1,	 if	 we	 use	 linked-lists	 with	 UNION	 by	 size	 to	 implement	 the
union-find	ADT,	how	much	space	do	we	use	to	store	the	cities?

Solution:	There	is	one	node	per	city,	so	the	space	is	Θ(n).

Problem-5  For	 Problem-1,	 if	 we	 use	 trees	 with	 UNION	 by	 rank,	 what	 is	 the	 worst-case
running	time	of	the	algorithm	from	Problem-2?

Solution:	Whenever	we	do	a	UNION	in	the	algorithm	from	Problem-2,	the	second	argument	is	a
tree	of	size	1.	Therefore,	all	trees	have	height	1,	so	each	union	takes	time	O(1).	The	worst-case
running	time	is	then	Θ(n2).

Problem-6  If	we	use	trees	without	union-by-rank,	what	is	the	worst-case	running	time	of	the
algorithm	from	Problem-2?	Are	there	more	worst-case	scenarios	than	Problem-5?

Solution:	Because	of	the	special	case	of	the	unions,	union-by-rank	does	not	make	a	difference	for
our	algorithm.	Hence,	everything	is	the	same	as	in	Problem-5.

Problem-7  With	the	quick-union	algorithm	we	know	that	a	sequence	of	n	operations	(unions
and	finds)	can	take	slightly	more	than	linear	time	in	the	worst	case.	Explain	why	if	all	the
finds	are	done	before	all	the	unions,	a	sequence	of	n	operations	is	guaranteed	to	take	O(n)
time.

Solution:	If	the	find	operations	are	performed	first,	then	the	find	operations	take	O(1)	time	each
because	every	item	is	the	root	of	its	own	tree.	No	item	has	a	parent,	so	finding	the	set	an	item	is	in
takes	a	fixed	number	of	operations.	Union	operations	always	take	O(1)	time.	Hence,	a	sequence
of	n	operations	with	all	the	finds	before	the	unions	takes	O(n)	time.

Problem-8  With	reference	to	Problem-7,	explain	why	if	all	the	unions	are	done	before	all	the
finds,	a	sequence	of	n	operations	is	guaranteed	to	take	O(n)	time.

Solution:	This	problem	requires	amortized	analysis.	Find	operations	can	be	expensive,	but	 this
expensive	find	operation	is	balanced	out	by	lots	of	cheap	union	operations.

The	accounting	is	as	follows.	Union	operations	always	take	O(1)	time,	so	let’s	say	they	have	an
actual	 cost	 of	 1.	 Assign	 each	 union	 operation	 an	 amortized	 cost	 of	 2,	 so	 every	 union
operation	puts	 1	in	the	account.	Each	union	operation	creates	a	new	child.	 (Some	node	 that
was	not	a	child	of	any	other	node	before	is	a	child	now.)	When	all	the	union	operations	are	done,
there	is	$1	in	the	account	for	every	child,	or	in	other	words,	for	every	node	with	a	depth	of	one	or
greater.	Let’s	say	that	a	find(u)	operation	costs	 1	if	u	 is	a	root.	For	any	other	node,	 the	 find
operation	 costs	 an	 additional	 1	 for	 each	parent	 pointer	 the	 find	 operation	 traverses.	So	 the
actual	cost	is	 	(1	+	d),	where	d	is	the	depth	of	u.	Assign	each	find	operation	an	amortized	cost



of	 2.	This	covers	the	case	where	u	 is	a	root	or	a	child	of	a	root.	For	each	additional	parent
pointer	traversed,	 1	is	withdrawn	from	the	account	to	pay	for	it.

Fortunately,	 path	 compression	 changes	 the	 parent	 pointers	 of	 all	 the	 nodes	 we	 pay	 1	 to
traverse,	so	these	nodes	become	children	of	the	root.	All	of	the	traversed	nodes	whose	depths	are
2	or	 greater	move	up,	 so	 their	 depths	 are	 now	1.	We	will	 never	 have	 to	 pay	 to	 traverse	 these
nodes	again.	Say	that	a	node	is	a	grandchild	if	its	depth	is	2	or	greater.

Every	time	find(u)	visits	a	grandchild,	 1	is	withdrawn	from	the	account,	but	the	grandchild	is
no	longer	a	grandchild.	So	the	maximum	number	of	dollars	that	can	ever	be	withdrawn	from	the
account	is	 the	number	of	grandchildren.	But	we	initially	put	$1	in	the	bank	for	every	child,	and
every	 grandchild	 is	 a	 child,	 so	 the	 bank	 balance	 will	 never	 drop	 below	 zero.	 Therefore,	 the
amortization	works	 out.	Union	 and	 find	 operations	 both	 have	 amortized	 costs	 of	 2,	 so	 any
sequence	of	n	operations	where	all	the	unions	are	done	first	takes	O(n)	time.



9.1	Introduction

In	 the	 real	world,	many	problems	are	 represented	 in	 terms	of	objects	and	connections	between
them.	For	example,	in	an	airline	route	map,	we	might	be	interested	in	questions	like:	“What’s	the
fastest	 way	 to	 go	 from	 Hyderabad	 to	 New	York?”	 or	 “What	 is	 the	 cheapest	 way	 to	 go	 from
Hyderabad	 to	New	York?”	 To	 answer	 these	 questions	we	 need	 information	 about	 connections
(airline	routes)	between	objects	(towns).	Graphs	are	data	structures	used	for	solving	these	kinds
of	problems.

9.2	Glossary

Graph:	A	graph	is	a	pair	(V,	E),	where	V	is	a	set	of	nodes,	called	vertices,	and	£	is	a	collection
of	pairs	of	vertices,	called	edges.

• Vertices	and	edges	are	positions	and	store	elements



• Definitions	that	we	use:
○ Directed	edge:

▪ ordered	pair	of	vertices	(u,	v)
▪ first	vertex	u	is	the	origin
▪ second	vertex	v	is	the	destination
▪ Example:	one-way	road	traffic

○ Undirected	edge:
▪ unordered	pair	of	vertices	(u,	v)
▪ Example:	railway	lines

○ Directed	graph:
▪ all	the	edges	are	directed
▪ Example:	route	network

○	Undirected	graph:
▪ all	the	edges	are	undirected
▪ Example:	flight	network



• When	 an	 edge	 connects	 two	 vertices,	 the	 vertices	 are	 said	 to	 be	 adjacent	 to	 each
other	and	the	edge	is	incident	on	both	vertices.

• A	graph	with	no	cycles	is	called	a	tree.	A	tree	is	an	acyclic	connected	graph.

• A	self	loop	is	an	edge	that	connects	a	vertex	to	itself.

• Two	edges	are	parallel	if	they	connect	the	same	pair	of	vertices.

• The	Degree	of	a	vertex	is	the	number	of	edges	incident	on	it.
• A	 subgraph	 is	 a	 subset	 of	 a	 graph’s	 edges	 (with	 associated	 vertices)	 that	 form	 a

graph.
• A	path	in	a	graph	is	a	sequence	of	adjacent	vertices.	Simple	path	is	a	path	with	no

repeated	vertices.	In	the	graph	below,	the	dotted	lines	represent	a	path	from	G	to	E.



• A	cycle	is	a	path	where	the	first	and	last	vertices	are	the	same.	A	simple	cycle	is	a
cycle	with	no	repeated	vertices	or	edges	(except	the	first	and	last	vertices).

• We	say	that	one	vertex	is	connected	to	another	if	there	is	a	path	that	contains	both	of
them.

• A	graph	is	connected	if	there	is	a	path	from	every	vertex	to	every	other	vertex.
• If	a	graph	is	not	connected	then	it	consists	of	a	set	of	connected	components.

• A	directed	acyclic	graph	[DAG]	is	a	directed	graph	with	no	cycles.



• A	forest	is	a	disjoint	set	of	trees.
• A	spanning	tree	of	a	connected	graph	is	a	subgraph	that	contains	all	of	that	graph’s

vertices	and	is	a	single	tree.	A	spanning	forest	of	a	graph	is	the	union	of	spanning
trees	of	its	connected	components.

• A	bipartite	graph	is	a	graph	whose	vertices	can	be	divided	into	two	sets	such	that	all
edges	connect	a	vertex	in	one	set	with	a	vertex	in	the	other	set.

• In	 weighted	 graphs	 integers	 (weights)	 are	 assigned	 to	 each	 edge	 to	 represent
(distances	or	costs).



• Graphs	with	all	edges	present	are	called	complete	graphs.

• Graphs	 with	 relatively	 few	 edges	 (generally	 if	 it	 edges	 <	 |V|	 log	 |V|)	 are	 called
sparse	graphs.

• Graphs	with	relatively	few	of	the	possible	edges	missing	are	called	dense.
• Directed	weighted	graphs	are	sometimes	called	network.
• We	will	denote	 the	number	of	vertices	 in	a	given	graph	by	 |V|,	 and	 the	number	of

edges	by	|E|.	Note	that	E	can	range	anywhere	from	0	to	|V|(|V|	–	l)/2	(in	undirected
graph).	This	is	because	each	node	can	connect	to	every	other	node.

9.3	Applications	of	Graphs



• Representing	relationships	between	components	in	electronic	circuits
• Transportation	networks:	Highway	network,	Flight	network
• Computer	networks:	Local	area	network,	Internet,	Web
• Databases:	 For	 representing	 ER	 (Entity	 Relationship)	 diagrams	 in	 databases,	 for

representing	dependency	of	tables	in	databases

9.4	Graph	Representation

As	in	other	ADTs,	to	manipulate	graphs	we	need	to	represent	them	in	some	useful	form.	Basically,
there	are	three	ways	of	doing	this:

• Adjacency	Matrix
• Adjacency	List
• Adjacency	Set

Adjacency	Matrix

Graph	Declaration	for	Adjacency	Matrix

First,	let	us	look	at	the	components	of	the	graph	data	structure.	To	represent	graphs,	we	need	the
number	 of	 vertices,	 the	 number	 of	 edges	 and	 also	 their	 interconnections.	 So,	 the	 graph	 can	 be
declared	as:

Description

In	this	method,	we	use	a	matrix	with	size	V	×	V.	The	values	of	matrix	are	boolean.	Let	us	assume
the	matrix	is	Adj.	The	value	Adj[u,	v]	is	set	to	1	if	there	is	an	edge	from	vertex	u	to	vertex	v	and	0
otherwise.

In	 the	matrix,	each	edge	 is	 represented	by	 two	bits	 for	undirected	graphs.	That	means,	an	edge
from	u	to	v	is	represented	by	1	value	in	both	Adj[u,v	]	and	Adj[u,v].	To	save	time,	we	can	process
only	half	of	this	symmetric	matrix.	Also,	we	can	assume	that	there	is	an	“edge”	from	each	vertex
to	itself.	So,	Adj[u,	u]	is	set	to	1	for	all	vertices.



If	the	graph	is	a	directed	graph	then	we	need	to	mark	only	one	entry	in	the	adjacency	matrix.	As	an
example,	consider	the	directed	graph	below.

The	adjacency	matrix	for	this	graph	can	be	given	as:

Now,	let	us	concentrate	on	the	implementation.	To	read	a	graph,	one	way	is	to	first	read	the	vertex
names	and	then	read	pairs	of	vertex	names	(edges).	The	code	below	reads	an	undirected	graph.



The	adjacency	matrix	representation	is	good	if	the	graphs	are	dense.	The	matrix	requires	O(V2)
bits	of	storage	and	O(V2)	time	for	initialization.	If	the	number	of	edges	is	proportional	to	V2,	then
there	is	no	problem	because	V2	 steps	are	required	 to	read	 the	edges.	 If	 the	graph	is	sparse,	 the
initialization	of	the	matrix	dominates	the	running	time	of	the	algorithm	as	it	takes	takes	O(V2).

Adjacency	List

Graph	Declaration	for	Adjacency	List

In	this	representation	all	 the	vertices	connected	to	a	vertex	v	are	 listed	on	an	adjacency	list	 for
that	vertex	v.	This	can	be	easily	implemented	with	linked	lists.	That	means,	for	each	vertex	v	we
use	a	linked	list	and	list	nodes	represents	the	connections	between	v	and	other	vertices	to	which	v
has	an	edge.



The	total	number	of	linked	lists	is	equal	to	the	number	of	vertices	in	the	graph.	The	graph	ADT
can	be	declared	as:

Description

Considering	 the	same	example	as	 that	of	 the	adjacency	matrix,	 the	adjacency	list	 representation
can	be	given	as:

Since	vertex	A	has	an	edge	 for	B	and	D,	we	have	added	 them	in	 the	adjacency	 list	 for	A.	The
same	is	the	case	with	other	vertices	as	well.





For	 this	 representation,	 the	 order	 of	 edges	 in	 the	 input	 is	 important.	 This	 is	 because	 they
determine	the	order	of	the	vertices	on	the	adjacency	lists.	The	same	graph	can	be	represented	in
many	different	ways	in	an	adjacency	list.	The	order	in	which	edges	appear	on	the	adjacency	list
affects	the	order	in	which	edges	are	processed	by	algorithms.

Disadvantages	of	Adjacency	Lists

Using	 adjacency	 list	 representation	 we	 cannot	 perform	 some	 operations	 efficiently.	 As	 an
example,	consider	the	case	of	deleting	a	node.	.	In	adjacency	list	representation,	it	is	not	enugh	if
we	simply	delete	a	node	from	the	list	representation,	if	we	delete	a	node	from	the	adjacency	list
then	that	is	enough.	For	each	node	on	the	adjacency	list	of	that	node	specifies	another	vertex.	We
need	to	search	other	nodes	linked	list	also	for	deleting	it.	This	problem	can	be	solved	by	linking
the	 two	 list	 nodes	 that	 correspond	 to	 a	 particular	 edge	 and	making	 the	 adjacency	 lists	 doubly
linked.	But	all	these	extra	links	are	risky	to	process.

Adjacency	Set

It	 is	very	much	similar	 to	adjacency	list	but	 instead	of	using	Linked	lists,	Disjoint	Sets	[Union-
Find]	are	used.	For	more	details	refer	to	the	Disjoint	Sets	ADT	chapter.

Comparison	of	Graph	Representations

Directed	 and	 undirected	 graphs	 are	 represented	with	 the	 same	 structures.	 For	 directed	 graphs,
everything	 is	 the	 same,	 except	 that	 each	 edge	 is	 represented	 just	 once.	An	 edge	 from	x	 to	y	 is
represented	by	a	1	value	in	Agj[x][y]	in	the	adjacency	matrix,	or	by	adding	y	on	x’s	adjacency	list.
For	weighted	graphs,	everything	is	the	same,	except	fill	the	adjacency	matrix	with	weights	instead
of	boolean	values.

9.5	Graph	Traversals



To	solve	problems	on	graphs,	we	need	a	mechanism	for	 traversing	 the	graphs.	Graph	 traversal
algorithms	 are	 also	 called	 graph	 search	 algorithms.	 Like	 trees	 traversal	 algorithms	 (Inorder,
Preorder,	 Postorder	 and	Level-Order	 traversals),	 graph	 search	 algorithms	 can	 be	 thought	 of	 as
starting	at	some	source	vertex	in	a	graph	and	“searching”	the	graph	by	going	through	the	edges	and
marking	the	vertices.	Now,	we	will	discuss	two	such	algorithms	for	traversing	the	graphs.

• Depth	First	Search	[DFS]
• Breadth	First	Search	[BFS]

Depth	First	Search	[DFS]

DFS	 algorithm	 works	 in	 a	 manner	 similar	 to	 preorder	 traversal	 of	 the	 trees.	 Like	 preorder
traversal,	internally	this	algorithm	also	uses	stack.

Let	us	consider	the	following	example.	Suppose	a	person	is	trapped	inside	a	maze.	To	come	out
from	that	maze,	the	person	visits	each	path	and	each	intersection	(in	the	worst	case).	Let	us	say	the
person	uses	two	colors	of	paint	to	mark	the	intersections	already	passed.	When	discovering	a	new
intersection,	it	is	marked	grey,	and	he	continues	to	go	deeper.

After	reaching	a	“dead	end”	the	person	knows	that	there	is	no	more	unexplored	path	from	the	grey
intersection,	which	now	is	completed,	and	he	marks	it	with	black.	This	“dead	end”	is	either	an
intersection	which	has	already	been	marked	grey	or	black,	or	simply	a	path	that	does	not	lead	to
an	intersection.

The	 intersections	 of	 the	maze	 are	 the	 vertices	 and	 the	 paths	 between	 the	 intersections	 are	 the
edges	of	the	graph.	The	process	of	returning	from	the	“dead	end”	is	called	backtracking.	We	are
trying	 to	go	away	 from	 the	 starting	vertex	 into	 the	graph	as	deep	as	possible,	until	we	have	 to
backtrack	 to	 the	preceding	grey	vertex.	 In	DFS	algorithm,	we	 encounter	 the	 following	 types	of
edges.

Tree	edge:	encounter	new	vertex

Back	edge:	from	descendent	to	ancestor

Forward	edge:	from	ancestor	to	descendent

Cross	edge:	between	a	tree	or	subtrees

For	 most	 algorithms	 boolean	 classification,	 unvisited/visited	 is	 enough	 (for	 three	 color
implementation	refer	to	problems	section).	That	means,	for	some	problems	we	need	to	use	three
colors,	but	for	our	discussion	two	colors	are	enough.



Initially	all	vertices	are	marked	unvisited	(false).	The	DFS	algorithm	starts	at	a	vertex	u	 in	 the
graph.	By	starting	at	vertex	u	it	considers	the	edges	from	u	to	other	vertices.	If	the	edge	leads	to
an	 already	 visited	 vertex,	 then	 backtrack	 to	 current	 vertex	 u.	 If	 an	 edge	 leads	 to	 an	 unvisited
vertex,	 then	go	 to	 that	 vertex	 and	 start	 processing	 from	 that	 vertex.	That	means	 the	new	vertex
becomes	the	current	vertex.	Follow	this	process	until	we	reach	the	dead-end.	At	this	point	start
backtracking.

The	process	terminates	when	backtracking	leads	back	to	the	start	vertex.	The	algorithm	based	on
this	mechanism	is	given	below:	assume	Visited[]	is	a	global	array.

As	 an	 example,	 consider	 the	 following	 graph.	We	 can	 see	 that	 sometimes	 an	 edge	 leads	 to	 an



already	discovered	vertex.	These	edges	are	called	back	edges,	and	the	other	edges	are	called	tree
edges	because	deleting	the	back	edges	from	the	graph	generates	a	tree.

The	final	generated	tree	is	called	the	DFS	tree	and	the	order	in	which	the	vertices	are	processed
is	called	DFS	numbers	of	the	vertices.	In	the	graph	below,	the	gray	color	indicates	that	the	vertex
is	visited	(there	is	no	other	significance).	We	need	to	see	when	the	Visited	table	is	updated.











From	 the	 above	 diagrams,	 it	 can	 be	 seen	 that	 the	 DFS	 traversal	 creates	 a	 tree	 (without	 back
edges)	and	we	call	such	tree	a	DFS	tree.	The	above	algorithm	works	even	if	the	given	graph	has
connected	components.

The	time	complexity	of	DFS	is	O(V	+	E),	if	we	use	adjacency	lists	for	representing	the	graphs.
This	is	because	we	are	starting	at	a	vertex	and	processing	the	adjacent	nodes	only	if	they	are	not
visited.	 Similarly,	 if	 an	 adjacency	 matrix	 is	 used	 for	 a	 graph	 representation,	 then	 all	 edges
adjacent	to	a	vertex	can’t	be	found	efficiently,	and	this	gives	O(V2)	complexity.

Applications	of	DFS

• Topological	sorting
• Finding	connected	components
• Finding	articulation	points	(cut	vertices)	of	the	graph
• Finding	strongly	connected	components
• Solving	puzzles	such	as	mazes

For	algorithms	refer	to	Problems	Section.

Breadth	First	Search	[BFS]

The	 BFS	 algorithm	 works	 similar	 to	 level	 –	 order	 traversal	 of	 the	 trees.	 Like	 level	 –	 order
traversal,	 BFS	 also	 uses	 queues.	 In	 fact,	 level	 –	 order	 traversal	 got	 inspired	 from	 BFS.	 BFS
works	level	by	level.	Initially,	BFS	starts	at	a	given	vertex,	which	is	at	level	0.	In	the	first	stage	it
visits	all	vertices	at	level	1	(that	means,	vertices	whose	distance	is	1	from	the	start	vertex	of	the
graph).	In	the	second	stage,	it	visits	all	vertices	at	the	second	level.	These	new	vertices	are	the
ones	which	are	adjacent	to	level	1	vertices.

BFS	continues	this	process	until	all	the	levels	of	the	graph	are	completed.	Generally	queue	data
structure	is	used	for	storing	the	vertices	of	a	level.

As	similar	 to	DFS,	assume	 that	 initially	all	vertices	are	marked	unvisited	 (false).	Vertices	 that
have	been	processed	and	removed	from	the	queue	are	marked	visited	(true).	We	use	a	queue	to
represent	the	visited	set	as	it	will	keep	the	vertices	in	the	order	of	when	they	were	first	visited.
The	implementation	for	the	above	discussion	can	be	given	as:



As	an	example,	let	us	consider	the	same	graph	as	that	of	the	DFS	example.	The	BFS	traversal	can
be	shown	as:







Time	complexity	of	BFS	is	O(V	+	E),	if	we	use	adjacency	lists	for	representing	the	graphs,	and
O(V2)	for	adjacency	matrix	representation.

Applications	of	BFS

• Finding	all	connected	components	in	a	graph
• Finding	all	nodes	within	one	connected	component
• Finding	the	shortest	path	between	two	nodes
• Testing	a	graph	for	bipartiteness

Comparing	DFS	and	BFS

Comparing	 BFS	 and	 DFS,	 the	 big	 advantage	 of	 DFS	 is	 that	 it	 has	 much	 lower	 memory
requirements	 than	BFS	because	 it’s	not	 required	 to	store	all	of	 the	child	pointers	at	each	 level.
Depending	on	the	data	and	what	we	are	looking	for,	either	DFS	or	BFS	can	be	advantageous.	For
example,	in	a	family	tree	if	we	are	looking	for	someone	who’s	still	alive	and	if	we	assume	that
person	would	be	at	 the	bottom	of	 the	 tree,	 then	DFS	is	a	better	choice.	BFS	would	 take	a	very
long	time	to	reach	that	last	level.

The	DFS	algorithm	finds	the	goal	faster.	Now,	if	we	were	looking	for	a	family	member	who	died
a	very	 long	 time	ago,	 then	 that	person	would	be	closer	 to	 the	 top	of	 the	 tree.	 In	 this	case,	BFS
finds	faster	than	DFS.	So,	the	advantages	of	either	vary	depending	on	the	data	and	what	we	are
looking	for.

DFS	 is	 related	 to	 preorder	 traversal	 of	 a	 tree.	 Like	preorder	 traversal,	 DFS	 visits	 each	 node
before	its	children.	The	BFS	algorithm	works	similar	to	level	–	order	traversal	of	the	trees.

If	someone	asks	whether	DFS	is	better	or	BFS	is	better,	 the	answer	depends	on	 the	 type	of	 the
problem	 that	we	 are	 trying	 to	 solve.	BFS	 visits	 each	 level	 one	 at	 a	 time,	 and	 if	we	 know	 the
solution	we	are	searching	for	is	at	a	low	depth,	then	BFS	is	good.	DFS	is	a	better	choice	if	the
solution	is	at	maximum	depth.	The	below	table	shows	the	differences	between	DFS	and	BFS	in
terms	of	their	applications.

9.6	Topological	Sort



Topological	sort	is	an	ordering	of	vertices	in	a	directed	acyclic	graph	[DAG]	in	which	each	node
comes	 before	 all	 nodes	 to	 which	 it	 has	 outgoing	 edges.	 As	 an	 example,	 consider	 the	 course
prerequisite	 structure	 at	 universities.	 A	 directed	 edge	 (v,w)	 indicates	 that	 course	 v	 must	 be
completed	before	course	w.	Topological	ordering	for	this	example	is	the	sequence	which	does	not
violate	 the	prerequisite	 requirement.	Every	DAG	may	have	one	or	more	 topological	orderings.
Topological	sort	 is	not	possible	if	 the	graph	has	a	cycle,	since	for	two	vertices	v	and	w	on	 the
cycle,	v	precedes	w	and	w	precedes	v.

Topological	sort	has	an	interesting	property.	All	pairs	of	consecutive	vertices	in	the	sorted	order
are	 connected	by	 edges;	 then	 these	 edges	 form	a	directed	Hamiltonian	path	 [refer	 to	Problems
Section]	 in	 the	 DAG.	 If	 a	 Hamiltonian	 path	 exists,	 the	 topological	 sort	 order	 is	 unique.	 If	 a
topological	 sort	 does	 not	 form	 a	 Hamiltonian	 path,	 DAG	 can	 have	 two	 or	 more	 topological
orderings.	 In	 the	 graph	 below:	 7,	 5,	 3,	 11,	 8,	 2,	 9,	 10	 and	 3,	 5,	 7,	 8,	 11,	 2,	 9,	 10	 are	 both
topological	orderings.

Initially,	 indegree	 is	 computed	 for	 all	 vertices,	 starting	 with	 the	 vertices	 which	 are	 having
indegree	0.	That	means	consider	the	vertices	which	do	not	have	any	prerequisite.	To	keep	track	of
vertices	with	indegree	zero	we	can	use	a	queue.

All	 vertices	 of	 indegree	 0	 are	 placed	 on	 queue.	While	 the	 queue	 is	 not	 empty,	 a	 vertex	 v	 is
removed,	 and	all	 edges	adjacent	 to	v	 have	 their	 indegrees	decremented.	A	vertex	 is	put	on	 the
queue	 as	 soon	 as	 its	 indegree	 falls	 to	 0.	 The	 topological	 ordering	 is	 the	 order	 in	 which	 the
vertices	DeQueue.

The	time	complexity	of	this	algorithm	is	O(|E|	+	|V|)	if	adjacency	lists	are	used.



Total	running	time	of	topological	sort	is	O(V	+	E).

Note:	The	Topological	sorting	problem	can	be	solved	with	DFS.	Refer	to	the	Problems	Section
for	the	algorithm.

Applications	of	Topological	Sorting

• Representing	course	prerequisites
• Detecting	deadlocks
• Pipeline	of	computing	jobs
• Checking	for	symbolic	link	loop
• Evaluating	formulae	in	spreadsheet

9.7	Shortest	Path	Algorithms

Let	 us	 consider	 the	 other	 important	 problem	 of	 a	 graph.	 Given	 a	 graph	 G	 =	 (V,	 E)	 and	 a



distinguished	vertex	s,	we	need	to	find	the	shortest	path	from	s	to	every	other	vertex	in	G.	There
are	variations	in	the	shortest	path	algorithms	which	depend	on	the	type	of	the	input	graph	and	are
given	below.

Variations	of	Shortest	Path	Algorithms

Shortest	path	in	unweighted	graph

Shortest	path	in	weighted	graph

Shortest	path	in	weighted	graph	with	negative	edges

Applications	of	Shortest	Path	Algorithms

• Finding	fastest	way	to	go	from	one	place	to	another
• Finding	cheapest	way	to	fly/send	data	from	one	city	to	another

Shortest	Path	in	Unweighted	Graph

Let	 s	 be	 the	 input	 vertex	 from	 which	 we	 want	 to	 find	 the	 shortest	 path	 to	 all	 other	 vertices.
Unweighted	 graph	 is	 a	 special	 case	 of	 the	 weighted	 shortest-path	 problem,	 with	 all	 edges	 a
weight	of	1.	The	algorithm	is	similar	to	BFS	and	we	need	to	use	the	following	data	structures:

• A	distance	table	with	three	columns	(each	row	corresponds	to	a	vertex):
○ Distance	from	source	vertex.
○ Path	–	contains	the	name	of	the	vertex	through	which	we	get	the	shortest

distance.
• A	 queue	 is	 used	 to	 implement	 breadth-first	 search.	 It	 contains	 vertices	 whose

distance	from	the	source	node	has	been	computed	and	their	adjacent	vertices	are	to
be	examined.

As	an	example,	consider	the	following	graph	and	its	adjacency	list	representation.



The	adjacency	list	for	this	graph	is:

Let	s	=	C.	The	distance	from	C	to	C	is	0.	Initially,	distances	to	all	other	nodes	are	not	computed,
and	we	 initialize	 the	second	column	in	 the	distance	 table	 for	all	vertices	 (except	C)	with	-1	as
below.

Algorithm



Running	time:	O(|E|	+	|V|),	if	adjacency	lists	are	used.	In	for	loop,	we	are	checking	the	outgoing
edges	 for	 a	 given	 vertex	 and	 the	 sum	 of	 all	 examined	 edges	 in	 the	while	 loop	 is	 equal	 to	 the
number	of	edges	which	gives	O(|E|).

If	we	use	matrix	representation	the	complexity	is	O(|V|2),	because	we	need	to	read	an	entire	row
in	the	matrix	of	length	|V|	in	order	to	find	the	adjacent	vertices	for	a	given	vertex.

Shortest	path	in	Weighted	Graph	[Dijkstra’s]

A	famous	solution	for	the	shortest	path	problem	was	developed	by	Dijkstra.	Dijkstra’s	algorithm
is	a	generalization	of	the	BFS	algorithm.	The	regular	BFS	algorithm	cannot	solve	the	shortest	path
problem	 as	 it	 cannot	 guarantee	 that	 the	 vertex	 at	 the	 front	 of	 the	 queue	 is	 the	 vertex	 closest	 to
source	s.

Before	going	to	code	let	us	understand	how	the	algorithm	works.	As	in	unweighted	shortest	path
algorithm,	 here	 too	 we	 use	 the	 distance	 table.	 The	 algorithm	 works	 by	 keeping	 the	 shortest
distance	 of	 vertex	 v	 from	 the	 source	 in	 the	Distance	 table.	 The	 value	Distance[v]	 holds	 the
distance	from	s	to	v.	The	shortest	distance	of	the	source	to	itself	is	zero.	The	Distance	table	for
all	other	vertices	is	set	to	–1	to	indicate	that	those	vertices	are	not	already	processed.



After	 the	algorithm	finishes,	 the	Distance	 table	will	have	the	shortest	distance	from	source	s	 to
each	other	vertex	v.	To	simplify	the	understanding	of	Dijkstra’s	algorithm,	let	us	assume	that	the
given	vertices	are	maintained	in	two	sets.	Initially	the	first	set	contains	only	the	source	element
and	the	second	set	contains	all	the	remaining	elements.	After	the	kth	iteration,	the	first	set	contains
k	 vertices	 which	 are	 closest	 to	 the	 source.	 These	 k	 vertices	 are	 the	 ones	 for	 which	 we	 have
already	computed	the	shortest	distances	from	source.

Notes	on	Dijkstra’s	Algorithm
• It	uses	greedy	method:	Always	pick	the	next	closest	vertex	to	the	source.
• It	uses	priority	queue	to	store	unvisited	vertices	by	distance	from	s.
• It	does	not	work	with	negative	weights.

Difference	between	Unweighted	Shortest	Path	and	Dijkstra’s	Algorithm

1) To	 represent	weights	 in	 the	 adjacency	 list,	 each	 vertex	 contains	 the	weights	 of	 the
edges	(in	addition	to	their	identifier).

2) Instead	of	ordinary	queue	we	use	priority	queue	[distances	are	the	priorities]	and	the
vertex	with	the	smallest	distance	is	selected	for	processing.

3) The	distance	to	a	vertex	is	calculated	by	the	sum	of	the	weights	of	the	edges	on	the
path	from	the	source	to	that	vertex.

4) We	update	the	distances	in	case	the	newly	computed	distance	is	smaller	than	the	old
distance	which	we	have	already	computed.



The	above	algorithm	can	be	better	understood	through	an	example,	which	will	explain	each	step
that	is	taken	and	how	Distance	is	calculated.	The	weighted	graph	below	has	5	vertices	from	A	–
E.

The	 value	 between	 the	 two	 vertices	 is	 known	 as	 the	 edge	 cost	 between	 two	 vertices.	 For
example,	the	edge	cost	between	A	and	C	is	1.	Dijkstra’s	algorithm	can	be	used	to	find	the	shortest
path	from	source	A	to	the	remaining	vertices	in	the	graph.



Initially	the	Distance	table	is:

After	the	first	step,	from	vertex	A,	we	can	reach	B	and	C.	So,	in	the	Distance	table	we	update	the
reachability	of	B	and	C	with	their	costs	and	the	same	is	shown	below.



Now,	 let	 us	 select	 the	 minimum	 distance	 among	 all.	 The	minimum	 distance	 vertex	 is	C.	 That
means,	we	have	to	reach	other	vertices	from	these	two	vertices	(A	and	C).	For	example,	B	can	be
reached	from	A	and	also	from	C.	 In	 this	case	we	have	to	select	 the	one	which	gives	 the	 lowest
cost.	Since	reaching	B	through	C	is	giving	the	minimum	cost	(1	+	2),	we	update	the	Distance	table
for	vertex	B	with	cost	3	and	the	vertex	from	which	we	got	this	cost	as	C.

The	only	vertex	remaining	is	E.	To	reach	E,	we	have	to	see	all	 the	paths	through	which	we	can
reach	E	 and	 select	 the	one	which	gives	 the	minimum	cost.	We	can	 see	 that	 if	we	use	B	 as	 the
intermediate	vertex	through	C	we	get	the	minimum	cost.



The	final	minimum	cost	tree	which	Dijkstra’s	algorithm	generates	is:

Performance

In	Dijkstra’s	algorithm,	the	efficiency	depends	on	the	number	of	DeleteMins	(V	DeleteMins)	and
updates	for	priority	queues	(E	updates)	that	are	used.	If	a	standard	binary	heap	is	used	then	the
complexity	is	O(ElogV).

The	term	ElogV	comes	from	E	updates	(each	update	takes	logV)	for	the	standard	heap.	If	the	set
used	is	an	array	then	the	complexity	is	O(E	+	V2).

Disadvantages	of	Dijkstra’s	Algorithm



• As	discussed	above,	the	major	disadvantage	of	the	algorithm	is	that	it	does	a	blind
search,	thereby	wasting	time	and	necessary	resources.

• Another	disadvantage	is	 that	 it	cannot	handle	negative	edges.	This	 leads	to	acyclic
graphs	and	most	often	cannot	obtain	the	right	shortest	path.

Relatives	of	Dijkstra’s	Algorithm

• The	Bellman-	Ford	 algorithm	computes	 single-source	 shortest	paths	 in	 a	weighted
digraph.	 It	 uses	 the	 same	 concept	 as	 that	 of	Dijkstra’s	 algorithm	 but	 can	 handle
negative	edges	as	well.	It	has	more	running	time	than	Dijkstra’s	algorithm.

• Prim’s	algorithm	finds	a	minimum	spanning	tree	for	a	connected	weighted	graph.	It
implies	that	a	subset	of	edges	that	form	a	tree	where	the	total	weight	of	all	the	edges
in	the	tree	is	minimized.

Bellman-Ford	Algorithm

If	the	graph	has	negative	edge	costs,	then	Dijkstra’s	algorithm	does	not	work.	The	problem	is	that
once	a	vertex	u	is	declared	known,	it	is	possible	that	from	some	other,	unknown	vertex	v	there	is	a
path	back	to	u	 that	is	very	negative.	In	such	a	case,	taking	a	path	from	s	to	v	back	to	u	 is	better
than	 going	 from	 s	 to	u	 without	 using	 v.	 A	 combination	 of	Dijkstra’s	 algorithm	 and	 unweighted
algorithms	will	solve	the	problem.	Initialize	the	queue	with	s.	Then,	at	each	stage,	we	DeQueue	a
vertex	v.	We	find	all	vertices	W	adjacent	to	v	such	that,

distance	to	v	+	weight	(v,w)	<	old	distance	to	w

We	update	w	old	distance	and	path,	and	place	w	on	a	queue	if	it	is	not	already	there.	A	bit	can	be
set	 for	 each	 vertex	 to	 indicate	 presence	 in	 the	 queue.	We	 repeat	 the	 process	 until	 the	 queue	 is
empty.



This	algorithm	works	if	there	are	no	negative-cost	cycles.	Each	vertex	can	DeQueue	at	most	|	V|
times,	so	the	running	time	is	O(|E|.	|V|)	if	adjacency	lists	are	used.

Overview	of	Shortest	Path	Algorithms

Shortest	path	in	unweighted	graph	[Modified	BFS] O(|E|	+	|V|)

Shortest	path	in	weighted	graph	[Dijkstra’s] O(|E|	log	|V|)

Shortest	path	in	weighted	graph	with	negative	edges	[Bellman	–	Ford] O(|E|.|V|)

Shortest	path	in	weighted	acyclic	graph O(|E|	+	|V|)

9.8	Minimal	Spanning	Tree

The	Spanning	 tree	 of	 a	graph	 is	 a	 subgraph	 that	 contains	 all	 the	vertices	 and	 is	 also	a	 tree.	A
graph	may	have	many	spanning	trees.	As	an	example,	consider	a	graph	with	4	vertices	as	shown
below.	Let	us	assume	that	the	corners	of	the	graph	are	vertices.



For	this	simple	graph,	we	can	have	multiple	spanning	trees	as	shown	below.

The	algorithm	we	will	discuss	now	is	minimum	spanning	tree	in	an	undirected	graph.	We	assume
that	the	given	graphs	are	weighted	graphs.	If	the	graphs	are	unweighted	graphs	then	we	can	still
use	the	weighted	graph	algorithms	by	treating	all	weights	as	equal.	A	minimum	spanning	tree	of
an	undirected	graph	G	is	a	tree	formed	from	graph	edges	that	connect	all	the	vertices	of	G	with
minimum	 total	 cost	 (weights).	 A	minimum	 spanning	 tree	 exists	 only	 if	 the	 graph	 is	 connected.
There	are	two	famous	algorithms	for	this	problem:

• Prim’s	Algorithm
• Kruskal’s	Algorithm

Prim’s	Algorithm

Prim’s	algorithm	is	almost	the	same	as	Dijkstra’s	algorithm.	As	in	Dijkstra’s	algorithm,	in	Prim’s
algorithm	we	keep	the	values	distance	and	paths	in	the	distance	table.	The	only	exception	is	that
since	 the	 definition	 of	 distance	 is	 different,	 the	 updating	 statement	 also	 changes	 a	 little.	 The
update	statement	is	simpler	than	before.



The	 entire	 implementation	 of	 this	 algorithm	 is	 identical	 to	 that	 of	 Dijkstra’s	 algorithm.	 The
running	time	is	O(|V|2)	without	heaps	[good	for	dense	graphs],	and	O	(ElogV)	using	binary	heaps
[good	for	sparse	graphs].

Kruskal’s	Algorithm

The	algorithm	starts	with	V	different	trees	(V	is	the	vertices	in	the	graph).	While	constructing	the
minimum	spanning	tree,	every	time	Kruskal’s	alorithm	selects	an	edge	that	has	minimum	weight
and	then	adds	that	edge	if	it	doesn’t	create	a	cycle.	So,	initially,	there	are	|	V	|	single-node	trees	in
the	forest.	Adding	an	edge	merges	two	trees	into	one.	When	the	algorithm	is	completed,	there	will
be	 only	 one	 tree,	 and	 that	 is	 the	minimum	 spanning	 tree.	There	 are	 two	ways	 of	 implementing
Kruskal’s	algorithm:

• By	using	Disjoint	Sets:	Using	UNION	and	FIND	operations
• By	using	Priority	Queues:	Maintains	weights	in	priority	queue



The	 appropriate	 data	 structure	 is	 the	UNION/FIND	 algorithm	 [for	 implementing	 forests].	 Two
vertices	belong	 to	 the	 same	set	 if	 and	only	 if	 they	are	connected	 in	 the	current	 spanning	 forest.
Each	vertex	is	initially	in	its	own	set.	If	u	and	v	are	in	the	same	set,	the	edge	is	rejected	because	it
forms	 a	 cycle.	 Otherwise,	 the	 edge	 is	 accepted,	 and	 a	 UNION	 is	 performed	 on	 the	 two	 sets
containing	u	and	v.	As	an	example,	consider	the	following	graph	(the	edges	show	the	weights).

Now	 let	 us	 perform	Kruskal’s	 algorithm	 on	 this	 graph.	We	 always	 select	 the	 edge	 which	 has
minimum	weight.



From	the	above	graph,	the	edges	which	have	minimum	weight	(cost)	are:	AD	and	BE.	From	these	two	we	can
select	one	of	them	and	let	us	assume	that	we	select	AD	(dotted	line).



DF	is	the	next	edge	that	has	the	lowest	cost	(6).



BE	now	has	the	lowest	cost	and	we	select	it	(dotted	lines	indicate	selected	edges).



Next,	AC	and	CE	have	the	low	cost	of	7	and	we	select	AC.



Then	we	select	CE	as	its	cost	is	7	and	it	does	not	form	a	cycle.



The	next	low	cost	edges	are	CB	and	EF.	But	if	we	select	CB,	then	it	forms	a	cycle.	So	we	discard	it.	This	is	also
the	case	with	EF.	So	we	should	not	select	 those	 two.	And	 the	next	 low	cost	 is	9	 (BD	and	EG).	Selecting	BD
forms	a	cycle	so	we	discard	 it.	Adding	EG	will	not	 form	a	cycle	and	 therefore	with	 this	edge	we	complete	all
vertices	of	the	graph.



Note:	 For	 implementation	 of	 UNION	 and	 FIND	 operations,	 refer	 to	 the	 Disjoint	 Sets	 ADT
chapter.

The	 worst-case	 running	 time	 of	 this	 algorithm	 is	 O(ElogE),	 which	 is	 dominated	 by	 the	 heap
operations.	That	means,	since	we	are	constructing	the	heap	with	E	edges,	we	need	O(ElogE)	time
to	do	that.

9.9	Graph	Algorithms:	Problems	&	Solutions

Problem-1  In	an	undirected	simple	graph	with	n	 vertices,	what	 is	 the	maximum	number	of
edges?	Self-loops	are	not	allowed.

Solution:	Since	every	node	can	connect	 to	 all	other	nodes,	 the	 first	node	can	connect	 to	n	 –	 1
nodes.	The	second	node	can	connect	to	n	–	2	nodes	[since	one	edge	is	already	there	from	the	first
node].	The	total	number	of	edges	is:	1	+	2	+	3	+	···	+	n	–	 	edges.

Problem-2  How	many	different	adjacency	matrices	does	a	graph	with	n	vertices	and	E	edges
have?

Solution:	It’s	equal	to	the	number	of	permutations	of	n	elements,	i.e.,	n!.

Problem-3  How	many	different	adjacency	lists	does	a	graph	with	n	vertices	have?

Solution:	It’s	equal	to	the	number	of	permutations	of	edges,	i.e.,	E!.

Problem-4  Which	 undirected	 graph	 representation	 is	 most	 appropriate	 for	 determining
whether	or	not	a	vertex	is	isolated	(is	not	connected	to	any	other	vertex)?



Solution:	Adjacency	List.	 If	we	use	 the	adjacency	matrix,	 then	we	need	 to	check	 the	complete
row	to	determine	whether	that	vertex	has	edges	or	not.	By	using	the	adjacency	list,	it	is	very	easy
to	check,	and	it	can	be	done	just	by	checking	whether	that	vertex	has	NULL	for	next	pointer	or	not
[NULL	indicates	that	the	vertex	is	not	connected	to	any	other	vertex].

Problem-5  For	checking	whether	there	is	a	path	from	source	s	to	target	t,	which	one	is	best
between	disjoint	sets	and	DFS?

Solution:	The	table	below	shows	the	comparison	between	disjoint	sets	and	DFS.	The	entries	in
the	table	represent	the	case	for	any	pair	of	nodes	(for	s	and	t).

Problem-6  What	is	the	maximum	number	of	edges	a	directed	graph	with	n	vertices	can	have
and	still	not	contain	a	directed	cycle?

Solution:	The	number	is	V	(V	–	1)/2.	Any	directed	graph	can	have	at	most	n2	edges.	However,
since	the	graph	has	no	cycles	it	cannot	contain	a	self	loop,	and	for	any	pair	x,y	of	vertices,	at	most
one	edge	from	(x,y)	and	(y,x)	can	be	included.	Therefore	the	number	of	edges	can	be	at	most	(V2	–
V)/2	as	desired.	 It	 is	possible	 to	achieve	V(V	–	1)/2	edges.	Label	n	nodes	1,2...	n	 and	add	an
edge	(x,	y)	if	and	only	if	x	<	y.	This	graph	has	the	appropriate	number	of	edges	and	cannot	contain
a	cycle	(any	path	visits	an	increasing	sequence	of	nodes).

Problem-7  How	 many	 simple	 directed	 graphs	 with	 no	 parallel	 edges	 and	 self-loops	 are
possible	in	terms	of	V?

Solution:	(V)	×	(V	–	1).	Since,	each	vertex	can	connect	to	V	–	1	vertices	without	self-loops.

Problem-8  What	are	the	differences	between	DFS	and	BFS?

Solution:

DFS BFS

Backtracking	is	possible	from	a	dead	end. Backtracking	is	not	possible.

Vertices	from	which	exploration	is
incomplete	are	processed	in	a	LIFO	order

The	vertices	to	be	explored	are	organized
as	a	FIFO	queue.

The	search	is	done	in	one	particular
direction

The	vertices	at	the	same	level	are
maintained	in	parallel.

Problem-9  Earlier	 in	 this	 chapter,	we	 discussed	minimum	 spanning	 tree	 algorithms.	Now,



give	an	algorithm	for	finding	the	maximum-weight	spanning	tree	in	a	graph.

Solution:

Using	the	given	graph,	construct	a	new	graph	with	the	same	nodes	and	edges.	But	instead	of	using
the	same	weights,	take	the	negative	of	their	weights.	That	means,	weight	of	an	edge	=	negative	of
weight	 of	 the	 corresponding	 edge	 in	 the	 given	 graph.	 Now,	 we	 can	 use	 existing	 minimum
spanning	 tree	 algorithms	 on	 this	 new	 graph.	 As	 a	 result,	 we	 will	 get	 the	 maximum-weight
spanning	tree	in	the	original	one.

Problem-10  Give	an	algorithm	for	checking	whether	a	given	graph	G	has	simple	path	from
source	s	to	destination	d.	Assume	the	graph	G	is	represented	using	the	adjacent	matrix.

Solution:	Let	us	assume	that	the	structure	for	the	graph	is:

For	 each	 vertex	 call	DFS	 and	 check	whether	 the	 current	 vertex	 is	 the	 same	 as	 the	 destination
vertex	 or	 not.	 If	 they	 are	 the	 same,	 then	 return	 1.	 Otherwise,	 call	 the	 DFS	 on	 its	 unvisited
neighbors.	One	important	thing	to	note	here	is	that,	we	are	calling	the	DFS	algorithm	on	vertices
which	are	not	yet	visited.



Time	Complexity:	O(E).	In	the	above	algorithm,	for	each	node,	since	we	are	not	calling	DFS	on
all	of	its	neighbors	(discarding	through	if	condition),	Space	Complexity:	O(V).

Problem-11  Count	 simple	 paths	 for	 a	 given	 graph	 G	 has	 simple	 path	 from	 source	 s	 to
destination	d?	Assume	the	graph	is	represented	using	the	adjacent	matrix.

Solution:	Similar	to	the	discussion	in	Problem-10,	start	at	one	node	and	call	DFS	on	that	node.
As	a	result	of	this	call,	 it	visits	all	 the	nodes	that	it	can	reach	in	the	given	graph.	That	means	it
visits	all	the	nodes	of	the	connected	component	of	that	node.	If	there	are	any	nodes	that	have	not
been	visited,	then	again	start	at	one	of	those	nodes	and	call	DFS.

Before	 the	 first	DFS	 in	each	connected	component,	 increment	 the	connected	components	count.
Continue	this	process	until	all	of	the	graph	nodes	are	visited.	As	a	result,	at	the	end	we	will	get
the	 total	 number	 of	 connected	 components.	 The	 implementation	 based	 on	 this	 logic	 is	 given
below:



Problem-12  All	 pairs	 shortest	 path	 problem:	 Find	 the	 shortest	 graph	 distances	 between
every	pair	of	vertices	in	a	given	graph.	Let	us	assume	that	the	given	graph	does	not	have
negative	edges.

Solution:	The	problem	can	be	solved	using	n	applications	of	Dijkstra’s	algorithm.	That	means	we
apply	Dijkstra’s	algorithm	on	each	vertex	of	the	given	graph.	This	algorithm	does	not	work	if	the
graph	has	edges	with	negative	weights.

Problem-13  In	Problem-12,	how	do	we	solve	the	all	pairs	shortest	path	problem	if	the	graph
has	edges	with	negative	weights?

Solution:	 This	 can	 be	 solved	 by	 using	 the	 Floyd	 –	 Warshall	 algorithm.	 This	 algorithm	 also
works	in	the	case	of	a	weighted	graph	where	the	edges	have	negative	weights.	This	algorithm	is
an	example	of	Dynamic	Programming	-refer	to	the	Dynamic	Programming	chapter.

Problem-14  DFS	Application:	Cut	Vertex	or	Articulation	Points

Solution:	In	an	undirected	graph,	a	cut	vertex	(or	articulation	point)	is	a	vertex,	and	if	we	remove
it,	then	the	graph	splits	into	two	disconnected	components.	As	an	example,	consider	the	following
figure.	Removal	of	the	“D”	vertex	divides	the	graph	into	two	connected	components	({E,F}	and
{A,B,	C,	G}).

Similarly,	 removal	 of	 the	 “C”	 vertex	 divides	 the	 graph	 into	 ({G}	 and	 {A,	 B,D,E,F}).	 For	 this
graph,	A	and	C	are	the	cut	vertices.



Note:	A	connected,	undirected	graph	is	called	bi	–	connected	if	the	graph	is	still	connected	after
removing	any	vertex.

DFS	provides	a	linear-time	algorithm	(O(n))	to	find	all	cut	vertices	in	a	connected	graph.	Starting
at	any	vertex,	call	a	DFS	and	number	the	nodes	as	they	are	visited.	For	each	vertex	v,	we	call	this
DFS	 number	 dfsnum(v).	 The	 tree	 generated	with	DFS	 traversal	 is	 called	DFS	 spanning	 tree.
Then,	 for	 every	 vertex	 v	 in	 the	DFS	 spanning	 tree,	 we	 compute	 the	 lowest-numbered	 vertex,
which	 we	 call	 low(v),	 that	 is	 reachable	 from	 v	 by	 taking	 zero	 or	 more	 tree	 edges	 and	 then
possibly	one	back	edge	(in	that	order).

Based	on	the	above	discussion,	we	need	the	following	information	for	this	algorithm:	the	dfsnum
of	each	vertex	in	the	DFS	 tree	(once	it	gets	visited),	and	for	each	vertex	v,	 the	 lowest	depth	of
neighbors	of	all	descendants	of	v	in	the	DFS	tree,	called	the	low.

The	 dfsnum	 can	 be	 computed	 during	 DFS.	 The	 low	 of	 v	 can	 be	 computed	 after	 visiting	 all
descendants	of	v	(i.e.,	just	before	v	gets	popped	off	the	DFS	stack)	as	the	minimum	of	the	dfsnum
of	all	neighbors	of	v	(other	than	the	parent	of	v	in	the	DFS	tree)	and	the	low	of	all	children	of	v	in
the	DFS	tree.



The	root	vertex	is	a	cut	vertex	if	and	only	if	it	has	at	least	two	children.	A	non-root	vertex	u	is	a
cut	vertex	if	and	only	if	there	is	a	son	v	of	u	such	that	low(v)	≥	dfsnum(u).	This	property	can	be
tested	once	the	DFS	is	returned	from	every	child	of	u	(that	means,	just	before	u	gets	popped	off
the	DFS	stack),	and	if	true,	u	separates	the	graph	into	different	bi-connected	components.	This	can
be	 represented	 by	 computing	 one	 bi-connected	 component	 out	 of	 every	 such	 v	 (a	 component
which	contains	v	will	contain	the	sub-tree	of	v,	plus	u),	and	then	erasing	the	sub-tree	of	v	from	the
tree.

For	the	given	graph,	 the	DFS	 tree	with	dfsnum/low	can	be	given	as	shown	in	 the	figure	below.
The	implementation	for	the	above	discussion	is:



Problem-15  Let	G	 be	 a	 connected	 graph	of	 order	n.	What	 is	 the	maximum	number	 of	 cut-
vertices	that	G	can	contain?

Solution:	n	–	2.	As	an	example,	consider	the	following	graph.	In	the	graph	below,	except	for	the
vertices	1	and	n,	 all	 the	 remaining	vertices	are	cut	vertices.	This	 is	because	 removing	1	and	n
vertices	does	not	split	the	graph	into	two.	This	is	a	case	where	we	can	get	the	maximum	number
of	cut	vertices.

Problem-16  DFS	Application:	Cut	Bridges	or	Cut	Edges

Solution:
Definition:	Let	G	be	a	connected	graph.	An	edge	uv	 in	G	 is	called	a	bridge	of	G	 if	G	–	uv	 is
disconnected.

As	an	example,	consider	the	following	graph.



In	the	above	graph,	if	we	remove	the	edge	uv	then	the	graph	splits	into	two	components.	For	this
graph,	uv	 is	a	bridge.	The	discussion	we	had	for	cut	vertices	holds	good	for	bridges	also.	The
only	change	is,	instead	of	printing	the	vertex,	we	give	the	edge.	The	main	observation	is	that	an
edge	(u,	v)	cannot	be	a	bridge	if	it	is	part	of	a	cycle.	If	(u,	v)	is	not	part	of	a	cycle,	 then	it	 is	a
bridge.

We	can	detect	cycles	in	DFS	by	the	presence	of	back	edges,	(u,	v)	is	a	bridge	if	and	only	if	none
of	v	or	v’s	 children	has	a	back	edge	 to	u	or	 any	of	u’s	 ancestors.	To	detect	whether	 any	of	v’s
children	has	 a	 back	 edge	 to	u’s	 parent,	we	 can	use	 a	 similar	 idea	 as	 above	 to	 see	what	 is	 the
smallest	dfsnum	reachable	from	the	subtree	rooted	at	v.

Problem-17  DFS	Application:	Discuss	Euler	Circuits



Solution:	Before	discussing	this	problem	let	us	see	the	terminology:

• Eulerian	tour-	a	path	that	contains	all	edges	without	repetition.
• Eulerian	circuit	 –	 a	 path	 that	 contains	 all	 edges	without	 repetition	 and	 starts	 and

ends	in	the	same	vertex.
• Eulerian	graph	–	a	graph	that	contains	an	Eulerian	circuit.
• Even	vertex:	a	vertex	that	has	an	even	number	of	incident	edges.
• Odd	vertex:	a	vertex	that	has	an	odd	number	of	incident	edges.

Euler	circuit:	For	a	given	graph	we	have	to	reconstruct	the	circuits	using	a	pen,	drawing	each	line
exactly	once.	We	should	not	lift	the	pen	from	the	paper	while	drawing.	That	means,	we	must	find	a
path	 in	 the	graph	 that	 visits	 every	 edge	 exactly	 once	 and	 this	 problem	 is	 called	 an	Euler	 path
(also	called	Euler	 tour)	or	Euler	 circuit	 problem.	This	 puzzle	 has	 a	 simple	 solution	based	on
DFS.

An	Euler	circuit	exists	if	and	only	if	the	graph	is	connected	and	the	number	of	neighbors	of	each
vertex	is	even.	Start	with	any	node,	select	any	untraversed	outgoing	edge,	and	follow	it.	Repeat
until	there	are	no	more	remaining	unselected	outgoing	edges.	For	example,	consider	the	following
graph:	A	legal	Euler	Circuit	of	this	graph	is	0	1	3	4	1	2	3	5	4	2	0.

If	we	start	at	vertex	0,	we	can	select	the	edge	to	vertex	1,	then	select	the	edge	to	vertex	2,	then
select	the	edge	to	vertex	0.	There	are	now	no	remaining	unchosen	edges	from	vertex	0:



We	now	have	a	circuit	0,1,2,0	that	does	not	traverse	every	edge.	So,	we	pick	some	other	vertex
that	is	on	that	circuit,	say	vertex	1.	We	then	do	another	depth	first	search	of	the	remaining	edges.
Say	 we	 choose	 the	 edge	 to	 node	 3,	 then	 4,	 then	 1.	 Again	 we	 are	 stuck.	 There	 are	 no	 more
unchosen	 edges	 from	node	 1.	We	 now	 splice	 this	 path	 1,3,4,1	 into	 the	 old	 path	 0,1,2,0	 to	 get:
0,1,3,4,1,2,0.	The	unchosen	edges	now	look	like	this:

We	 can	 pick	 yet	 another	 vertex	 to	 start	 another	DFS.	 If	we	 pick	 vertex	 2,	 and	 splice	 the	 path
2,3,5,4,2,	then	we	get	the	final	circuit	0,1,3,4,1,2,3,5,4,2,0.

A	similar	problem	is	to	find	a	simple	cycle	in	an	undirected	graph	that	visits	every	vertex.	This	is
known	as	the	Hamiltonian	cycle	problem.	Although	it	seems	almost	identical	to	the	Euler	circuit
problem,	no	efficient	algorithm	for	it	is	known.

Notes:

• A	connected	undirected	graph	 is	Eulerian	 if	and	only	 if	every	graph	vertex	has	an
even	degree,	or	exactly	two	vertices	with	an	odd	degree.

• A	directed	graph	is	Eulerian	if	it	is	strongly	connected	and	every	vertex	has	an	equal
in	and	out	degree.

Application:	A	postman	has	 to	visit	a	set	of	streets	 in	order	 to	deliver	mails	and	packages.	He
needs	 to	 find	 a	 path	 that	 starts	 and	 ends	 at	 the	 post-office,	 and	 that	 passes	 through	 each	 street



(edge)	exactly	once.	This	way	the	postman	will	deliver	mails	and	packages	to	all	the	necessary
streets,	and	at	the	same	time	will	spend	minimum	time/effort	on	the	road.

Problem-18  DFS	Application:	Finding	Strongly	Connected	Components.

Solution:	 This	 is	 another	 application	 of	 DFS.	 In	 a	 directed	 graph,	 two	 vertices	 u	 and	 v	 are
strongly	connected	if	and	only	if	there	exists	a	path	from	u	to	v	and	there	exists	a	path	from	v	to	u.
The	strong	connectedness	is	an	equivalence	relation.

• A	vertex	is	strongly	connected	with	itself
• If	a	vertex	u	is	strongly	connected	to	a	vertex	v,	then	v	is	strongly	connected	to	u
• If	 a	vertex	u	 is	 strongly	 connected	 to	 a	 vertex	v,	 and	v	 is	 strongly	 connected	 to	 a

vertex	x,	then	u	is	strongly	connected	to	x

What	this	says	is,	for	a	given	directed	graph	we	can	divide	it	into	strongly	connected	components.
This	problem	can	be	solved	by	performing	two	depth-first	searches.	With	two	DFS	searches	we
can	 test	whether	 a	 given	directed	graph	 is	 strongly	 connected	or	 not.	We	 can	 also	produce	 the
subsets	of	vertices	that	are	strongly	connected.

Algorithm

• Perform	DFS	on	given	graph	G.
• Number	vertices	of	given	graph	G	according	to	a	post-order	traversal	of	depth-first

spanning	forest.
• Construct	graph	Gr	by	reversing	all	edges	in	G.
• Perform	DFS	on	Gr:	Always	 start	 a	new	DFS	 (initial	 call	 to	Visit)	 at	 the	highest-

numbered	vertex.
• Each	 tree	 in	 the	 resulting	 depth-first	 spanning	 forest	 corresponds	 to	 a	 strongly-

connected	component.

Why	this	algorithm	works?

Let	us	consider	two	vertices,	v	and	w.	If	they	are	in	the	same	strongly	connected	component,	then
there	are	paths	from	v	to	W	and	from	w	to	v	in	the	original	graph	G,	and	hence	also	in	Gr.	If	two
vertices	v	and	w	are	not	in	the	same	depth-first	spanning	tree	of	Gr,	clearly	they	cannot	be	in	the
same	strongly	connected	component.	As	an	example,	consider	the	graph	shown	below	on	the	left.
Let	us	assume	this	graph	is	G.



Now,	 as	 per	 the	 algorithm,	performing	DFS	 on	 this	G	 graph	 gives	 the	 following	 diagram.	The
dotted	line	from	C	to	A	indicates	a	back	edge.

Now,	performing	post	order	traversal	on	this	tree	gives:	D,C,B	and	A.

Vertex Post	Order	Number

A 4

B 3

C 2

D 1

Now	reverse	the	given	graph	G	and	call	it	Gr	and	at	the	same	time	assign	postorder	numbers	to
the	vertices.	The	reversed	graph	Gr	will	look	like:



The	 last	 step	 is	 performing	 DFS	 on	 this	 reversed	 graph	 Gr.	 While	 doing	 DFS,	 we	 need	 to
consider	the	vertex	which	has	the	largest	DFS	number.	So,	first	we	start	at	A	and	with	DFS	we	go
to	C	and	then	B.	At	B,	we	cannot	move	further.	This	says	that	{A,	B,	C}	is	a	strongly	connected
component.	 Now	 the	 only	 remaining	 element	 is	D	 and	 we	 end	 our	 second	DFS	 at	D.	 So	 the
connected	components	are:	{A,	B,	C}	and	{D}.

The	implementation	based	on	this	discussion	can	be	shown	as:



Problem-19  Count	the	number	of	connected	components	of	Graph	G	which	is	represented	in
the	adjacent	matrix.

Solution:	This	problem	can	be	solved	with	one	extra	counter	in	DFS.



Time	Complexity:	Same	as	that	of	DFS	and	it	depends	on	implementation.	With	adjacency	matrix
the	complexity	is	O(|E|	+	|V|)	and	with	adjacency	matrix	the	complexity	is	O(|V|2).

Problem-20  Can	we	solve	the	Problem-19,	using	BFS?

Solution:	Yes.	This	problem	can	be	solved	with	one	extra	counter	in	BFS.



Time	Complexity:	Same	as	that	of	BFS	and	it	depends	on	implementation.	With	adjacency	matrix
the	complexity	is	O(|E|	+	|V|)	and	with	adjacency	matrix	the	complexity	is	O(|V|2).

Problem-21  Let	us	assume	that	G(V,E)	is	an	undirected	graph.	Give	an	algorithm	for	finding	a
spanning	 tree	 which	 takes	 O(|E|)	 time	 complexity	 (not	 necessarily	 a	 minimum	 spanning
tree).

Solution:	The	test	 for	a	cycle	can	be	done	in	constant	 time,	by	marking	vertices	 that	have	been
added	to	the	set	S.	An	edge	will	introduce	a	cycle,	if	both	its	vertices	have	already	been	marked.

Algorithm:



Problem-22  Is	there	any	other	way	of	solving	0?

Solution:	Yes.	We	can	run	BFS	and	find	the	BFS	tree	for	the	graph	(level	order	tree	of	the	graph).
Then	start	at	the	root	element	and	keep	moving	to	the	next	levels	and	at	the	same	time	we	have	to
consider	the	nodes	in	the	next	level	only	once.	That	means,	if	we	have	a	node	with	multiple	input
edges	then	we	should	consider	only	one	of	them;	otherwise	they	will	form	a	cycle.

Problem-23  Detecting	a	cycle	in	an	undirected	graph

Solution:	An	undirected	graph	is	acyclic	if	and	only	if	a	DFS	yields	no	back	edges,	edges	(u,	v)
where	v	has	already	been	discovered	and	is	an	ancestor	of	u.

• Execute	DFS	on	the	graph.
• If	there	is	a	back	edge	–	the	graph	has	a	cycle.

If	the	graph	does	not	contain	a	cycle,	then	|E|	<	|V|	and	DFS	cost	O(|V|).	If	the	graph	contains	a
cycle,	then	a	back	edge	is	discovered	after	2|V|	steps	at	most.

Problem-24  Detecting	a	cycle	in	DAG

Solution:

Cycle	detection	on	a	graph	is	different	than	on	a	tree.	This	is	because	in	a	graph,	a	node	can	have
multiple	parents.	In	a	tree,	the	algorithm	for	detecting	a	cycle	is	to	do	a	depth	first	search,	marking
nodes	as	they	are	encountered.	If	a	previously	marked	node	is	seen	again,	then	a	cycle	exists.	This
won’t	work	on	 a	graph.	Let	 us	 consider	 the	graph	 shown	 in	 the	 figure	below.	 If	we	use	 a	 tree
cycle	detection	algorithm,	 then	 it	will	 report	 the	wrong	result.	That	means	 that	 this	graph	has	a
cycle	in	it.	But	the	given	graph	does	not	have	a	cycle	in	it.	This	is	because	node	3	will	be	seen
twice	in	a	DFS	starting	at	node	1.



The	cycle	detection	algorithm	for	trees	can	easily	be	modified	to	work	for	graphs.	The	key	is	that
in	a	DFS	of	an	acyclic	graph,	a	node	whose	descendants	have	all	been	visited	can	be	seen	again
without	implying	a	cycle.	But,	if	a	node	is	seen	for	the	second	time	before	all	its	descendants	have
been	 visited,	 then	 there	 must	 be	 a	 cycle.	 Can	 you	 see	 why	 this	 is?	 Suppose	 there	 is	 a	 cycle
containing	node	A.	This	means	that	A	must	be	reachable	from	one	of	its	descendants.	So	when	the
DFS	 is	 visiting	 that	 descendant,	 it	 will	 see	A	 again,	 before	 it	 has	 finished	 visiting	 all	 of	 A’s
descendants.	So	there	is	a	cycle.	In	order	to	detect	cycles,	we	can	modify	the	depth	first	search.

Time	Complexity:	O(V	+	E).

Problem-25  Given	a	directed	acyclic	graph,	give	an	algorithm	for	finding	its	depth.

Solution:	If	it	is	an	undirected	graph,	we	can	use	the	simple	unweighted	shortest	path	algorithm
(check	Shortest	Path	Algorithms	 section).	We	 just	need	 to	 return	 the	highest	number	among	all
distances.	For	directed	acyclic	graph,	we	can	solve	by	following	the	similar	approach	which	we
used	 for	 finding	 the	 depth	 in	 trees.	 In	 trees,	 we	 have	 solved	 this	 problem	 using	 level	 order



traversal	(with	one	extra	special	symbol	to	indicate	the	end	of	the	level).

Total	running	time	is	O(V	+	E).

Problem-26  How	many	topological	sorts	of	the	following	dag	are	there?

Solution:	 If	 we	 observe	 the	 above	 graph	 there	 are	 three	 stages	 with	 2	 vertices.	 In	 the	 early



discussion	of	this	chapter,	we	saw	that	topological	sort	picks	the	elements	with	zero	indegree	at
any	point	of	time.	At	each	of	the	two	vertices	stages,	we	can	first	process	either	the	top	vertex	or
the	 bottom	 vertex.	As	 a	 result,	 at	 each	 of	 these	 stages	we	 have	 two	 possibilities.	 So	 the	 total
number	of	possibilities	is	the	multiplication	of	possibilities	at	each	stage	and	that	is,	2	×	2	×	2	=
8.

Problem-27  Unique	 topological	 ordering:	 Design	 an	 algorithm	 to	 determine	 whether	 a
directed	graph	has	a	unique	topological	ordering.

Solution:	A	directed	graph	has	 a	unique	 topological	ordering	 if	 and	only	 if	 there	 is	 a	directed
edge	between	each	pair	of	consecutive	vertices	in	the	topological	order.	This	can	also	be	defined
as:	a	directed	graph	has	a	unique	topological	ordering	if	and	only	if	it	has	a	Hamiltonian	path.	If
the	digraph	has	multiple	topological	orderings,	then	a	second	topological	order	can	be	obtained
by	swapping	a	pair	of	consecutive	vertices.

Problem-28  Let	us	 consider	 the	prerequisites	 for	 courses	 at	 IIT	Bombay.	 Suppose	 that	 all
prerequisites	are	mandatory,	every	course	is	offered	every	semester,	and	there	is	no	limit
to	the	number	of	courses	we	can	take	in	one	semester.	We	would	like	to	know	the	minimum
number	of	semesters	required	to	complete	the	major.	Describe	the	data	structure	we	would
use	to	represent	this	problem,	and	outline	a	linear	time	algorithm	for	solving	it.

Solution:	 Use	 a	 directed	 acyclic	 graph	 (DAG).	 The	 vertices	 represent	 courses	 and	 the	 edges
represent	 the	 prerequisite	 relation	 between	 courses	 at	 IIT	 Bombay.	 It	 is	 a	 DAG,	 because	 the
prerequisite	relation	has	no	cycles.

The	number	of	semesters	required	to	complete	the	major	is	one	more	than	the	longest	path	in	the
dag.	This	can	be	calculated	on	the	DFS	tree	recursively	in	linear	time.	The	longest	path	out	of	a
vertex	x	is	0	if	x	has	outdegree	0,	otherwise	it	is	1	+	max	{longest	path	out	of	y	|	(x,y)	is	an	edge
of	G}.

Problem-29  At	a	university	let’s	say	IIT	Bombay),	there	is	a	list	of	courses	along	with	their
prerequisites.	That	means,	two	lists	are	given:
A	–	Courses	list
B	–	Prerequisites:	B	contains	couples	(x,y)	where	x,y	∈	A	indicating	that	course	x	can’t	be
taken	before	course	y.

Let	us	consider	a	student	who	wants	to	take	only	one	course	in	a	semester.	Design	a	schedule
for	this	student.

Example:	 A	 =	 {C-Lang,	 Data	 Structures,	 OS,	 CO,	 Algorithms,	 Design	 Patterns,
Programming}.	 B	 =	 {	 (C-Lang,	 CO),	 (OS,	 CO),	 (Data	 Structures,	Algorithms),	 (Design
Patterns,	Programming)	}.	One	possible	schedule	could	be:

Semester	1: Data	Structures
Semester	2: Algorithms
Semester	3: C-Lang



Semester	4: OS
Semester	5: CO
Semester	6: Design	Patterns
Semester	7: Programming

Solution:	The	solution	to	this	problem	is	exactly	the	same	as	that	of	topological	sort.	Assume	that
the	courses	names	are	 integers	 in	 the	range	[1..n],	n	 is	known	(n	 is	not	constant).	The	relations
between	the	courses	will	be	represented	by	a	directed	graph	G	=	 (V,E),	where	V	are	 the	set	of
courses	and	if	course	i	is	prerequisite	of	course	j,	E	will	contain	the	edge	(i,j).	Let	us	assume	that
the	graph	will	be	represented	as	an	Adjacency	list.

First,	let’s	observe	another	algorithm	to	topologically	sort	a	DAG	in	O(|V|	+	|E|).

• Find	in-degree	of	all	the	vertices	-	O(|V|	+	|E|)
• Repeat:

Find	a	vertex	v	with	in-degree=0	-	O(|V|)
Output	v	and	remove	it	from	G,	along	with	its	edges	-	O(|V|)
Reduce	the	in-degree	of	each	node	u	such	as	(v,	u)	was	an	edge	in	G	and	keep	a	list
of	vertices	with	in-degree=0	–	O(degree(v))
Repeat	the	process	until	all	the	vertices	are	removed

The	time	complexity	of	this	algorithm	is	also	the	same	as	that	of	the	topological	sort	and	it	is	O(|V|
+	|E|).

Problem-30  In	 Problem-29,	 a	 student	 wants	 to	 take	 all	 the	 courses	 in	 A,	 in	 the	 minimal
number	of	semesters.	That	means	the	student	 is	ready	to	take	any	number	of	courses	in	a
semester.	Design	a	schedule	for	this	scenario.	One	possible	schedule	is:
Semester	1:	C-Lang,	OS,	Design	Patterns
Semester	2:	Data	Structures,	CO,	Programming
Semester	3:	Algorithms

Solution:	 A	 variation	 of	 the	 above	 topological	 sort	 algorithm	 with	 a	 slight	 change:	 In	 each
semester,	 instead	 of	 taking	 one	 subject,	 take	 all	 the	 subjects	 with	 zero	 indegree.	 That	 means,
execute	the	algorithm	on	all	the	nodes	with	degree	0	(instead	of	dealing	with	one	source	in	each
stage,	all	the	sources	will	be	dealt	and	printed).

Time	Complexity:	O(|V|	+	|E|).

Problem-31  LCA	 of	 a	 DAG:	 Given	 a	 DAG	 and	 two	 vertices	 v	 and	 w,	 find	 the	 lowest
common	ancestor	(LCA)	of	v	and	w.	The	LCA	of	v	and	w	is	an	ancestor	of	v	and	w	 that
has	no	descendants	that	are	also	ancestors	of	v	and	w.

Hint:	Define	the	height	of	a	vertex	v	in	a	DAG	to	be	the	length	of	the	longest	path	from	root	to	v.
Among	the	vertices	that	are	ancestors	of	both	v	and	w,	the	one	with	the	greatest	height	is	an	LCA



of	v	and	w.

Problem-32  Shortest	 ancestral	 path:	 Given	 a	 DAG	 and	 two	 vertices	 v	 and	w,	 find	 the
shortest	ancestral	path	between	v	and	w.	An	ancestral	path	between	v	and	w	is	a	common
ancestor	x	 along	with	 a	 shortest	 path	 from	 v	 to	 x	 and	 a	 shortest	 path	 from	w	 to	 x.	 The
shortest	ancestral	path	is	the	ancestral	path	whose	total	length	is	minimized.

Hint:	 Run	BFS	 two	 times.	 First	 run	 from	 v	 and	 second	 time	 from	w.	 Find	 a	 DAG	where	 the
shortest	ancestral	path	goes	to	a	common	ancestor	x	that	is	not	an	LCA.

Problem-33  Let	us	assume	that	we	have	two	graphs	G1	and	G2.	How	do	we	check	whether
they	are	isomorphic	or	not?

Solution:	 There	 are	 many	 ways	 of	 representing	 the	 same	 graph.	 As	 an	 example,	 consider	 the
following	simple	graph.	It	can	be	seen	that	all	the	representations	below	have	the	same	number	of
vertices	and	the	same	number	of	edges.

Definition:	Graphs	G1	=	{V1,	E1}	and	G2	=	{V2,	E2}	are	isomorphic	if

1) There	is	a	one-to-one	correspondence	from	V1	to	V2	and
2) There	is	a	one-to-one	correspondence	from	E1	to	E2	that	map	each	edge	of	G1	to	G2.

Now,	for	the	given	graphs	how	do	we	check	whether	they	are	isomorphic	or	not?

In	general,	 it	 is	not	a	 simple	 task	 to	prove	 that	 two	graphs	are	 isomorphic.	For	 that	 reason	we
must	 consider	 some	 properties	 of	 isomorphic	 graphs.	 That	 means	 those	 properties	 must	 be
satisfied	if	the	graphs	are	isomorphic.	If	the	given	graph	does	not	satisfy	these	properties	then	we
say	they	are	not	isomorphic	graphs.

Property:	 Two	 graphs	 are	 isomorphic	 if	 and	 only	 if	 for	 some	 ordering	 of	 their	 vertices	 their
adjacency	matrices	are	equal.

Based	on	the	above	property	we	decide	whether	the	given	graphs	are	isomorphic	or	not.	I	order
to	check	the	property,	we	need	to	do	some	matrix	transformation	operations.

Problem-34  How	many	simple	undirected	non-isomorphic	graphs	are	there	with	n	vertices?

Solution:	We	will	 try	 to	 answer	 this	question	 in	 two	 steps.	First,	we	count	 all	 labeled	graphs.
Assume	all	 the	 representations	below	are	 labeled	with	{1,2,3}	as	vertices.	The	set	of	all	 such
graphs	for	n	=	3	are:



There	 are	 only	 two	 choices	 for	 each	 edge:	 it	 either	 exists	 or	 it	 does	 not.	 Therefore,	 since	 the
maximum	 number	 of	 edges	 is	 	 (and	 since	 the	maximum	 number	 of	 edges	 in	 an	 undirected

graph	with	n	vertices	is	 ,	 the	total	number	of	undirected	labeled	graphs	is	
.

Problem-35  Hamiltonian	path	 in	DAGs:	Given	a	DAG,	design	a	 linear	 time	algorithm	 to
determine	whether	there	is	a	path	that	visits	each	vertex	exactly	once.

Solution:	 The	 Hamiltonian	 path	 problem	 is	 an	 NP-Complete	 problem	 (for	 more	 details	 ref
Complexity	 Classes	 chapter).	 To	 solve	 this	 problem,	 we	 will	 try	 to	 give	 the	 approximation
algorithm	(which	solves	the	problem,	but	it	may	not	always	produce	the	optimal	solution).

Let	us	consider	the	topological	sort	algorithm	for	solving	this	problem.	Topological	sort	has	an
interesting	property:	that	if	all	pairs	of	consecutive	vertices	in	the	sorted	order	are	connected	by
edges,	 then	 these	 edges	 form	 a	 directed	Hamiltonian	 path	 in	 the	DAG.	 If	 a	Hamiltonian	 path
exists,	 the	 topological	 sort	 order	 is	 unique.	 Also,	 if	 a	 topological	 sort	 does	 not	 form	 a
Hamiltonian	path,	the	DAG	will	have	two	or	more	topological	orderings.

Approximation	Algorithm:	Compute	a	topological	sort	and	check	if	there	is	an	edge	between	each
consecutive	pair	of	vertices	in	the	topological	order.

In	 an	unweighted	graph,	 find	a	path	 from	 s	 to	 t	 that	 visits	 each	vertex	 exactly	 once.	The	basic
solution	based	on	backtracking	 is,	we	start	at	 s	and	 try	all	of	 its	neighbors	 recursively,	making
sure	we	never	visit	 the	 same	vertex	 twice.	The	algorithm	based	on	 this	 implementation	can	be
given	as:



Note	that	if	we	have	a	partial	path	from	s	to	u	using	vertices	s	=	v1,	v2,...,	vk	=	u,	then	we	don’t
care	about	the	order	in	which	we	visited	these	vertices	so	as	to	figure	out	which	vertex	to	visit
next.	All	 that	we	need	 to	know	 is	 the	set	of	vertices	we	have	seen	 (the	seenTable[]	array)	and
which	vertex	we	are	at	right	now	(u).	There	are	2n	possible	sets	of	vertices	and	n	choices	for	u.	In
other	 words,	 there	 are	 2n	 possible	 seenTable[]	 arrays	 and	 n	 different	 parameters	 to
Hamiltonian_path().	 What	 Hamiltonian_path()	 does	 during	 any	 particular	 recursive	 call	 is
completely	determined	by	the	seenTable[	]	array	and	the	parameter	u.

Problem-36  For	a	given	graph	G	with	n	vertices	how	many	trees	we	can	construct?

Solution:	There	is	a	simple	formula	for	this	problem	and	it	is	named	after	Arthur	Cayley.	For	a
given	graph	with	n	labeled	vertices	the	formula	for	finding	number	of	trees	on	is	nn–2.	Below,	the
number	of	trees	with	different	n	values	is	shown.

Problem-37  For	a	given	graph	G	with	n	vertices	how	many	spanning	trees	can	we	construct?



Solution:	The	solution	to	this	problem	is	the	same	as	that	of	Problem-36.	It	is	just	another	way	of
asking	the	same	question.	Because	the	number	of	edges	in	both	regular	tree	and	spanning	tree	are
the	same.

Problem-38  The	Hamiltonian	cycle	problem:	Is	it	possible	to	traverse	each	of	the	vertices
of	a	graph	exactly	once,	starting	and	ending	at	the	same	vertex?

Solution:	 Since	 the	Hamiltonian	 path	 problem	 is	 an	 NP-Complete	 problem,	 the	Hamiltonian
cycle	problem	is	an	NP-Complete	problem.	A	Hamiltonian	cycle	is	a	cycle	that	traverses	every
vertex	of	a	graph	exactly	once.	There	are	no	known	conditions	in	which	are	both	necessary	and
sufficient,	but	there	are	a	few	sufficient	conditions.

• For	a	graph	to	have	a	Hamiltonian	cycle	the	degree	of	each	vertex	must	be	two	or
more.

• The	Petersen	graph	does	not	have	a	Hamiltonian	cycle	and	the	graph	is	given	below.

• In	general,	the	more	edges	a	graph	has,	the	more	likely	it	is	to	have	a	Hamiltonian
cycle.

• Let	G	be	a	simple	graph	with	n	≥	3	vertices.	If	every	vertex	has	a	degree	of	at	least	
,	then	G	has	a	Hamiltonian	cycle.

• The	best	known	algorithm	for	finding	a	Hamiltonian	cycle	has	an	exponential	worst-
case	complexity.

Note:	For	the	approximation	algorithm	of	Hamiltonian	path,	refer	to	the	Dynamic	Programming
chapter.

Problem-39  What	is	the	difference	between	Dijkstra’s	and	Prim’s	algorithm?

Solution:	Dijkstra’s	 algorithm	 is	 almost	 identical	 to	 that	 of	Prim’s.	 The	 algorithm	 begins	 at	 a
specific	vertex	and	extends	outward	within	 the	graph	until	 all	vertices	have	been	 reached.	The
only	distinction	is	that	Prim’s	algorithm	stores	a	minimum	cost	edge	whereas	Dijkstra’s	algorithm
stores	the	total	cost	from	a	source	vertex	to	the	current	vertex.	More	simply,	Dijkstra’s	algorithm
stores	a	summation	of	minimum	cost	edges	whereas	Prim’s	algorithm	stores	at	most	one	minimum
cost	edge.

Problem-40  Reversing	Graph:	 :	Give	an	algorithm	that	 returns	 the	reverse	of	 the	directed
graph	(each	edge	from	v	to	w	is	replaced	by	an	edge	from	w	to	v).



Solution:	 In	graph	 theory,	 the	 reverse	 (also	called	 transpose)	of	a	directed	graph	G	 is	 another
directed	graph	on	the	same	set	of	vertices	with	all	the	edges	reversed.	That	means,	if	G	contains
an	edge	(u,	v)	then	the	reverse	of	G	contains	an	edge	(v,	u)	and	vice	versa.

Algorithm:

Problem-41  Travelling	Sales	Person	Problem:	Find	the	shortest	path	in	a	graph	that	visits
each	vertex	at	least	once,	starting	and	ending	at	the	same	vertex?

Solution:	 The	 Traveling	 Salesman	 Problem	 (TSP)	 is	 related	 to	 finding	 a	 Hamiltonian	 cycle.
Given	a	weighted	graph	G,	we	want	to	find	the	shortest	cycle	(may	be	non-simple)	that	visits	all
the	vertices.

Approximation	algorithm:	This	algorithm	does	not	solve	the	problem	but	gives	a	solution	which
is	within	a	factor	of	2	of	optimal	(in	the	worst-case).

1) Find	a	Minimal	Spanning	Tree	(MST).
2) Do	a	DFS	of	the	MST.

For	details,	refer	to	the	chapter	on	Complexity	Classes.

Problem-42  Discuss	Bipartite	matchings?

Solution:	In	Bipartite	graphs,	we	divide	the	graphs	in	to	two	disjoint	sets,	and	each	edge	connects
a	vertex	from	one	set	to	a	vertex	in	another	subset	(as	shown	in	figure).

Definition:	A	simple	graph	G	=	(V,	E)	is	called	a	bipartite	graph	if	its	vertices	can	be	divided
into	two	disjoint	sets	V	=	V1	⋃	V2,	such	that	every	edge	has	the	form	e	=	(a,b)	where	a	∈	V1	and
b	∈	V2.	One	important	condition	is	that	no	vertices	both	in	V1	or	both	in	V2	are	connected.



Properties	of	Bipartite	Graphs

• A	graph	is	called	bipartite	if	and	only	if	the	given	graph	does	not	have	an	odd	length
cycle.

• A	complete	bipartite	graph	Km,n	 is	a	bipartite	graph	that	has	each	vertex	from	one
set	adjacent	to	each	vertex	from	another	set.

• A	subset	of	edges	M	⊂	E	is	a	matching	if	no	two	edges	have	a	common	vertex.	As
an	example,	matching	sets	of	edges	are	represented	with	dotted	lines.	A	matching	M
is	called	maximum	if	it	has	the	largest	number	of	possible	edges.	In	the	graphs,	the
dotted	edges	represent	the	alternative	matching	for	the	given	graph.

• A	matching	M	is	perfect	if	it	matches	all	vertices.	We	must	have	V1	=	V2	in	order	to
have	perfect	matching.

• An	 alternating	 path	 is	 a	 path	 whose	 edges	 alternate	 between	 matched	 and
unmatched	edges.	If	we	find	an	alternating	path,	then	we	can	improve	the	matching.
This	 is	because	an	alternating	path	consists	of	matched	and	unmatched	edges.	The
number	 of	 unmatched	 edges	 exceeds	 the	 number	 of	 matched	 edges	 by	 one.



Therefore,	an	alternating	path	always	increases	the	matching	by	one.

The	 next	 question	 is,	 how	 do	we	 find	 a	 perfect	matching?	 Based	 on	 the	 above	 theory	 and
definition,	we	can	find	the	perfect	matching	with	the	following	approximation	algorithm.

Matching	Algorithm	(Hungarian	algorithm)

1) Start	at	unmatched	vertex.
2) Find	an	alternating	path.
3) If	it	exists,	change	matching	edges	to	no	matching	edges	and	conversely.	If	it	does	not

exist,	choose	another	unmatched	vertex.
4) If	the	number	of	edges	equals	V/2,	stop.	Otherwise	proceed	to	step	1	and	repeat,	as

long	as	all	vertices	have	been	examined	without	finding	any	alternating	paths.

Time	 Complexity	 of	 the	 Matching	 Algorithm:	 The	 number	 of	 iterations	 is	 in	 O(V).	 The
complexity	of	finding	an	alternating	path	using	BFS	is	O(E).	Therefore,	the	total	time	complexity
is	O(V	×	E).

Problem-43  Marriage	and	Personnel	Problem?

Marriage	 Problem:	 There	 are	 X	 men	 and	 Y	 women	 who	 desire	 to	 get	 married.	 Participants
indicate	who	among	the	opposite	sex	could	be	a	potential	spouse	for	them.	Every	woman	can	be
married	to	at	most	one	man,	and	every	man	to	at	most	one	woman.	How	can	we	marry	everybody
to	someone	they	like?

Personnel	Problem:	You	are	 the	boss	of	a	company.	The	company	has	M	workers	and	N	 jobs.
Each	 worker	 is	 qualified	 to	 do	 some	 jobs,	 but	 not	 others.	 How	will	 you	 assign	 jobs	 to	 each
worker?

Solution:	These	two	cases	are	just	another	way	of	asking	about	bipartite	graphs,	and	the	solution
is	the	same	as	that	of	Problem-42.

Problem-44  How	many	edges	will	be	there	in	complete	bipartite	graph	Km,n?

Solution:	m	×	n.	This	is	because	each	vertex	in	the	first	set	can	connect	all	vertices	in	the	second
set.

Problem-45  A	graph	 is	called	a	 regular	graph	 if	 it	has	no	 loops	and	multiple	edges	where
each	 vertex	 has	 the	 same	 number	 of	 neighbors;	 i.e.,	 every	 vertex	 has	 the	 same	 degree.
Now,	if	Km,n	is	a	regular	graph,	what	is	the	relation	between	m	and	n?

Solution:	Since	each	vertex	should	have	the	same	degree,	the	relation	should	be	m	=	n.

Problem-46  What	is	the	maximum	number	of	edges	in	the	maximum	matching	of	a	bipartite
graph	with	n	vertices?

Solution:	From	the	definition	of	matching,	we	should	not	have	edges	with	common	vertices.	So



in	a	bipartite	graph,	each	vertex	can	connect	to	only	one	vertex.	Since	we	divide	the	total	vertices
into	 two	 sets,	we	can	get	 the	maximum	number	of	 edges	 if	we	divide	 them	 in	half.	Finally	 the
answer	is	 .

Problem-47  Discuss	 Planar	Graphs.	Planar	 graph:	 Is	 it	 possible	 to	 draw	 the	 edges	 of	 a
graph	in	such	a	way	that	the	edges	do	not	cross?

Solution:	A	graph	G	is	said	to	be	planar	if	it	can	be	drawn	in	the	plane	in	such	a	way	that	no	two
edges	meet	each	other	except	at	a	vertex	to	which	they	are	incident.	Any	such	drawing	is	called	a
plane	drawing	of	G.	As	an	example	consider	the	below	graph:

This	graph	we	can	easily	convert	to	a	planar	graph	as	below	(without	any	crossed	edges).

How	do	we	decide	whether	a	given	graph	is	planar	or	not?

The	solution	to	this	problem	is	not	simple,	but	researchers	have	found	some	interesting	properties
that	we	can	use	to	decide	whether	the	given	graph	is	a	planar	graph	or	not.

Properties	of	Planar	Graphs

• If	a	graph	G	is	a	connected	planar	simple	graph	with	V	vertices,	where	V	=	3	and	E
edges,	then	E	=	3V	–	6.

• K5	is	non-planar.	[K5	stands	for	complete	graph	with	5	vertices].
• If	a	graph	G	is	a	connected	planar	simple	graph	with	V	vertices	and	E	edges,	and	no



triangles,	then	E	=	2V	–	4.
• K3,3	 is	non-planar.	[K3,3	stands	for	bipartite	graph	with	3	vertices	on	one	side	and

the	other	3	vertices	on	the	other	side.	K3,3	contains	6	vertices].
• If	a	graph	G	is	a	connected	planar	simple	graph,	then	G	contains	at	least	one	vertex

of	5	degrees	or	less.
• A	graph	is	planar	if	and	only	if	it	does	not	contain	a	subgraph	that	has	K5	and	K3,3	as

a	contraction.
• If	a	graph	G	contains	a	nonplanar	graph	as	a	subgraph,	then	G	is	non-planar.
• If	a	graph	G	is	a	planar	graph,	then	every	subgraph	of	G	is	planar.
• For	any	connected	planar	graph	G	=	(V,E),	the	following	formula	should	hold:	V	+	F

–	E	=	2,	where	F	stands	for	the	number	of	faces.
• For	any	planar	graph	G	=	(V,	E)	with	K	components,	the	following	formula	holds:	V

+	F	–	E	=	1	+	K.

In	order	to	test	the	planarity	of	a	given	graph,	we	use	these	properties	and	decide	whether	it	is	a
planar	graph	or	not.	Note	that	all	the	above	properties	are	only	the	necessary	conditions	but	not
sufficient.

Problem-48  How	many	faces	does	K2,3	have?

Solution:	From	the	above	discussion,	we	know	that	V	+	F	–	E	=	2,	and	from	an	earlier	problem
we	know	that	E	=	m	×	n	=	2	×	3	=	6	and	V	=	m	+	n	=	5.	∴	5	+	F	–	6	=	2	⇒	F	=	3.

Problem-49  Discuss	Graph	Coloring

Solution:	A	k	–coloring	of	a	graph	G	is	an	assignment	of	one	color	to	each	vertex	of	G	such	that
no	more	than	k	colors	are	used	and	no	two	adjacent	vertices	receive	the	same	color.	A	graph	is
called	k	–colorable	if	and	only	if	it	has	a	k	–coloring.

Applications	 of	Graph	Coloring:	 The	 graph	 coloring	 problem	 has	many	 applications	 such	 as
scheduling,	register	allocation	in	compilers,	frequency	assignment	in	mobile	radios,	etc.

Clique:	A	clique	in	a	graph	G	is	the	maximum	complete	subgraph	and	is	denoted	by	ω(G).

Chromatic	number:	The	chromatic	number	of	a	graph	G	is	the	smallest	number	k	such	that	G	is	k
–colorable,	and	it	is	denoted	by	X	(G).

The	lower	bound	for	X	(G)	is	ω(G),	and	that	means	ω(G)	≤	X	(G).

Properties	of	Chromatic	number:	Let	G	be	a	graph	with	n	vertices	and	G′	 is	 its	complement.
Then,

• X	(G)	≤	∆	(G)	+	1,	where	∆	(G)	is	the	maximum	degree	of	G.
• X(G)	ω(G′)	≥	n
• X(G)	+	ω(G′)	≤	n	+	1



• X(G)	+	(G′)	≤	n	+	1

K-colorability	problem:	Given	a	graph	G	=	(V,E)	and	a	positive	integer	k	≤	V.	Check	whether	G
is	k	–colorable?

This	 problem	 is	 NP-complete	 and	 will	 be	 discussed	 in	 detail	 in	 the	 chapter	 on	 Complexity
Classes.

Graph	coloring	algorithm:	As	discussed	 earlier,	 this	 problem	 is	NP-Complete.	 So	we	 do	 not
have	a	polynomial	time	algorithm	to	determine	X(G).	Let	us	consider	the	following	approximation
(no	efficient)	algorithm.

• Consider	a	graph	G	with	 two	non-adjacent	vertices	a	and	b.	The	connection	G1	 is
obtained	 by	 joining	 the	 two	 non-adjacent	 vertices	 a	 and	 b	 with	 an	 edge.	 The
contraction	G2	 is	 obtained	 by	 shrinking	 {a,b}	 into	 a	 single	 vertex	c(a,	b)	 and	 by
joining	it	to	each	neighbor	in	G	of	vertex	a	and	of	vertex	b	(and	eliminating	multiple
edges).

• A	coloring	of	G	 in	which	a	and	b	have	 the	same	color	yields	a	coloring	of	G1.	 A
coloring	of	G	in	which	a	and	b	have	different	colors	yields	a	coloring	of	G2.

• Repeat	 the	operations	of	connection	and	contraction	 in	each	graph	generated,	until
the	resulting	graphs	are	all	cliques.	If	 the	smallest	resulting	clique	is	a	K	–clique,
then	(G)	=	K.

Important	notes	on	Graph	Coloring

• Any	simple	planar	graph	G	can	be	colored	with	6	colors.
• Every	simple	planar	graph	can	be	colored	with	less	than	or	equal	to	5	colors.

Problem-50  What	is	the	four	coloring	problem?

Solution:	A	graph	can	be	constructed	from	any	map.	The	regions	of	the	map	are	represented	by
the	vertices	of	the	graph,	and	two	vertices	are	joined	by	an	edge	if	the	regions	corresponding	to
the	vertices	are	adjacent.	The	resulting	graph	is	planar.	That	means	it	can	be	drawn	in	the	plane
without	any	edges	crossing.

The	Four	Color	Problem	 is	whether	the	vertices	of	a	planar	graph	can	be	colored	with	at	most
four	colors	so	that	no	two	adjacent	vertices	use	the	same	color.

History:	 The	Four	 Color	 Problem	 was	 first	 given	 by	Francis	Guthrie.	 He	 was	 a	 student	 at
University	College	London	where	he	studied	under	Augusts	De	Morgan.	After	graduating	from
London	he	studied	law,	but	some	years	later	his	brother	Frederick	Guthrie	had	become	a	student
of	De	Morgan.	One	day	Francis	asked	his	brother	to	discuss	this	problem	with	De	Morgan.

Problem-51  When	an	adjacency-matrix	representation	is	used,	most	graph	algorithms	require
time	O(V2).	Show	that	determining	whether	a	directed	graph,	represented	in	an	adjacency-



matrix	that	contains	a	sink	can	be	done	in	time	O(V).	A	sink	is	a	vertex	with	in-degree	|V|
–	1	and	out-degree	0	(Only	one	can	exist	in	a	graph).

Solution:	A	vertex	i	is	a	sink	if	and	only	if	M[i,j]	=	0	for	all	j	and	M[j,	i]	=	1	for	all	j	≠	i.	For	any
pair	of	vertices	i	and	j:

Algorithm:

• Start	at	i	=	1,j	=	1
• If	M[i,j]	=	0	→	i	wins,	j	+	+
• If	M[i,j]	=	1	→	j	wins,	i	+	+
• Proceed	with	this	process	until	j	=	n	or	i	=	n	+	1
• If	i	==	n	+	1,	the	graph	does	not	contain	a	sink
• Otherwise,	check	row	i	–	it	should	be	all	zeros;	and	check	column	i	–	it	should	be	all

but	M[i,	i]	ones;	–	if	so,	t	is	a	sink.

Time	Complexity:	O(V),	because	at	most	2|V|	cells	in	the	matrix	are	examined.

Problem-52  What	is	the	worst	–	case	memory	usage	of	DFS?

Solution:	It	occurs	when	the	O(|V|),	which	happens	if	the	graph	is	actually	a	list.	So	the	algorithm
is	memory	efficient	on	graphs	with	small	diameter.

Problem-53  Does	DFS	find	the	shortest	path	from	start	node	to	some	node	w	?

Solution:	No.	In	DFS	it	is	not	compulsory	to	select	the	smallest	weight	edge.

Problem-54  True	 or	 False:	 Dijkstra’s	 algorithm	 does	 not	 compute	 the	 “all	 pairs”	 shortest
paths	 in	 a	 directed	 graph	 with	 positive	 edge	 weights	 because,	 running	 the	 algorithm	 a
single	time,	starting	from	some	single	vertex	x,	it	will	compute	only	the	min	distance	from
x	to	y	for	all	nodes	y	in	the	graph.

Solution:	True.

Problem-55  True	or	False:	Prim’s	and	Kruskal’s	algorithms	may	compute	different	minimum
spanning	trees	when	run	on	the	same	graph.

Solution:	True.



10.1	What	is	Sorting?

Sorting	is	an	algorithm	that	arranges	the	elements	of	a	list	in	a	certain	order	[either	ascending	or
descending].	The	output	is	a	permutation	or	reordering	of	the	input.

10.2	Why	is	Sorting	Necessary?

Sorting	is	one	of	the	important	categories	of	algorithms	in	computer	science	and	a	lot	of	research
has	gone	into	this	category.	Sorting	can	significantly	reduce	the	complexity	of	a	problem,	and	is
often	used	for	database	algorithms	and	searches.

10.3	Classification	of	Sorting	Algorithms

Sorting	algorithms	are	generally	categorized	based	on	the	following	parameters.



By	Number	of	Comparisons

In	 this	 method,	 sorting	 algorithms	 are	 classified	 based	 on	 the	 number	 of	 comparisons.	 For
comparison	based	sorting	algorithms,	best	case	behavior	is	O(nlogn)	and	worst	case	behavior	is
O(n2).	Comparison-based	sorting	algorithms	evaluate	the	elements	of	the	list	by	key	comparison
operation	and	need	at	least	O(nlogn)	comparisons	for	most	inputs.

Later	 in	 this	 chapter	we	will	discuss	 a	 few	non	–	 comparison	 (linear)	 sorting	 algorithms	 like
Counting	sort,	Bucket	sort,	Radix	sort,	etc.	Linear	Sorting	algorithms	impose	few	restrictions	on
the	inputs	to	improve	the	complexity.

By	Number	of	Swaps

In	 this	 method,	 sorting	 algorithms	 are	 categorized	 by	 the	 number	 of	 swaps	 (also	 called
inversions).

By	Memory	Usage

Some	 sorting	 algorithms	 are	 “in	 place”	 and	 they	 need	 O(1)	 or	 O(logn)	 memory	 to	 create
auxiliary	locations	for	sorting	the	data	temporarily.

By	Recursion

Sorting	algorithms	are	either	recursive	[quick	sort]	or	non-recursive	[selection	sort,	and	insertion
sort],	and	there	are	some	algorithms	which	use	both	(merge	sort).

By	Stability

Sorting	algorithm	is	stable	if	for	all	indices	i	and	j	such	that	the	key	A[i]	equals	key	A[j],	if	record
R[i]	precedes	record	R[j]	in	the	original	file,	record	R[i]	precedes	record	R[j]	in	the	sorted	list.
Few	 sorting	 algorithms	 maintain	 the	 relative	 order	 of	 elements	 with	 equal	 keys	 (equivalent
elements	retain	their	relative	positions	even	after	sorting).

By	Adaptability

With	a	few	sorting	algorithms,	the	complexity	changes	based	on	pre-sortedness	[quick	sort]:	pre-
sortedness	of	the	input	affects	the	running	time.	Algorithms	that	take	this	into	account	are	known	to
be	adaptive.



10.4	Other	Classifications

Another	method	of	classifying	sorting	algorithms	is:
• Internal	Sort
• External	Sort

Internal	Sort

Sort	 algorithms	 that	 use	 main	 memory	 exclusively	 during	 the	 sort	 are	 called	 internal	 sorting
algorithms.	This	kind	of	algorithm	assumes	high-speed	random	access	to	all	memory.

External	Sort

Sorting	algorithms	that	use	external	memory,	such	as	tape	or	disk,	during	the	sort	come	under	this
category.

10.5	Bubble	Sort

Bubble	sort	 is	 the	simplest	sorting	algorithm.	It	works	by	iterating	the	input	array	from	the	first
element	 to	 the	 last,	comparing	each	pair	of	elements	and	swapping	them	if	needed.	Bubble	sort
continues	its	iterations	until	no	more	swaps	are	needed.	The	algorithm	gets	its	name	from	the	way
smaller	elements	“bubble”	to	the	top	of	the	list.	Generally,	insertion	sort	has	better	performance
than	bubble	 sort.	Some	 researchers	 suggest	 that	we	should	not	 teach	bubble	 sort	because	of	 its
simplicity	and	high	time	complexity.

The	only	significant	advantage	that	bubble	sort	has	over	other	implementations	is	that	it	can	detect
whether	the	input	list	is	already	sorted	or	not.

Implementation



Algorithm	takes	O(n2)	(even	in	best	case).	We	can	improve	it	by	using	one	extra	flag.	No	more
swaps	indicate	the	completion	of	sorting.	If	the	list	is	already	sorted,	we	can	use	this	flag	to	skip
the	remaining	passes.

This	modified	version	improves	the	best	case	of	bubble	sort	to	O(n).

Performance

Worst	case	complexity	:	O(n2)

Best	case	complexity	(Improved	version)	:	O(n)



Average	case	complexity	(Basic	version)	:	O(n2)

Worst	case	space	complexity	:	O(1)	auxiliary

10.6	Selection	Sort

Selection	sort	is	an	in-place	sorting	algorithm.	Selection	sort	works	well	for	small	files.	It	is	used
for	 sorting	 the	 files	with	 very	 large	 values	 and	 small	 keys.	 This	 is	 because	 selection	 is	made
based	on	keys	and	swaps	are	made	only	when	required.

Advantages

• Easy	to	implement
• In-place	sort	(requires	no	additional	storage	space)

Disadvantages

• Doesn’t	scale	well:	O(n2)

Algorithm

1. Find	the	minimum	value	in	the	list
2. Swap	it	with	the	value	in	the	current	position
3. Repeat	this	process	for	all	the	elements	until	the	entire	array	is	sorted

This	algorithm	is	called	selection	sort	since	it	repeatedly	selects	the	smallest	element.

Implementation



Performance

Worst	case	complexity	:	O(n2)

Best	case	complexity	:	O(n2)

Average	case	complexity	:	O(n2)

Worst	case	space	complexity:	O(1)	auxiliary

10.7	Insertion	Sort

Insertion	sort	is	a	simple	and	efficient	comparison	sort.	In	this	algorithm,	each	iteration	removes
an	element	from	the	input	data	and	inserts	it	into	the	correct	position	in	the	list	being	sorted.	The
choice	of	the	element	being	removed	from	the	input	is	random	and	this	process	is	repeated	until
all	input	elements	have	gone	through.

Advantages

• Simple	implementation
• Efficient	for	small	data
• Adaptive:	If	the	input	list	 is	presorted	[may	not	be	completely]	then	insertions	sort

takes	O(n	+	d),	where	d	is	the	number	of	inversions
• Practically	more	efficient	 than	 selection	and	bubble	 sorts,	 even	 though	all	of	 them

have	O(n2)	worst	case	complexity



• Stable:	Maintains	relative	order	of	input	data	if	the	keys	are	same
• In-place:	It	requires	only	a	constant	amount	O(1)	of	additional	memory	space
• Online:	Insertion	sort	can	sort	the	list	as	it	receives	it

Algorithm

Every	repetition	of	insertion	sort	removes	an	element	from	the	input	data,	and	inserts	it	 into	the
correct	position	in	the	already-sorted	list	until	no	input	elements	remain.	Sorting	is	typically	done
in-place.	The	resulting	array	after	k	 iterations	has	the	property	where	the	first	k	+	1	entries	are
sorted.

Each	element	greater	than	x	is	copied	to	the	right	as	it	is	compared	against	x.

Implementation

Example



Given	an	array:	6	8	1	4	5	3	7	2	and	the	goal	is	to	put	them	in	ascending	order.

Analysis

Worst	case	analysis

Worst	case	occurs	when	for	every	i	the	inner	loop	has	to	move	all	elements	A[1],	.	.	.	,	A[i	–	1]
(which	happens	when	A[i]	=	key	is	smaller	than	all	of	them),	that	takes	Θ(i	–	1)	time.

Average	case	analysis

For	 the	average	case,	 the	 inner	 loop	will	 insert	A[i]	 in	the	middle	of	A[1],	 .	 .	 .	 ,	A[i	–	1].	This
takes	Θ(i/2)	time.

Performance

If	every	element	is	greater	than	or	equal	to	every	element	to	its	left,	the	running	time	of	insertion
sort	is	Θ(n).	This	situation	occurs	if	the	array	starts	out	already	sorted,	and	so	an	already-sorted
array	is	the	best	case	for	insertion	sort.

Worst	case	complexity:	Θ(n2)

Best	case	complexity:	Θ(n)

Average	case	complexity:	Θ(n2)



Worst	case	space	complexity:	O(n2)	total,	O(1)	auxiliary

Comparisons	to	Other	Sorting	Algorithms

Insertion	sort	 is	one	of	 the	elementary	 sorting	algorithms	with	O(n2)	worst-case	 time.	 Insertion
sort	is	used	when	the	data	is	nearly	sorted	(due	to	its	adaptiveness)	or	when	the	input	size	is	small
(due	to	its	low	overhead).	For	these	reasons	and	due	to	its	stability,	insertion	sort	is	used	as	the
recursive	 base	 case	 (when	 the	 problem	 size	 is	 small)	 for	 higher	 overhead	 divide-and-conquer
sorting	algorithms,	such	as	merge	sort	or	quick	sort.

Notes:

• Bubble	sort	takes	 	comparisons	and	 	swaps	(inversions)	in	both	average	case

and	in	worst	case.
• Selection	sort	takes	 	comparisons	and	n	swaps.

• Insertion	sort	takes	 	comparisons	and	 	swaps	in	average	case	and	in	the	worst

case	they	are	double.
• Insertion	sort	is	almost	linear	for	partially	sorted	input.
• Selection	sort	is	best	suits	for	elements	with	bigger	values	and	small	keys.

10.8	Shell	Sort

Shell	sort	(also	called	diminishing	increment	sort)	was	invented	by	Donald	Shell.	This	sorting
algorithm	 is	 a	 generalization	 of	 insertion	 sort.	 Insertion	 sort	 works	 efficiently	 on	 input	 that	 is
already	almost	sorted.	Shell	sort	is	also	known	as	n-gap	insertion	sort.	Instead	of	comparing	only
the	 adjacent	 pair,	 shell	 sort	 makes	 several	 passes	 and	 uses	 various	 gaps	 between	 adjacent
elements	(ending	with	the	gap	of	1	or	classical	insertion	sort).

In	 insertion	 sort,	 comparisons	 are	made	between	 the	adjacent	 elements.	At	most	1	 inversion	 is
eliminated	 for	 each	 comparison	done	with	 insertion	 sort.	The	variation	used	 in	 shell	 sort	 is	 to
avoid	comparing	adjacent	elements	until	 the	last	step	of	 the	algorithm.	So,	 the	last	step	of	shell
sort	 is	 effectively	 the	 insertion	 sort	 algorithm.	 It	 improves	 insertion	 sort	 by	 allowing	 the
comparison	and	exchange	of	elements	that	are	far	away.	This	is	the	first	algorithm	which	got	less
than	quadratic	complexity	among	comparison	sort	algorithms.

Shellsort	is	actually	a	simple	extension	for	insertion	sort.	The	primary	difference	is	its	capability
of	 exchanging	 elements	 that	 are	 far	 apart,	making	 it	 considerably	 faster	 for	 elements	 to	 get	 to
where	they	should	be.	For	example,	if	the	smallest	element	happens	to	be	at	the	end	of	an	array,
with	insertion	sort	it	will	require	the	full	array	of	steps	to	put	this	element	at	the	beginning	of	the
array.	However,	with	shell	sort,	 this	element	can	jump	more	 than	one	step	a	 time	and	reach	the



proper	destination	in	fewer	exchanges.

The	 basic	 idea	 in	 shellsort	 is	 to	 exchange	 every	 hth	 element	 in	 the	 array.	 Now	 this	 can	 be
confusing	so	we’ll	talk	more	about	this,	h	determines	how	far	apart	element	exchange	can	happen,
say	 for	 example	 take	 h	 as	 13,	 the	 first	 element	 (index-0)	 is	 exchanged	 with	 the	 14th	 element
(index-13)	if	necessary	(of	course).	The	second	element	with	the	15th	element,	and	so	on.	Now	if
we	take	has	1,	it	is	exactly	the	same	as	a	regular	insertion	sort.

Shellsort	works	by	starting	with	big	enough	(but	not	larger	than	the	array	size)	h	so	as	to	allow
eligible	 element	 exchanges	 that	 are	 far	 apart.	Once	 a	 sort	 is	 complete	with	 a	 particular	h,	 the
array	 can	 be	 said	 as	 h-sorted.	 The	 next	 step	 is	 to	 reduce	 h	 by	 a	 certain	 sequence,	 and	 again
perform	another	complete	h-sort.	Once	h	is	1	and	h-sorted,	the	array	is	completely	sorted.	Notice
that	the	last	sequence	for	ft	is	1	so	the	last	sort	is	always	an	insertion	sort,	except	by	this	time	the
array	is	already	well-formed	and	easier	to	sort.

Shell	sort	uses	a	sequence	h1,h2,	...,ht	called	the	increment	sequence.	Any	increment	sequence	is
fine	as	long	as	h1	=	1,	and	some	choices	are	better	than	others.	Shell	sort	makes	multiple	passes
through	the	input	list	and	sorts	a	number	of	equally	sized	sets	using	the	insertion	sort.	Shell	sort
improves	the	efficiency	of	insertion	sort	by	quickly	shifting	values	to	their	destination.

Implementation

Note	 that	 when	 h	==	 1,	 the	 algorithm	 makes	 a	 pass	 over	 the	 entire	 list,	 comparing	 adjacent
elements,	but	doing	very	few	element	exchanges.	For	h	==	1,	shell	sort	works	just	like	insertion
sort,	except	the	number	of	inversions	that	have	to	be	eliminated	is	greatly	reduced	by	the	previous



steps	of	the	algorithm	with	h	>	1.

Analysis

Shell	sort	is	efficient	for	medium	size	lists.	For	bigger	lists,	the	algorithm	is	not	the	best	choice.	It
is	the	fastest	of	all	O(n2)	sorting	algorithms.

The	disadvantage	of	Shell	sort	is	that	it	is	a	complex	algorithm	and	not	nearly	as	efficient	as	the
merge,	heap,	and	quick	sorts.	Shell	sort	 is	significantly	slower	 than	 the	merge,	heap,	and	quick
sorts,	but	is	a	relatively	simple	algorithm,	which	makes	it	a	good	choice	for	sorting	lists	of	less
than	 5000	 items	 unless	 speed	 is	 important.	 It	 is	 also	 a	 good	 choice	 for	 repetitive	 sorting	 of
smaller	lists.

The	best	case	in	Shell	sort	is	when	the	array	is	already	sorted	in	the	right	order.	The	number	of
comparisons	is	less.	The	running	time	of	Shell	sort	depends	on	the	choice	of	increment	sequence.

Performance

Worst	case	complexity	depends	on	gap	sequence.	Best	known:	O(nlog2n)

Best	case	complexity:	O(n)

Average	case	complexity	depends	on	gap	sequence

Worst	case	space	complexity:	O(n)

10.9	Merge	Sort

Merge	sort	is	an	example	of	the	divide	and	conquer	strategy.

Important	Notes

• Merging	is	the	process	of	combining	two	sorted	files	to	make	one	bigger	sorted	file.
• Selection	is	the	process	of	dividing	a	file	into	two	parts:	k	smallest	elements	and	n	–

k	largest	elements.
• Selection	and	merging	are	opposite	operations

○ selection	splits	a	list	into	two	lists
○ merging	joins	two	files	to	make	one	file

• Merge	sort	is	Quick	sort’s	complement
• Merge	sort	accesses	the	data	in	a	sequential	manner
• This	algorithm	is	used	for	sorting	a	linked	list



• Merge	sort	is	insensitive	to	the	initial	order	of	its	input
• In	Quick	sort	most	of	the	work	is	done	before	the	recursive	calls.	Quick	sort	starts

with	 the	 largest	 subfile	 and	 finishes	with	 the	 small	 ones	 and	 as	 a	 result	 it	 needs
stack.	Moreover,	 this	algorithm	 is	not	 stable.	Merge	 sort	divides	 the	 list	 into	 two
parts;	 then	 each	 part	 is	 conquered	 individually.	Merge	 sort	 starts	 with	 the	 small
subfiles	 and	 finishes	with	 the	 largest	 one.	As	 a	 result	 it	 doesn’t	 need	 stack.	This
algorithm	is	stable.

Implementation





Analysis

In	Merge	 sort	 the	 input	 list	 is	 divided	 into	 two	 parts	 and	 these	 are	 solved	 recursively.	 After
solving	the	sub	problems,	they	are	merged	by	scanning	the	resultant	sub	problems.	Let	us	assume
T(n)	is	the	complexity	of	Merge	sort	with	n	elements.	The	recurrence	for	the	Merge	Sort	can	be
defined	as:

Note:	For	more	details,	refer	to	Divide	and	Conquer	chapter.

Performance

Worst	case	complexity	:	Θ(nlogn)

Best	case	complexity	:	Θ(nlogn)

Average	case	complexity	:	Θ(nlogn)

Worst	case	space	complexity:	Θ(n)	auxiliary

10.10	Heap	Sort

Heapsort	 is	 a	 comparison-based	 sorting	 algorithm	 and	 is	 part	 of	 the	 selection	 sort	 family.
Although	 somewhat	 slower	 in	practice	on	most	machines	 than	a	good	 implementation	of	Quick
sort,	 it	has	 the	advantage	of	a	more	favorable	worst-case	Θ(nlogn)	 runtime.	Heapsort	 is	an	 in-
place	algorithm	but	is	not	a	stable	sort.

Performance

Worst	case	performance:	Θ(nlogn)

Best	case	performance:	Θ(nlogn)

Average	case	performance:	Θ(nlogn)

Worst	case	space	complexity:	Θ(n)	total,	Θ(1)	auxiliary

For	other	details	on	Heapsort	refer	to	the	Priority	Queues	chapter.



10.11	Quicksort

Quick	 sort	 is	 an	 example	 of	 a	 divide-and-conquer	 algorithmic	 technique.	 It	 is	 also	 called
partition	 exchange	 sort.	 It	 uses	 recursive	 calls	 for	 sorting	 the	 elements,	 and	 it	 is	 one	 of	 the
famous	algorithms	among	comparison-based	sorting	algorithms.

Divide:	The	array	A[low	...high]	is	partitioned	into	two	non-empty	sub	arrays	A[low	...q]	and	A[q
+	1...	high],	such	that	each	element	of	A[low	...	high]	is	less	than	or	equal	to	each	element	of	A[q
+	1...	high].	The	index	q	is	computed	as	part	of	this	partitioning	procedure.

Conquer:	The	 two	sub	arrays	A[low	 ...q]	and	A[q	+	1	 ...high]	 are	 sorted	 by	 recursive	 calls	 to
Quick	sort.

Algorithm

The	recursive	algorithm	consists	of	four	steps:

1) If	there	are	one	or	no	elements	in	the	array	to	be	sorted,	return.
2) Pick	 an	 element	 in	 the	 array	 to	 serve	 as	 the	“pivot”	 point.	 (Usually	 the	 left-most

element	in	the	array	is	used.)
3) Split	the	array	into	two	parts	–	one	with	elements	larger	than	the	pivot	and	the	other

with	elements	smaller	than	the	pivot.
4) Recursively	repeat	the	algorithm	for	both	halves	of	the	original	array.

Implementation



Analysis

Let	 us	 assume	 that	T(n)	 be	 the	 complexity	 of	Quick	 sort	 and	 also	 assume	 that	 all	 elements	 are
distinct.	 Recurrence	 for	 T(n)	 depends	 on	 two	 subproblem	 sizes	 which	 depend	 on	 partition
element.	If	pivot	is	ith	smallest	element	then	exactly	(i	–	1)	items	will	be	in	left	part	and	(n	–	i)	in
right	part.	Let	us	call	 it	 as	 i	 –split.	Since	each	element	has	 equal	probability	of	 selecting	 it	 as
pivot	the	probability	of	selecting	ith	element	is	 .

Best	Case:	Each	partition	splits	array	in	halves	and	gives



T(n)	=	2T(n/2)	+	Θ(n)	=	Θ(nlogn),	[using	Divide	and	Conquer	master	theorem]

Worst	Case:	Each	partition	gives	unbalanced	splits	and	we	get

T(n)	=	T(n	–	1)	+	Θ(n)	=	Θ(n2)[using	Subtraction	and	Conquer	master	theorem]

The	worst-case	occurs	when	the	list	is	already	sorted	and	last	element	chosen	as	pivot.

Average	Case:	In	the	average	case	of	Quick	sort,	we	do	not	know	where	the	split	happens.	For
this	reason,	we	take	all	possible	values	of	split	locations,	add	all	their	complexities	and	divide
with	n	to	get	the	average	case	complexity.

Multiply	both	sides	by	n.

Same	formula	for	n	–	1.

Subtract	the	n	–	1	formula	from	n.



Divide	with	n(n	+	1).

Time	Complexity,	T(n)	=	O(nlogn).

Performance

Worst	case	Complexity:	O(n2)

Best	case	Complexity:	O(nlogn)

Average	case	Complexity:	O(nlogn)

Worst	case	space	Complexity:	O(1)

Randomized	Quick	sort

In	average-case	behavior	of	Quick	sort,	we	assume	that	all	permutations	of	the	input	numbers	are
equally	 likely.	However,	we	 cannot	 always	 expect	 it	 to	 hold.	We	 can	 add	 randomization	 to	 an
algorithm	in	order	to	reduce	the	probability	of	getting	worst	case	in	Quick	sort.

There	are	two	ways	of	adding	randomization	in	Quick	sort:	either	by	randomly	placing	the	input
data	 in	 the	 array	 or	 by	 randomly	 choosing	 an	 element	 in	 the	 input	 data	 for	 pivot.	 The	 second
choice	 is	 easier	 to	 analyze	 and	 implement.	 The	 change	 will	 only	 be	 done	 at	 the	 partition
algorithm.



In	 normal	 Quick	 sort,	 pivot	 element	 was	 always	 the	 leftmost	 element	 in	 the	 list	 to	 be	 sorted.
Instead	 of	 always	 using	 A[low]	 as	 pivot,	 we	 will	 use	 a	 randomly	 chosen	 element	 from	 the
subarray	A[low..high]	in	the	randomized	version	of	Quick	sort.	It	is	done	by	exchanging	element
A[low]	with	an	element	chosen	at	random	from	A[low..high].	This	ensures	that	the	pivot	element	is
equally	likely	to	be	any	of	the	high	–	low	+	1	elements	in	the	subarray.

Since	 the	 pivot	 element	 is	 randomly	 chosen,	 we	 can	 expect	 the	 split	 of	 the	 input	 array	 to	 be
reasonably	well	 balanced	 on	 average.	 This	 can	 help	 in	 preventing	 the	worst-case	 behavior	 of
quick	sort	which	occurs	in	unbalanced	partitioning.	Even	though	the	randomized	version	improves
the	 worst	 case	 complexity,	 its	 worst	 case	 complexity	 is	 still	 O(n2).	 One	 way	 to	 improve
Randomized	–	Quick	sort	is	to	choose	the	pivot	for	partitioning	more	carefully	than	by	picking	a
random	element	from	the	array.	One	common	approach	is	to	choose	the	pivot	as	the	median	of	a
set	of	3	elements	randomly	selected	from	the	array.

10.12	Tree	Sort

Tree	sort	uses	a	binary	search	tree.	It	involves	scanning	each	element	of	the	input	and	placing	it
into	its	proper	position	in	a	binary	search	tree.	This	has	two	phases:

• First	phase	is	creating	a	binary	search	tree	using	the	given	array	elements.
• Second	phase	is	traversing	the	given	binary	search	tree	in	inorder,	thus	resulting	in	a

sorted	array.

Performance

The	average	number	of	comparisons	for	this	method	is	O(nlogn).	But	in	worst	case,	the	number	of
comparisons	is	reduced	by	O(n2),	a	case	which	arises	when	the	sort	tree	is	skew	tree.

10.13	Comparison	of	Sorting	Algorithms



Note:	n	denotes	the	number	of	elements	in	the	input.

10.14	Linear	Sorting	Algorithms

In	earlier	sections,	we	have	seen	many	examples	of	comparison-based	sorting	algorithms.	Among
them,	 the	 best	 comparison-based	 sorting	 has	 the	 complexity	O(nlogn).	 In	 this	 section,	we	will
discuss	other	types	of	algorithms:	Linear	Sorting	Algorithms.	To	improve	the	time	complexity	of
sorting	these	algorithms,	we	make	some	assumptions	about	the	input.	A	few	examples	of	Linear
Sorting	Algorithms	are:

• Counting	Sort
• Bucket	Sort
• Radix	Sort

10.15	Counting	Sort

Counting	 sort	 is	 not	 a	 comparison	 sort	 algorithm	 and	 gives	 O(n)	 complexity	 for	 sorting.	 To
achieve	O(n)	 complexity,	 counting	 sort	 assumes	 that	 each	 of	 the	 elements	 is	 an	 integer	 in	 the
range	1	to	K,	for	some	integer	K.	When	if	=	O(n),	the	counting	sort	runs	in	O(n)	time.	The	basic
idea	of	Counting	sort	is	to	determine,	for	each	input	element	X,	the	number	of	elements	less	than
X.	This	information	can	be	used	to	place	it	directly	into	its	correct	position.	For	example,	if	10
elements	are	less	than	X,	then	X	belongs	to	position	11	in	the	output.

In	the	code	below,	A[0	..n	–	1]	is	the	input	array	with	length	n.	In	Counting	sort	we	need	two	more
arrays:	 let	 us	 assume	 array	B[0	 ..n	–	 1]	 contains	 the	 sorted	 output	 and	 the	 array	C[0	 ..K	 –	 1]
provides	temporary	storage.



Total	Complexity:	O(K)	+	O(n)	+	O(K)	+	O(n)	=	O(n)	if	K	=O(n).	Space	Complexity:	O(n)	if	K
=O(n).

Note:	Counting	works	well	if	K	=O(n).	Otherwise,	the	complexity	will	be	greater.

10.16	Bucket	Sort	(or	Bin	Sort)

Like	 Counting	 sort,	 Bucket	 sort	 also	 imposes	 restrictions	 on	 the	 input	 to	 improve	 the
performance.	In	other	words,	Bucket	sort	works	well	if	the	input	is	drawn	from	fixed	set.	Bucket
sort	is	the	generalization	of	Counting	Sort.	For	example,	assume	that	all	the	input	elements	from
{0,	1,	.	.	.	,	K	–	1},	i.e.,	the	set	of	integers	in	the	interval	[0,	K	–	1].	That	means,	K	is	the	number
of	distant	elements	 in	 the	 input.	Bucket	 sort	uses	K	counters.	The	 ith	 counter	keeps	 track	of	 the
number	of	occurrences	of	the	ith	element.	Bucket	sort	with	two	buckets	is	effectively	a	version	of
Quick	sort	with	two	buckets.

For	bucket	sort,	the	hash	function	that	is	used	to	partition	the	elements	need	to	be	very	good	and
must	produce	ordered	hash:	if	i	<	k	then	hash(i)	<	hash(k).	Second,	the	elements	to	be	sorted	must
be	uniformly	distributed.



The	 aforementioned	 aside,	 bucket	 sort	 is	 actually	 very	 good	 considering	 that	 counting	 sort	 is
reasonably	speaking	its	upper	bound.	And	counting	sort	is	very	fast.	The	particular	distinction	for
bucket	sort	is	that	it	uses	a	hash	function	to	partition	the	keys	of	the	input	array,	so	that	multiple
keys	may	hash	to	the	same	bucket.	Hence	each	bucket	must	effectively	be	a	growable	list;	similar
to	radix	sort.

In	the	below	code	insertionsort	is	used	to	sort	each	bucket.	This	is	to	inculcate	that	the	bucket	sort
algorithm	 does	 not	 specify	which	 sorting	 technique	 to	 use	 on	 the	 buckets.	 A	 programmer	may
choose	to	continuously	use	bucket	sort	on	each	bucket	until	the	collection	is	sorted	(in	the	manner
of	the	radix	sort	program	below).	Whichever	sorting	method	is	used	on	the	,	bucket	sort	still	tends
toward	O(n).

Time	Complexity:	O(n).	Space	Complexity:	O(n).

10.17	Radix	Sort

Similar	 to	Counting	 sort	 and	 Bucket	 sort,	 this	 sorting	 algorithm	 also	 assumes	 some	 kind	 of
information	about	the	input	elements.	Suppose	that	the	input	values	to	be	sorted	are	from	base	d.
That	means	all	numbers	are	d-digit	numbers.

In	Radix	 sort,	 first	 sort	 the	 elements	 based	 on	 the	 last	 digit	 [the	 least	 significant	 digit].	 These
results	are	again	sorted	by	second	digit	[the	next	to	least	significant	digit].	Continue	this	process
for	all	digits	until	we	reach	the	most	significant	digits.	Use	some	stable	sort	to	sort	them	by	last
digit.	Then	stable	sort	them	by	the	second	least	significant	digit,	then	by	the	third,	etc.	If	we	use
Counting	sort	as	the	stable	sort,	the	total	time	is	O(nd)	≈	O(n).

Algorithm:

1) Take	the	least	significant	digit	of	each	element.



2) Sort	the	list	of	elements	based	on	that	digit,	but	keep	the	order	of	elements	with	the
same	digit	(this	is	the	definition	of	a	stable	sort).

3) Repeat	the	sort	with	each	more	significant	digit.

The	speed	of	Radix	sort	depends	on	the	inner	basic	operations.	If	the	operations	are	not	efficient
enough,	Radix	sort	can	be	slower	than	other	algorithms	such	as	Quick	sort	and	Merge	sort.	These
operations	include	the	insert	and	delete	functions	of	the	sub-lists	and	the	process	of	isolating	the
digit	we	want.	If	the	numbers	are	not	of	equal	length	then	a	test	is	needed	to	check	for	additional
digits	 that	need	sorting.	This	can	be	one	of	 the	slowest	parts	of	Radix	sort	and	also	one	of	 the
hardest	to	make	efficient.

Since	Radix	 sort	depends	on	 the	digits	or	 letters,	 it	 is	 less	 flexible	 than	other	 sorts.	For	 every
different	type	of	data,	Radix	sort	needs	to	be	rewritten,	and	if	the	sorting	order	changes,	the	sort
needs	to	be	rewritten	again.	In	short,	Radix	sort	takes	more	time	to	write,	and	it	is	very	difficult	to
write	a	general	purpose	Radix	sort	that	can	handle	all	kinds	of	data.

For	many	programs	that	need	a	fast	sort,	Radix	sort	is	a	good	choice.	Still,	there	are	faster	sorts,
which	is	one	reason	why	Radix	sort	is	not	used	as	much	as	some	other	sorts.

Time	Complexity:	O(nd)	≈	O(n),	if	d	is	small.

10.18	Topological	Sort

Refer	to	Graph	Algorithms	Chapter.

10.19	External	Sorting

External	 sorting	 is	 a	 generic	 term	 for	 a	 class	 of	 sorting	 algorithms	 that	 can	 handle	 massive
amounts	of	data.	These	external	sorting	algorithms	are	useful	when	the	files	are	too	big	and	cannot
fit	into	main	memory.

As	with	 internal	 sorting	 algorithms,	 there	 are	 a	 number	 of	 algorithms	 for	 external	 sorting.	One
such	 algorithm	 is	 External	 Mergesort.	 In	 practice,	 these	 external	 sorting	 algorithms	 are	 being
supplemented	by	internal	sorts.

Simple	External	Mergesort

A	number	of	records	from	each	tape	are	read	into	main	memory,	sorted	using	an	internal	sort,	and
then	output	to	the	tape.	For	the	sake	of	clarity,	let	us	assume	that	900	megabytes	of	data	needs	to
be	sorted	using	only	100	megabytes	of	RAM.

1) Read	100MB	of	 the	data	 into	main	memory	and	sort	by	 some	conventional	method



(let	us	say	Quick	sort).
2) Write	the	sorted	data	to	disk.
3) Repeat	steps	1	and	2	until	all	of	the	data	is	sorted	in	chunks	of	100MB.	Now	we	need

to	merge	them	into	one	single	sorted	output	file.
4) Read	the	first	10MB	of	each	sorted	chunk	(call	them	input	buffers)	in	main	memory

(90MB	total)	and	allocate	the	remaining	10MB	for	output	buffer.
5) Perform	 a	 9-way	Mergesort	 and	 store	 the	 result	 in	 the	 output	 buffer.	 If	 the	 output

buffer	is	full,	write	it	to	the	final	sorted	file.	If	any	of	the	9	input	buffers	gets	empty,
fill	 it	with	 the	next	10MB	of	 its	associated	100MB	sorted	chunk;	or	 if	 there	 is	no
more	data	in	the	sorted	chunk,	mark	it	as	exhausted	and	do	not	use	it	for	merging.

The	above	algorithm	can	be	generalized	by	assuming	that	the	amount	of	data	to	be	sorted	exceeds
the	available	memory	by	a	factor	of	K.	Then,	K	chunks	of	data	need	to	be	sorted	and	a	K	 -way
merge	has	to	be	completed.

If	X	is	the	amount	of	main	memory	available,	there	will	be	K	input	buffers	and	1	output	buffer	of
size	 X/(K	 +	 1)	 each.	 Depending	 on	 various	 factors	 (how	 fast	 is	 the	 hard	 drive?)	 better
performance	can	be	achieved	if	the	output	buffer	is	made	larger	(for	example,	twice	as	large	as
one	input	buffer).

Complexity	of	the	2-way	External	Merge	sort:	In	each	pass	we	read	+	write	each	page	in	file.	Let



us	assume	that	there	are	n	pages	in	file.	That	means	we	need	⌈logn⌉	+	1	number	of	passes.	The
total	cost	is	2n(⌈logn⌉	+	1).

10.20	Sorting:	Problems	&	Solutions

Problem-1  Given	an	array	A[0...n–	1]	of	n	numbers	containing	the	repetition	of	some	number.
Give	an	algorithm	for	checking	whether	 there	are	 repeated	elements	or	not.	Assume	 that
we	are	not	allowed	to	use	additional	space	(i.e.,	we	can	use	a	few	temporary	variables,
O(1)	storage).

Solution:	Since	we	are	not	allowed	to	use	extra	space,	one	simple	way	is	 to	scan	the	elements
one-by-one	and	for	each	element	check	whether	that	element	appears	in	the	remaining	elements.	If
we	find	a	match	we	return	true.

Each	iteration	of	the	inner,	j-indexed	loop	uses	O(1)	space,	and	for	a	fixed	value	of	i,	the	j	 loop
executes	 n	 –	 i	 times.	 The	 outer	 loop	 executes	 n	 –	 1	 times,	 so	 the	 entire	 function	 uses	 time
proportional	to

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-2  Can	we	improve	the	time	complexity	of	Problem-1?

Solution:	Yes,	using	sorting	technique.



Heapsort	 function	 takes	O(nlogn)	 time,	 and	 requires	O(1)	 space.	The	 scan	 clearly	 takes	n	 –	 1
iterations,	each	iteration	using	O(1)	time.	The	overall	time	is	O(nlogn	+	n)	=	O(nlogn).

Time	Complexity:	O(nlogn).	Space	Complexity:	O(1).

Note:	For	variations	of	this	problem,	refer	Searching	chapter.

Problem-3  Given	an	array	A[0	...n	–	1],	where	each	element	of	the	array	represents	a	vote	in
the	election.	Assume	that	each	vote	is	given	as	an	integer	representing	the	ID	of	the	chosen
candidate.	Give	an	algorithm	for	determining	who	wins	the	election.

Solution:	This	problem	is	nothing	but	finding	the	element	which	repeated	the	maximum	number	of
times.	The	solution	is	similar	to	the	Problem-1	solution:	keep	track	of	counter.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).



Note:	For	variations	of	this	problem,	refer	to	Searching	chapter.

Problem-4  Can	we	improve	the	time	complexity	of	Problem-3?	Assume	we	don’t	have	any
extra	space.

Solution:	Yes.	The	approach	is	to	sort	the	votes	based	on	candidate	ID,	then	scan	the	sorted	array
and	count	up	which	candidate	so	far	has	the	most	votes.	We	only	have	to	remember	the	winner,	so
we	don’t	need	a	clever	data	structure.	We	can	use	Heapsort	as	it	is	an	in-place	sorting	algorithm.

Since	 Heapsort	 time	 complexity	 is	 O(nlogn)	 and	 in-place,	 it	 only	 uses	 an	 additional	 O(1)	 of
storage	 in	 addition	 to	 the	 input	 array.	 The	 scan	 of	 the	 sorted	 array	 does	 a	 constant-time
conditional	n	–	1	times,	thus	using	O(n)	time.	The	overall	time	bound	is	O(nlogn).

Problem-5  Can	we	further	improve	the	time	complexity	of	Problem-3?

Solution:	 In	 the	 given	 problem,	 the	 number	 of	 candidates	 is	 less	 but	 the	 number	 of	 votes	 is
significantly	large.	For	this	problem	we	can	use	counting	sort.

Time	Complexity:	O(n),	n	is	the	number	of	votes	(elements)	in	the	array.	Space	Complexity:	O(k),



k	is	the	number	of	candidates	participating	in	the	election.

Problem-6  Given	an	array	A	of	n	elements,	each	of	which	is	an	integer	in	the	range	[1,	n2],
how	do	we	sort	the	array	in	O(n)	time?

Solution:	If	we	subtract	each	number	by	1	then	we	get	the	range	[0,	n2	–	1].	 If	we	consider	all
numbers	as	2	–digit	base	n.	Each	digit	ranges	from	0	to	n2	–	1.	Sort	this	using	radix	sort.	This	uses
only	 two	 calls	 to	 counting	 sort.	 Finally,	 add	 1	 to	 all	 the	 numbers.	 Since	 there	 are	 2	 calls,	 the
complexity	is	O(2n)	≈	O(n).

Problem-7  For	Problem-6,	what	if	the	range	is	[1...	n3]?

Solution:	 If	we	 subtract	 each	 number	 by	 1	 then	we	 get	 the	 range	 [0,	n3	 –	 1].	 Considering	 all
numbers	as	3-digit	base	n:	each	digit	ranges	from	0	to	n3	–	1.	Sort	this	using	radix	sort.	This	uses
only	 three	calls	 to	 counting	 sort.	Finally,	 add	1	 to	 all	 the	numbers.	Since	 there	 are	3	 calls,	 the
complexity	is	O(3n)	≈	O(n).

Problem-8  Given	an	array	with	n	 integers,	each	of	value	less	 than	n100,	can	 it	be	sorted	 in
linear	time?

Solution:	Yes.	The	reasoning	is	same	as	in	of	Problem-6	and	Problem-7.

Problem-9  Let	 A	 and	 B	 be	 two	 arrays	 of	 n	 elements	 each.	 Given	 a	 number	 K,	 give	 an
O(nlogn)	time	algorithm	for	determining	whether	there	exists	a	∈	A	and	b	∈	B	such	that	a
+	b	=	K.

Solution:	Since	we	need	O(nlogn),	it	gives	us	a	pointer	that	we	need	to	sort.	So,	we	will	do	that.

Note:	For	variations	of	this	problem,	refer	to	Searching	chapter.

Problem-10  Let	A,B	and	C	be	 three	arrays	of	n	elements	each.	Given	a	number	K,	give	an
O(nlogn)	time	algorithm	for	determining	whether	there	exists	a	∈	A,	b	∈	B	and	c	∈	C	such
that	a	+	b	+	c	=	K.

Solution:	Refer	to	Searching	chapter.



Problem-11  Given	 an	 array	 of	 n	 elements,	 can	 we	 output	 in	 sorted	 order	 the	K	 elements
following	the	median	in	sorted	order	in	time	O(n	+	KlogK).

Solution:	Yes.	Find	the	median	and	partition	the	median.	With	this	we	can	find	all	 the	elements
greater	than	it.	Now	find	the	Kth	largest	element	in	this	set	and	partition	it;	and	get	all	the	elements
less	than	it.	Output	the	sorted	list	of	the	final	set	of	elements.	Clearly,	this	operation	takes	O(n	+
KlogK)	time.

Problem-12  Consider	 the	 sorting	 algorithms:	 Bubble	 sort,	 Insertion	 sort,	 Selection	 sort,
Merge	sort,	Heap	sort,	and	Quick	sort.	Which	of	these	are	stable?

Solution:	Let	us	assume	that	A	is	the	array	to	be	sorted.	Also,	let	us	say	R	and	S	have	the	same	key
and	R	appears	earlier	in	the	array	than	S.	That	means,	R	is	at	A[i]	and	S	is	at	A[j],	with	i	<	j.	To
show	any	stable	algorithm,	in	the	sorted	output	R	must	precede	S.

Bubble	sort:	Yes.	Elements	change	order	only	when	a	smaller	record	follows	a	larger.	Since	S	is
not	smaller	than	R	it	cannot	precede	it.

Selection	sort:	No.	It	divides	the	array	into	sorted	and	unsorted	portions	and	iteratively	finds	the
minimum	values	in	the	unsorted	portion.	After	finding	a	minimum	x,	if	the	algorithm	moves	x	into
the	sorted	portion	of	the	array	by	means	of	a	swap,	then	the	element	swapped	could	be	R	which
then	could	be	moved	behind	S.	This	would	invert	the	positions	of	R	and	S,	so	in	general	it	is	not
stable.	 If	swapping	 is	avoided,	 it	could	be	made	stable	but	 the	cost	 in	 time	would	probably	be
very	significant.

Insertion	sort:	Yes.	As	presented,	when	S	is	to	be	inserted	into	sorted	subarray	A[1..j	–	1],	only
records	 larger	 than	S	 are	 shifted.	 Thus	R	 would	 not	 be	 shifted	 during	 S’s	 insertion	 and	 hence
would	always	precede	it.

Merge	 sort:	 Yes,	 In	 the	 case	 of	 records	with	 equal	 keys,	 the	 record	 in	 the	 left	 subarray	 gets
preference.	 Those	 are	 the	 records	 that	 came	 first	 in	 the	 unsorted	 array.	 As	 a	 result,	 they	will
precede	later	records	with	the	same	key.

Heap	sort:	No.	Suppose	i	=	1	and	R	and	S	happen	to	be	the	two	records	with	the	largest	keys	in
the	 input.	Then	R	will	 remain	 in	 location	 1	 after	 the	 array	 is	 heapified,	 and	will	 be	 placed	 in
location	n	in	the	first	iteration	of	Heapsort.	Thus	S	will	precede	R	in	the	output.

Quick	sort:	No.	The	partitioning	step	can	swap	the	location	of	records	many	times,	and	thus	two
records	with	equal	keys	could	swap	position	in	the	final	output.

Problem-13  Consider	the	same	sorting	algorithms	as	that	of	Problem-12.	Which	of	them	are
in-place?

Solution:



Bubble	sort:	Yes,	because	only	two	integers	are	required.

Insertion	sort:	Yes,	since	we	need	to	store	two	integers	and	a	record.

Selection	sort:	Yes.	This	algorithm	would	likely	need	space	for	two	integers	and	one	record.

Merge	sort:	No.	Arrays	need	to	perform	the	merge.	(If	the	data	is	in	the	form	of	a	linked	list,	the
sorting	can	be	done	in-place,	but	this	is	a	nontrivial	modification.)

Heap	sort:	Yes,	since	the	heap	and	partially-sorted	array	occupy	opposite	ends	of	the	input	array.

Quicksort:	 No,	 since	 it	 is	 recursive	 and	 stores	 O(logn)	 activation	 records	 on	 the	 stack.
Modifying	it	to	be	non-recursive	is	feasible	but	nontrivial.

Problem-14  Among	 Quick	 sort,	 Insertion	 sort,	 Selection	 sort,	 and	 Heap	 sort	 algorithms,
which	one	needs	the	minimum	number	of	swaps?

Solution:	Selection	sort	–	it	needs	n	swaps	only	(refer	to	theory	section).

Problem-15  What	is	the	minimum	number	of	comparisons	required	to	determine	if	an	integer
appears	more	than	n/2	times	in	a	sorted	array	of	n	integers?

Solution:	Refer	to	Searching	chapter.

Problem-16  Sort	an	array	of	0’s,	1’s	and	2’s:	Given	an	array	A[]	consisting	of	0’s,	1’s	and
2’s,	give	an	algorithm	for	sorting	A[].	The	algorithm	should	put	all	0’s	first,	then	all	1’s	and
all	2’s	last.
Example:	Input	=	{0,1,1,0,1,2,1,2,0,0,0,1},	Output	=	{0,0,0,0,0,1,1,1,1,1,2,2}

Solution:	Use	Counting	sort.	Since	there	are	only	three	elements	and	the	maximum	value	is	2,	we
need	a	temporary	array	with	3	elements.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Note:	For	variations	of	this	problem,	refer	to	Searching	chapter.

Problem-17  Is	there	any	other	way	of	solving	Problem-16?

Solution:	Using	Quick	dort.	Since	we	know	that	there	are	only	3	elements,	0,1	and	2	in	the	array,
we	 can	 select	 1	 as	 a	 pivot	 element	 for	Quick	 sort.	Quick	 sort	 finds	 the	 correct	 place	 for	 1	 by
moving	all	0’s	to	the	left	of	1	and	all	2’s	to	the	right	of	1.	For	doing	this	it	uses	only	one	scan.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Note:	For	efficient	algorithm,	refer	to	Searching	chapter.

Problem-18  How	do	we	find	the	number	that	appeared	the	maximum	number	of	times	in	an
array?



Solution:	 One	 simple	 approach	 is	 to	 sort	 the	 given	 array	 and	 scan	 the	 sorted	 array.	 While
scanning,	keep	track	of	the	elements	that	occur	the	maximum	number	of	times.
Algorithm:

Time	 Complexity	 =	 Time	 for	 Sorting	 +	 Time	 for	 Scan	 =	 O(nlogn)	 +O(n)	 =	 O(nlogn).	 Space
Complexity:	O(1).

Note:	For	variations	of	this	problem,	refer	to	Searching	chapter.

Problem-19  Is	there	any	other	way	of	solving	Problem-18?

Solution:	Using	Binary	Tree.	Create	a	binary	tree	with	an	extra	field	count	which	indicates	the
number	of	 times	an	element	appeared	 in	 the	 input.	Let	us	say	we	have	created	a	Binary	Search
Tree	[BST].	Now,	do	the	In-Order	traversal	of	the	tree.	The	In-Order	traversal	of	BST	produces
the	sorted	list.	While	doing	the	In-Order	traversal	keep	track	of	the	maximum	element.

Time	Complexity:	O(n)	+	O(n)	≈	O(n).	The	first	parameter	 is	 for	constructing	 the	BST	and	 the
second	parameter	is	for	Inorder	Traversal.	Space	Complexity:	O(2n)	≈	O(n),	since	every	node	in
BST	needs	two	extra	pointers.

Problem-20  Is	there	yet	another	way	of	solving	Problem-18?

Solution:	Using	Hash	Table.	For	each	element	of	the	given	array	we	use	a	counter,	and	for	each
occurrence	of	the	element	we	increment	the	corresponding	counter.	At	the	end	we	can	just	return
the	element	which	has	the	maximum	counter.

Time	Complexity:	O(n).	Space	Complexity:	O(n).	For	constructing	the	hash	table	we	need	O(n).

Note:	For	the	efficient	algorithm,	refer	to	the	Searching	chapter.

Problem-21  Given	a	2	GB	file	with	one	string	per	line,	which	sorting	algorithm	would	we
use	to	sort	the	file	and	why?



Solution:	When	we	have	a	size	limit	of	2GB,	it	means	that	we	cannot	bring	all	the	data	into	the
main	memory.

Algorithm:	How	much	memory	do	we	have	available?	Let’s	assume	we	have	X	MB	of	memory
available.	Divide	the	file	into	K	chunks,	where	X	*	K	~	2	GB.

• Bring	each	chunk	into	memory	and	sort	the	lines	as	usual	(any	O(nlogn)	algorithm).
• Save	the	lines	back	to	the	file.
• Now	bring	the	next	chunk	into	memory	and	sort.
• Once	we’re	done,	merge	them	one	by	one;	in	the	case	of	one	set	finishing,	bring	more

data	from	the	particular	chunk.

The	above	algorithm	is	also	known	as	external	sort.	Step	3	–	4	is	known	as	K-way	merge.	The
idea	behind	going	for	an	external	sort	is	the	size	of	data.	Since	the	data	is	huge	and	we	can’t	bring
it	to	the	memory,	we	need	to	go	for	a	disk-based	sorting	algorithm.

Problem-22  Nearly	sorted:	Given	an	array	of	n	elements,	each	which	is	at	most	K	positions
from	its	target	position,	devise	an	algorithm	that	sorts	in	O(n	logK)	time.

Solution:	Divide	the	elements	into	n/K	groups	of	size	K,	and	sort	each	piece	in	O(KlogK)	 time,
let’s	say	using	Mergesort.	This	preserves	the	property	that	no	element	is	more	than	K	elements	out
of	position.	Now,	merge	each	block	of	K	elements	with	the	block	to	its	left.

Problem-23  Is	there	any	other	way	of	solving	Problem-22?

Solution:	Insert	the	first	K	elements	into	a	binary	heap.	Insert	the	next	element	from	the	array	into
the	heap,	and	delete	the	minimum	element	from	the	heap.	Repeat.

Problem-24  Merging	K	sorted	lists:	Given	K	sorted	lists	with	a	total	of	n	elements,	give	an
O(nlogK)	algorithm	to	produce	a	sorted	list	of	all	n	elements.

Solution:	Simple	Algorithm	for	merging	K	sorted	lists:	Consider	groups	each	having	 	elements.
Take	the	first	list	and	merge	it	with	the	second	list	using	a	linear-time	algorithm	for	merging	two
sorted	lists,	such	as	the	merging	algorithm	used	in	merge	sort.	Then,	merge	the	resulting	list	of	

elements	with	the	third	list,	and	then	merge	the	resulting	list	of	 	elements	with	the	fourth	list.
Repeat	this	until	we	end	up	with	a	single	sorted	list	of	all	n	elements.

Time	Complexity:	In	each	iteration	we	are	merging	K	elements.



Problem-25  Can	we	improve	the	time	complexity	of	Problem-24?

Solution:	One	method	is	to	repeatedly	pair	up	the	lists	and	then	merge	each	pair.	This	method	can
also	be	seen	as	a	tail	component	of	the	execution	merge	sort,	where	the	analysis	is	clear.	This	is
called	 the	Tournament	Method.	The	maximum	depth	 of	 the	Tournament	Method	 is	 logK	 and	 in
each	iteration	we	are	scanning	all	the	n	elements.

Time	Complexity;	O(nlogK).

Problem-26  Is	there	any	other	way	of	solving	Problem-24?

Solution:	The	other	method	is	to	use	a	rain	priority	queue	for	the	minimum	elements	of	each	of
the	if	lists.	At	each	step,	we	output	the	extracted	minimum	of	the	priority	queue,	determine	from
which	of	the	K	lists	it	came,	and	insert	the	next	element	from	that	list	into	the	priority	queue.	Since
we	are	using	priority	queue,	that	maximum	depth	of	priority	queue	is	logK.

Time	Complexity;	O(nlogK).

Problem-27  Which	sorting	method	is	better	for	Linked	Lists?

Solution:	 Merge	 Sort	 is	 a	 better	 choice.	 At	 first	 appearance,	 merge	 sort	 may	 not	 be	 a	 good
selection	since	the	middle	node	is	required	to	subdivide	the	given	list	into	two	sub-lists	of	equal
length.	We	can	easily	solve	this	problem	by	moving	the	nodes	alternatively	to	two	lists	(refer	to
Linked	 Lists	 chapter).	 Then,	 sorting	 these	 two	 lists	 recursively	 and	merging	 the	 results	 into	 a
single	list	will	sort	the	given	one.



Note:	Append()	appends	the	first	argument	to	the	tail	of	a	singly	linked	list	whose	head	and	tail
are	defined	by	the	second	and	third	arguments.

All	external	sorting	algorithms	can	be	used	for	sorting	linked	lists	since	each	involved	file	can	be
considered	as	a	linked	list	that	can	only	be	accessed	sequentially.	We	can	sort	a	doubly	linked	list
using	its	next	fields	as	if	 it	was	a	singly	linked	one	and	reconstruct	the	prev	fields	after	sorting
with	an	additional	scan.

Problem-28  Can	we	implement	Linked	Lists	Sorting	with	Quick	Sort?

Solution:	The	original	Quick	Sort	cannot	be	used	for	sorting	Singly	Linked	Lists.	This	is	because
we	cannot	move	backward	in	Singly	Linked	Lists.	But	we	can	modify	the	original	Quick	Sort	and
make	it	work	for	Singly	Linked	Lists.

Let	us	consider	the	following	modified	Quick	Sort	implementation.	The	first	node	of	the	input	list
is	considered	a	pivot	and	is	moved	to	equal.	The	value	of	each	node	is	compared	with	the	pivot
and	moved	to	less	(respectively,	equal	or	larger)	if	the	nodes	value	is	smaller	than	(respectively,
equal	 to	or	 larger	 than)	the	pivot.	Then,	less	and	 larger	are	sorted	recursively.	Finally,	 joining
less,	equal	and	larger	into	a	single	list	yields	a	sorted	one.

Append()	 appends	 the	 first	 argument	 to	 the	 tail	 of	 a	 singly	 linked	 list	whose	 head	 and	 tail	 are
defined	by	the	second	and	third	arguments.	On	return,	the	first	argument	will	be	modified	so	that	it



points	to	the	next	node	of	the	list.	Join()	appends	the	list	whose	head	and	tail	are	defined	by	the
third	 and	 fourth	 arguments	 to	 the	 list	whose	 head	 and	 tail	 are	 defined	 by	 the	 first	 and	 second
arguments.	For	simplicity,	the	first	and	fourth	arguments	become	the	head	and	tail	of	the	resulting
list.

Problem-29  Given	an	array	of	100,000	pixel	color	values,	each	of	which	is	an	integer	in	the
range	[0,255].	Which	sorting	algorithm	is	preferable	for	sorting	them?

Solution:	Counting	Sort.	There	are	only	256	key	values,	so	the	auxiliary	array	would	only	be	of
size	256,	and	there	would	be	only	two	passes	through	the	data,	which	would	be	very	efficient	in
both	time	and	space.

Problem-30  Similar	to	Problem-29,	if	we	have	a	telephone	directory	with	10	million	entries,



which	sorting	algorithm	is	best?

Solution:	Bucket	Sort.	In	Bucket	Sort	the	buckets	are	defined	by	the	last	7	digits.	This	requires	an
auxiliary	array	of	 size	10	million	and	has	 the	advantage	of	 requiring	only	one	pass	 through	 the
data	 on	 disk.	 Each	 bucket	 contains	 all	 telephone	 numbers	with	 the	 same	 last	 7	 digits	 but	with
different	area	codes.	The	buckets	can	then	be	sorted	by	area	code	with	selection	or	insertion	sort;
there	are	only	a	handful	of	area	codes.

Problem-31  Give	an	algorithm	for	merging	K-sorted	lists.

Solution:	Refer	to	Priority	Queues	chapter.

Problem-32  Given	a	big	file	containing	billions	of	numbers.	Find	maximum	10	numbers	from
this	file.

Solution:	Refer	to	Priority	Queues	chapter.

Problem-33  There	are	two	sorted	arrays	A	and	B.	The	first	one	is	of	size	m	+	n	containing
only	m	elements.	Another	one	is	of	size	n	and	contains	n	elements.	Merge	these	two	arrays
into	the	first	array	of	size	m	+	n	such	that	the	output	is	sorted.

Solution:	The	trick	for	this	problem	is	to	start	filling	the	destination	array	from	the	back	with	the
largest	elements.	We	will	end	up	with	a	merged	and	sorted	destination	array.

Time	Complexity:	O(m	+	n).	Space	Complexity:	O(1).

Problem-34  Nuts	and	Bolts	Problem:	Given	a	 set	of	n	 nuts	of	different	 sizes	 and	n	 bolts
such	that	there	is	a	one-to-one	correspondence	between	the	nuts	and	the	bolts,	find	for	each
nut	 its	 corresponding	 bolt.	 Assume	 that	 we	 can	 only	 compare	 nuts	 to	 bolts:	 we	 cannot



compare	nuts	to	nuts	and	bolts	to	bolts.

Alternative	way	of	framing	the	question:	We	are	given	a	box	which	contains	bolts	and
nuts.	Assume	there	are	n	nuts	and	n	bolts	and	that	each	nut	matches	exactly	one	bolt	(and
vice	versa).	By	trying	 to	match	a	bolt	and	a	nut	we	can	see	which	one	 is	bigger,	but	we
cannot	compare	two	bolts	or	two	nuts	directly.	Design	an	efficient	algorithm	for	matching
the	nuts	and	bolts.

Solution:	Brute	Force	Approach:	Start	with	the	first	bolt	and	compare	it	with	each	nut	until	we
find	a	match.	In	the	worst	case,	we	require	n	comparisons.	Repeat	this	for	successive	bolts	on	all
remaining	gives	O(n2)	complexity.

Problem-35  For	Problem-34,	can	we	improve	the	complexity?

Solution:	 In	Problem-34,	we	got	O(n2)	 complexity	 in	 the	worst	 case	 (if	 bolts	 are	 in	 ascending
order	 and	 nuts	 are	 in	 descending	 order).	 Its	 analysis	 is	 the	 same	 as	 that	 of	 Quick	 Sort.	 The
improvement	 is	 also	 along	 the	 same	 lines.	 To	 reduce	 the	 worst	 case	 complexity,	 instead	 of
selecting	 the	 first	 bolt	 every	 time,	 we	 can	 select	 a	 random	 bolt	 and	 match	 it	 with	 nuts.	 This
randomized	selection	reduces	the	probability	of	getting	the	worst	case,	but	still	the	worst	case	is
O(n2).

Problem-36  For	Problem-34,	can	we	further	improve	the	complexity?

Solution:	We	can	use	a	divide-and-conquer	technique	for	solving	this	problem	and	the	solution	is
very	 similar	 to	 randomized	 Quick	 Sort.	 For	 simplicity	 let	 us	 assume	 that	 bolts	 and	 nuts	 are
represented	in	two	arrays	B	and	N.

The	algorithm	first	performs	a	partition	operation	as	follows:	pick	a	random	boltB[t].	Using	this
bolt,	rearrange	the	array	of	nuts	into	three	groups	of	elements:

• First	the	nuts	smaller	than	B[i]
• Then	the	nut	that	matches	B[i],	and
• Finally,	the	nuts	larger	than	B[i].

Next,	using	the	nut	that	matches	B[i],	perform	a	similar	partition	on	the	array	of	bolts.	This	pair	of
partitioning	operations	can	easily	be	implemented	in	O(n)	 time,	and	it	 leaves	the	bolts	and	nuts
nicely	partitioned	so	that	the	“pivot”	bolt	and	nut	are	aligned	with	each	other	and	all	other	bolts
and	nuts	are	on	the	correct	side	of	these	pivots	–	smaller	nuts	and	bolts	precede	the	pivots,	and
larger	 nuts	 and	 bolts	 follow	 the	 pivots.	Our	 algorithm	 then	 completes	 by	 recursively	 applying
itself	to	the	subarray	to	the	left	and	right	of	the	pivot	position	to	match	these	remaining	bolts	and
nuts.	 We	 can	 assume	 by	 induction	 on	 n	 that	 these	 recursive	 calls	 will	 properly	 match	 the
remaining	bolts.

To	analyze	the	running	time	of	our	algorithm,	we	can	use	the	same	analysis	as	that	of	randomized
Quick	 Sort.	 Therefore,	 applying	 the	 analysis	 from	 Quick	 Sort,	 the	 time	 complexity	 of	 our
algorithm	is	O(nlogn).



Alternative	Analysis:	We	can	solve	this	problem	by	making	a	small	change	to	Quick	Sort.	Let	us
assume	that	we	pick	the	last	element	as	the	pivot,	say	it	is	a	nut.	Compare	the	nut	with	only	bolts
as	we	walk	down	 the	array.	This	will	partition	 the	array	 for	 the	bolts.	Every	bolt	 less	 than	 the
partition	nut	will	be	on	the	left.	And	every	bolt	greater	than	the	partition	nut	will	be	on	the	right.

While	 traversing	 down	 the	 list,	 find	 the	 matching	 bolt	 for	 the	 partition	 nut.	 Now	 we	 do	 the
partition	again	using	the	matching	bolt.	As	a	result,	all	the	nuts	less	than	the	matching	bolt	will	be
on	 the	 left	 side	 and	 all	 the	 nuts	 greater	 than	 the	 matching	 bolt	 will	 be	 on	 the	 right	 side.
Recursively	call	on	the	left	and	right	arrays.

The	time	complexity	is	O(2nlogn)	≈	O(nlogn).

Problem-37  Given	a	binary	tree,	can	we	print	 its	elements	 in	sorted	order	 in	O(n)	 time	by
performing	an	In-order	tree	traversal?

Solution:	Yes,	if	the	tree	is	a	Binary	Search	Tree	[BST].	For	more	details	refer	to	Trees	chapter.

Problem-38  Given	an	array	of	elements,	convert	it	into	an	array	such	that	A	<	B	>	C	<	D	>	E
<	F	and	so	on.

Solution:	Sort	the	array,	then	swap	every	adjacent	element	to	get	the	final	result.

The	time	complexity	is	O(nlogn+n)	≈	O(nlogn),	for	sorting	and	a	scan.

Problem-39  Can	we	do	Problem-38	with	O(n)	time?

Solution:	Make	sure	all	even	positioned	elements	are	greater	 than	 their	adjacent	odd	elements,
and	 we	 don’t	 need	 to	 worry	 about	 odd	 positioned	 elements.	 Traverse	 all	 even	 positioned
elements	of	input	array,	and	do	the	following:

• If	the	current	element	is	smaller	than	the	previous	odd	element,	swap	previous	and



current.
• If	the	current	element	is	smaller	than	the	next	odd	element,	swap	next	and	current.

The	time	complexity	is	O(n).

Problem-40  Merge	sort	uses
(a) Divide	and	conquer	strategy
(b) Backtracking	approach
(c) Heuristic	search
(d) Greedy	approach

Solution:	(a).	Refer	theory	section.

Problem-41  Which	 of	 the	 following	 algorithm	 design	 techniques	 is	 used	 in	 the	 quicksort
algorithm?
(a) Dynamic	programming
(b) Backtracking
(c) Divide	and	conquer
(d) Greedy	method

Solution:	(c).	Refer	theory	section.

Problem-42  For	merging	two	sorted	lists	of	sizes	m	and	n	into	a	sorted	list	of	size	m+n,	we
required	comparisons	of
(a) O(m)
(b) O(n)
(c) O(m	+	n)



(d) O(logm	+	logn)

Solution:	(c).	We	can	use	merge	sort	logic.	Refer	theory	section.

Problem-43  Quick-sort	is	run	on	two	inputs	shown	below	to	sort	in	ascending	order
(i) 1,2,3	....n
(ii) n,	n-	1,	n-2,	....	2,	1
Let	C1	and	C2	be	the	number	of	comparisons	made	for	the	inputs	(i)	and	(ii)	respectively.
Then,
(a) C1	<	C2
(b) C1	>	C2
(c) C1	=	C2
(d) we	cannot	say	anything	for	arbitrary	n.

Solution:	(b).	Since	the	given	problems	needs	the	output	in	ascending	order,	Quicksort	on	already
sorted	 order	 gives	 the	 worst	 case	 (O(n2)).	 So,	 (i)	 generates	 worst	 case	 and	 (ii)	 needs	 fewer
comparisons.

Problem-44  Give	the	correct	matching	for	the	following	pairs:
(A) O(logn)
(B) O(n)
(C) O(nlogn)
(D) O(n2)
(P) Selection
(Q) Insertion	sort
(R) Binary	search
(S) Merge	sort
(a) A	–	R	B	–	P	C	–	Q	–	D	–	S
(b) A	–	R	B	–	P	C	–	S	D	–	Q
(c) A	–	P	B	–	R	C	–	S	D	–	Q
(d) A	–	P	B	–	S	C	–	R	D	–	Q

Solution:	(b).	Refer	theory	section.

Problem-45  Let	s	be	a	sorted	array	of	n	integers.	Let	t(n)	denote	the	time	taken	for	the	most
efficient	 algorithm	 to	determine	 if	 there	 are	 two	elements	with	 sum	 less	 than	1000	 in	 s.
which	of	the	following	statements	is	true?
a) t(n)	is	O(1)
b) n	<	t(n)	<	
c)
d)

Solution:	 (a).	 Since	 the	 given	 array	 is	 already	 sorted	 it	 is	 enough	 if	 we	 check	 the	 first	 two
elements	of	the	array.



Problem-46  The	usual	Θ(n2)	 implementation	 of	 Insertion	 Sort	 to	 sort	 an	 array	 uses	 linear
search	 to	 identify	 the	position	where	an	element	 is	 to	be	 inserted	 into	 the	already	sorted
part	of	the	array.	If,	instead,	we	use	binary	search	to	identify	the	position,	the	worst	case
running	time	will
(a) remain	Θ(n2)
(b) become	Θ(n(log	n)2)
(c) become	Θ(nlogn)
(d) become	Θ(n)

Solution:	(a).	If	we	use	binary	search	then	there	will	be	 	comparisons	in	the	worst	case,
which	 is	 Θ(nlogn).	 But	 the	 algorithm	 as	 a	 whole	 will	 still	 have	 a	 running	 time	 of	 Θ(n2)	 on
average	because	of	the	series	of	swaps	required	for	each	insertion.

Problem-47  In	quick	 sort,	 for	 sorting	n	 elements,	 the	n/4th	 smallest	 element	 is	 selected	 as
pivot	using	an	O(n)	 time	algorithm.	What	 is	 the	worst	case	 time	complexity	of	 the	quick
sort?
(A) Θ(n)
(B) Θ(nLogn)
(C) Θ(n2)
(D) Θ(n2logn)

Solution:	The	recursion	expression	becomes:	T(n)	=	T(n/4)	+	T(3n/4)	+	en.	Solving	the	recursion
using	variant	of	master	theorem,	we	get	Θ(nLogn).

Problem-48  Consider	 the	Quicksort	 algorithm.	 Suppose	 there	 is	 a	 procedure	 for	 finding	 a
pivot	element	which	splits	the	list	into	two	sub-lists	each	of	which	contains	at	least	one-
fifth	of	the	elements.	Let	T(n)	be	the	number	of	comparisons	required	to	sort	n	elements.
Then
A) T	(n)	≤	2T	(n	/5)	+	n
B) T	(n)	≤	T	(n	/5)	+	T	(4n	/5)	+	n
C) T	(n)	≤	2T	(4n	/5)	+	n
D) T	(n)	≤	2T	(n	/2)	+	n

Solution:	(C).	For	the	case	where	n/5	elements	are	in	one	subset,	T(n/5)	comparisons	are	needed
for	the	first	subset	with	n/5	elements,	T(4n/5)	is	for	the	rest	4n/5	elements,	and	n	is	for	finding	the
pivot.	 If	 there	 are	 more	 than	 n/5	 elements	 in	 one	 set	 then	 other	 set	 will	 have	 less	 than	 4n/5
elements	and	time	complexity	will	be	less	than	T(n/5)	+	T(4n/5)	+	n.

Problem-49  Which	 of	 the	 following	 sorting	 algorithms	 has	 the	 lowest	 worst-case
complexity?
(A) Merge	sort
(B) Bubble	sort
(C) Quick	sort
(D) Selection	sort



Solution:	(A).	Refer	theory	section.

Problem-50  Which	 one	 of	 the	 following	 in	 place	 sorting	 algorithms	 needs	 the	 minimum
number	of	swaps?
(A) Quick	sort
(B) Insertion	sort
(C) Selection	sort
(D) Heap	sort

Solution:	(C).	Refer	theory	section.

Problem-51  You	have	an	array	of	n	elements.	Suppose	you	implement	quicksort	by	always
choosing	the	central	element	of	the	array	as	the	pivot.	Then	the	tightest	upper	bound	for	the
worst	case	performance	is
(A) O(n2)
(B) O(nlogn)
(C) Θ(nlogn)
(D) O(n3)

Solution:	(A).	When	we	choose	the	first	element	as	the	pivot,	the	worst	case	of	quick	sort	comes
if	the	input	is	sorted-	either	in	ascending	or	descending	order.

Problem-52  Let	P	be	a	Quicksort	Program	to	sort	numbers	in	ascending	order	using	the	first
element	as	pivot.	Let	t1	and	t2	be	the	number	of	comparisons	made	by	P	for	the	inputs	{1,
2,	3,	4,	5}	and	{4,	1,	5,	3,	2}	respectively.	Which	one	of	the	following	holds?
(A) t1	=	5
(B) t1	<	t2
(C) t1	>	t2
(D) t1	=	t2

Solution:	(C).	Quick	Sort’s	worst	case	occurs	when	first	(or	last)	element	is	chosen	as	pivot	with
sorted	arrays.

Problem-53  The	 minimum	 number	 of	 comparisons	 required	 to	 find	 the	 minimum	 and	 the
maximum	of	100	numbers	is	——

Solution:	 147	 (Formula	 for	 the	minimum	 number	 of	 comparisons	 required	 is	 3n/2	 –	 3	with	 n
numbers).

Problem-54  The	number	of	elements	that	can	be	sorted	in	T(logn)	time	using	heap	sort	is
(A) Θ(1)
(B) Θ(sqrt(logn))
(C) Θ(log	n/(log	log	n))
(D) Θ(logn)

Solution:	 (D).	Sorting	an	array	with	k	 elements	 takes	 time	Θ(k	 log	k)	 as	k	grows.	We	want	 to
choose	k	such	that	Θ(k	log	k)	=	Θ(logn).	Choosing	k	=	Θ(logn)	doesn’t	necessarily	work,	since



Θ(k	log	k)	=	Θ(logn	loglogn)	≠	Θ(logn).	On	the	other	hand,	if	you	choose	k	=	T(log	n	/	log	log	n),
then	the	runtime	of	the	sort	will	be

Notice	that	1	–	logloglogn	/	loglogn	tends	toward	1	as	n	goes	to	infinity,	so	the	above	expression
actually	is	Θ(log	n),	as	required.	Therefore,	if	you	try	to	sort	an	array	of	size	Θ(logn	/	loglogn)
using	heap	sort,	as	a	function	of	n,	the	runtime	is	Θ(logn).

Problem-55  Which	 one	 of	 the	 following	 is	 the	 tightest	 upper	 bound	 that	 represents	 the
number	of	swaps	required	to	sort	n	numbers	using	selection	sort?
(A) O(logn)
(B) O(n)
(C) O(nlogn)
(D) O(n2)

Solution:	(B).	Selection	sort	requires	only	O(n)	swaps.

Problem-56  Which	one	of	 the	following	 is	 the	recurrence	equation	for	 the	worst	case	 time
complexity	 of	 the	 Quicksort	 algorithm	 for	 sorting	 n(≥	 2)	 numbers?	 In	 the	 recurrence
equations	given	in	the	options	below,	c	is	a	constant.
(A)T(n)	=	2T	(n/2)	+	cn
(B) T(n)	=	T(n	–	1)	+	T(0)	+	cn
(C) T(n)	=	2T	(n	–	2)	+	cn
(D) T(n)	=	T(n/2)	+	cn

Solution:	(B).	When	the	pivot	is	the	smallest	(or	largest)	element	at	partitioning	on	a	block	of	size
n	the	result	yields	one	empty	sub-block,	one	element	(pivot)	in	the	correct	place	and	sub	block	of
size	n	–	1.

Problem-57  True	or	False.	In	randomized	quicksort,	each	key	is	involved	in	the	same	number
of	comparisons.

Solution:	False.

Problem-58  True	or	False:	If	Quicksort	is	written	so	that	the	partition	algorithm	always	uses
the	median	value	of	the	segment	as	the	pivot,	then	the	worst-case	performance	is	O(nlogn).

Soution:	True.



11.1	What	is	Searching?

In	computer	science,	searching	is	the	process	of	finding	an	item	with	specified	properties	from	a
collection	of	 items.	The	 items	may	be	stored	as	 records	 in	a	database,	 simple	data	elements	 in
arrays,	text	in	files,	nodes	in	trees,	vertices	and	edges	in	graphs,	or	they	may	be	elements	of	other
search	spaces.

11.2	Why	do	we	need	Searching?

Searching	is	one	of	the	core	computer	science	algorithms.	We	know	that	today’s	computers	store
a	 lot	 of	 information.	To	 retrieve	 this	 information	 proficiently	we	 need	 very	 efficient	 searching
algorithms.	There	 are	 certain	ways	 of	 organizing	 the	 data	 that	 improves	 the	 searching	process.
That	means,	if	we	keep	the	data	in	proper	order,	it	is	easy	to	search	the	required	element.	Sorting
is	one	of	 the	 techniques	 for	making	 the	 elements	ordered.	 In	 this	 chapter	we	will	 see	different
searching	algorithms.



11.3	Types	of	Searching

Following	are	the	types	of	searches	which	we	will	be	discussing	in	this	book.

• Unordered	Linear	Search
• Sorted/Ordered	Linear	Search
• Binary	Search
• Interpolation	search
• Binary	Search	Trees	(operates	on	trees	and	refer	Trees	chapter)
• Symbol	Tables	and	Hashing
• String	Searching	Algorithms:	Tries,	Ternary	Search	and	Suffix	Trees

11.4	Unordered	Linear	Search

Let	us	assume	we	are	given	an	array	where	the	order	of	the	elements	is	not	known.	That	means	the
elements	of	 the	array	are	not	 sorted.	 In	 this	case,	 to	search	 for	an	element	we	have	 to	scan	 the
complete	array	and	see	if	the	element	is	there	in	the	given	list	or	not.

Time	complexity:	O(n),	in	the	worst	case	we	need	to	scan	the	complete	array.	Space	complexity:
O(1).

11.5	Sorted/Ordered	Linear	Search

If	 the	 elements	 of	 the	 array	 are	 already	 sorted,	 then	 in	many	 cases	we	 don’t	 have	 to	 scan	 the
complete	array	to	see	if	the	element	is	there	in	the	given	array	or	not.	In	the	algorithm	below,	it
can	be	seen	that,	at	any	point	if	the	value	at	A[i]	is	greater	than	the	data	to	be	searched,	then	we
just	return	–1	without	searching	the	remaining	array.



Time	complexity	of	this	algorithm	is	O(n).This	is	because	in	the	worst	case	we	need	to	scan	the
complete	array.	But	in	the	average	case	it	reduces	the	complexity	even	though	the	growth	rate	is
the	same.

Space	complexity:	O(1).

Note:	For	the	above	algorithm	we	can	make	further	improvement	by	incrementing	the	index	at	a
faster	rate	(say,	2).	This	will	reduce	the	number	of	comparisons	for	searching	in	the	sorted	list.

11.6	Binary	Search

Let	 us	 consider	 the	 problem	 of	 searching	 a	word	 in	 a	 dictionary.	 Typically,	we	 directly	 go	 to
some	approximate	page	[say,	middle	page]	and	start	searching	from	that	point.	If	the	name	that	we
are	searching	is	the	same	then	the	search	is	complete.	If	the	page	is	before	the	selected	pages	then
apply	 the	 same	process	 for	 the	 first	half;	otherwise	apply	 the	 same	process	 to	 the	 second	half.
Binary	search	also	works	in	the	same	way.	The	algorithm	applying	such	a	strategy	is	referred	to
as	binary	search	algorithm.



Recurrence	 for	 binary	 search	 is	 .	 This	 is	 because	 we	 are	 always
considering	only	half	of	the	input	list	and	throwing	out	the	other	half.	Using	Divide	and	Conquer
master	theorem,	we	get,	T(n)	=	O(logn).

Time	Complexity:	O(logn).	Space	Complexity:	O(1)	[for	iterative	algorithm].

11.7	Interpolation	Search

Undoubtedly	 binary	 search	 is	 a	 great	 algorithm	 for	 searching	 with	 average	 running	 time
complexity	of	logn.	It	always	chooses	the	middle	of	the	remaining	search	space,	discarding	one
half	or	the	other,	again	depending	on	the	comparison	between	the	key	value	found	at	the	estimated
(middle)	 position	 and	 the	 key	value	 sought.	The	 remaining	 search	 space	 is	 reduced	 to	 the	 part



before	or	after	the	estimated	position.

In	the	mathematics,	interpolation	is	a	process	of	constructing	new	data	points	within	the	range	of	a
discrete	 set	 of	 known	 data	 points.	 In	 computer	 science,	 one	 often	 has	 a	 number	 of	 data	 points
which	 represent	 the	 values	 of	 a	 function	 for	 a	 limited	 number	 of	 values	 of	 the	 independent
variable.	 It	 is	 often	 required	 to	 interpolate	 (i.e.	 estimate)	 the	 value	 of	 that	 function	 for	 an
intermediate	value	of	the	independent	variable.

For	example,	suppose	we	have	a	table	like	this,	which	gives	some	values	of	an	unknown	function
f.	Interpolation	provides	a	means	of	estimating	the	function	at	intermediate	points,	such	as	x	=	55.

x f(x)
1 10
2 20
3 30
4 40
5 50
6 60
7 70

There	 are	 many	 different	 interpolation	 methods,	 and	 one	 of	 the	 simplest	 methods	 is	 linear
interpolation.	 Since	 55	 is	 midway	 between	 50	 and	 60,	 it	 is	 reasonable	 to	 take	 f(55)	 midway
between	f(5)	=	50	and	f(6)	=	60,	which	yields	55.

Linear	interpolation	takes	two	data	points,	say	(x1;	y2)	and	(x2,	y2),	and	the	interpolant	is	given	by:

With	above	inputs,	what	will	happen	if	we	don’t	use	 the	constant	½,	but	another	more	accurate
constant	“K”,	that	can	lead	us	closer	to	the	searched	item.

This	 algorithm	 tries	 to	 follow	 the	 way	we	 search	 a	 name	 in	 a	 phone	 book,	 or	 a	 word	 in	 the
dictionary.	We,	humans,	know	in	advance	that	in	case	the	name	we’re	searching	starts	with	a	“m”,



like	“monk”	for	 instance,	we	should	start	 searching	near	 the	middle	of	 the	phone	book.	Thus	 if
we’re	 searching	 the	 word	 “career”	 in	 the	 dictionary,	 you	 know	 that	 it	 should	 be	 placed
somewhere	 at	 the	 beginning.	 This	 is	 because	 we	 know	 the	 order	 of	 the	 letters,	 we	 know	 the
interval	 (a-z),	 and	 somehow	we	 intuitively	 know	 that	 the	words	 are	 dispersed	 equally.	 These
facts	are	enough	to	realize	 that	 the	binary	search	can	be	a	bad	choice.	Indeed	the	binary	search
algorithm	divides	the	list	in	two	equal	sub-lists,	which	is	useless	if	we	know	in	advance	that	the
searched	 item	 is	 somewhere	 in	 the	beginning	or	 the	end	of	 the	 list.	Yes,	we	can	use	also	 jump
search	if	the	item	is	at	the	beginning,	but	not	if	it	is	at	the	end,	in	that	case	this	algorithm	is	not	so
effective.

The	interpolation	search	algorithm	tries	to	improve	the	binary	search.	The	question	is	how	to	find
this	value?	Well,	we	know	bounds	of	the	interval	and	looking	closer	to	the	image	above	we	can
define	the	following	formula.

This	constant	K	 is	used	 to	narrow	down	the	search	space.	For	binary	search,	 this	constant	K	 is
(low	+	high)/2.

Now	we	can	be	sure	that	we’re	closer	to	the	searched	value.	On	average	the	interpolation	search
makes	about	 log	 (logn)	comparisons	(if	 the	elements	are	uniformly	distributed),	where	n	 is	 the
number	of	elements	to	be	searched.	In	the	worst	case	(for	instance	where	the	numerical	values	of
the	keys	increase	exponentially)	it	can	make	up	to	O(n)	comparisons.	In	interpolation-sequential
search,	interpolation	is	used	to	find	an	item	near	the	one	being	searched	for,	then	linear	search	is
used	to	find	the	exact	item.	For	this	algorithm	to	give	best	results,	the	dataset	should	be	ordered
and	uniformly	distributed.



11.8	Comparing	Basic	Searching	Algorithms

Note:	For	discussion	on	binary	search	trees	refer	Trees	chapter.

11.9	Symbol	Tables	and	Hashing

Refer	to	Symbol	Tables	and	Hashing	chapters.

11.10	String	Searching	Algorithms

Refer	to	String	Algorithms	chapter.

11.11	Searching:	Problems	&	Solutions

Problem-1  Given	an	array	of	n	 numbers,	give	an	algorithm	 for	 checking	whether	 there	 are
any	duplicate	elements	in	the	array	or	no?

Solution:	 This	 is	 one	 of	 the	 simplest	 problems.	 One	 obvious	 answer	 to	 this	 is	 exhaustively
searching	for	duplicates	in	the	array.	That	means,	for	each	input	element	check	whether	there	is
any	element	with	the	same	value.	This	we	can	solve	just	by	using	two	simple	for	loops.	The	code
for	this	solution	can	be	given	as:



Time	Complexity:	O(n2),	for	two	nested	for	loops.	Space	Complexity:	O(1).

Problem-2  Can	we	improve	the	complexity	of	Problem-1’s	solution?

Solution:	Yes.	 Sort	 the	 given	 array.	 After	 sorting,	 all	 the	 elements	 with	 equal	 values	 will	 be
adjacent.	Now,	do	another	scan	on	this	sorted	array	and	see	if	there	are	elements	with	the	same
value	and	adjacent.

Time	Complexity:	O(nlogn),	for	sorting	(assuming	nlogn	 sorting	algorithm).	Space	Complexity:
O(1).

Problem-3  Is	there	any	alternative	way	of	solving	Problem-1?

Solution:	Yes,	using	hash	table.	Hash	tables	are	a	simple	and	effective	method	used	to	implement
dictionaries.	Average	time	to	search	for	an	element	is	O(1),	while	worst-case	time	is	O(n).	Refer
to	Hashing	chapter	for	more	details	on	hashing	algorithms.	As	an	example,	consider	the	array,	A	=
{3,2,1,2,2,3}.

Scan	 the	 input	 array	 and	 insert	 the	 elements	 into	 the	 hash.	For	 each	 inserted	 element,	 keep	 the



counter	 as	 1	 (assume	 initially	 all	 entires	 are	 filled	 with	 zeros).	 This	 indicates	 that	 the
corresponding	 element	 has	 occurred	 already.	For	 the	given	 array,	 the	hash	 table	will	 look	 like
(after	inserting	the	first	three	elements	3,2	and	1):

Now	if	we	try	inserting	2,	since	the	counter	value	of	2	is	already	1,	we	can	say	the	element	has
appeared	twice.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-4  Can	we	further	improve	the	complexity	of	Problem-1	solution?

Solution:	Let	us	assume	that	the	array	elements	are	positive	numbers	and	all	the	elements	are	in
the	 range	0	 to	n	 –	1.	For	 each	element	A[i],	 go	 to	 the	array	element	whose	 index	 is	A[i].	 That
means	select	A[A[i]]	and	mark	-	A[A[i]]	(negate	the	value	at	A[A[i]]).	Continue	this	process	until
we	encounter	the	element	whose	value	is	already	negated.	If	one	such	element	exists	then	we	say
duplicate	elements	exist	in	the	given	array.	As	an	example,	consider	the	array,	A	=	{3,2,1,2,2,3}.

Initially,

At	step-1,	negate	A[abs(A[0])],

At	step-2,	negate	A[abs(A[l])],

At	step-3,	negate	A[abs(A[2])],



At	step-4,	negate	A[abs(A[3])],

At	 step-4,	 observe	 that	A[abs(A[3])]	 is	 already	 negative.	That	means	we	 have	 encountered	 the
same	value	twice.

Time	Complexity:	O(n).	Since	only	one	scan	is	required.	Space	Complexity:	O(1).

Notes:

• This	solution	does	not	work	if	the	given	array	is	read	only.
• This	solution	will	work	only	if	all	the	array	elements	are	positive.
• If	the	elements	range	is	not	in	0	to	n	–	1	then	it	may	give	exceptions.

Problem-5  Given	 an	 array	of	n	 numbers.	Give	 an	 algorithm	 for	 finding	 the	 element	which
appears	the	maximum	number	of	times	in	the	array?

Brute	Force	Solution:	One	simple	solution	to	this	is,	for	each	input	element	check	whether	there
is	 any	element	with	 the	 same	value,	 and	 for	each	 such	occurrence,	 increment	 the	counter.	Each
time,	check	the	current	counter	with	the	max	counter	and	update	it	if	this	value	is	greater	than	max
counter.	This	we	can	solve	just	by	using	two	simple	for	loops.



Time	Complexity:	O(n2),	for	two	nested	for	loops.	Space	Complexity:	O(1).

Problem-6  Can	we	improve	the	complexity	of	Problem-5	solution?

Solution:	 Yes.	 Sort	 the	 given	 array.	 After	 sorting,	 all	 the	 elements	 with	 equal	 values	 come
adjacent.	Now,	just	do	another	scan	on	this	sorted	array	and	see	which	element	is	appearing	the
maximum	number	of	times.

Time	Complexity:	O(nlogn).	(for	sorting).	Space	Complexity:	O(1).

Problem-7  Is	there	any	other	way	of	solving	Problem-5?

Solution:	Yes,	using	hash	table.	For	each	element	of	the	input,	keep	track	of	how	many	times	that
element	appeared	in	the	input.	That	means	the	counter	value	represents	the	number	of	occurrences
for	that	element.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-8  or	Problem-5,	can	we	 improve	 the	 time	complexity?	Assume	 that	 the	elements’
range	is	1	to	n.	That	means	all	the	elements	are	within	this	range	only.

Solution:	Yes.	We	can	solve	this	problem	in	two	scans.	We	cannot	use	the	negation	technique	of
Problem-3	 for	 this	 problem	 because	 of	 the	 number	 of	 repetitions.	 In	 the	 first	 scan,	 instead	 of
negating,	add	the	value	n.	That	means	for	each	occurrence	of	an	element	add	the	array	size	to	that
element.	 In	 the	second	scan,	check	 the	element	value	by	dividing	 it	by	n	and	return	 the	element
which	gives	the	maximum	value.	The	code	based	on	this	method	is	given	below.



Notes:

• This	solution	does	not	work	if	the	given	array	is	read	only.
• This	solution	will	work	only	if	the	array	elements	are	positive.
• If	the	elements	range	is	not	in	1	to	n	then	it	may	give	exceptions.

Time	Complexity:	O(n).	Since	no	nested	for	loops	are	required.	Space	Complexity:	O(1).

Problem-9  Given	an	array	of	n	numbers,	give	an	algorithm	for	finding	the	first	element	in	the
array	which	 is	 repeated.	For	 example,	 in	 the	 array	A	=	 {3,2,1,2,2,3},	 the	 first	 repeated
number	 is	3	 (not	2).	That	means,	we	need	 to	 return	 the	 first	element	among	 the	 repeated
elements.

Solution:	We	can	use	the	brute	force	solution	that	we	used	for	Problem-1.	For	each	element,	since
it	checks	whether	there	is	a	duplicate	for	that	element	or	not,	whichever	element	duplicates	first
will	be	returned.

Problem-10  For	Problem-9,	can	we	use	the	sorting	technique?

Solution:	No.	For	proving	the	failed	case,	let	us	consider	the	following	array.	For	example,	A	=
{3,	2,	1,	2,	2,	3}.	After	sorting	we	get	A	=	{1,2,2,2,3,3}.	 In	 this	sorted	array	 the	first	 repeated
element	is	2	but	the	actual	answer	is	3.

Problem-11  For	Problem-9,	can	we	use	hashing	technique?

Solution:	Yes.	But	the	simple	hashing	technique	which	we	used	for	Problem-3	will	not	work.	For
example,	if	we	consider	the	input	array	as	A	=	{3,2,1,2,3},	then	the	first	repeated	element	is	3,
but	using	our	simple	hashing	technique	we	get	the	answer	as	2.	This	is	because	2	is	coming	twice
before	3.	Now	let	us	change	the	hashing	table	behavior	so	that	we	get	the	first	repeated	element.
Let	us	say,	instead	of	storing	1	value,	initially	we	store	the	position	of	the	element	in	the	array.	As
a	result	the	hash	table	will	look	like	(after	inserting	3,2	and	1):



Now,	if	we	see	2	again,	we	just	negate	the	current	value	of	2	in	the	hash	table.	That	means,	we
make	its	counter	value	as	–2.	The	negative	value	in	the	hash	table	indicates	that	we	have	seen	the
same	element	two	times.	Similarly,	for	3	(the	next	element	in	the	input)	also,	we	negate	the	current
value	of	the	hash	table	and	finally	the	hash	table	will	look	like:

After	 processing	 the	 complete	 input	 array,	 scan	 the	 hash	 table	 and	 return	 the	 highest	 negative
indexed	value	from	it	(i.e.,	–1	in	our	case).	The	highest	negative	value	indicates	that	we	have	seen
that	element	first	(among	repeated	elements)	and	also	repeating.

What	 if	 the	 element	 is	 repeated	more	 than	 twice?	 In	 this	 case,	 just	 skip	 the	 element	 if	 the
corresponding	value	i	is	already	negative.

Problem-12  For	Problem-9,	can	we	use	the	technique	that	we	used	for	Problem-3	(negation
technique)?

Solution:	No.	As	an	example	of	contradiction,	for	the	array	A	=	{3,2,1,2,2,3}	the	first	repeated
element	is	3.	But	with	negation	technique	the	result	is	2.

Problem-13  Finding	the	Missing	Number:	We	are	given	a	 list	of	n	–	1	 integers	and	 these
integers	are	in	the	range	of	1	to	n.	There	are	no	duplicates	in	the	list.	One	of	the	integers	is
missing	 in	 the	 list.	 Given	 an	 algorithm	 to	 find	 the	 missing	 integer.	 Example:	 I/P:
[1,2,4,6,3,7,8]	O/P:	5

Brute	Force	Solution:	One	simple	solution	to	this	is,	for	each	number	in	1	to	n,	check	whether
that	number	is	in	the	given	array	or	not.



Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-14  For	Problem-13,	can	we	use	sorting	technique?

Solution:	Yes.	Sorting	the	list	will	give	the	elements	in	increasing	order	and	with	another	scan	we
can	find	the	missing	number.

Time	Complexity:	O(nlogn),	for	sorting.	Space	Complexity:	O(1).

Problem-15  For	Problem-13,	can	we	use	hashing	technique?

Solution:	Yes.	Scan	the	input	array	and	insert	elements	into	the	hash.	For	inserted	elements,	keep
counter	 as	 1	 (assume	 initially	 all	 entires	 are	 filled	 with	 zeros).	 This	 indicates	 that	 the
corresponding	 element	 has	 occurred	 already.	 Now,	 scan	 the	 hash	 table	 and	 return	 the	 element
which	has	counter	value	zero.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-16  For	Problem-13,	can	we	improve	the	complexity?

Solution:	Yes.	We	can	use	summation	formula.

1) Get	the	sum	of	numbers,	sum	=	n	×	(n	+	l)/2.
2) Subtract	all	the	numbers	from	sum	and	you	will	get	the	missing	number.

Time	Complexity:	O(n),	for	scanning	the	complete	array.

Problem-17  In	Problem-13,	 if	 the	 sum	 of	 the	 numbers	 goes	 beyond	 the	maximum	 allowed
integer,	then	there	can	be	integer	overflow	and	we	may	not	get	the	correct	answer.	Can	we
solve	this	problem?

Solution:

1) XOR	all	the	array	elements,	let	the	result	of	XOR	be	X.



2) XOR	all	numbers	from	1	to	n,	let	XOR	be	Y.
3) XOR	of	X	and	Y	gives	the	missing	number.

Time	Complexity:	O(n),	for	scanning	the	complete	array.	Space	Complexity:	O(1).

Problem-18  Find	 the	Number	Occurring	 an	Odd	Number	 of	 Times:	 Given	 an	 array	 of
positive	 integers,	 all	 numbers	 occur	 an	 even	 number	 of	 times	 except	 one	 number	which
occurs	an	odd	number	of	times.	Find	the	number	in	O(n)	time	&	constant	space.	Example	:
I/P	=	[1,2,3,2,3,1,3]	O/P	=	3

Solution:	Do	a	bitwise	XOR	of	all	the	elements.	We	get	the	number	which	has	odd	occurrences.
This	is	because,	A	XOR	A	=	0.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-19  Find	the	two	repeating	elements	in	a	given	array:	Given	an	array	with	size,
all	elements	of	the	array	are	in	range	1	to	n	and	also	all	elements	occur	only	once	except
two	numbers	which	occur	 twice.	Find	 those	 two	 repeating	numbers.	For	example:	 if	 the
array	is	4,2,4,5,2,3,1	with	size	=	7	and	n	=	5.	This	input	has	n	+	2	=	7	elements	with	all
elements	occurring	once	except	2	and	4	which	occur	twice.	So	the	output	should	be	4	2.

Solution:	One	simple	way	is	to	scan	the	complete	array	for	each	element	of	the	input	elements.
That	means	use	two	loops.	In	the	outer	loop,	select	elements	one	by	one	and	count	the	number	of
occurrences	 of	 the	 selected	 element	 in	 the	 inner	 loop.	 For	 the	 code	 below,	 assume	 that
PrintRepeatedElements	is	called	with	n	+	2	to	indicate	the	size.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).



Problem-20  For	Problem-19,	can	we	improve	the	time	complexity?

Solution:	Sort	the	array	using	any	comparison	sorting	algorithm	and	see	if	there	are	any	elements
which	are	contiguous	with	the	same	value.

Time	Complexity:	O(nlogn).	Space	Complexity:	O(1).

Problem-21  For	Problem-19,	can	we	improve	the	time	complexity?

Solution:	Use	Count	Array.	This	 solution	 is	 like	using	a	hash	 table.	For	 simplicity	we	can	use
array	for	storing	the	counts.	Traverse	the	array	once	and	keep	track	of	the	count	of	all	elements	in
the	array	using	a	temp	array	count[]	of	size	n.	When	we	see	an	element	whose	count	is	already
set,	print	it	as	duplicate.	For	the	code	below	assume	that	PrintRepeatedElements	is	called	with	n
+	2	to	indicate	the	size.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-22  Consider	Problem-19.	Let	us	assume	that	the	numbers	are	in	the	range	1	to	n.	Is
there	any	other	way	of	solving	the	problem?

Solution:	Yes,	by	using	XOR	Operation.	Let	the	repeating	numbers	be	X	and	Y,	if	we	XOR	all
the	elements	in	the	array	and	also	all	integers	from	1	to	n,	then	the	result	will	be	X	XOR	Y.	The	1’s
in	binary	representation	of	X	XOR	Y	correspond	to	the	different	bits	between	X	and	Y.	If	the	kth	bit
of	X	XOR	Y	is	1,	we	can	XOR	all	the	elements	in	the	array	and	also	all	integers	from	1	to	n	whose
kth	bits	are	1.	The	result	will	be	one	of	X	and	Y.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-23  Consider	Problem-19.	Let	us	assume	that	the	numbers	are	in	the	range	1	to	n.	Is
there	yet	other	way	of	solving	the	problem?

Solution:	We	can	solve	 this	by	creating	 two	simple	mathematical	equations.	Let	us	assume	that
two	numbers	we	are	going	to	find	are	X	and	Y.	We	know	the	sum	of	n	numbers	is	n(n	+	l)/2	and
the	product	 is	n!.	Make	 two	equations	using	 these	sum	and	product	 formulae,	and	get	values	of
two	 unknowns	 using	 the	 two	 equations.	 Let	 the	 summation	 of	 all	 numbers	 in	 array	 be	 S	 and
product	be	P	and	the	numbers	which	are	being	repeated	are	X	and	Y.

Using	 the	 above	 two	 equations,	 we	 can	 find	 out	 X	 and	 Y.	 There	 can	 be	 an	 addition	 and
multiplication	overflow	problem	with	this	approach.

Time	Complexity:	O(n).	Space	Complexity:	O(1).



Problem-24  Similar	 to	Problem-19,	 let	us	assume	that	 the	numbers	are	 in	 the	range	1	 to	n.
Also,	n	–	1	elements	are	repeating	thrice	and	remaining	element	repeated	twice.	Find	the
element	which	repeated	twice.

Solution:	 If	 we	 XOR	 all	 the	 elements	 in	 the	 array	 and	 all	 integers	 from	 1	 to	 n,	 then	 all	 the
elements	 which	 are	 repeated	 thrice	 will	 become	 zero.	 This	 is	 because,	 since	 the	 element	 is
repeating	 thrice	 and	XOR	 another	 time	 from	 range	makes	 that	 element	 appear	 four	 times.	As	 a
result,	 the	output	of	a	XOR	a	XOR	a	XOR	a	=	0.	 It	 is	 the	same	case	with	all	elements	 that	are
repeated	three	times.

With	the	same	logic,	for	the	element	which	repeated	twice,	if	we	XOR	the	input	elements	and	also
the	range,	then	the	total	number	of	appearances	for	that	element	is	3.	As	a	result,	the	output	of	a
XOR	a	XOR	a	=	a.	Finally,	we	get	the	element	which	repeated	twice.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-25  Given	an	array	of	n	elements.	Find	two	elements	in	the	array	such	that	their	sum
is	equal	to	given	element	K.

Brute	Force	Solution:	One	simple	solution	to	this	is,	for	each	input	element,	check	whether	there
is	any	element	whose	sum	is	K.	This	we	can	solve	just	by	using	two	simple	for	loops.	The	code
for	this	solution	can	be	given	as:

Time	Complexity:	O(n2).	This	is	because	of	two	nested	for	loops.	Space	Complexity:	O(1).

Problem-26  For	Problem-25,	can	we	improve	the	time	complexity?

Solution:	Yes.	Let	us	assume	that	we	have	sorted	the	given	array.	This	operation	takes	O(nlogn).
On	the	sorted	array,	maintain	indices	loIndex	=	0	and	hiIndex	=	n	–	1	and	compute	A[loIndex]	+
A[hiIndex].	 If	 the	 sum	equals	K,	 then	we	are	done	with	 the	 solution.	 If	 the	 sum	 is	 less	 than	K,
decrement	hiIndex,	if	the	sum	is	greater	than	K,	increment	loIndex.



Time	Complexity:	O(nlogn).	If	the	given	array	is	already	sorted	then	the	complexity	is	O(n).

Space	Complexity:	O(1).

Problem-27  Does	the	solution	of	Problem-25	work	even	if	the	array	is	not	sorted?

Solution:	Yes.	Since	we	are	checking	all	possibilities,	the	algorithm	ensures	that	we	get	the	pair
of	numbers	if	they	exist.

Problem-28  Is	there	any	other	way	of	solving	Problem-25?

Solution:	Yes,	using	hash	table.	Since	our	objective	is	to	find	two	indexes	of	the	array	whose	sum
is	K.	Let	us	say	those	indexes	are	X	and	Y.	That	means,	A[X]	+	A[Y]	=	K.	What	we	need	 is,	 for
each	element	of	the	input	array	A[X],	check	whether	K	–	A[X]	also	exists	in	the	input	array.	Now,
let	us	simplify	that	searching	with	hash	table.

Algorithm:

• For	each	element	of	the	input	array,	insert	it	into	the	hash	table.	Let	us	say	the	current
element	is	A[X].

• Before	proceeding	to	the	next	element	we	check	whether	K	–	A[X]	also	exists	in	the
hash	table	or	not.

• Ther	existence	of	such	number	indicates	that	we	are	able	to	find	the	indexes.
• Otherwise	proceed	to	the	next	input	element.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-29  Given	an	array	A	of	n	elements.	Find	three	indices,	i,j	&	k	such	that	A[i]2	+	A[j]2



=	A[k]2?

Solution:

Algorithm:

• Sort	the	given	array	in-place.
• For	each	array	index	i	compute	A[i]2	and	store	in	array.
• Search	for	2	numbers	in	array	from	0	to	i	–	1	which	adds	to	A[i]	similar	to	Problem-

25.	This	will	 give	 us	 the	 result	 in	O(n)	 time.	 If	we	 find	 such	 a	 sum,	 return	 true,
otherwise	continue.

Time	Complexity:	Time	for	sorting	+	n	×	(Time	for	finding	the	sum)	=	O(nlogn)	+	n	×	O(n)=	n2.
Space	Complexity:	O(1).

Problem-30  Two	elements	whose	sum	is	closest	to	zero.	Given	an	array	with	both	positive
and	negative	numbers,	find	the	two	elements	such	that	their	sum	is	closest	to	zero.	For	the
below	array,	algorithm	should	give	-80	and	85.	Example:	1	60	–	10	70	–	80	85

Brute	Force	Solution:	For	each	element,	find	the	sum	with	every	other	element	in	the	array	and
compare	sums.	Finally,	return	the	minimum	sum.



Time	complexity:	O(n2).	Space	Complexity:	O(1).

Problem-31  Can	we	improve	the	time	complexity	of	Problem-30?

Solution:	Use	Sorting.

Algorithm:
1. Sort	all	the	elements	of	the	given	input	array.
2. Maintain	two	indexes,	one	at	the	beginning	(i	=	0)	and	the	other	at	the	ending	(j	=	n	–

1).	Also,	maintain	two	variables	to	keep	track	of	the	smallest	positive	sum	closest
to	zero	and	the	smallest	negative	sum	closest	to	zero.

3. While	i	<	j:
a. If	 the	 current	pair	 sum	 is	>	 zero	 and	<	postiveClosest	 then	 update	 the

postiveClosest.	Decrement	j.
b. If	the	current	pair	sum	is	<	zero	and	>	negativeClosest	 then	update	the

negativeClosest.	Increment	i.
c. Else,	print	the	pair



Time	Complexity:	O(nlogn),	for	sorting.	Space	Complexity:	O(1).

Problem-32  Given	an	array	of	n	elements.	Find	three	elements	in	the	array	such	that	their	sum
is	equal	to	given	element	K?

Brute	 Force	 Solution:	 The	 default	 solution	 to	 this	 is,	 for	 each	 pair	 of	 input	 elements	 check
whether	there	is	any	element	whose	sum	is	K.	This	we	can	solve	just	by	using	three	simple	for
loops.	The	code	for	this	solution	can	be	given	as:



Time	Complexity:	O(n3),	for	three	nested	for	loops.	Space	Complexity:	O(1).

Problem-33  Does	the	solution	of	Problem-32	work	even	if	the	array	is	not	sorted?

Solution:	Yes.	 Since	we	 are	 checking	 all	 possibilities,	 the	 algorithm	 ensures	 that	we	 can	 find
three	numbers	whose	sum	is	K	if	they	exist.

Problem-34  Can	we	use	sorting	technique	for	solving	Problem-32?

Solution:	Yes.

Time	Complexity:	 Time	 for	 sorting	 +	 Time	 for	 searching	 in	 sorted	 list	 =	O(nlogn)	 +	O(n2)	 ≈
O(n2).	This	is	because	of	two	nested	for	loops.	Space	Complexity:	O(1).

Problem-35  Can	we	use	hashing	technique	for	solving	Problem-32?

Solution:	Yes.	Since	our	objective	is	to	find	three	indexes	of	the	array	whose	sum	is	K.	Let	us	say
those	indexes	are	X,Y	and	Z.	That	means,	A[X]	+	A[Y]	+	A[Z]	=	K.

Let	us	assume	that	we	have	kept	all	possible	sums	along	with	their	pairs	in	hash	table.	That	means
the	key	to	hash	table	is	K	–	A[X]	and	values	for	K	–	A[X]	are	all	possible	pairs	of	input	whose
sum	is	if	–	A[X].

Algorithm:

• Before	 starting	 the	 search,	 insert	 all	possible	 sums	with	pairs	of	elements	 into	 the
hash	table.



• For	each	element	of	the	input	array,	insert	into	the	hash	table.	Let	us	say	the	current
element	is	A[X].

• Check	whether	there	exists	a	hash	entry	in	the	table	with	key:	K	–	A[X].
• If	such	element	exists	then	scan	the	element	pairs	of	K	–	A[X]	and	return	all	possible

pairs	by	including	A[X]	also.
• If	no	such	element	exists	(with	K	–	A[X]	as	key)	then	go	to	next	element.

Time	Complexity:	The	 time	 for	 storing	 all	 possible	pairs	 in	Hash	 table	+	 searching	=	O(n2)	 +
O(n2)	≈	O(n2).	Space	Complexity:	O(n).

Problem-36  Given	an	array	of	n	integers,	the	3	–	sum	problem	is	to	find	three	integers	whose
sum	is	closest	to	zero.

Solution:	This	is	the	same	as	that	of	Problem-32	with	K	value	is	zero.

Problem-37  Let	A	be	an	array	of	n	distinct	integers.	Suppose	A	has	the	following	property:
there	exists	an	index	1	≤	k	≤	n	such	that	A[l],...,	A[k]	is	an	increasing	sequence	and	A[k	+
1],...,	A[n]	is	a	decreasing	sequence.	Design	and	analyze	an	efficient	algorithm	for	finding
k.
Similar	 question:	 Let	 us	 assume	 that	 the	 given	 array	 is	 sorted	 but	 starts	 with	 negative
numbers	 and	 ends	 with	 positive	 numbers	 [such	 functions	 are	 called	 monotonically
increasing	functions].	In	this	array	find	the	starting	index	of	the	positive	numbers.	Assume
that	we	know	the	length	of	the	input	array.	Design	a	O(logn)	algorithm.

Solution:	Let	us	use	a	variant	of	the	binary	search.



The	recursion	equation	is	T(n)	=	2T(n/2)	+	c.	Using	master	theorem,	we	get	O(logn).

Problem-38  If	we	don’t	know	n,	how	do	we	solve	the	Problem-37?

Solution:	Repeatedly	compute	A[1],A[2],A[4],A[8],A[16]	 and	 so	 on,	 until	we	 find	 a	 value	 of	n
such	that	A[n]	>	0.

Time	 Complexity:	 O(logn),	 since	 we	 are	 moving	 at	 the	 rate	 of	 2.	 Refer	 to	 Introduction	 to
Analysis	of	Algorithms	chapter	for	details	on	this.

Problem-39  Given	an	input	array	of	size	unknown	with	all	1’s	in	the	beginning	and	0’s	in	the
end.	Find	the	index	in	the	array	from	where	0’s	start.	Consider	there	are	millions	of	1’s	and
0’s	in	the	array.	E.g.	array	contents	1111111……..1100000……..0000000.

Solution:	This	problem	is	almost	similar	to	Problem-38.	Check	the	bits	at	the	rate	of	2Kwhere	k
=	0,1,2	....	Since	we	are	moving	at	the	rate	of	2,	the	complexity	is	O(logn).

Problem-40  Given	a	sorted	array	of	n	integers	that	has	been	rotated	an	unknown	number	of
times,	give	a	O(logn)	algorithm	that	finds	an	element	in	the	array.
Example:	Find	5	in	array	(15	16	19	20	25	1	3	4	5	7	10	14)	Output:	8	(the	index	of	5	in
the	array)



Solution:	Let	 us	 assume	 that	 the	 given	 array	 is	A[]and	use	 the	 solution	of	Problem-37	with	 an
extension.	 The	 function	 below	FindPivot	 returns	 the	 k	 value	 (let	 us	 assume	 that	 this	 function
returns	the	index	instead	of	the	value).	Find	the	pivot	point,	divide	the	array	into	two	sub-arrays
and	call	binary	search.

The	main	idea	for	finding	the	pivot	point	is	–	for	a	sorted	(in	increasing	order)	and	pivoted	array,
the	pivot	element	is	the	only	element	for	which	the	next	element	to	it	is	smaller	than	it.	Using	the
above	criteria	and	the	binary	search	methodology	we	can	get	pivot	element	in	O(logn)	time.

Algorithm:

1) Find	out	the	pivot	point	and	divide	the	array	into	two	sub-arrays.
2) Now	call	binary	search	for	one	of	the	two	sub-arrays.

a. if	 the	 element	 is	 greater	 than	 the	 first	 element	 then	 search	 in	 left
subarray.

b. else	search	in	right	subarray.
3) If	element	is	found	in	selected	sub-array,	then	return	index	else	return	–1.



Time	complexity:	O(logn).

Problem-41  For	Problem-40,	can	we	solve	with	recursion?

Solution:	Yes.



Time	complexity:	O(logn).

Problem-42  Bitonic	search:	An	array	is	bitonic	if	it	is	comprised	of	an	increasing	sequence
of	 integers	 followed	 immediately	by	 a	 decreasing	 sequence	of	 integers.	Given	 a	 bitonic
array	A	of	n	distinct	integers,	describe	how	to	determine	whether	a	given	integer	is	in	the
array	in	O(logn)	steps.

Solution:	The	solution	is	the	same	as	that	for	Problem-37.

Problem-43  Yet,	other	way	of	framing	Problem-37.
Let	A[]	 be	 an	 array	 that	 starts	 out	 increasing,	 reaches	 a	 maximum,	 and	 then	 decreases.
Design	an	O(logn)	algorithm	to	find	the	index	of	the	maximum	value.

Problem-44  Give	 an	 O(nlogn)	 algorithm	 for	 computing	 the	 median	 of	 a	 sequence	 of	 n
integers.

Solution:	Sort	and	return	element	at	 .

Problem-45  Given	two	sorted	lists	of	size	m	and	n,	find	median	of	all	elements	in	O(log	(m
+	n))	time.

Solution:	Refer	to	Divide	and	Conquer	chapter.

Problem-46  Given	a	sorted	array	A	of	n	elements,	possibly	with	duplicates,	find	the	index	of
the	first	occurrence	of	a	number	in	O(logn)	time.

Solution:	To	find	the	first	occurrence	of	a	number	we	need	to	check	for	the	following	condition.



Return	the	position	if	any	one	of	the	following	is	true:

Time	Complexity:	O(logn).

Problem-47  Given	a	sorted	array	A	of	n	elements,	possibly	with	duplicates.	Find	the	index	of
the	last	occurrence	of	a	number	in	O(logn)	time.

Solution:	To	find	the	last	occurrence	of	a	number	we	need	to	check	for	the	following	condition.
Return	the	position	if	any	one	of	the	following	is	true:



Time	Complexity:	O(logn).

Problem-48  Given	a	sorted	array	of	n	elements,	possibly	with	duplicates.	Find	the	number	of
occurrences	of	a	number.

Brute	Force	Solution:	Do	a	linear	search	of	the	array	and	increment	count	as	and	when	we	find
the	element	data	in	the	array.

Time	Complexity:	O(n).

Problem-49  Can	we	improve	the	time	complexity	of	Problem-48?

Solution:	Yes.	We	can	solve	this	by	using	one	binary	search	call	followed	by	another	small	scan.

Algorithm:

• Do	a	binary	search	for	the	data	in	the	array.	Let	us	assume	its	position	is	K.
• Now	traverse	towards	the	left	from	K	and	count	the	number	of	occurrences	of	data.

Let	this	count	be	leftCount.
• Similarly,	 traverse	 towards	right	and	count	 the	number	of	occurrences	of	data.	Let

this	count	be	rightCount.
• Total	number	of	occurrences	=	leftCount	+	1	+	rightCount

Time	Complexity	–	O(logn	+	S)	where	5	is	the	number	of	occurrences	of	data.

Problem-50  Is	there	any	alternative	way	of	solving	Problem-48?

Solution:

Algorithm:

• Find	 first	 occurrence	of	data	 and	 call	 its	 index	 as	 firstOccurrence	 (for	 algorithm
refer	to	Problem-46)

• Find	 last	 occurrence	 of	 data	 and	 call	 its	 index	 as	 lastOccurrence	 (for	 algorithm
refer	to	Problem-47)

• Return	lastOccurrence	–	firstOccurrence	+	1

Time	Complexity	=	O(logn	+	logn)	=	O(logn).



Problem-51  What	is	the	next	number	in	the	sequence	1,11,21	and	why?

Solution:	Read	the	given	number	loudly.	This	is	just	a	fun	problem.

So	 the	 answer	 is:	 the	 next	 number	 is	 the	 representation	 of	 the	 previous	 number	 by	 reading	 it
loudly.

Problem-52  Finding	second	smallest	number	efficiently.

Solution:	We	can	construct	a	heap	of	 the	given	elements	using	up	 just	 less	 than	n	 comparisons
(Refer	to	the	Priority	Queues	chapter	for	the	algorithm).	Then	we	find	the	second	smallest	using
logn	comparisons	for	the	GetMax()	operation.	Overall,	we	get	n	+	logn	+	constant.

Problem-53  Is	there	any	other	solution	for	Problem-52?

Solution:	 Alternatively,	 split	 the	 n	 numbers	 into	 groups	 of	 2,	 perform	 n/2	 comparisons
successively	 to	 find	 the	 largest,	 using	 a	 tournament-like	method.	The	 first	 round	will	 yield	 the
maximum	in	n	–	1	comparisons.	The	second	round	will	be	performed	on	the	winners	of	the	first
round	and	the	ones	that	the	maximum	popped.	This	will	yield	logn	–	1	comparison	for	a	total	of	n
+	logn	–	2.	The	above	solution	is	called	the	tournament	problem.

Problem-54  An	element	 is	a	majority	 if	 it	appears	more	 than	n/2	 times.	Give	an	algorithm
takes	an	array	of	n	element	as	argument	and	identifies	a	majority	(if	it	exists).

Solution:	The	basic	solution	 is	 to	have	 two	loops	and	keep	 track	of	 the	maximum	count	for	all
different	elements.	If	the	maximum	count	becomes	greater	than	n/2,	then	break	the	loops	and	return
the	 element	 having	maximum	count.	 If	maximum	count	 doesn’t	 become	more	 than	n/2,	 then	 the
majority	element	doesn’t	exist.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-55  Can	we	improve	Problem-54	time	complexity	to	O(nlogn)?

Solution:	Using	binary	search	we	can	achieve	this.	Node	of	the	Binary	Search	Tree	(used	in	this
approach)	will	be	as	follows.



Insert	elements	in	BST	one	by	one	and	if	an	element	is	already	present	then	increment	the	count	of
the	node.	At	any	stage,	 if	 the	count	of	a	node	becomes	more	 than	n/2,	 then	 return.	This	method
works	well	for	the	cases	where	n/2	+1	occurrences	of	the	majority	element	are	present	at	the	start
of	the	array,	for	example	{1,1,1,1,1,2,3,	and	4}.

Time	Complexity:	If	a	binary	search	tree	is	used	then	worst	time	complexity	will	be	O(n2).	 If	a
balanced-binary-search	tree	is	used	then	O(nlogn).	Space	Complexity:	O(n).

Problem-56  Is	there	any	other	of	achieving	O(nlogn)	complexity	for	Problem-54?

Solution:	Sort	the	input	array	and	scan	the	sorted	array	to	find	the	majority	element.

Time	Complexity:	O(nlogn).	Space	Complexity:	O(1).

Problem-57  Can	we	improve	the	complexity	for	Problem-54?

Solution:	If	an	element	occurs	more	than	n/2	times	in	A	then	it	must	be	the	median	of	A.	But,	the
reverse	is	not	true,	so	once	the	median	is	found,	we	must	check	to	see	how	many	times	it	occurs	in
A.	 We	 can	 use	 linear	 selection	 which	 takes	 O(n)	 time	 (for	 algorithm,	 refer	 to	 Selection
Algorithms	chapter).

int	CheckMajority(int	A[],	in	n)	{
1) Use	linear	selection	to	find	the	median	m	of	A.
2) Do	one	more	pass	through	A	and	count	the	number	of	occurrences	of	m.

a. If	m	occurs	more	than	n/2	times	then	return	true;
b. Otherwise	return	false.

}

Problem-58  Is	there	any	other	way	of	solving	Problem-54?

Solution:	Since	only	one	 element	 is	 repeating,	we	can	use	 a	 simple	 scan	of	 the	 input	 array	by
keeping	track	of	the	count	for	the	elements.	If	the	count	is	0,	then	we	can	assume	that	the	element
visited	for	the	first	time	otherwise	that	the	resultant	element.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-59  Given	 an	 array	 of	 2n	 elements	 of	 which	 n	 elements	 are	 the	 same	 and	 the
remaining	n	elements	are	all	different.	Find	the	majority	element.

Solution:	The	 repeated	 elements	will	 occupy	half	 the	 array.	No	matter	what	 arrangement	 it	 is,
only	one	of	the	below	will	be	true:

• All	duplicate	elements	will	be	at	a	relative	distance	of	2	from	each	other.	Ex:n,	1,	n,
100,	n,	54,	n...

• At	least	two	duplicate	elements	will	be	next	to	each	other.
Ex:	n,n,	1,100,	n,	54,	n,....
n,	1,n,n,n,54,100...
1,100,54,	n.n.n.n....

In	worst	case,	we	will	need	two	passes	over	the	array:

• First	Pass:	compare	A[i]	and	A[i	+	1]
• Second	Pass:	compare	A[i]	and	A[i	+	2]

Something	will	match	and	that’s	your	element.	This	will	cost	O(n)	in	time	and	O(1)	in	space.

Problem-60  Given	 an	 array	 with	 2n	 +	 1	 integer	 elements,	 n	 elements	 appear	 twice	 in
arbitrary	 places	 in	 the	 array	 and	 a	 single	 integer	 appears	 only	 once	 somewhere	 inside.



Find	the	lonely	integer	with	O(n)	operations	and	O(1)	extra	memory.

Solution:	Except	for	one	element,	all	elements	are	repeated.	We	know	that	A	XOR	A	=	0.	Based
on	this	if	we	XOR	all	the	input	elements	then	we	get	the	remaining	element.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-61  Throwing	eggs	from	an	n-story	building:	Suppose	we	have	an	n	story	building
and	a	number	of	eggs.	Also	assume	that	an	egg	breaks	if	it	is	thrown	from	floor	F	or	higher,
and	 will	 not	 break	 otherwise.	 Devise	 a	 strategy	 to	 determine	 floor	 F,	 while	 breaking
O(logn)	eggs.

Solution:	Refer	to	Divide	and	Conquer	chapter.

Problem-62  Local	minimum	of	an	array:	Given	an	array	A	of	n	distinct	integers,	design	an
O(logn)	algorithm	to	find	a	local	minimum:	an	index	i	such	that	A[i	–	1]	<	A[i]	<	A[i	+	1].

Solution:	Check	the	middle	value	A[n/2],	and	two	neighbors	A[n/2	–	1]	and	A[n/2	+	1].	If	A[n/2]
is	local	minimum,	stop;	otherwise	search	in	half	with	smaller	neighbor.

Problem-63  Give	an	n	×	n	array	of	elements	such	 that	each	row	is	 in	ascending	order	and
each	 column	 is	 in	 ascending	 order,	 devise	 an	 O(n)	 algorithm	 to	 determine	 if	 a	 given
element	x	is	in	the	array.	You	may	assume	all	elements	in	the	n	×	n	array	are	distinct.

Solution:	Let	us	assume	that	the	given	matrix	is	A[n][n].	Start	with	the	last	row,	first	column	[or
first	row,	last	column].	If	the	element	we	are	searching	for	is	greater	than	the	element	at	A[1][n],
then	the	first	column	can	be	eliminated.	If	the	search	element	is	less	than	the	element	at	A[1][n],
then	 the	 last	 row	 can	 be	 completely	 eliminated.	 Once	 the	 first	 column	 or	 the	 last	 row	 is
eliminated,	 start	 the	 process	 again	 with	 the	 left-bottom	 end	 of	 the	 remaining	 array.	 In	 this
algorithm,	there	would	be	maximum	n	elements	that	the	search	element	would	be	compared	with.

Time	Complexity:	O(n).	This	is	because	we	will	traverse	at	most	2n	points.	Space	Complexity:
O(1).

Problem-64  Given	an	n	×	n	array	a	of	n2	numbers,	give	an	O(n)	algorithm	to	find	a	pair	of
indices	i	and	j	such	that	A[i][j]	<	A[i	+	1][j].A[i][j]	<	A[i][j	+	1],A[i][j]	<	A[i	–	1][j],	and
A[i][j]	<	A[i][j	–	1].

Solution:	This	problem	is	the	same	as	Problem-63.



Problem-65  Given	n	×	n	matrix,	and	in	each	row	all	1’s	are	followed	by	0’s.	Find	the	row
with	the	maximum	number	of	0’s.

Solution:	Start	with	first	row,	last	column.	If	the	element	is	0	then	move	to	the	previous	column	in
the	same	row	and	at	the	same	time	increase	the	counter	to	indicate	the	maximum	number	of	0’s.	If
the	element	is	1	then	move	to	the	next	row	in	the	the	same	column.	Repeat	this	process	until	your
reach	last	row,	first	column.

Time	Complexity:	O(2n)	≈	O(n)	(similar	to	Problem-63).

Problem-66  Given	 an	 input	 array	 of	 size	 unknown,	with	 all	 numbers	 in	 the	 beginning	 and
special	 symbols	 in	 the	 end.	Find	 the	 index	 in	 the	 array	 from	where	 the	 special	 symbols
start.

Solution:	Refer	to	Divide	and	Conquer	chapter.

Problem-67  Separate	 even	 and	 odd	 numbers:	 Given	 an	 array	A[],	 write	 a	 function	 that
segregates	even	and	odd	numbers.	The	functions	should	put	all	even	numbers	first,	and	then
odd	numbers.	Example:	Input	=	{12,34,45,9,8,90,3}	Output	=	{12,34,90,8,9,45,3}

Note:	In	the	output,	the	order	of	numbers	can	be	changed,	i.e.,	in	the	above	example	34	can
come	before	12,	and	3	can	come	before	9.

Solution:	The	problem	is	very	similar	to	Separate	0’s	and	1’s	(Problem-68)	in	an	array,	and	both
problems	are	variations	of	the	famous	Dutch	national	flag	problem.

Algorithm:	The	logic	is	similar	to	Quick	sort.

1) Initialize	two	index	variables	left	and	right:	left	=	0,	right	=	n	–	1
2) Keep	incrementing	the	left	index	until	you	see	an	odd	number.
3) Keep	decrementing	the	right	index	until	youe	see	an	even	number.
4) If	left	<	right	then	swap	A[left]	and	A[right]



Time	Complexity:	O(n).

Problem-68  The	 following	 is	 another	 way	 of	 structuring	 Problem-67,	 but	 with	 a	 slight
difference.
Separate	0’s	and	1’s	in	an	array:	We	are	given	an	array	of	0’s	and	1’s	in	random	order.
Separate	0’s	on	the	left	side	and	1’s	on	the	right	side	of	the	array.	Traverse	the	array	only
once.
Input	array	=	[0,1,0,1,0,0,1,1,1,0]	Output	array	=	[0,0,0,0,0,1,1,1,1,1]

Solution:	Counting	0’s	or	1’s

1. Count	the	number	of	0’s.	Let	the	count	be	C.
2. Once	we	 have	 the	 count,	 put	C	 0’s	 at	 the	 beginning	 and	 1’s	 at	 the	 remaining	n-	 C

positions	in	the	array.

Time	Complexity:	O(n).	This	solution	scans	the	array	two	times.

Problem-69  Can	we	solve	Problem-68	in	one	scan?

Solution:	Yes.	Use	two	indexes	to	traverse:	Maintain	two	indexes.	Initialize	the	first	index	left	as
0	and	the	second	index	right	as	n	–	1.	Do	the	following	while	left	<	right:

1) Keep	the	incrementing	index	left	while	there	are	Os	in	it
2) Keep	the	decrementing	index	right	while	there	are	Is	in	it
3) If	left	<	right	then	exchange	A[left]	and	A[right]



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-70  Sort	an	array	of	0’s,	1’s	and	2’s	 [or	R’s,	G’s	and	B’s]:	Given	an	array	A[]
consisting	of	0’s,	1’s	and	2’s,	give	an	algorithm	for	sorting	A[].The	algorithm	should	put	all
0’s	 first,	 then	 all	 1’s	 and	 finally	 all	 2’s	 at	 the	 end.	 Example	 Input	 =
{0,1,1,0,1,2,1,2,0,0,0,1},	Output	=	{0,0,0,0,0,1,1,1,1,1,2,2}

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-71  Maximum	difference	between	two	elements:	Given	an	array	A[]	of	 integers,
find	out	the	difference	between	any	two	elements	such	that	the	larger	element	appears	after
the	smaller	number	in	A[].
Examples:	If	array	is	[2,3,10,6,4,8,1]	then	returned	value	should	be	8	(Difference	between
10	 and	 2).	 If	 array	 is	 [	 7,9,5,6,3,2	 ]	 then	 the	 returned	 value	 should	 be	 2	 (Difference
between	7	and	9)

Solution:	Refer	to	Divide	and	Conquer	chapter.

Problem-72  Given	an	array	of	101	elements.	Out	of	101	elements,	25	elements	are	repeated
twice,	 12	 elements	 are	 repeated	 4	 times,	 and	 one	 element	 is	 repeated	 3	 times.	 Find	 the
element	which	repeated	3	times	in	O(1).

Solution:	Before	solving	this	problem,	let	us	consider	the	following	XOR	operation	property:	a
XOR	a	=	0.	That	means,	if	we	apply	the	XOR	on	the	same	elements	then	the	result	is	0.

Algorithm:

• XOR	all	the	elements	of	the	given	array	and	assume	the	result	is	A.
• After	this	operation,	2	occurrences	of	the	number	which	appeared	3	times	becomes	0

and	one	occurrence	remains	the	same.
• The	12	elements	that	are	appearing	4	times	become	0.
• The	25	elements	that	are	appearing	2	times	become	0.



• So	just	XOR’ing	all	the	elements	gives	the	result.

Time	Complexity:	O(n),	because	we	are	doing	only	one	scan.	Space	Complexity:	O(1).

Problem-73  Given	a	number	n,	give	an	algorithm	for	finding	the	number	of	trailing	zeros	in
n!.

Solution:

Time	Complexity:	O(logn).

Problem-74  Given	an	array	of	2n	 integers	in	the	following	format	a1	a2	a3	 ...an	b1	b2	b3
...bn.	Shuffle	the	array	to	a1	b1	a2	b2	a3	b3	...	an	bn	without	any	extra	memory.

Solution:	A	brute	force	solution	involves	 two	nested	loops	 to	rotate	 the	elements	 in	 the	second
half	of	the	array	to	the	left.	The	first	loop	runs	n	times	to	cover	all	elements	in	the	second	half	of
the	array.	The	second	loop	rotates	the	elements	to	the	left.	Note	that	the	start	index	in	the	second
loop	depends	on	which	element	we	are	rotating	and	the	end	index	depends	on	how	many	positions
we	need	to	move	to	the	left.

Time	Complexity:	O(n2).



Problem-75  Can	we	improve	Problem-74	solution?

Solution:	 Refer	 to	 the	 Divide	 and	 Conquer	 chapter.	 A	 better	 solution	 of	 time	 complexity
O(nlogn)	can	be	achieved	using	the	Divide	and	Concur	technique.	Let	us	look	at	an	example

1. Start	with	the	array:	a1	a2	a3	a4	b1	b2	b3	b4
2. Split	the	array	into	two	halves:	a1	a2	a3	a4	:	b1	b2	b3	b4
3. Exchange	elements	around	the	center:	exchange	a3	a4	with	b1	b2	and	you	get:	a1	a.2

b1	b2	a3	a4	b3	b4
4. Split	a1	a2	b1	b2	into	a1	a2	:	b1	b2.	Then	split	a3	a4	b3	b4	into	a3	a4	:	b3	b4
5. Exchange	elements	around	the	center	for	each	subarray	you	get:	a1	b1	a2	b2	and	a3

b3	a4	b4

Note	that	this	solution	only	handles	the	case	when	n	=	2i	where	i	=	0,1,2,3,	etc.	In	our	example	n
=	22	=	4	which	makes	it	easy	to	recursively	split	the	array	into	two	halves.	The	basic	idea	behind
swapping	elements	around	the	center	before	calling	the	recursive	function	is	to	produce	smaller
size	problems.	A	solution	with	linear	time	complexity	may	be	achieved	if	 the	elements	are	of	a
specific	nature.	For	example,	if	you	can	calculate	the	new	position	of	the	element	using	the	value
of	the	element	itself.	This	is	nothing	but	a	hashing	technique.

Problem-76  Given	an	array	A[],	find	the	maximum	j	–	i	such	that	A[j]	>	A[i].	For	example,
Input:	{34,	8,	10,	3,	2,	80,	30,	33,	1}	and	Output:	6	(j	=	7,	i	=	1).

Solution:	Brute	Force	Approach:	Run	 two	 loops.	 In	 the	outer	 loop,	pick	elements	one	by	one
from	the	 left.	 In	 the	 inner	 loop,	compare	 the	picked	element	with	 the	elements	starting	from	the
right	side.	Stop	the	inner	loop	when	you	see	an	element	greater	than	the	picked	element	and	keep
updating	the	maximum	j	–	i	so	far.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-77  Can	we	improve	the	complexity	of	Problem-76?

Solution:	To	 solve	 this	problem,	we	need	 to	get	 two	optimum	 indexes	of	A[]:	 left	 index	 i	 and



right	index	j.	For	an	element	A[i],	we	do	not	need	to	consider	A[i]	for	the	left	index	if	there	is	an
element	smaller	than	A[i]	on	the	left	side	of	A[i].	Similarly,	if	there	is	a	greater	element	on	the
right	side	of	A[j]	then	we	do	not	need	to	consider	this	j	for	the	right	index.

So	we	construct	two	auxiliary	Arrays	LeftMins[]	and	RightMaxs[]	such	that	LeftMins[i]	holds	the
smallest	 element	 on	 the	 left	 side	 of	 A[i]	 including	 A[i],	 and	 RightMaxs[j]	 holds	 the	 greatest
element	on	the	right	side	of	A[j]	including	A[j].	After	constructing	these	two	auxiliary	arrays,	we
traverse	both	these	arrays	from	left	to	right.

While	 traversing	 LeftMins[]	 and	 RightMaxs[],	 if	 we	 see	 that	 LeftMins[i]	 is	 greater	 than
RightMaxs[j],	then	we	must	move	ahead	in	LeftMins[]	(or	do	i++)	because	all	elements	on	the	left
of	 LeftMins[i]	 are	 greater	 than	 or	 equal	 to	 LeftMins[i].	 Otherwise	 we	 must	 move	 ahead	 in
RightMaxs[j]	to	look	for	a	greater	y	–	i	value.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-78  Given	 an	 array	 of	 elements,	 how	 do	 you	 check	 whether	 the	 list	 is	 pairwise
sorted	or	not?	A	list	is	considered	pairwise	sorted	if	each	successive	pair	of	numbers	is	in
sorted	(non-decreasing)	order.

Solution:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-79  Given	 an	 array	 of	 n	 elements,	 how	 do	 you	 print	 the	 frequencies	 of	 elements
without	using	extra	space.	Assume	all	elements	are	positive,	editable	and	less	than	n.

Solution:	Use	negation	technique.

Array	should	have	numbers	in	the	range	[1,	n]	(where	n	is	the	size	of	the	array).	The	if	condition



(A[pos]	 >	 0	 &&	 A[expectedPos]	 >	 0)	 means	 that	 both	 the	 numbers	 at	 indices	 pos	 and
expectedPos	are	actual	numbers	in	the	array	but	not	their	frequencies.	So	we	will	swap	them	so
that	the	number	at	the	index	pos	will	go	to	the	position	where	it	should	have	been	if	the	numbers
1,	2,	3,	....,	n	are	kept	in	0,	1,	2,	...,	n	–	1	indices.	In	the	above	example	input	array,	initially	pos	=
0,	so	10	at	index	0	will	go	to	index	9	after	the	swap.	As	this	is	the	first	occurrence	of	10,	make	it
to	-1.	Note	that	we	are	storing	the	frequencies	as	negative	numbers	to	differentiate	between	actual
numbers	and	frequencies.

The	else	if	condition	(A[pos]	>	0)	means	A[pos]	is	a	number	and	A[expectedPos]	is	its	frequency
without	including	the	occurrence	of	A[pos].	So	increment	the	frequency	by	1	(that	is	decrement	by
1	in	terms	of	negative	numbers).	As	we	count	its	occurrence	we	need	to	move	to	next	pos,	so	pos
+	+,	but	before	moving	to	that	next	position	we	should	make	the	frequency	of	the	number	pos	+	1
which	corresponds	to	index	pos	of	zero,	since	such	a	number	has	not	yet	occurred.

The	final	else	part	means	the	current	index	pos	already	has	the	frequency	of	the	number	pos	+	1,
so	move	to	the	next	pos,	hence	pos	+	+.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-80  Which	is	faster	and	by	how	much,	a	linear	search	of	only	1000	elements	on	a	5-
GHz	computer	or	a	binary	search	of	1	million	elements	on	a	1-GHz	computer.	Assume	that
the	execution	of	each	instruction	on	the	5-GHz	computer	is	five	times	faster	than	on	the	1-
GHz	computer	and	that	each	iteration	of	the	linear	search	algorithm	is	twice	as	fast	as	each
iteration	of	the	binary	search	algorithm.

Solution:	 A	 binary	 search	 of	 1	 million	 elements	 would	 require	 	 or	 about	 20
iterations	 at	 most	 (i.e.,	 worst	 case).	 A	 linear	 search	 of	 1000	 elements	 would	 require	 500
iretations	on	the	average	(i.e.,	going	halfway	through	the	array).	Therefore,	binary	search	would
be	 	 faster	 (in	 terms	 of	 iterations)	 than	 linear	 search.	 However,	 since	 linear	 search

iterations	are	twice	as	fast,	binary	search	would	be	 	or	about	12	times	faster	than	linear	search

overall,	on	the	same	machine.	Since	we	run	them	on	different	machines,	where	an	instruction	on
the	5-GhZ	machine	is	5	times	faster	than	an	instruction	on	a	1-GHz	machine,	binary	search	would
be	 	or	about	2	times	faster	than	linear	search!	The	key	idea	is	that	software	improvements	can
make	an	algorithm	run	much	faster	without	having	to	use	more	powerful	software.



12.1	What	are	Selection	Algorithms?

Selection	 algorithm	 is	 an	 algorithm	 for	 finding	 the	 kth	 smallest/largest	 number	 in	 a	 list	 (also
called	as	kth	order	statistic).	This	includes	finding	the	minimum,	maximum,	and	median	elements.
For	 finding	 the	 kth	 order	 statistic,	 there	 are	 multiple	 solutions	 which	 provide	 different
complexities,	and	in	this	chapter	we	will	enumerate	those	possibilities.

12.2	Selection	by	Sorting

A	selection	problem	can	be	converted	to	a	sorting	problem.	In	this	method,	we	first	sort	the	input
elements	and	then	get	the	desired	element.	It	is	efficient	if	we	want	to	perform	many	selections.

For	example,	let	us	say	we	want	to	get	the	minimum	element.	After	sorting	the	input	elements	we
can	simply	return	the	first	element	(assuming	the	array	is	sorted	in	ascending	order).	Now,	if	we
want	to	find	the	second	smallest	element,	we	can	simply	return	the	second	element	from	the	sorted
list.



That	means,	for	the	second	smallest	element	we	are	not	performing	the	sorting	again.	The	same	is
also	the	case	with	subsequent	queries.	Even	if	we	want	to	get	kth	smallest	element,	just	one	scan
of	 the	 sorted	 list	 is	 enough	 to	 find	 the	 element	 (or	 we	 can	 return	 the	 kth-indexed	 value	 if	 the
elements	are	in	the	array).

From	the	above	discussion	what	we	can	say	is,	with	the	initial	sorting	we	can	answer	any	query
in	one	scan,	O(n).	 In	general,	 this	method	 requires	O(nlogn)	 time	(for	sorting),	where	n	 is	 the
length	of	the	input	list.	Suppose	we	are	performing	n	queries,	then	the	average	cost	per	operation
is	just	 .	This	kind	of	analysis	is	called	amortized	analysis.

12.3	Partition-based	Selection	Algorithm

For	the	algorithm	check	Problem-6.	This	algorithm	is	similar	to	Quick	sort.

12.4	Linear	Selection	Algorithm	-	Median	of	Medians	Algorithm

Worst-case	performance O(n)

Best-case	performance O(n)

Worst-case	space	complexity O(1)	auxiliary

Refer	to	Problem-11.

12.5	Finding	the	K	Smallest	Elements	in	Sorted	Order

For	the	algorithm	check	Problem-6.	This	algorithm	is	similar	to	Quick	sort.

12.6	Selection	Algorithms:	Problems	&	Solutions

Problem-1  Find	the	largest	element	in	an	array	A	of	size	n.

Solution:	Scan	the	complete	array	and	return	the	largest	element.



Time	Complexity	-	O(n).	Space	Complexity	-	O(1).

Note:	Any	deterministic	algorithm	that	can	find	the	largest	of	n	keys	by	comparison	of	keys	takes
at	least	n	-1	comparisons.

Problem-2  Find	the	smallest	and	largest	elements	in	an	array	A	of	size	n.

Solution:

Time	Complexity	-	O(n).	Space	Complexity	-	O(1).	The	worst-case	number	of	comparisons	is	2(n
–	1).

Problem-3  Can	we	improve	the	previous	algorithms?

Solution:	Yes.	We	can	do	this	by	comparing	in	pairs.



Time	Complexity	-	O(n).	Space	Complexity	-	O(1).

Number	of	comparisons:	

Summary:

Straightforward	comparison	–	2(n	–	1)	comparisons

Compare	for	min	only	if	comparison	for	max	fails

Best	case:	increasing	order	–	n	–	1	comparisons

Worst	case:	decreasing	order	–	2(n	–	1)	comparisons

Average	case:	3n/2	–	1	comparisons

Note:	For	divide	and	conquer	techniques	refer	to	Divide	and	Conquer	chapter.

Problem-4  Give	an	algorithm	for	finding	the	second	largest	element	in	the	given	input	list	of
elements.

Solution:	Brute	Force	Method



Algorithm:

• Find	largest	element:	needs	n	–	1	comparisons
• Delete	(discard)	the	largest	element
• Again	find	largest	element:	needs	n	–	2	comparisons

Total	number	of	comparisons:	n	–	1	+	n	–	2	=	2n	–	3

Problem-5  Can	we	reduce	the	number	of	comparisons	in	Problem-4	solution?

Solution:	The	Tournament	method:	For	simplicity,	assume	that	the	numbers	are	distinct	and	that
n	is	a	power	of	2.	We	pair	the	keys	and	compare	the	pairs	in	rounds	until	only	one	round	remains.
If	 the	input	has	eight	keys,	 there	are	four	comparisons	in	the	first	round,	 two	in	the	second,	and
one	 in	 the	 last.	 The	 winner	 of	 the	 last	 round	 is	 the	 largest	 key.	 The	 figure	 below	 shows	 the
method.

The	tournament	method	directly	applies	only	when	n	is	a	power	of	2.	When	this	is	not	the	case,
we	can	add	enough	items	to	the	end	of	the	array	to	make	the	array	size	a	power	of	2.	If	the	tree	is
complete	then	the	maximum	height	of	the	tree	is	logn.	If	we	construct	the	complete	binary	tree,	we
need	n	–	1	comparisons	to	find	the	largest.	The	second	largest	key	has	to	be	among	the	ones	that
were	lost	in	a	comparison	with	the	largest	one.	That	means,	the	second	largest	element	should	be
one	of	the	opponents	of	the	largest	element.	The	number	of	keys	that	are	lost	to	the	largest	key	is
the	height	of	 the	 tree,	 i.e.	 logn	 [if	 the	 tree	 is	 a	 complete	 binary	 tree].	Then	using	 the	 selection
algorithm	 to	 find	 the	 largest	 among	 them,	 take	 logn	 –	 1	 comparisons.	Thus	 the	 total	 number	 of
comparisons	to	find	the	largest	and	second	largest	keys	is	n	+	logn	–	2.

Problem-6  Find	 the	 k-smallest	 elements	 in	 an	 array	 S	 of	 n	 elements	 using	 partitioning
method.



Solution:	Brute	Force	Approach:	Scan	through	the	numbers	k	times	to	have	the	desired	element.
This	 method	 is	 the	 one	 used	 in	 bubble	 sort	 (and	 selection	 sort),	 every	 time	 we	 find	 out	 the
smallest	element	in	the	whole	sequence	by	comparing	every	element.	In	this	method,	the	sequence
has	to	be	traversed	k	times.	So	the	complexity	is	O(n	×	k).

Problem-7  Can	we	use	the	sorting	technique	for	solving	Problem-6?

Solution:	Yes.	Sort	and	take	the	first	k	elements.

1. Sort	the	numbers.
2. Pick	the	first	k	elements.

The	 time	 complexity	 calculation	 is	 trivial.	 Sorting	 of	 n	 numbers	 is	 of	O(nlogn)	 and	 picking	 k
elements	is	of	O(k).	The	total	complexity	is	O(nlogn	+	k)	=	O(nlogn).

Problem-8  Can	we	use	the	tree	sorting	technique	for	solving	Problem-6?

Solution:	Yes.

1. Insert	all	the	elements	in	a	binary	search	tree.
2. Do	an	InOrder	traversal	and	print	k	elements	which	will	be	the	smallest	ones.	So,	we

have	the	k	smallest	elements.

The	cost	of	creation	of	a	binary	search	tree	with	n	elements	is	O(nlogn)	and	the	traversal	up	to	k
elements	is	O(k).	Hence	the	complexity	is	O(nlogn	+	k)	=	O(nlogn).

Disadvantage:	 If	 the	numbers	 are	 sorted	 in	descending	order,	we	will	 be	getting	 a	 tree	which
will	be	skewed	towards	the	left.	In	that	case,	the	construction	of	the	tree	will	be	0	+	l	+	2	+	...	+
(n–	1)	 	which	is	O(n2).	To	escape	from	this,	we	can	keep	the	tree	balanced,	so	that	the

cost	of	constructing	the	tree	will	be	only	nlogn.

Problem-9  Can	we	improve	the	tree	sorting	technique	for	solving	Problem-6?

Solution:	Yes.	Use	a	smaller	tree	to	give	the	same	result.

1. Take	 the	first	k	 elements	of	 the	 sequence	 to	create	a	balanced	 tree	of	k	 nodes	 (this
will	cost	klogk).

2. Take	the	remaining	numbers	one	by	one,	and
a. If	the	number	is	larger	than	the	largest	element	of	the	tree,	return.
b. If	the	number	is	smaller	than	the	largest	element	of	the	tree,	remove	the

largest	 element	 of	 the	 tree	 and	 add	 the	new	element.	This	 step	 is	 to
make	 sure	 that	 a	 smaller	 element	 replaces	a	 larger	element	 from	 the
tree.	And	of	course	the	cost	of	this	operation	is	logk	since	the	tree	is	a
balanced	tree	of	k	elements.

Once	Step	2	is	over,	the	balanced	tree	with	k	elements	will	have	the	smallest	k	elements.	The	only



remaining	task	is	to	print	out	the	largest	element	of	the	tree.

Time	Complexity:

1. For	the	first	k	elements,	we	make	the	tree.	Hence	the	cost	is	klogk.
2. For	the	rest	n	–	k	elements,	the	complexity	is	O(logk).

Step	2	has	a	complexity	of	(n	–	k)	logk.	The	total	cost	is	klogk	+	(n	–	k)	logk	=	nlogk	which	is
O(nlogk).	This	bound	is	actually	better	than	the	ones	provided	earlier.

Problem-10  Can	we	use	the	partitioning	technique	for	solving	Problem-6?

Solution:	Yes.

Algorithm

1. Choose	a	pivot	from	the	array.
2. Partition	the	array	so	that:	A[low...pivotpoint	–	1]	<=	pivotpoint	<=	A[pivotpoint	+

1..high].
3. if	 k	 <	pivotpoint	 then	 it	 must	 be	 on	 the	 left	 of	 the	 pivot,	 so	 do	 the	 same	 method

recursively	on	the	left	part.
4. if	 k	 =	pivotpoint	 then	 it	 must	 be	 the	 pivot	 and	 print	 all	 the	 elements	 from	 low	 to

pivotpoint.
5. if	 k	 >	 pivotpoint	 then	 it	 must	 be	 on	 the	 right	 of	 pivot,	 so	 do	 the	 same	 method

recursively	on	the	right	part.

The	top-level	call	would	be	kthSmallest	=	Selection(1,	n,	k).



Time	Complexity:	O(n2)	 in	worst	 case	 as	 similar	 to	Quicksort.	Although	 the	worst	 case	 is	 the
same	as	that	of	Quicksort,	this	performs	much	better	on	the	average	[O(nlogk)	–	Average	case].

Problem-11  Find	the	kth-smallest	element	in	an	array	S	of	n	elements	in	best	possible	way.

Solution:	This	problem	is	similar	to	Problem-6	and	all	the	solutions	discussed	for	Problem-6	are
valid	for	this	problem.	The	only	difference	is	that	instead	of	printing	all	the	k	elements,	we	print
only	 the	kth	 element.	We	 can	 improve	 the	 solution	 by	 using	 the	median	 of	medians	 algorithm.
Median	is	a	special	case	of	the	selection	algorithm.	The	algorithm	Selection(A,	k)	to	find	the	kth
smallest	element	from	set	A	of	n	elements	is	as	follows:

Algorithm:	Selection(A,	k)

1. Partition	A	 into	 	 groups,	with	 each	 group	 having	 five	 items	 (the

last	group	may	have	fewer	items).



2. Sort	each	group	separately	(e.g.,	insertion	sort).
3. Find	the	median	of	each	of	the	 	groups	and	store	them	in	some	array	(let	us	say	A′).
4. Use	Selection	recursively	to	find	the	median	of	A′	(median	of	medians).	Let	us	asay

the	median	of	medians	is	m.

5. Let	q	=	#	elements	of	A	smaller	than	m;
6. If(k	==	q	+	1)

7. Else	partition	A	into	X	and	Y
• X	=	{items	smaller	than	m)
• Y	=	{items	larger	than	m}

8. If(k	<	q	+	1)

9. Else

Before	developing	recurrence,	let	us	consider	the	representation	of	the	input	below.	In	the	figure,
each	circle	is	an	element	and	each	column	is	grouped	with	5	elements.	The	black	circles	indicate
the	 median	 in	 each	 group	 of	 5	 elements.	 As	 discussed,	 sort	 each	 column	 using	 constant	 time
insertion	sort.





In	the	figure	above	the	gray	circled	item	is	the	median	of	medians	(let	us	call	this	m).	It	can	be
seen	 that	 at	 least	 1/2	 of	 5	 element	 group	 medians	 ≤m.	 Also,	 these	 1/2	 of	 5	 element	 groups
contribute	3	elements	 that	are	≤	m	except	2	groups	[last	group	which	may	contain	fewer	 than	5
elements,	 and	 other	 group	 which	 contains	 m].	 Similarly,	 at	 least	 1/2	 of	 5	 element	 groups
contribute	3	elements	that	are	≥	m	as	shown	above.	1/2	of	5	element	groups	contribute	3	elements,
except	 2	 groups	 gives:	 .	 The	 remaining	 are	

.	Since	 	is	greater	than	 	we	need	to	consider	
for	worst.

Components	in	recurrence:

• In	our	selection	algorithm,	we	choose	m,	which	is	the	median	of	medians,	to	be	a	pivot,	and
partition	A	into	two	sets	X	and	Y.	We	need	to	select	the	set	which	gives	maximum	size	(to
get	the	worst	case).

• The	time	in	function	Selection	when	called	from	procedure	partition.	The	number	of	keys
in	the	input	to	this	call	to	Selection	is	 .

• The	number	of	comparisons	required	to	partition	the	array.	This	number	is	length(S),	let	us
say	n.

We	 have	 established	 the	 following	 recurrence:	



From	 the	 above	discussion	we	have	 seen	 that,	 if	we	 select	median	of	medians	m	as	pivot,	 the
partition	sizes	are:	 	and	 .	If	we	select	the	maximum	of	these,	then	we	get:

Problem-12  In	 Problem-11,	 we	 divided	 the	 input	 array	 into	 groups	 of	 5	 elements.	 The
constant	5	play	an	important	part	in	the	analysis.	Can	we	divide	in	groups	of	3	which	work
in	linear	time?

Solution:	 In	 this	 case	 the	modification	 causes	 the	 routine	 to	 take	more	 than	 linear	 time.	 In	 the
worst	 case,	 at	 least	 half	 of	 the	 	 medians	 found	 in	 the	 grouping	 step	 are	 greater	 than	 the
median	of	medians	m,	but	two	of	those	groups	contribute	less	than	two	elements	larger	than	m.	So
as	an	upper	bound,	the	number	of	elements	larger	than	the	pivotpoint	is	at	least:

Likewise	this	is	a	lower	bound.	Thus	up	to	 	elements	are	fed	into	the
recursive	call	to	Select.	The	recursive	step	that	finds	the	median	of	medians	runs	on	a	problem	of
size	 ,	and	consequently	the	time	recurrence	is:

Assuming	 that	 T(n)	 is	 monotonically	 increasing,	 we	 may	 conclude	 that	
,	 and	 we	 can	 say	 the	 upper	 bound	 for	 this	 as	

,	which	 is	O(nlogn).	Therefore,	we	 cannot	 select	 3	 as	 the	 group
size.

Problem-13  As	in	Problem-12,	can	we	use	groups	of	size	7?

Solution:	Following	a	similar	reasoning,	we	once	more	modify	the	routine,	now	using	groups	of	7
instead	 of	 5.	 In	 the	 worst	 case,	 at	 least	 half	 the	 	 medians	 found	 in	 the	 grouping	 step	 are
greater	than	the	median	of	medians	m,	but	two	of	those	groups	contribute	less	than	four	elements
larger	than	m.	So	as	an	upper	bound,	the	number	of	elements	larger	than	the	pivotpoint	is	at	least:



Likewise	this	is	a	lower	bound.	Thus	up	to	 	elements	are	fed	into	the

recursive	call	to	Select.	The	recursive	step	that	finds	the	median	of	medians	runs	on	a	problem	of
size	 ,	and	consequently	the	time	recurrence	is

This	is	bounded	above	by	(a	+	c)	n	provided	that	 .	Therefore,	we	can	select	7
as	the	group	size.

Problem-14  Given	 two	 arrays	 each	 containing	 n	 sorted	 elements,	 give	 an	 O(logn)-time
algorithm	to	find	the	median	of	all	2n	elements.

Solution:	The	simple	solution	to	this	problem	is	to	merge	the	two	lists	and	then	take	the	average
of	the	middle	two	elements	(note	the	union	always	contains	an	even	number	of	values).	But,	the
merge	would	be	Θ(n),	so	that	doesn’t	satisfy	the	problem	statement.	To	get	logn	complexity,	 let
medianA	and	medianB	 be	 the	medians	of	 the	 respective	 lists	 (which	can	be	easily	 found	 since
both	lists	are	sorted).	If	medianA	==	medianB,	then	that	is	the	overall	median	of	the	union	and	we
are	done.	Otherwise,	the	median	of	the	union	must	be	between	medianA	and	medianB.	Suppose
that	medianA	<	medianB	(the	opposite	case	is	entirely	similar).	Then	we	need	to	find	the	median
of	the	union	of	the	following	two	sets:

So,	we	can	do	this	recursively	by	resetting	the	boundaries	of	the	two	arrays.	The	algorithm	tracks
both	arrays	(which	are	sorted)	using	two	indices.	These	indices	are	used	to	access	and	compare
the	median	of	both	arrays	to	find	where	the	overall	median	lies.



Time	Complexity:	O(logn),	since	we	are	reducing	the	problem	size	by	half	every	time.

Problem-15  Let	A	and	B	be	two	sorted	arrays	of	n	elements	each.	We	can	easily	find	the	kth
smallest	element	in	A	in	O(1)	time	by	just	outputting	A[k].	Similarly,	we	can	easily	find	the
kth	smallest	element	in	B.	Give	an	O(logk)	time	algorithm	to	find	the	kth	smallest	element
overall	{i.e.,	the	kth	smallest	in	the	union	of	A	and	B.

Solution:	It’s	just	another	way	of	asking	Problem-14.

Problem-16  Find	the	k	smallest	elements	in	sorted	order:	Given	a	set	of	n	elements	from	a
totally-ordered	domain,	find	the	k	smallest	elements,	and	list	them	in	sorted	order.	Analyze
the	worst-case	running	time	of	the	best	implementation	of	the	approach.

Solution:	Sort	the	numbers,	and	list	the	k	smallest.

T(n)	=	Time	complexity	of	sort	+	listing	k	smallest	elements	=	Θ(nlogn)	+	Θ(n)	=	Θ(nlogn).

Problem-17  For	Problem-16,	if	we	follow	the	approach	below,	then	what	is	the	complexity?

Solution:	Using	 the	priority	queue	data	 structure	 from	heap	sort,	 construct	a	min-heap	over	 the
set,	 and	 perform	 extract-min	 k	 times.	 Refer	 to	 the	Priority	Queues	 (Heaps)	 chapter	 for	 more
details.

Problem-18  For	Problem-16,	if	we	follow	the	approach	below	then	what	is	the	complexity?

Find	the	kth-smallest	element	of	the	set,	partition	around	this	pivot	element,	and	sort	the	k	smallest
elements.

Solution:

T	(n)	=	Time	complexity	of	kth	–	smallest	+	Finding	pivot	+	Sorting	prefix
   =	Θ(n)	+	Θ(n)	+	Θ(klogk)	=	Θ(n	+	klogk)



Since,	k	≤	n,	this	approach	is	better	than	Problem-16	and	Problem-17.

Problem-19  Find	k	nearest	neighbors	to	the	median	of	n	distinct	numbers	in	O(n)	time.

Solution:	Let	us	assume	that	the	array	elements	are	sorted.	Now	find	the	median	of	n	numbers	and
call	 its	 index	as	X	 (since	array	 is	 sorted,	median	will	be	at	 	 location).	All	we	need	 to	do	 is
select	k	elements	with	the	smallest	absolute	differences	from	the	median,	moving	from	X	–	1	to	0,
and	X	+	1	to	n	–	1	when	the	median	is	at	index	m.

Time	Complexity:	Each	step	takes	Θ(n).	So	the	total	time	complexity	of	the	algorithm	is	Θ(n).

Problem-20  Is	there	any	other	way	of	solving	Problem-19?

Solution:	Assume	for	simplicity	that	n	is	odd	and	k	is	even.	If	set	A	is	in	sorted	order,	the	median
is	in	position	n/2	and	the	k	numbers	in	A	that	are	closest	to	the	median	are	in	positions	(n	–	k)/2
through	(n	+	k)/2.

We	first	use	linear	time	selection	to	find	the	(n	–	k)/2,	n/2,	and	(n	+	k)/2	elements	and	then	pass
through	 set	 A	 to	 find	 the	 numbers	 less	 than	 the	 (n	 +	 k)/2	 element,	 greater	 than	 the	 (n	 –	 k)/2
element,	and	not	equal	to	the	n/	2	element.	The	algorithm	takes	O(n)	time	as	we	use	linear	time
selection	exactly	three	times	and	traverse	the	n	numbers	in	A	once.

Problem-21  Given	(x,y)	coordinates	of	n	houses,	where	should	you	build	a	road	parallel	to
x-axis	to	minimize	the	construction	cost	of	building	driveways?

Solution:	The	road	costs	nothing	to	build.	It	is	the	driveways	that	cost	money.	The	driveway	cost
is	proportional	to	its	distance	from	the	road.	Obviously,	they	will	be	perpendicular.	The	solution
is	to	put	the	street	at	the	median	of	the	y	coordinates.



Problem-22  Given	a	big	file	containing	billions	of	numbers,	find	the	maximum	10	numbers
from	that	file.

Solution:	Refer	to	the	Priority	Queues	chapter.

Problem-23  Suppose	there	is	a	milk	company.	The	company	collects	milk	every	day	from	all
its	agents.	The	agents	are	located	at	different	places.	To	collect	the	milk,	what	is	the	best
place	to	start	so	that	the	least	amount	of	total	distance	is	travelled?

Solution:	Starting	at	the	median	reduces	the	total	distance	travelled	because	it	is	the	place	which
is	at	the	center	of	all	the	places.



13.1	Introduction

Since	 childhood,	we	 all	 have	 used	 a	 dictionary,	 and	many	 of	 us	 have	 a	word	 processor	 (say,
Microsoft	Word)	which	comes	with	a	 spell	 checker.	The	spell	 checker	 is	also	a	dictionary	but
limited	in	scope.	There	are	many	real	time	examples	for	dictionaries	and	a	few	of	them	are:

• Spell	checker
• The	data	dictionary	found	in	database	management	applications
• Symbol	tables	generated	by	loaders,	assemblers,	and	compilers
• Routing	tables	in	networking	components	(DNS	lookup)

In	 computer	 science,	 we	 generally	 use	 the	 term	 ‘symbol	 table’	 rather	 than	 ‘dictionary’	 when
referring	to	the	abstract	data	type	(ADT).

13.2	What	are	Symbol	Tables?

We	can	define	the	symbol	table	as	a	data	structure	that	associates	a	value	with	a	key.	It	supports
the	following	operations:



• Search	whether	a	particular	name	is	in	the	table
• Get	the	attributes	of	that	name
• Modify	the	attributes	of	that	name
• Insert	a	new	name	and	its	attributes
• Delete	a	name	and	its	attributes

There	are	only	three	basic	operations	on	symbol	tables:	searching,	inserting,	and	deleting.

Example:	DNS	lookup.	Let	us	assume	that	the	key	in	this	case	is	the	URL	and	the	value	is	an	IP
address.

• Insert	URL	with	specified	IP	address
• Given	URL,	find	corresponding	IP	address

Key[Website] Value	[IP	Address]

www.CareerMonks.com 128.112.136.11

www.AuthorsInn.com 128.112.128.15

www.AuthInn.com 130.132.143.21

www.klm.com 128.103.060.55

www.CareerMonk.com 209.052.165.60

13.3	Symbol	Table	Implementations

Before	implementing	symbol	tables,	let	us	enumerate	the	possible	implementations.	Symbol	tables
can	be	implemented	in	many	ways	and	some	of	them	are	listed	below.

Unordered	Array	Implementation

With	this	method,	just	maintaining	an	array	is	enough.	It	needs	O(n)	time	for	searching,	insertion
and	deletion	in	the	worst	case.

Ordered	[Sorted]	Array	Implementation

In	this	we	maintain	a	sorted	array	of	keys	and	values.

• Store	in	sorted	order	by	key
• keys[i]	=	ith	largest	key
• values[i]	=	value	associated	with	ith	largest	key

http://www.CareerMonks.com
http://www.AuthorsInn.com
http://www.klm.com
http://www.CareerMonk.com


Since	the	elements	are	sorted	and	stored	in	arrays,	we	can	use	a	simple	binary	search	for	finding
an	element.	 It	 takes	O(logn)	 time	 for	 searching	and	O(n)	 time	 for	 insertion	 and	deletion	 in	 the
worst	case.

Unordered	Linked	List	Implementation

Just	maintaining	a	linked	list	with	two	data	values	is	enough	for	this	method.	It	needs	O(n)	 time
for	searching,	insertion	and	deletion	in	the	worst	case.

Ordered	Linked	List	Implementation

In	this	method,	while	inserting	the	keys,	maintain	the	order	of	keys	in	the	linked	list.	Even	if	the
list	is	sorted,	in	the	worst	case	it	needs	O(n)	time	for	searching,	insertion	and	deletion.

Binary	Search	Trees	Implementation

Refer	to	Trees	chapter.	The	advantages	of	this	method	are:	it	does	not	need	much	code	and	it	has	a
fast	search	[O(logn)	on	average].

Balanced	Binary	Search	Trees	Implementation

Refer	to	Trees	chapter.	It	is	an	extension	of	binary	search	trees	implementation	and	takes	O(logn)
in	worst	case	for	search,	insert	and	delete	operations.

Ternary	Search	Implementation

Refer	to	String	Algorithms	chapter.	This	is	one	of	the	important	methods	used	for	implementing
dictionaries.

Hashing	Implementation

This	method	is	important.	For	a	complete	discussion,	refer	to	the	Hashing	chapter.

13.4	Comparison	Table	of	Symbols	for	Implementations

Let	us	consider	the	following	comparison	table	for	all	the	implementations.



Notes:

• In	the	above	table,	n	is	the	input	size.
• Table	indicates	the	possible	implementations	discussed	in	this	book.	But,	there	could

be	other	implementations.



14.1	What	is	Hashing?

Hashing	 is	 a	 technique	used	 for	 storing	 and	 retrieving	 information	 as	 quickly	 as	 possible.	 It	 is
used	to	perform	optimal	searches	and	is	useful	in	implementing	symbol	tables.

14.2	Why	Hashing?

In	the	Trees	chapter	we	saw	that	balanced	binary	search	trees	support	operations	such	as	insert,
delete	 and	 search	 in	O(logn)	 time.	 In	 applications,	 if	 we	 need	 these	 operations	 in	O(1),	 then
hashing	 provides	 a	way.	Remember	 that	worst	 case	 complexity	 of	 hashing	 is	 still	O(n),	 but	 it
gives	O(1)	on	the	average.

14.3	HashTable	ADT

The	common	operations	for	hash	table	are:



• CreatHashTable:	Creates	a	new	hash	table
• HashSearch:	Searches	the	key	in	hash	table
• Hashlnsert:	Inserts	a	new	key	into	hash	table
• HashDelete:	Deletes	a	key	from	hash	table
• DeleteHashTable:	Deletes	the	hash	table

14.4	Understanding	Hashing

In	simple	terms	we	can	treat	array	as	a	hash	table.	For	understanding	the	use	of	hash	tables,	let	us
consider	 the	 following	 example:	 Give	 an	 algorithm	 for	 printing	 the	 first	 repeated	 character	 if
there	are	duplicated	elements	in	it.	Let	us	think	about	the	possible	solutions.	The	simple	and	brute
force	way	of	solving	is:	given	a	string,	for	each	character	check	whether	that	character	is	repeated
or	not.	The	time	complexity	of	this	approach	is	O(n2)	with	O(1)	space	complexity.

Now,	let	us	find	a	better	solution	for	this	problem.	Since	our	objective	is	to	find	the	first	repeated
character,	what	if	we	remember	the	previous	characters	in	some	array?

We	know	that	the	number	of	possible	characters	is	256	(for	simplicity	assume	ASCII	characters
only).	Create	an	array	of	size	256	and	initialize	it	with	all	zeros.	For	each	of	the	input	characters
go	 to	 the	 corresponding	 position	 and	 increment	 its	 count.	 Since	 we	 are	 using	 arrays,	 it	 takes
constant	 time	 for	 reaching	 any	 location.	While	 scanning	 the	 input,	 if	we	get	 a	 character	whose
counter	is	already	1	then	we	can	say	that	the	character	is	the	one	which	is	repeating	for	the	first
time.



Why	not	Arrays?

In	 the	 previous	 problem,	we	 have	 used	 an	 array	 of	 size	 256	 because	we	 know	 the	 number	 of
different	possible	characters	[256]	in	advance.	Now,	let	us	consider	a	slight	variant	of	the	same
problem.	Suppose	the	given	array	has	numbers	instead	of	characters,	 then	how	do	we	solve	the
problem?

In	this	case	the	set	of	possible	values	is	infinity	(or	at	least	very	big).	Creating	a	huge	array	and
storing	 the	 counters	 is	 not	 possible.	 That	means	 there	 are	 a	 set	 of	 universal	 keys	 and	 limited
locations	 in	 the	memory.	 If	we	want	 to	 solve	 this	problem	we	need	 to	 somehow	map	all	 these
possible	keys	to	the	possible	memory	locations.	From	the	above	discussion	and	diagram	it	can	be
seen	that	we	need	a	mapping	of	possible	keys	to	one	of	the	available	locations.	As	a	result	using
simple	arrays	is	not	the	correct	choice	for	solving	the	problems	where	the	possible	keys	are	very
big.	The	process	of	mapping	the	keys	to	locations	is	called	hashing.

Note:	For	now,	do	not	worry	about	how	the	keys	are	mapped	to	locations.	That	depends	on	the
function	used	for	conversions.	One	such	simple	function	is	key	%	table	size.



14.5	Components	of	Hashing

Hashing	has	four	key	components:

1) Hash	Table
2) Hash	Functions
3) Collisions
4) Collision	Resolution	Techniques

14.6	Hash	Table

Hash	table	is	a	generalization	of	array.	With	an	array,	we	store	the	element	whose	key	is	k	at	a
position	k	of	 the	array.	That	means,	given	a	key	k,	we	 find	 the	 element	whose	key	 is	k	 by	 just
looking	in	the	kth	position	of	the	array.	This	is	called	direct	addressing.

Direct	 addressing	 is	 applicable	when	we	can	 afford	 to	 allocate	 an	 array	with	one	position	 for
every	possible	key.	But	if	we	do	not	have	enough	space	to	allocate	a	location	for	each	possible
key,	then	we	need	a	mechanism	to	handle	this	case.	Another	way	of	defining	the	scenario	is:	if	we
have	less	locations	and	more	possible	keys,	then	simple	array	implementation	is	not	enough.

In	 these	cases	one	option	 is	 to	use	hash	 tables.	Hash	 table	or	hash	map	 is	 a	data	 structure	 that
stores	 the	keys	and	 their	 associated	values,	 and	hash	 table	uses	a	hash	 function	 to	map	keys	 to
their	associated	values.	The	general	convention	is	 that	we	use	a	hash	table	when	the	number	of
keys	actually	stored	is	small	relative	to	the	number	of	possible	keys.

14.7	Hash	Function

The	hash	function	is	used	to	transform	the	key	into	the	index.	Ideally,	the	hash	function	should	map
each	possible	key	to	a	unique	slot	index,	but	it	is	difficult	to	achieve	in	practice.

Given	a	collection	of	elements,	a	hash	function	that	maps	each	item	into	a	unique	slot	is	referred
to	as	a	perfect	hash	function.	If	we	know	the	elements	and	the	collection	will	never	change,	then
it	is	possible	to	construct	a	perfect	hash	function.	Unfortunately,	given	an	arbitrary	collection	of
elements,	there	is	no	systematic	way	to	construct	a	perfect	hash	function.	Luckily,	we	do	not	need
the	hash	function	to	be	perfect	to	still	gain	performance	efficiency.

One	way	to	always	have	a	perfect	hash	function	is	 to	increase	the	size	of	 the	hash	table	so	that
each	possible	value	in	the	element	range	can	be	accommodated.	This	guarantees	that	each	element
will	have	a	unique	slot.	Although	this	is	practical	for	small	numbers	of	elements,	it	is	not	feasible
when	 the	 number	 of	 possible	 elements	 is	 large.	 For	 example,	 if	 the	 elements	 were	 nine-digit
Social	Security	numbers,	this	method	would	require	almost	one	billion	slots.	If	we	only	want	to
store	data	for	a	class	of	25	students,	we	will	be	wasting	an	enormous	amount	of	memory.



Our	goal	is	to	create	a	hash	function	that	minimizes	the	number	of	collisions,	is	easy	to	compute,
and	 evenly	 distributes	 the	 elements	 in	 the	 hash	 table.	 There	 are	 a	 number	 of	 common	ways	 to
extend	the	simple	remainder	method.	We	will	consider	a	few	of	them	here.

The	 folding	method	 for	constructing	hash	 functions	begins	by	dividing	 the	elements	 into	equal-
size	pieces	(the	last	piece	may	not	be	of	equal	size).	These	pieces	are	then	added	together	to	give
the	resulting	hash	value.	For	example,	 if	our	element	was	 the	phone	number	436-555-4601,	we
would	 take	 the	 digits	 and	 divide	 them	 into	 groups	 of	 2	 (43,65,55,46,01).	 After	 the	 addition,
43+65+55+46+01,	we	get	210.	If	we	assume	our	hash	table	has	11	slots,	then	we	need	to	perform
the	 extra	 step	of	dividing	by	11	 and	keeping	 the	 remainder.	 In	 this	 case	210	%	11	 is	1,	 so	 the
phone	 number	 436-555-4601	 hashes	 to	 slot	 1.	 Some	 folding	 methods	 go	 one	 step	 further	 and
reverse	 every	 other	 piece	 before	 the	 addition.	 For	 the	 above	 example,	 we	 get
43+56+55+64+01=219	which	gives	219	%	11	=	10.

How	to	Choose	Hash	Function?

The	basic	problems	associated	with	the	creation	of	hash	tables	are:

• An	efficient	hash	function	should	be	designed	so	that	it	distributes	the	index	values
of	inserted	objects	uniformly	across	the	table.

• An	efficient	collision	resolution	algorithm	should	be	designed	so	that	it	computes	an
alternative	index	for	a	key	whose	hash	index	corresponds	to	a	location	previously
inserted	in	the	hash	table.

• We	 must	 choose	 a	 hash	 function	 which	 can	 be	 calculated	 quickly,	 returns	 values
within	the	range	of	locations	in	our	table,	and	minimizes	collisionsns.

Characteristics	of	Good	Hash	Functions

A	good	hash	function	should	have	the	following	characteristics:

• Minimize	collision
• Be	easy	and	quick	to	compute
• Distribute	key	values	evenly	in	the	hash	table
• Use	all	the	information	provided	in	the	key
• Have	a	high	load	factor	for	a	given	set	of	keys

14.8	Load	Factor

The	load	factor	of	a	non-empty	hash	table	is	the	number	of	items	stored	in	the	table	divided	by	the
size	 of	 the	 table.	 This	 is	 the	 decision	 parameter	 used	when	we	want	 to	 rehash	or	 expand	 the
existing	hash	table	entries.	This	also	helps	us	in	determining	the	efficiency	of	the	hashing	function.
That	means,	it	tells	whether	the	hash	function	is	distributing	the	keys	uniformly	or	not.



14.9	Collisions

Hash	 functions	 are	 used	 to	map	 each	 key	 to	 a	 different	 address	 space,	 but	 practically	 it	 is	 not
possible	 to	 create	 such	 a	 hash	 function	 and	 the	 problem	 is	 called	 collision.	 Collision	 is	 the
condition	where	two	records	are	stored	in	the	same	location.

14.10	Collision	Resolution	Techniques

The	 process	 of	 finding	 an	 alternate	 location	 is	 called	 collision	 resolution.	 Even	 though	 hash
tables	have	collision	problems,	they	are	more	efficient	in	many	cases	compared	to	all	other	data
structures,	like	search	trees.	There	are	a	number	of	collision	resolution	techniques,	and	the	most
popular	are	direct	chaining	and	open	addressing.

• Direct	Chaining:	An	array	of	linked	list	application
○ Separate	chaining

• Open	Addressing:	Array-based	implementation
○ Linear	probing	(linear	search)
○ Quadratic	probing	(nonlinear	search)
○ Double	hashing	(use	two	hash	functions)

14.11	Separate	Chaining

Collision	 resolution	 by	 chaining	 combines	 linked	 representation	with	 hash	 table.	When	 two	 or
more	 records	 hash	 to	 the	 same	 location,	 these	 records	 are	 constituted	 into	 a	 singly-linked	 list
called	a	chain.



14.12	Open	Addressing

In	open	addressing	all	keys	are	 stored	 in	 the	hash	 table	 itself.	This	approach	 is	also	known	as
closed	hashing.	This	procedure	is	based	on	probing.	A	collision	is	resolved	by	probing.

Linear	Probing

The	interval	between	probes	is	fixed	at	1.	In	linear	probing,	we	search	the	hash	table	sequentially,
starting	from	the	original	hash	location.	If	a	location	is	occupied,	we	check	the	next	location.	We
wrap	around	from	the	last	table	location	to	the	first	table	location	if	necessary.	The	function	for
rehashing	is	the	following:

rehash(key)	=	(n	+	1)%	tablesize

One	of	 the	problems	with	 linear	probing	 is	 that	 table	 items	 tend	 to	 cluster	 together	 in	 the	hash
table.	 This	 means	 that	 the	 table	 contains	 groups	 of	 consecutively	 occupied	 locations	 that	 are



called	clustering.

Clusters	can	get	close	 to	one	another,	and	merge	 into	a	 larger	cluster.	Thus,	 the	one	part	of	 the
table	might	be	quite	dense,	even	though	another	part	has	relatively	few	items.	Clustering	causes
long	probe	searches	and	therefore	decreases	the	overall	efficiency.

The	next	location	to	be	probed	is	determined	by	the	step-size,	where	other	step-sizes	(more	than
one)	 are	possible.	The	 step-size	 should	be	 relatively	prime	 to	 the	 table	 size,	 i.e.	 their	 greatest
common	divisor	should	be	equal	to	1.	If	we	choose	the	table	size	to	be	a	prime	number,	then	any
step-size	is	relatively	prime	to	the	table	size.	Clustering	cannot	be	avoided	by	larger	step-sizes.

Quadratic	Probing

The	 interval	 between	 probes	 increases	 proportionally	 to	 the	 hash	 value	 (the	 interval	 thus
increasing	 linearly,	 and	 the	 indices	 are	 described	 by	 a	 quadratic	 function).	 The	 problem	 of
Clustering	can	be	eliminated	if	we	use	the	quadratic	probing	method.

In	 quadratic	 probing,	we	 start	 from	 the	 original	 hash	 location	 i.	 If	 a	 location	 is	 occupied,	we
check	the	locations	i	+	12	,	i	+22,	i	+	32,	i	+	42...	We	wrap	around	from	the	last	table	location	to
the	first	table	location	if	necessary.	The	function	for	rehashing	is	the	following:

rehash(key)	=	(n	+	k2)%	tablesize

Example:	Let	us	assume	that	the	table	size	is	11	(0..10)

Hash	Function:	h(key)	=	key	mod	11



Insert	keys

31	mod	11	=	9
19	mod	11	=	8
2	mod	11	=	2
13	mod	11	=	2	→	2	+	12	=	3
25	mod	11	=	3	→	3	+	12=4
24	mod	11	=	2	→	2	+	12,	2	+	22	=	6
21	mod	11	=	10
9	mod	11	=	9	→	9	+	12,	9	+	22	mod	11,	9	+	32	mod	11=7

Even	 though	 clustering	 is	 avoided	 by	 quadratic	 probing,	 still	 there	 are	 chances	 of	 clustering.
Clustering	 is	 caused	 by	multiple	 search	 keys	mapped	 to	 the	 same	 hash	 key.	 Thus,	 the	 probing
sequence	 for	 such	 search	 keys	 is	 prolonged	 by	 repeated	 conflicts	 along	 the	 probing	 sequence.
Both	linear	and	quadratic	probing	use	a	probing	sequence	that	is	independent	of	the	search	key.

Double	Hashing

The	 interval	 between	 probes	 is	 computed	 by	 another	 hash	 function.	 Double	 hashing	 reduces
clustering	 in	 a	 better	 way.	 The	 increments	 for	 the	 probing	 sequence	 are	 computed	 by	 using	 a
second	hash	function.	The	second	hash	function	h2	should	be:

h2(key)	≠	0	and	h2	≠	h1



We	first	probe	the	location	h1(key).	If	the	location	is	occupied,	we	probe	the	location	h1(key)	+
h2(key),	h1(key)	+	2	*	h2(key),	...

Example:

Table	size	is	11	(0..10)
Hash	Function:	assume	h1(key)	=	key	mod	11	and	h2(key)	=	7-	(key	mod	7)

Insert	keys:

58	mod	11	=	3
14	mod	11	=	3	→	3	+	7	=	10
91	mod	11	=	3	→	3+	7,3+	2*	7	mod	11	=	6
25	mod	11	=	3	→	3	+	3,3	+	2*3	=	9

14.13	Comparison	of	Collision	Resolution	Techniques

Comparisons:	Linear	Probing	vs.	Double	Hashing

The	choice	between	linear	probing	and	double	hashing	depends	on	the	cost	of	computing	the	hash
function	and	on	the	load	factor	[number	of	elements	per	slot]	of	the	table.	Both	use	few	probes	but
double	hashing	take	more	time	because	it	hashes	to	compare	two	hash	functions	for	long	keys.



Comparisons:	Open	Addressing	vs.	Separate	Chaining

It	is	somewhat	complicated	because	we	have	to	account	for	the	memory	usage.	Separate	chaining
uses	extra	memory	for	links.	Open	addressing	needs	extra	memory	implicitly	within	the	table	to
terminate	 the	 probe	 sequence.	Open-addressed	 hash	 tables	 cannot	 be	 used	 if	 the	 data	 does	 not
have	unique	keys.	An	alternative	is	to	use	separate	chained	hash	tables.

Comparisons:	Open	Addressing	methods

14.14	How	Hashing	Gets	O(1)	Complexity

From	the	previous	discussion,	one	doubts	how	hashing	gets	O(1)	if	multiple	elements	map	to	the
same	location...

The	answer	to	this	problem	is	simple.	By	using	the	load	factor	we	make	sure	that	each	block	(for
example,	linked	list	in	separate	chaining	approach)	on	the	average	stores	the	maximum	number	of
elements	less	than	the	load	factor.	Also,	in	practice	this	load	factor	is	a	constant	(generally,	10	or
20).	As	a	result,	searching	in	20	elements	or	10	elements	becomes	constant.

If	 the	 average	 number	 of	 elements	 in	 a	 block	 is	 greater	 than	 the	 load	 factor,	 we	 rehash	 the
elements	 with	 a	 bigger	 hash	 table	 size.	 One	 thing	 we	 should	 remember	 is	 that	 we	 consider
average	 occupancy	 (total	 number	 of	 elements	 in	 the	 hash	 table	 divided	 by	 table	 size)	 when
deciding	the	rehash.

The	 access	 time	 of	 the	 table	 depends	 on	 the	 load	 factor	 which	 in	 turn	 depends	 on	 the	 hash
function.	This	is	because	hash	function	distributes	the	elements	to	the	hash	table.	For	this	reason,
we	say	hash	table	gives	O(1)	complexity	on	average.	Also,	we	generally	use	hash	tables	in	cases



where	searches	are	more	than	insertion	and	deletion	operations.

14.15	Hashing	Techniques

There	are	two	types	of	hashing	techniques:	static	hashing	and	dynamic	hashing

Static	Hashing

If	the	data	is	fixed	then	static	hashing	is	useful.	In	static	hashing,	the	set	of	keys	is	kept	fixed	and
given	in	advance,	and	the	number	of	primary	pages	in	the	directory	are	kept	fixed.

Dynamic	Hashing

If	the	data	is	not	fixed,	static	hashing	can	give	bad	performance,	in	which	case	dynamic	hashing	is
the	alternative,	in	which	case	the	set	of	keys	can	change	dynamically.

14.16	Problems	for	which	Hash	Tables	are	not	suitable

• Problems	for	which	data	ordering	is	required
• Problems	having	multidimensional	data
• Prefix	searching,	especially	if	the	keys	are	long	and	of	variable-lengths
• Problems	that	have	dynamic	data
• Problems	in	which	the	data	does	not	have	unique	keys.

14.17	Bloom	Filters

A	Bloom	filter	is	a	probabilistic	data	structure	which	was	designed	to	check	whether	an	element
is	present	in	a	set	with	memory	and	time	efficiency.	It	tells	us	that	the	element	either	definitely	is
not	in	the	set	or	may	be	in	the	set.	The	base	data	structure	of	a	Bloom	filter	is	a	Bit	Vector.	The
algorithm	was	invented	in	1970	by	Burton	Bloom	and	it	relies	on	the	use	of	a	number	of	different
hash	functions.

How	it	works?



Now	that	the	bits	in	the	bit	vector	have	been	set	for	Element1	and	Element2;
we	can	query	the	bloom	filter	to	tell	us	if	something	has	been	seen	before.

The	element	is	hashed	but	instead	of	setting	the	bits,	this	time	a	check	is	done
and	if	the	bits	that	would	have	been	set	are	already	set	the	bloom	filter	will
return	true	that	the	element	has	been	seen	before.

A	Bloom	 filter	 starts	 off	with	 a	 bit	 array	 initialized	 to	 zero.	To	 store	 a	 data	 value,	we	 simply
apply	k	different	hash	functions	and	treat	the	resulting	k	values	as	indices	in	the	array,	and	we	set
each	of	the	k	array	elements	to	1.	We	repeat	this	for	every	element	that	we	encounter.

Now	suppose	an	element	turns	up	and	we	want	to	know	if	we	have	seen	it	before.	What	we	do	is
apply	the	k	hash	functions	and	look	up	the	indicated	array	elements.	If	any	of	them	are	0	we	can	be
100%	sure	 that	we	have	never	encountered	 the	element	before	 -	 if	we	had,	 the	bit	would	have
been	set	to	1.	However,	even	if	all	of	them	are	one,	we	still	can’t	conclude	that	we	have	seen	the
element	 before	 because	 all	 of	 the	 bits	 could	 have	 been	 set	 by	 the	 k	 hash	 functions	 applied	 to
multiple	 other	 elements.	All	we	 can	 conclude	 is	 that	 it	 is	 likely	 that	we	 have	 encountered	 the



element	before.

Note	that	it	is	not	possible	to	remove	an	element	from	a	Bloom	filter.	The	reason	is	simply	that
we	can’t	unset	a	bit	that	appears	to	belong	to	an	element	because	it	might	also	be	set	by	another
element.

If	the	bit	array	is	mostly	empty,	i.e.,	set	to	zero,	and	the	k	hash	functions	are	independent	of	one
another,	 then	 the	probability	of	 a	 false	positive	 (i.e.,	 concluding	 that	we	have	 seen	a	data	 item
when	we	actually	haven’t)	is	low.	For	example,	if	there	are	only	k	bits	set,	we	can	conclude	that
the	probability	of	a	false	positive	is	very	close	to	zero	as	the	only	possibility	of	error	is	that	we
entered	a	data	item	that	produced	the	same	k	hash	values	-	which	is	unlikely	as	long	as	the	‘has’
functions	are	independent.

As	the	bit	array	fills	up,	the	probability	of	a	false	positive	slowly	increases.	Of	course	when	the
bit	array	is	full,	every	element	queried	is	identified	as	having	been	seen	before.	So	clearly	we	can
trade	space	for	accuracy	as	well	as	for	time.

One-time	removal	of	an	element	from	a	Bloom	filter	can	be	simulated	by	having	a	second	Bloom
filter	that	contains	elements	that	have	been	removed.	However,	false	positives	in	the	second	filter
become	false	negatives	 in	 the	composite	filter,	which	may	be	undesirable.	 In	 this	approach,	 re-
adding	 a	 previously	 removed	 item	 is	 not	 possible,	 as	 one	 would	 have	 to	 remove	 it	 from	 the
removed	filter.

Selecting	hash	functions

The	requirement	of	designing	k	different	independent	hash	functions	can	be	prohibitive	for	large
k.	For	a	good	hash	function	with	a	wide	output,	there	should	be	little	if	any	correlation	between
different	bit-fields	of	such	a	hash,	so	this	type	of	hash	can	be	used	to	generate	multiple	different
hash	functions	by	slicing	its	output	into	multiple	bit	fields.	Alternatively,	one	can	pass	k	different
initial	values	 (such	as	0,	1,	 ...,	k	 -	1)	 to	a	hash	function	 that	 takes	an	 initial	value	–	or	add	(or
append)	 these	values	 to	 the	key.	For	 larger	m	and/or	k,	 independence	among	 the	hash	 functions
can	be	relaxed	with	negligible	increase	in	the	false	positive	rate.

Selecting	size	of	bit	vector

A	Bloom	filter	with	1%	error	and	an	optimal	value	of	k,	in	contrast,	requires	only	about	9.6	bits
per	 element	 –	 regardless	 of	 the	 size	 of	 the	 elements.	 This	 advantage	 comes	 partly	 from	 its
compactness,	 inherited	 from	 arrays,	 and	 partly	 from	 its	 probabilistic	 nature.	 The	 1%	 false-
positive	rate	can	be	reduced	by	a	factor	of	ten	by	adding	only	about	4.8	bits	per	element.

Space	Advantages



While	 risking	 false	 positives,	 Bloom	 filters	 have	 a	 strong	 space	 advantage	 over	 other	 data
structures	for	representing	sets,	such	as	self-balancing	binary	search	trees,	 tries,	hash	tables,	or
simple	arrays	or	 linked	 lists	of	 the	entries.	Most	of	 these	require	storing	at	 least	 the	data	 items
themselves,	which	can	 require	anywhere	 from	a	 small	number	of	bits,	 for	 small	 integers,	 to	an
arbitrary	number	of	bits,	such	as	for	strings	(tries	are	an	exception,	since	they	can	share	storage
between	 elements	 with	 equal	 prefixes).	 Linked	 structures	 incur	 an	 additional	 linear	 space
overhead	for	pointers.

However,	if	the	number	of	potential	values	is	small	and	many	of	them	can	be	in	the	set,	the	Bloom
filter	 is	 easily	 surpassed	 by	 the	 deterministic	 bit	 array,	 which	 requires	 only	 one	 bit	 for	 each
potential	element.

Time	Advantages

Bloom	filters	also	have	the	unusual	property	that	the	time	needed	either	to	add	items	or	to	check
whether	an	item	is	in	the	set	is	a	fixed	constant,	O(k),	completely	independent	of	 the	number	of
items	 already	 in	 the	 set.	 No	 other	 constant-space	 set	 data	 structure	 has	 this	 property,	 but	 the
average	 access	 time	 of	 sparse	 hash	 tables	 can	make	 them	 faster	 in	 practice	 than	 some	Bloom
filters.	In	a	hardware	implementation,	however,	the	Bloom	filter	shines	because	its	k	lookups	are
independent	and	can	be	parallelized.

Implementation

Refer	to	Problems	Section.

14.18	Hashing:	Problems	&	Solutions

Problem-1  Implement	a	separate	chaining	collision	resolution	technique.	Also,	discuss	time
complexities	of	each	function.

Solution:	To	create	a	hashtable	of	given	size,	say	n,	we	allocate	an	array	of	n/L	(whose	value	is
usually	between	5	and	20)	pointers	to	list,	initialized	to	NULL.	To	perform	Search/Insert/Delete
operations,	we	first	compute	the	index	of	the	table	from	the	given	key	by	using	hashfunction	and
then	do	the	corresponding	operation	in	the	linear	list	maintained	at	that	location.	To	get	uniform
distribution	of	keys	over	a	hashtable,	maintain	table	size	as	the	prime	number.









CreatHashTable	 –	O(n).	HashSearch	 -	O(1)	 average.	Hashlnsert	 -	O(1)	 average.	HashDelete	 -
O(1)	average.

Problem-2  Given	an	array	of	characters,	give	an	algorithm	for	removing	the	duplicates.

Solution:	Start	with	the	first	character	and	check	whether	it	appears	in	the	remaining	part	of	the
string	 using	 a	 simple	 linear	 search.	 If	 it	 repeats,	 bring	 the	 last	 character	 to	 that	 position	 and
decrement	 the	size	of	 the	string	by	one.	Continue	 this	process	 for	each	distinct	character	of	 the
given	string.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-3  Can	 we	 find	 any	 other	 idea	 to	 solve	 this	 problem	 in	 better	 time	 than	 O(n2)?
Observe	that	the	order	of	characters	in	solutions	do	not	matter.

Solution:	Use	sorting	to	bring	the	repeated	characters	together.	Finally	scan	through	the	array	to
remove	duplicates	in	consecutive	positions.



Time	Complexity:	Θ(nlogn).	Space	Complexity:	O(1).

Problem-4  Can	we	solve	this	problem	in	a	single	pass	over	given	array?

Solution:	We	can	use	hash	table	to	check	whether	a	character	is	repeating	in	the	given	string	or
not.	If	the	current	character	is	not	available	in	hash	table,	then	insert	it	into	hash	table	and	keep
that	character	in	the	given	string	also.	If	the	current	character	exists	in	the	hash	table	then	skip	that
character.

Time	Complexity:	Θ(n)	on	average.	Space	Complexity:	O(n).

Problem-5  Given	two	arrays	of	unordered	numbers,	check	whether	both	arrays	have	the	same
set	of	numbers?

Solution:	 Let	 us	 assume	 that	 two	 given	 arrays	 are	 A	 and	 B.	 A	 simple	 solution	 to	 the	 given



problem	is:	for	each	element	of	A,	check	whether	that	element	is	in	B	or	not.	A	problem	arises
with	this	approach	if	there	are	duplicates.	For	example	consider	the	following	inputs:

A	=	{2,5,6,8,10,2,2}
B	=	{2,5,5,8,10,5,6}

The	above	algorithm	gives	the	wrong	result	because	for	each	element	of	A	there	is	an	element	in
B	also.	But	if	we	look	at	the	number	of	occurrences,	they	are	not	the	same.	This	problem	we	can
solve	by	moving	the	elements	which	are	already	compared	to	the	end	of	the	list.	That	means,	if	we
find	an	element	in	B,	then	we	move	that	element	to	the	end	of	B,	and	in	the	next	searching	we	will
not	find	those	elements.	But	the	disadvantage	of	this	is	it	needs	extra	swaps.	Time	Complexity	of
this	approach	is	O(n2),	since	for	each	element	of	A	we	have	to	scan	B.

Problem-6  Can	we	improve	the	time	complexity	of	Problem-5?

Solution:	Yes.	To	improve	the	time	complexity,	let	us	assume	that	we	have	sorted	both	the	lists.
Since	the	sizes	of	both	arrays	are	n,	we	need	O(n	log	n)	time	for	sorting	them.	After	sorting,	we
just	need	to	scan	both	the	arrays	with	two	pointers	and	see	whether	they	point	to	the	same	element
every	time,	and	keep	moving	the	pointers	until	we	reach	the	end	of	the	arrays.

Time	Complexity	of	this	approach	is	O(n	log	n).	This	is	because	we	need	O(n	log	n)	for	sorting
the	arrays.	After	sorting,	we	need	O(n)	time	for	scanning	but	it	is	less	compared	to	O(n	log	n).

Problem-7  Can	we	further	improve	the	time	complexity	of	Problem-5?

Solution:	Yes,	by	using	a	hash	table.	For	this,	consider	the	following	algorithm.

Algorithm:

• Construct	the	hash	table	with	array	A	elements	as	keys.
• While	 inserting	 the	elements,	keep	 track	of	 the	number	 frequency	for	each	number.

That	means,	if	there	are	duplicates,	then	increment	the	counter	of	that	corresponding
key.

• After	constructing	the	hash	table	for	A’s	elements,	now	scan	the	array	B.
• For	each	occurrence	of	B’s	elements	reduce	the	corresponding	counter	values.
• At	the	end,	check	whether	all	counters	are	zero	or	not.
• If	 all	 counters	 are	 zero,	 then	 both	 arrays	 are	 the	 same	 otherwise	 the	 arrays	 are

different.

Time	Complexity;	O(n)	for	scanning	the	arrays.	Space	Complexity;	O(n)	for	hash	table.

Problem-8  Given	a	list	of	number	pairs;	if	pair(i,j)	exists,	and	pair(j,i)	exists,	report	all	such
pairs.	 For	 example,	 in	 {{1,3},{2,6},{3,5},{7,4},{5,3},{8,7}},	 we	 see	 that	 {3,5}	 and
{5,3}	 are	 present.	 Report	 this	 pair	 when	 you	 encounter	 {5,3}.	 We	 call	 such	 pairs
‘symmetric	pairs’.	So,	give	an	efficient	algorithm	for	finding	all	such	pairs.



Solution:	By	using	hashing,	we	can	solve	this	problem	in	just	one	scan.	Consider	the	following
algorithm.

Algorithm:

• Read	the	pairs	of	elements	one	by	one	and	insert	them	into	the	hash	table.	For	each
pair,	consider	the	first	element	as	key	and	the	second	element	as	value.

• While	 inserting	 the	 elements,	 check	 if	 the	 hashing	 of	 the	 second	 element	 of	 the
current	pair	is	the	same	as	the	first	number	of	the	current	pair.

• If	they	are	the	same,	then	that	indicates	a	symmetric	pair	exits	and	output	that	pair.
• Otherwise,	 insert	 that	 element	 into	 that.	 That	 means,	 use	 the	 first	 number	 of	 the

current	pair	 as	key	 and	 the	 second	number	 as	value	 and	 insert	 them	 into	 the	hash
table.

• By	the	time	we	complete	the	scanning	of	all	pairs,	we	have	output	all	the	symmetric
pairs.

Time	Complexity;	O(n)	for	scanning	the	arrays.	Note	that	we	are	doing	a	scan	only	of	the	input.
Space	Complexity;	O(n)	for	hash	table.

Problem-9  Given	a	singly	linked	list,	check	whether	it	has	a	loop	in	it	or	not.

Solution:	Using	Hash	Tables

Algorithm:

• Traverse	the	linked	list	nodes	one	by	one.
• Check	if	the	node’s	address	is	there	in	the	hash	table	or	not.
• If	 it	 is	already	 there	 in	 the	hash	 table,	 that	 indicates	we	are	visiting	a	node	which

was	already	visited.	This	is	possible	only	if	the	given	linked	list	has	a	loop	in	it.
• If	the	address	of	the	node	is	not	there	in	the	hash	table,	then	insert	that	node’s	address

into	the	hash	table.
• Continue	this	process	until	we	reach	the	end	of	the	linked	list	or	we	find	the	loop.

Time	Complexity;	O(n)	 for	 scanning	 the	 linked	 list.	Note	 that	we	 are	 doing	 a	 scan	 only	 of	 the
input.	Space	Complexity;	O(n)	for	hash	table.

Note:	for	an	efficient	solution,	refer	to	the	Linked	Lists	chapter.

Problem-10  Given	 an	 array	 of	 101	 elements.	 Out	 of	 them	 50	 elements	 are	 distinct,	 24
elements	are	repeated	2	times,	and	one	element	is	repeated	3	times.	Find	the	element	that	is
repeated	3	times	in	O(1).

Solution:	Using	Hash	Tables

Algorithm:



• Scan	the	input	array	one	by	one.
• Check	if	the	element	is	already	there	in	the	hash	table	or	not.
• If	it	is	already	there	in	the	hash	table,	increment	its	counter	value	[this	indicates	the

number	of	occurrences	of	the	element].
• If	the	element	is	not	there	in	the	hash	table,	insert	that	node	into	the	hash	table	with

counter	value	1.
• Continue	this	process	until	reaching	the	end	of	the	array.

Time	 Complexity:	 O(n),	 because	 we	 are	 doing	 two	 scans.	 Space	 Complexity:	 O(n),	 for	 hash
table.

Note:	For	an	efficient	solution	refer	to	the	Searching	chapter.

Problem-11  Given	m	sets	of	integers	that	have	n	elements	 in	 them,	provide	an	algorithm	to
find	an	element	which	appeared	in	the	maximum	number	of	sets?

Solution:	Using	Hash	Tables

Algorithm:

• Scan	the	input	sets	one	by	one.
• For	each	element	keep	 track	of	 the	counter.	The	counter	 indicates	 the	 frequency	of

occurrences	in	all	the	sets.
• After	 completing	 the	 scan	 of	 all	 the	 sets,	 select	 the	 one	 which	 has	 the	 maximum

counter	value.

Time	Complexity:	O(mn),	because	we	need	 to	scan	all	 the	sets.	Space	Complexity:	O(mn),	 for
hash	table.	Because,	in	the	worst	case	all	the	elements	may	be	different.

Problem-12  Given	two	sets	A	and	B,	and	a	number	K,	Give	an	algorithm	for	finding	whether
there	exists	a	pair	of	elements,	one	from	A	and	one	from	B,	that	add	up	to	K.

Solution:	For	simplicity,	let	us	assume	that	the	size	of	A	is	m	and	the	size	of	B	is	n.

Algorithm:

• Select	the	set	which	has	minimum	elements.
• For	the	selected	set	create	a	hash	table.	We	can	use	both	key	and	value	as	the	same.
• Now	 scan	 the	 second	 array	 and	 check	whether	 (K-selected	 element)	 exists	 in	 the

hash	table	or	not.
• If	it	exists	then	return	the	pair	of	elements.
• Otherwise	continue	until	we	reach	the	end	of	the	set.

Time	 Complexity:	 O(Max(m,n)),	 because	 we	 are	 doing	 two	 scans.	 Space	 Complexity:
O(Min(m,n)),	for	hash	table.	We	can	select	the	small	set	for	creating	the	hash	table.



Problem-13  Give	an	algorithm	to	remove	the	specified	characters	from	a	given	string	which
are	given	in	another	string?

Solution:	For	simplicity,	 let	us	assume	that	 the	maximum	number	of	different	characters	 is	256.
First	we	create	an	auxiliary	array	initialized	to	0.	Scan	the	characters	to	be	removed,	and	for	each
of	those	characters	we	set	the	value	to	1,	which	indicates	that	we	need	to	remove	that	character.

After	 initialization,	 scan	 the	 input	 string,	and	 for	each	of	 the	characters,	we	check	whether	 that
character	needs	to	be	deleted	or	not.	If	the	flag	is	set	then	we	simply	skip	to	the	next	character,
otherwise	we	keep	the	character	in	the	input	string.	Continue	this	process	until	we	reach	the	end
of	the	input	string.	All	these	operations	we	can	do	in-place	as	given	below.

Time	Complexity:	Time	for	scanning	the	characters	to	be	removed	+	Time	for	scanning	the	input
array=	O(n)	+O(m)	≈	O(n).	Where	m	 is	 the	 length	of	 the	characters	 to	be	removed	and	n	 is	 the
length	of	the	input	string.

Space	Complexity:	O(m),	length	of	the	characters	to	be	removed.	But	since	we	are	assuming	the
maximum	number	of	different	characters	 is	256,	we	can	 treat	 this	as	a	constant.	But	we	should
keep	in	mind	 that	when	we	are	dealing	with	multi-byte	characters,	 the	 total	number	of	different
characters	is	much	more	than	256.

Problem-14  Give	 an	 algorithm	 for	 finding	 the	 first	 non-repeated	 character	 in	 a	 string.	 For
example,	the	first	non-repeated	character	in	the	string	“abzddab”	is	‘z’.



Solution:	The	solution	to	this	problem	is	 trivial.	For	each	character	 in	 the	given	string,	we	can
scan	the	remaining	string	if	 that	character	appears	in	it.	If	 it	does	not	appears	then	we	are	done
with	the	solution	and	we	return	that	character.	If	the	character	appears	in	the	remaining	string,	then
go	to	the	next	character.

Time	Complexity:	O(n2),	for	two	for	loops.	Space	Complexity:	O(1).

Problem-15  Can	we	improve	the	time	complexity	of	Problem-13?

Solution:	Yes.	By	using	hash	 tables	we	can	reduce	 the	 time	complexity.	Create	a	hash	 table	by
reading	 all	 the	 characters	 in	 the	 input	 string	 and	 keeping	 count	 of	 the	 number	 of	 times	 each
character	appears.	After	creating	the	hash	table,	we	can	read	the	hash	table	entries	to	see	which
element	has	a	count	equal	to	1.	This	approach	takes	O(n)	space	but	reduces	the	time	complexity
also	to	O(n).



Time	Complexity;	We	have	O(n)	to	create	the	hash	table	and	another	O(n)	to	read	the	entries	of
hash	table.	So	the	total	time	is	O(n)	+	O(n)	=	O(2n)	≈	O(n).	Space	Complexity:	O(n)	for	keeping
the	count	values.

Problem-16  Given	a	string,	give	an	algorithm	for	finding	the	first	repeating	letter	in	a	string?

Solution:	The	solution	to	this	problem	is	somewhat	similar	to	Problem-13	and	Problem-15.	The
only	difference	 is,	 instead	of	 scanning	 the	hash	 table	 twice	we	can	give	 the	answer	 in	 just	one
scan.	This	is	because	while	inserting	into	the	hash	table	we	can	see	whether	that	element	already
exists	or	not.	If	it	already	exists	then	we	just	need	to	return	that	character.



Time	Complexity:	We	have	O(n)	for	scanning	and	creating	the	hash	table.	Note	that	we	need	only
one	scan	for	this	problem.	So	the	total	time	is	O(n).	Space	Complexity:	O(n)	for	keeping	the	count
values.

Problem-17  Given	 an	 array	 of	 n	 numbers,	 create	 an	 algorithm	 which	 displays	 all	 pairs
whose	sum	is	S.

Solution:	This	problem	is	similar	to	Problem-12.	But	instead	of	using	two	sets	we	use	only	one
set.

Algorithm:

• Scan	the	elements	of	the	input	array	one	by	one	and	create	a	hash	table.	Both	key	and
value	can	be	the	same.

• After	 creating	 the	 hash	 table,	 again	 scan	 the	 input	 array	 and	 check	 whether	 (S	 –
selected	element)	exits	in	the	hash	table	or	not.

• If	it	exits	then	return	the	pair	of	elements.
• Otherwise	continue	and	read	all	the	elements	of	the	array.

Time	Complexity;	We	have	O(n)	to	create	the	hash	table	and	another	O(n)	to	read	the	entries	of
the	hash	 table.	So	 the	 total	 time	 is	O(n)	+	O(n)	=	O(2n)	≈	O(n).	 Space	Complexity:	O(n)	 for
keeping	the	count	values.

Problem-18  Is	there	any	other	way	of	solving	Problem-17?

Solution:	Yes.	The	alternative	solution	to	this	problem	involves	sorting.	First	sort	the	input	array.
After	sorting,	use	 two	pointers,	one	at	 the	starting	and	another	at	 the	ending.	Each	 time	add	 the



values	of	both	the	indexes	and	see	if	their	sum	is	equal	to	S.	If	they	are	equal	then	print	that	pair.
Otherwise	increase	the	left	pointer	if	the	sum	is	less	than	S	and	decrease	the	right	pointer	if	the
sum	is	greater	than	S.

Time	Complexity:	Time	for	sorting	+	Time	for	scanning	=	O(nlogn)	+	O(n)	≈	O(nlogn).

Space	Complexity:	O(1).

Problem-19  We	have	a	file	with	millions	of	lines	of	data.	Only	two	lines	are	identical;	the
rest	are	unique.	Each	line	is	so	long	that	it	may	not	even	fit	in	the	memory.	What	is	the	most
efficient	solution	for	finding	the	identical	lines?

Solution:	 Since	 a	 complete	 line	may	 not	 fit	 into	 the	main	memory,	 read	 the	 line	 partially	 and
compute	the	hash	from	that	partial	line.	Then	read	the	next	part	of	the	line	and	compute	the	hash.
This	time	use	the	previous	hash	also	while	computing	the	new	hash	value.	Continue	this	process
until	we	find	the	hash	for	the	complete	line.	Do	this	for	each	line	and	store	all	the	hash	values	in	a
file	[or	maintain	a	hash	table	of	these	hashes].	If	at	any	point	you	get	same	hash	value,	read	the
corresponding	lines	part	by	part	and	compare.

Note:	Refer	to	Searching	chapter	for	related	problems.

Problem-20  If	h	is	the	hashing	function	and	is	used	to	hash	n	keys	into	a	table	of	size	s,	where
n	<=	s,	the	expected	number	of	collisions	involving	a	particular	key	X	is	:
(A) less	than	1.
(B) less	than	n.
(C) less	than	s.
(D) less	than	 .

Solution:	A.

Problem-21  Implement	Bloom	Filters

Solution:	 A	 Bloom	 Filter	 is	 a	 data	 structure	 designed	 to	 tell,	 rapidly	 and	memory-efficiently,
whether	 an	 element	 is	 present	 in	 a	 set.	 It	 is	 based	 on	 a	 probabilistic	 mechanism	where	 false
positive	retrieval	results	are	possible,	but	false	negatives	are	not.	At	the	end	we	will	see	how	to
tune	the	parameters	in	order	to	minimize	the	number	of	false	positive	results.

Let’s	begin	with	a	little	bit	of	theory.	The	idea	behind	the	Bloom	filter	is	to	allocate	a	bit	vector
of	length	m,	initially	all	set	to	0,	and	then	choose	k	independent	hash	functions,	h1,	h2,	...,	hk,	each
with	range	[1..m].	When	an	element	a	is	added	to	the	set	then	the	bits	at	positions	h1(a),	h2(a),	...,
hk(a)	in	the	bit	vector	are	set	to	1.	Given	a	query	element	q	we	can	test	whether	it	 is	 in	the	set
using	the	bits	at	positions	h1(q),	h2(q),	...,	hk(q)	in	the	vector.	If	any	of	these	bits	is	0	we	report
that	q	is	not	in	the	set	otherwise	we	report	that	q	is.	The	thing	we	have	to	care	about	is	that	in	the
first	case	 there	 remains	some	probability	 that	q	 is	not	 in	 the	set	which	could	 lead	us	 to	a	 false
positive	response.







15.1	Introduction

To	understand	 the	 importance	of	 string	algorithms	 let	us	 consider	 the	case	of	 entering	 the	URL
(Uniform	To	understand	the	importance	of	string	algorithms	let	us	consider	the	case	of	entering	the
URL	 (Uniform	 Resource	 Locator)	 in	 any	 browser	 (say,	 Internet	 Explorer,	 Firefox,	 or	 Google
Chrome).	You	will	observe	that	after	typing	the	prefix	of	the	URL,	a	list	of	all	possible	URLs	is
displayed.	That	means,	the	browsers	are	doing	some	internal	processing	and	giving	us	the	list	of
matching	URLs.	This	technique	is	sometimes	called	auto	–	completion.

Similarly,	consider	the	case	of	entering	the	directory	name	in	the	command	line	interface	(in	both
Windows	and	UNIX).	After	typing	the	prefix	of	the	directory	name,	if	we	press	the	tab	button,	we
get	a	list	of	all	matched	directory	names	available.	This	is	another	example	of	auto	completion.

In	order	to	support	these	kinds	of	operations,	we	need	a	data	structure	which	stores	the	string	data
efficiently.	 In	 this	 chapter,	we	will	 look	 at	 the	 data	 structures	 that	 are	 useful	 for	 implementing
string	algorithms.

We	start	 our	discussion	with	 the	basic	problem	of	 strings:	given	a	 string,	how	do	we	 search	a



substring	 (pattern)?	 This	 is	 called	 a	 string	matching	 problem.	 After	 discussing	 various	 string
matching	algorithms,	we	will	look	at	different	data	structures	for	storing	strings.

15.2	String	Matching	Algorithms

In	this	section,	we	concentrate	on	checking	whether	a	pattern	P	is	a	substring	of	another	string	T
(T	 stands	 for	 text)	 or	 not.	 Since	 we	 are	 trying	 to	 check	 a	 fixed	 string	 P,	 sometimes	 these
algorithms	are	called	exact	string	matching	algorithms.	To	simplify	our	discussion,	let	us	assume
that	the	length	of	given	text	T	is	n	and	the	length	of	the	pattern	P	which	we	are	trying	to	match	has
the	 length	m.	 That	means,	T	 has	 the	 characters	 from	 0	 to	 n	 –	 1	 (T[0	 ...n	 –	 1])	 and	P	 has	 the
characters	from	0	to	m	–	1	(T[0	...m	–	1]).	This	algorithm	is	implemented	in	C	+	+	as	strstr().

In	 the	 subsequent	 sections,	 we	 start	 with	 the	 brute	 force	method	 and	 gradually	move	 towards
better	algorithms.

• Brute	Force	Method
• Rabin-Karp	String	Matching	Algorithm
• String	Matching	with	Finite	Automata
• KMP	Algorithm
• Boyer-Moore	Algorithm
• Suffix	Trees

15.3	Brute	Force	Method

In	this	method,	for	each	possible	position	in	the	text	T	we	check	whether	the	pattern	P	matches	or
not.	Since	 the	 length	of	T	 is	 n,	we	 have	n	–	m	+	 1	 possible	 choices	 for	 comparisons.	 This	 is
because	we	do	not	need	 to	 check	 the	 last	m	–	 1	 locations	of	T	 as	 the	pattern	 length	 is	m.	 The
following	algorithm	searches	for	the	first	occurrence	of	a	pattern	string	P	in	a	text	string	T.

Algorithm



Time	Complexity:	O((n	–	m	+	1)	×	m)	≈	O(n	×	m).	Space	Complexity:	O(1).

15.4	Rabin-Karp	String	Matching	Algorithm

In	 this	 method,	 we	 will	 use	 the	 hashing	 technique	 and	 instead	 of	 checking	 for	 each	 possible
position	in	T,	we	check	only	if	the	hashing	of	P	and	the	hashing	of	m	characters	of	T	give	the	same
result.

Initially,	apply	the	hash	function	to	the	first	m	characters	of	T	and	check	whether	this	result	and
P’s	hashing	result	is	the	same	or	not.	If	they	are	not	the	same,	then	go	to	the	next	character	of	T	and
again	apply	the	hash	function	to	m	characters	(by	starting	at	the	second	character).	If	they	are	the
same	then	we	compare	those	m	characters	of	T	with	P.

Selecting	Hash	Function

At	 each	 step,	 since	 we	 are	 finding	 the	 hash	 of	m	 characters	 of	 T,	 we	 need	 an	 efficient	 hash
function.	If	the	hash	function	takes	O(m)	complexity	in	every	step,	then	the	total	complexity	is	O(n
×	m).	This	is	worse	than	the	brute	force	method	because	first	we	are	applying	the	hash	function
and	also	comparing.

Our	objective	is	to	select	a	hash	function	which	takes	O(1)	complexity	for	finding	the	hash	of	m
characters	of	T	every	time.	Only	then	can	we	reduce	the	total	complexity	of	the	algorithm.	If	the
hash	function	is	not	good	(worst	case),	the	complexity	of	the	Rabin-Karp	algorithm	is	O(n	–	m	+
1)	 ×	m)	 ≈	 O(n	 ×	m).	 If	 we	 select	 a	 good	 hash	 function,	 the	 complexity	 of	 the	 Rabin-Karp
algorithm	 complexity	 is	 O(m	 +	 n).	 Now	 let	 us	 see	 how	 to	 select	 a	 hash	 function	 which	 can
compute	the	hash	of	m	characters	of	T	at	each	step	in	O(1).

For	simplicity,	let’s	assume	that	the	characters	used	in	string	T	are	only	integers.	That	means,	all
characters	 in	 T	∈	 {0,1,2,...,9	 }.	 Since	 all	 of	 them	 are	 integers,	 we	 can	 view	 a	 string	 of	m
consecutive	 characters	 as	 decimal	 numbers.	 For	 example,	 string	 ′61815′	 corresponds	 to	 the
number	 61815.	With	 the	 above	 assumption,	 the	 pattern	P	 is	 also	 a	 decimal	 value,	 and	 let	 us
assume	that	the	decimal	value	of	P	is	p.	For	the	given	text	T[0..n	–	1],	let	t(i)	denote	the	decimal
value	of	length–m	substring	T[i..	i	+	m	–	1]	for	i	=	0,1,	...,n	–	m–	1.	So,	t(i)	==	p	if	and	only	if
T[i..i	+	m	–	1]	==	P[0..m	–	1].

We	can	compute	p	in	O(m)	time	using	Horner’s	Rule	as:

The	code	for	the	above	assumption	is:



We	can	compute	all	t(i),	for	i	=	0,1,...,	n	–	m	–	1	values	in	a	total	of	O(n)	time.	The	value	of	t(0)
can	be	similarly	computed	from	T[0..	m	–	1]	in	O(m)	time.	To	compute	the	remaining	values	t(0),
t(1),...,	t(n	–	m	–	1),	understand	that	t(i	+	1)	can	be	computed	from	t(i)	in	constant	time.

For	example,	if	T	=	″123456″	and	m	=	3

Step	by	Step	explanation

First	:	remove	the	first	digit	:	123	–	100	*	1	=	23

Second:	Multiply	by	10	to	shift	it	:	23	*	10	=	230
Third:	Add	last	digit	:	230	+	4	=	234

The	algorithm	runs	by	comparing,	t(i)	with	p.	When	t(i)	==	p,	then	we	have	found	the	substring	P
in	T,	starting	from	position	i.

15.5	String	Matching	with	Finite	Automata

In	 this	method	we	 use	 the	 finite	 automata	 which	 is	 the	 concept	 of	 the	 Theory	 of	 Computation
(ToC).	Before	looking	at	the	algorithm,	first	let	us	look	at	the	definition	of	finite	automata.

Finite	Automata

A	finite	automaton	F	is	a	5-tuple	(Q,q0,A,∑,δ),	where

• Q	is	a	finite	set	of	states
• q0	∈	Q	is	the	start	state
• A	⊆	Q	is	a	set	of	accepting	states
• ∑	is	a	finite	input	alphabet
• δ	is	the	transition	function	that	gives	the	next	state	for	a	given	current	state	and	input



How	does	Finite	Automata	Work?

• The	finite	automaton	F	begins	in	state	q0
• Reads	characters	from	∑	one	at	a	time
• If	F	is	in	state	q	and	reads	input	character	a,	F	moves	to	state	δ(q,d)
• At	the	end,	if	its	state	is	in	A,	then	we	say,	F	accepted	the	input	string	read	so	far
• If	the	input	string	is	not	accepted	it	is	called	the	rejected	string

Example:	 Let	 us	 assume	 that	Q	=	 {0,1{,q0	 =	 0,A	=	 {1},∑	 =	 {a,	 b}.	 δ(q,d)	 as	 shown	 in	 the
transition	 table/diagram.	This	accepts	 strings	 that	 end	 in	an	odd	number	of	a’s;	e.g.,	abbaaa	 is
accepted,	aa	is	rejected.

Important	Notes	for	Constructing	the	Finite	Automata

For	 building	 the	 automata,	 first	 we	 start	 with	 the	 initial	 state.	 The	 FA	will	 be	 in	 state	 k	 if	 k
characters	 of	 the	 pattern	 have	 been	 matched.	 If	 the	 next	 text	 character	 is	 equal	 to	 the	 pattern
character	 c,	 we	 have	matched	 k	 +	 1	 characters	 and	 the	 FA	 enters	 state	 k	 +	 1.	 If	 the	 next	 text
character	is	not	equal	to	the	pattern	character,	then	the	FA	go	to	a	state	0,1,2,....or	k,	depending	on
how	many	initial	pattern	characters	match	the	text	characters	ending	with	c.

Matching	Algorithm

Now,	let	us	concentrate	on	the	matching	algorithm.

• For	a	given	pattern	P[0..	m	–	1],	first	we	need	to	build	a	finite	automaton	F
○ The	state	set	is	Q	=	{0,1,2,	...,m}
○ The	start	state	is	0
○ The	only	accepting	state	is	m
○ Time	to	build	F	can	be	large	if	∑	is	large

• Scan	the	text	string	T[0..	n	–	1]	to	find	all	occurrences	of	the	pattern	P[0..	m	–	1]



• String	matching	is	efficient:	Θ(n)
○ Each	character	is	examined	exactly	once
○ Constant	time	for	each	character
○ But	 the	 time	 to	 compute	 δ	 (transition	 function)	 is	 O(m|∑|).	 This	 is

because	δ	 has	O(m|∑|)	 entries.	 If	we	 assume	 |∑|	 is	 constant	 then	 the
complexity	becomes	O(m).

Algorithm:

Time	Complexity:	O(m).

15.6	KMP	Algorithm

As	before,	let	us	assume	that	T	is	the	string	to	be	searched	and	P	is	the	pattern	to	be	matched.	This
algorithm	was	presented	by	Knuth,	Morris	and	Pratt.	It	takes	O(n)	time	complexity	for	searching	a
pattern.	 To	 get	O(n)	 time	 complexity,	 it	 avoids	 the	 comparisons	with	 elements	 of	T	 that	were
previously	involved	in	comparison	with	some	element	of	the	pattern	P.

The	 algorithm	 uses	 a	 table	 and	 in	 general	 we	 call	 it	 prefix	 function	 or	 prefix	 table	 or	 fail
function	F.	First	we	will	see	how	to	fill	this	table	and	later	how	to	search	for	a	pattern	using	this
table.	 The	 prefix	 function	 F	 for	 a	 pattern	 stores	 the	 knowledge	 about	 how	 the	 pattern	matches
against	 shifts	of	 itself.	This	 information	can	be	used	 to	 avoid	useless	 shifts	of	 the	pattern	P.	 It
means	that	this	table	can	be	used	for	avoiding	backtracking	on	the	string	T.

Prefix	Table



As	an	example,	assume	 that	P	=	a	b	a	b	a	c	a.	For	 this	pattern,	 let	us	 follow	 the	 step-by-step
instructions	for	filling	the	prefix	table	F.	Initially:	m	=	length[P]	=	7,F[0]	=	0	and	F[1]	=	0.

Step	1:	i	=	1,j	=	0,F[1]	=0

Step	2:	i	=	2,j	=	0,F[2]	=	1

Step	3:	i	=	3,j	=	1,F[3]	=2

Step	4:	i	=	4,j	=	2,F[4]	=3



Step	5:	i	=	5,j	=	3,F[5]	=	1

Step	6:	i	=	6,j	=	1,F[6]	=1

At	this	step	the	filling	of	the	prefix	table	is	complete.

Matching	Algorithm

The	KMP	algorithm	takes	pattern	P,	string	T	and	prefix	function	F	as	input,	and	finds	a	match	of	P
in	T.



Time	Complexity:	O(m	+	n),	where	m	is	the	length	of	the	pattern	and	n	is	the	length	of	the	text	to
be	searched.	Space	Complexity:	O(m).

Now,	to	understand	the	process	let	us	go	through	an	example.	Assume	that	T	=	b	a	c	b	a	b	a	b	a	b
a	c	a	c	a	&	P	=	a	b	a	b	a	c	a.	Since	we	have	already	filled	the	prefix	table,	let	us	use	it	and	go	to
the	matching	algorithm.	Initially:	n	=	size	of	T	=	15;	m	=	size	of	P	=	7.

Step	1:	i	=	0,	j	=	0,	comparing	P[0]	with	T[0].	P[0]	does	not	match	with	T[0].	P	will	be	shifted
one	position	to	the	right.

Step	2	:i	=	1,	j	=	0,	comparing	P[0]	with	T[1].	P[0]	matches	with	T[1].	Since	there	is	a	match,	P
is	not	shifted.

Step	3:	i	=	2,	j	=	1,	comparing	P[1]	with	T[2].	P[1]	does	not	match	with	T[2].	Backtracking	on	P,



comparing	P[0]	and	T[2].

Step	4:	i	=	3,	j	=	0,	comparing	P[0]	with	T[3].	P[0]	does	not	match	with	T[3].

Step	5:	i	=	4,	j	=	0,	comparing	P[0]	with	T[4].	P[0]	matches	with	T[4].

Step	6:	i	=	5,	j	=	1,	comparing	P[1]	with	T[5].	P[1]	matches	with	T[5].

Step	7:	i	=	6,	j	=	2,	comparing	P[2]	with	T[6].	P[2]	matches	with	T[6].

Step	8:	i	=	7,	j	=	3,	comparing	P[3]	with	T[7].	P[3]	matches	with	T[7].

Step	9:	i	=	8,	j	=	4,	comparing	P[4]	with	T[8].	P[4]	matches	with	T[8].



Step	10:	i	=	9,	j	=	5,	comparing	P[5]	with	T[9].	P[5]	does	not	match	with	T[9].	Backtracking	on
P,	comparing	P[4]	with	T[9]	because	after	mismatch	;	=	F[4]	=	3.

Comparing	P[3]	with	T[9].

Step	11:	i	=	10,	j	=	4,	comparing	P[4]	with	T[10].	P[4]	matches	with	T[10].

Step	12:	i	=	11,	j	=	5,	comparing	P[5]	with	T[11].	P[5]	matches	with	T[11].

Step	13:	i	=	12,	j	=	6,	comparing	P[6]	with	T[12].	P[6]	matches	with	T[12].

Pattern	P	has	been	found	to	completely	occur	in	string	T.	The	total	number	of	shifts	that	took	place
for	the	match	to	be	found	are:	i	–	m=	13	–	7	=	6	shifts.

Notes:

• KMP	performs	the	comparisons	from	left	to	right
• KMP	algorithm	needs	a	preprocessing	(prefix	function)	which	takes	O(m)	space	and

time	complexity
• Searching	takes	O(n	+	m)	time	complexity	(does	not	depend	on	alphabet	size)



15.7	Boyer-Moore	Algorithm

Like	 the	KMP	algorithm,	 this	 also	does	 some	pre-processing	and	we	call	 it	 last	 function.	 The
algorithm	 scans	 the	 characters	 of	 the	 pattern	 from	 right	 to	 left	 beginning	 with	 the	 rightmost
character.	During	the	testing	of	a	possible	placement	of	pattern	P	in	T,	a	mismatch	is	handled	as
follows:	Let	us	assume	that	the	current	character	being	matched	is	T[i]	=	c	and	the	corresponding
pattern	character	is	P[j].	If	c	is	not	contained	anywhere	in	P,	then	shift	the	pattern	P	completely
past	T[i].	Otherwise,	shift	P	until	an	occurrence	of	character	c	in	P	gets	aligned	with	T[i].	This
technique	avoids	needless	comparisons	by	shifting	the	pattern	relative	to	the	text.

The	 last	 function	 takes	O(m	 +	 |∑|)	 time	 and	 the	 actual	 search	 takes	O(nm)	 time.	Therefore	 the
worst	 case	 running	 time	 of	 the	Boyer-Moore	 algorithm	 is	O(nm	 +	 |∑|).	 This	 indicates	 that	 the
worst-case	running	time	is	quadratic,	in	the	case	of	n	==	m,	the	same	as	the	brute	force	algorithm.

• The	Boyer-Moore	algorithm	is	very	fast	on	the	large	alphabet	(relative	to	the	length
of	the	pattern).

• For	the	small	alphabet,	Boyer-Moore	is	not	preferable.
• For	binary	strings,	the	KMP	algorithm	is	recommended.
• For	the	very	shortest	patterns,	the	brute	force	algorithm	is	better.

15.8	Data	Structures	for	Storing	Strings

If	we	have	a	set	of	strings	(for	example,	all	 the	words	in	the	dictionary)	and	a	word	which	we
want	 to	search	 in	 that	 set,	 in	order	 to	perform	 the	search	operation	 faster,	we	need	an	efficient
way	of	storing	the	strings.	To	store	sets	of	strings	we	can	use	any	of	the	following	data	structures.

• Hashing	Tables
• Binary	Search	Trees
• Tries
• Ternary	Search	Trees

15.9	Hash	Tables	for	Strings

As	seen	in	the	Hashing	chapter,	we	can	use	hash	tables	for	storing	the	integers	or	strings.	In	this
case,	the	keys	are	nothing	but	the	strings.	The	problem	with	hash	table	implementation	is	that	we
lose	 the	ordering	 information	–	after	applying	 the	hash	 function,	we	do	not	know	where	 it	will
map	to.	As	a	result,	some	queries	take	more	time.	For	example,	to	find	all	the	words	starting	with
the	 letter	“K”,	with	hash	 table	 representation	we	need	 to	scan	 the	complete	hash	 table.	This	 is
because	 the	hash	function	 takes	 the	complete	key,	performs	hash	on	 it,	and	we	do	not	know	the
location	of	each	word.



15.10	Binary	Search	Trees	for	Strings

In	 this	representation,	every	node	is	used	for	sorting	the	strings	alphabetically.	This	 is	possible
because	the	strings	have	a	natural	ordering:	A	comes	before	B,	which	comes	before	C,	and	so	on.
This	is	because	words	can	be	ordered	and	we	can	use	a	Binary	Search	Tree	(BST)	to	store	and
retrieve	them.	For	example,	let	us	assume	that	we	want	to	store	the	following	strings	using	BSTs:

this	is	a	career	monk	string

For	 the	given	 string	 there	 are	many	ways	of	 representing	 them	 in	BST.	One	 such	possibility	 is
shown	in	the	tree	below.

Issues	with	Binary	Search	Tree	Representation

This	method	is	good	in	terms	of	storage	efficiency.	But	the	disadvantage	of	this	representation	is
that,	at	every	node,	 the	search	operation	performs	the	complete	match	of	 the	given	key	with	 the
node	data,	and	as	a	result	the	time	complexity	of	the	search	operation	increases.	So,	from	this	we
can	say	that	BST	representation	of	strings	is	good	in	terms	of	storage	but	not	in	terms	of	time.

15.11	Tries

Now,	 let	 us	 see	 the	 alternative	 representation	 that	 reduces	 the	 time	 complexity	 of	 the	 search
operation.	The	name	trie	is	taken	from	the	word	re”trie”.

What	is	a	Trie?

A	 trie	 is	 a	 tree	 and	 each	 node	 in	 it	 contains	 the	 number	 of	 pointers	 equal	 to	 the	 number	 of
characters	of	the	alphabet.	For	example,	if	we	assume	that	all	the	strings	are	formed	with	English
alphabet	 characters	 “a”	 to	 “z”	 then	 each	 node	 of	 the	 trie	 contains	 26	 pointers.	 A	 trie	 data
structure	can	be	declared	as:



Suppose	we	want	to	store	the	strings	“a”,”all”,”als”,	and	“as”“:	trie	for	these	strings	will	look
like:

Why	Tries?

The	tries	can	insert	and	find	strings	in	O(L)	time	(where	L	represents	the	length	of	a	single	word).
This	is	much	faster	than	hash	table	and	binary	search	tree	representations.

Trie	Declaration

The	structure	of	the	TrieNode	has	data	(char),	is_End_Of_String	(boolean),	and	has	a	collection
of	 child	 nodes	 (Collection	 of	 TrieNodes).	 It	 also	 has	 one	more	method	 called	 subNode(char).
This	method	takes	a	character	as	argument	and	will	return	the	child	node	of	that	character	type	if
that	is	present.	The	basic	element	-	TrieNode	of	a	TRIE	data	structure	looks	like	this:



Now	that	we	have	defined	our	TrieNode,	let’s	go	ahead	and	look	at	the	other	operations	of	TRIE.
Fortunately,	 the	 TRIE	 data	 structure	 is	 simple	 to	 implement	 since	 it	 has	 two	 major	 methods:
insert()	and	search().	Let’s	look	at	the	elementary	implementation	of	both	these	methods.

Inserting	a	String	in	Trie

To	insert	a	string,	we	just	need	to	start	at	the	root	node	and	follow	the	corresponding	path	(path
from	root	indicates	the	prefix	of	the	given	string).	Once	we	reach	the	NULL	pointer,	we	just	need
to	create	a	skew	of	tail	nodes	for	the	remaining	characters	of	the	given	string.



Time	Complexity:	O(L),	where	L	is	the	length	of	the	string	to	be	inserted.

Note:	 For	 real	 dictionary	 implementation,	we	may	 need	 a	 few	more	 checks	 such	 as	 checking
whether	the	given	string	is	already	there	in	the	dictionary	or	not.

Searching	a	String	in	Trie

The	same	is	 the	case	with	the	search	operation:	we	just	need	to	start	at	 the	root	and	follow	the
pointers.	The	time	complexity	of	the	search	operation	is	equal	to	the	length	of	the	given	string	that
want	to	search.

Time	Complexity:	O(L),	where	L	is	the	length	of	the	string	to	be	searched.

Issues	with	Tries	Representation

The	main	disadvantage	of	tries	is	that	they	need	lot	of	memory	for	storing	the	strings.	As	we	have
seen	above,	for	each	node	we	have	too	many	node	pointers.	In	many	cases,	the	occupancy	of	each
node	is	less.	The	final	conclusion	regarding	tries	data	structure	is	that	they	are	faster	but	require
huge	memory	for	storing	the	strings.

Note:	There	are	some	 improved	 tries	 representations	called	 trie	compression	 techniques.	 But,
even	with	those	techniques	we	can	reduce	the	memory	only	at	 the	leaves	and	not	at	 the	internal
nodes.

15.12	Ternary	Search	Trees

This	representation	was	initially	provided	by	Jon	Bentley	and	Sedgewick.	A	ternary	search	tree
takes	 the	 advantages	 of	 binary	 search	 trees	 and	 tries.	 That	 means	 it	 combines	 the	 memory



efficiency	of	BSTs	and	the	time	efficiency	of	tries.

Ternary	Search	Trees	Declaration

The	Ternary	Search	Tree	(TST)	uses	three	pointers:

• The	left	pointer	points	to	the	TST	containing	all	the	strings	which	are	alphabetically
less	than	data.

• The	 right	 pointer	 points	 to	 the	 TST	 containing	 all	 the	 strings	 which	 are
alphabetically	greater	than	data.

• The	eq	pointer	points	to	the	TST	containing	all	the	strings	which	are	alphabetically
equal	 to	 data.	 That	 means,	 if	 we	 want	 to	 search	 for	 a	 string,	 and	 if	 the	 current
character	of	the	input	string	and	the	data	of	current	node	in	TST	are	the	same,	then
we	 need	 to	 proceed	 to	 the	 next	 character	 in	 the	 input	 string	 and	 search	 it	 in	 the
subtree	which	is	pointed	by	eq.

Inserting	strings	in	Ternary	Search	Tree

For	simplicity	let	us	assume	that	we	want	to	store	the	following	words	in	TST	(also	assume	the
same	order):	boats,	boat,	bat	and	bats.	Initially,	let	us	start	with	the	boats	string.



Now	if	we	want	 to	 insert	 the	string	boat,	 then	 the	TST	becomes	 [the	only	change	 is	 setting	 the
is_End_Of_String	flag	of	“t”	node	to	1]:



Now,	let	us	insert	the	next	string:	bat



Now,	let	us	insert	the	final	word:	bats.



Based	on	 these	examples,	we	can	write	 the	 insertion	algorithm	as	below.	We	will	combine	 the
insertion	operation	of	BST	and	tries.



Time	Complexity:	O(L),	where	L	is	the	length	of	the	string	to	be	inserted.

Searching	in	Ternary	Search	Tree

If	after	inserting	the	words	we	want	to	search	for	them,	then	we	have	to	follow	the	same	rules	as
that	of	binary	search.	The	only	difference	is,	in	case	of	match	we	should	check	for	the	remaining
characters	(in	eq	subtree)	instead	of	return.	Also,	like	BSTs	we	will	see	both	recursive	and	non-
recursive	versions	of	the	search	method.



Time	Complexity:	O(L),	where	L	is	the	length	of	the	string	to	be	searched.

Displaying	All	Words	of	Ternary	Search	Tree

If	we	want	to	print	all	the	strings	of	TST	we	can	use	the	following	algorithm.	If	we	want	to	print
them	in	sorted	order,	we	need	to	follow	the	inorder	traversal	of	TST.



Finding	the	Length	of	the	Largest	Word	in	TST

This	is	similar	to	finding	the	height	of	the	BST	and	can	be	found	as:

15.13	Comparing	BSTs,	Tries	and	TSTs

• Hash	 table	 and	BST	 implementation	 stores	 complete	 the	 string	at	 each	node.	As	a
result	they	take	more	time	for	searching.	But	they	are	memory	efficient.

• TSTs	 can	 grow	 and	 shrink	 dynamically	 but	 hash	 tables	 resize	 only	 based	 on	 load
factor.

• TSTs	allow	partial	search	whereas	BSTs	and	hash	tables	do	not	support	it.
• TSTs	 can	 display	 the	words	 in	 sorted	 order,	 but	 in	 hash	 tables	we	 cannot	 get	 the

sorted	order.
• Tries	perform	search	operations	very	fast	but	they	take	huge	memory	for	storing	the

string.



• TSTs	 combine	 the	 advantages	 of	 BSTs	 and	 Tries.	 That	 means	 they	 combine	 the
memory	efficiency	of	BSTs	and	the	time	efficiency	of	tries

15.14	Suffix	Trees

Suffix	trees	are	an	important	data	structure	for	strings.	With	suffix	trees	we	can	answer	the	queries
very	fast.	But	this	requires	some	preprocessing	and	construction	of	a	suffix	tree.	Even	though	the
construction	of	a	suffix	tree	is	complicated,	it	solves	many	other	string-related	problems	in	linear
time.

Note:	Suffix	 trees	use	a	 tree	(suffix	 tree)	 for	one	string,	whereas	Hash	 tables,	BSTs,	Tries	and
TSTs	store	a	set	of	strings.	That	means,	a	suffix	tree	answers	the	queries	related	to	one	string.

Let	us	see	the	terminology	we	use	for	this	representation.

Prefix	and	Suffix

Given	a	string	T	=	T1T2	…	Tn,	the	prefix	of	T	is	a	string	T1	...Ti	where	i	can	take	values	from	1	to
n.	For	example,	if	T	=	banana,	then	the	prefixes	of	T	are:	b,	ba,	ban,	bana,	banan,	banana.

Similarly,	given	a	string	T	=	T1T2	…	Tn,	the	suffix	of	T	is	a	string	Ti	...Tn	where	i	can	take	values
from	n	 to	1.	For	example,	 if	T	=	banana,	 then	 the	 suffixes	of	T	 are:	a,	 na,	 ana,	 nana,	 anana,
banana.

Observation

From	the	above	example,	we	can	easily	see	that	for	a	given	text	T	and	pattern	P,	the	exact	string
matching	problem	can	also	be	defined	as:

• Find	a	suffix	of	T	such	that	P	is	a	prefix	of	this	suffix	or
• Find	a	prefix	of	T	such	that	P	is	a	suffix	of	this	prefix.

Example:	Let	 the	 text	 to	 be	 searched	be	T	=	acebkkbac	 and	 the	 pattern	 be	P	=	kkb.	 For	 this
example,	P	is	a	prefix	of	the	suffix	kkbac	and	also	a	suffix	of	the	prefix	acebkkb.

What	is	a	Suffix	Tree?

In	simple	terms,	the	suffix	tree	for	text	T	is	a	Trie-like	data	structure	that	represents	the	suffixes	of
T.	The	definition	of	suffix	trees	can	be	given	as:	A	suffix	tree	for	a	n	character	string	T[1	...n]	is	a
rooted	tree	with	the	following	properties.

• A	suffix	tree	will	contain	n	leaves	which	are	numbered	from	1	to	n



• Each	internal	node	(except	root)	should	have	at	least	2	children
• Each	edge	in	a	tree	is	labeled	by	a	nonempty	substring	of	T
• No	two	edges	of	a	node	(children	edges)	begin	with	the	same	character
• The	paths	from	the	root	to	the	leaves	represent	all	the	suffixes	of	T

The	Construction	of	Suffix	Trees

Algorithm
1. Let	S	be	the	set	of	all	suffixes	of	T.	Append	$	to	each	of	the	suffixes.
2. Sort	the	suffixes	in	S	based	on	their	first	character.
3. For	each	group	Sc	(c	∈	∑):

(i)	If	Sc	group	has	only	one	element,	then	create	a	leaf	node.
(ii)	Otherwise,	 find	 the	 longest	 common	prefix	 of	 the	 suffixes	 in	Sc	 group,

create	an	internal	node,	and	recursively	continue	with	Step	2,	S	being
the	 set	 of	 remaining	 suffixes	 from	 Sc	 after	 splitting	 off	 the	 longest
common	prefix.

For	better	understanding,	let	us	go	through	an	example.	Let	the	given	text	be	T	=	tatat.	For	 this
string,	give	a	number	to	each	of	the	suffixes.

Index Suffix
1 $
2 t$
3 at$
4 tat$
5 atat$
6 tatat$

Now,	sort	the	suffixes	based	on	their	initial	characters.

In	 the	 three	groups,	 the	first	group	has	only	one	element.	So,	as	per	 the	algorithm,	create	a	 leaf



node	for	it,	as	shown	below.

Now,	 for	S2	 and	S3	 (as	 they	 have	more	 than	 one	 element),	 let	 us	 find	 the	 longest	 prefix	 in	 the
group,	and	the	result	is	shown	below.

For	S2	and	S3,	 create	 internal	nodes,	 and	 the	edge	contains	 the	 longest	 common	prefix	of	 those
groups.

Now	we	have	to	remove	the	longest	common	prefix	from	the	S2	and	S3	group	elements.

Out	next	step	is	solving	S2	and	S3	recursively.	First	let	us	take	S2.	In	this	group,	if	we	sort	them
based	on	their	first	character,	it	is	easy	to	see	that	the	first	group	contains	only	one	element	$,	and
the	second	group	also	contains	only	one	element,	at$.	Since	both	groups	have	only	one	element,
we	can	directly	create	leaf	nodes	for	them.



At	this	step,	both	S1	and	S2	elements	are	done	and	the	only	remaining	group	is	S3.	As	similar	to
earlier	steps,	in	the	S3	group,	if	we	sort	them	based	on	their	first	character,	it	is	easy	to	see	that
there	 is	 only	one	 element	 in	 the	 first	 group	and	 it	 is	 $.	For	S3	 remaining	 elements,	 remove	 the
longest	common	prefix.

In	the	S3	second	group,	there	are	two	elements:	$	and	at$.	We	can	directly	add	the	leaf	nodes	for
the	first	group	element	$.	Let	us	add	S3	subtree	as	shown	below.

Now,	S3	contains	two	elements.	If	we	sort	them	based	on	their	first	character,	it	is	easy	to	see	that
there	are	only	two	elements	and	among	them	one	is	$	and	other	is	at$.	We	can	directly	add	the
leaf	nodes	for	them.	Let	us	add	S3	subtree	as	shown	below.



Since	there	are	no	more	elements,	this	is	the	completion	of	the	construction	of	the	suffix	tree	for
string	T	=	tatat.	The	time-complexity	of	the	construction	of	a	suffix	tree	using	the	above	algorithm
is	O(n2)	where	n	is	the	length	of	the	input	string	because	there	are	n	distinct	suffixes.	The	longest
has	length	n,	the	second	longest	has	length	n	–	1,	and	so	on.

Note:

• There	are	O(n)	algorithms	for	constructing	suffix	trees.
• To	improve	the	complexity,	we	can	use	indices	instead	of	string	for	branches.

Applications	of	Suffix	Trees

All	the	problems	below	(but	not	limited	to	these)	on	strings	can	be	solved	with	suffix	trees	very
efficiently	(for	algorithms	refer	to	Problems	section).

• Exact	String	Matching:	Given	a	text	T	and	a	pattern	P,	how	do	we	check	whether	P
appears	in	T	or	not?

• Longest	Repeated	Substring:	Given	a	text	T	how	do	we	find	the	substring	of	T	that
is	the	maximum	repeated	substring?

• Longest	Palindrome:	Given	a	text	T	how	do	we	find	the	substring	of	T	 that	 is	 the
longest	palindrome	of	T?

• Longest	 Common	 Substring:	 Given	 two	 strings,	 how	 do	 we	 find	 the	 longest
common	substring?

• Longest	Common	Prefix:	Given	two	strings	X[i	...n]	and	Y[j	...m],how	do	we	find
the	longest	common	prefix?

• How	do	we	search	for	a	regular	expression	in	given	text	T?
• Given	a	text	T	and	a	pattern	P,	how	do	we	find	the	first	occurrence	of	P	in	T?

15.15	String	Algorithms:	Problems	&	Solutions



Problem-1  Given	 a	 paragraph	 of	 words,	 give	 an	 algorithm	 for	 finding	 the	 word	 which
appears	 the	maximum	number	 of	 times.	 If	 the	 paragraph	 is	 scrolled	 down	 (some	words
disappear	from	the	first	frame,	some	words	still	appear,	and	some	are	new	words),	give
the	maximum	occurring	word.	Thus,	it	should	be	dynamic.

Solution:	For	 this	problem	we	can	use	a	combination	of	priority	queues	and	 tries.	We	start	by
creating	a	trie	in	which	we	insert	a	word	as	it	appears,	and	at	every	leaf	of	trie.	Its	node	contains
that	word	along	with	a	pointer	that	points	to	the	node	in	the	heap	[priority	queue]	which	we	also
create.	This	heap	contains	nodes	whose	 structure	 contains	 a	counter.	This	 is	 its	 frequency	and
also	a	pointer	 to	 that	 leaf	of	 trie,	which	contains	 that	word	so	 that	 there	 is	no	need	to	store	 the
word	twice.

Whenever	 a	 new	 word	 comes	 up,	 we	 find	 it	 in	 trie.	 If	 it	 is	 already	 there,	 we	 increase	 the
frequency	of	that	node	in	the	heap	corresponding	to	that	word,	and	we	call	it	heapify.	This	is	done
so	that	at	any	point	of	time	we	can	get	the	word	of	maximum	frequency.	While	scrolling,	when	a
word	goes	out	of	scope,	we	decrement	the	counter	in	heap.	If	 the	new	frequency	is	still	greater
than	zero,	heapify	the	heap	to	incorporate	the	modification.	If	the	new	frequency	is	zero,	delete	the
node	from	heap	and	delete	it	from	trie.

Problem-2  Given	two	strings,	how	can	we	find	the	longest	common	substring?

Solution:	Let	us	assume	that	the	given	two	strings	are	T1	and	T2.	The	longest	common	substring	of
two	 strings,	T1	 and	T2,	 can	 be	 found	 by	 building	 a	 generalized	 suffix	 tree	 for	T1	 and	T2.	 That
means	we	need	to	build	a	single	suffix	tree	for	both	the	strings.	Each	node	is	marked	to	indicate	if
it	 represents	 a	 suffix	 of	T1	 or	T2	 or	 both.	 This	 indicates	 that	we	 need	 to	 use	 different	marker
symbols	for	both	the	strings	(for	example,	we	can	use	$	for	the	first	string	and	#	for	the	second
symbol).	After	constructing	the	common	suffix	tree,	the	deepest	node	marked	for	both	T1	and	T2
represents	the	longest	common	substring.

Another	way	of	doing	this	is:	We	can	build	a	suffix	tree	for	the	string	T1$T2#.	This	is	equivalent
to	building	a	common	suffix	tree	for	both	the	strings.

Time	Complexity:	O(m	+	n),	where	m	and	n	are	the	lengths	of	input	strings	T1	and	T2.

Problem-3  Longest	Palindrome:	Given	a	text	T	how	do	we	find	the	substring	of	T	which	is
the	longest	palindrome	of	T?

Solution:	The	 longest	palindrome	of	T[1..n]	 can	be	 found	 in	O(n)	 time.	The	algorithm	 is:	 first
build	a	suffix	tree	for	T$reverse(T)#	or	build	a	generalized	suffix	tree	for	T	and	reverse(T).	After
building	the	suffix	tree,	find	the	deepest	node	marked	with	both	$	and	#.	Basically	it	means	find
the	longest	common	substring.

Problem-4  Given	 a	 string	 (word),	 give	 an	 algorithm	 for	 finding	 the	 next	 word	 in	 the
dictionary.

Solution:	Let	us	assume	that	we	are	using	Trie	for	storing	the	dictionary	words.	To	find	the	next



word	 in	 Tries	we	 can	 follow	 a	 simple	 approach	 as	 shown	 below.	 Starting	 from	 the	 rightmost
character,	increment	the	characters	one	by	one.	Once	we	reach	Z,	move	to	the	next	character	on
the	left	side.

Whenever	we	increment,	check	if	the	word	with	the	incremented	character	exists	in	the	dictionary
or	not.	If	it	exists,	 then	return	the	word,	otherwise	increment	again.	If	we	use	TST,	 then	we	can
find	the	inorder	successor	for	the	current	word.

Problem-5  Give	an	algorithm	for	reversing	a	string.

Solution:

Time	Complexity:	O(n),	where	n	is	the	length	of	the	given	string.	Space	Complexity:	O(n).

Problem-6  If	the	string	is	not	editable,	how	do	we	create	a	string	that	 is	 the	reverse	of	 the
given	string?

Solution:	 If	 the	string	 is	not	editable,	 then	we	need	 to	create	an	array	and	return	 the	pointer	of
that.



Time	Complexity:	 ,	where	n	is	the	length	of	the	given	string.	Space	Complexity:

O(1).

Problem-7  Can	we	reverse	the	string	without	using	any	temporary	variable?

Solution:	Yes,	we	can	use	XOR	logic	for	swapping	the	variables.

Time	Complexity:	 ,	where	n	is	the	length	of	the	given	string.	Space	Complexity:

O(1).

Problem-8  Given	a	text	and	a	pattern,	give	an	algorithm	for	matching	the	pattern	in	the	text.
Assume	 ?	 (single	 character	matcher)	 and	 *	 (multi	 character	matcher)	 are	 the	wild	 card
characters.

Solution:	Brute	Force	Method.	For	efficient	method,	refer	to	the	theory	section.



Time	Complexity:	O(mn),	where	m	is	the	length	of	the	text	and	n	is	the	length	of	the	pattern.

Space	Complexity:	O(1).

Problem-9  Give	an	algorithm	for	reversing	words	in	a	sentence.
Example:	Input:	“This	is	a	Career	Monk	String”,	Output:	“String	Monk	Career	a	is	This”

Solution:	Start	from	the	beginning	and	keep	on	reversing	the	words.	The	below	implementation
assumes	that	‘	‘	(space)	is	the	delimiter	for	words	in	given	sentence.



Time	Complexity:	O(2n)	≈	O(n),	where	n	is	the	length	of	the	string.	Space	Complexity:	O(1).

Problem-10  Permutations	 of	 a	 string	 [anagrams]:	 Give	 an	 algorithm	 for	 printing	 all
possible	permutations	of	the	characters	in	a	string.	Unlike	combinations,	two	permutations
are	 considered	 distinct	 if	 they	 contain	 the	 same	 characters	 but	 in	 a	 different	 order.	 For
simplicity	assume	that	each	occurrence	of	a	repeated	character	is	a	distinct	character.	That
is,	if	the	input	is	“aaa”,	the	output	should	be	six	repetitions	of	“aaa”.	The	permutations	may
be	output	in	any	order.

Solution:	The	solution	is	reached	by	generating	n!	strings,	each	of	length	n,	where	n	is	the	length
of	the	input	string.



Problem-11  Combinations	 Combinations	 of	 a	 String:	 Unlike	 permutations,	 two
combinations	are	considered	to	be	the	same	if	they	contain	the	same	characters,	but	may	be
in	 a	 different	 order.	 Give	 an	 algorithm	 that	 prints	 all	 possible	 combinations	 of	 the
characters	 in	 a	 string.	For	 example,	“ac”	and	“ab”	 are	 different	 combinations	 from	 the
input	string	“abc”,	but	“ab”	is	the	same	as	“ba”.

Solution:	The	solution	is	achieved	by	generating	n!/r!	(n	–	r)!	strings,	each	of	length	between	1
and	n	where	n	is	the	length	of	the	given	input	string.

Algorithm:
For	each	of	the	input	characters

a. Put	the	current	character	in	output	string	and	print	it.
b. If	 there	 are	 any	 remaining	 characters,	 generate	 combinations	 with	 those

remaining	characters.



Problem-12  Given	a	string	“ABCCBCBA”,	give	an	algorithm	for	recursively	removing	the
adjacent	characters	 if	 they	are	 the	same.	For	example,	ABCCBCBA	nnnnnn>	ABBCBA-
>ACBA

Solution:	First	we	need	to	check	if	we	have	a	character	pair;	if	yes,	then	cancel	it.	Now	check	for
next	character	and	previous	element.	Keep	canceling	the	characters	until	we	either	reach	the	start
of	the	array,	reach	the	end	of	the	array,	or	don’t	find	a	pair.

Problem-13  Given	a	set	of	characters	CHARS	and	a	 input	string	 INPUT,	 find	 the	minimum
window	in	str	which	will	 contain	 all	 the	 characters	 in	CHARS	 in	 complexity	O(n).	 For
example,	INPUT	=	ABBACBAA	and	CHARS	=	AAB	has	the	minimum	window	BAA.

Solution:	 This	 algorithm	 is	 based	 on	 the	 sliding	window	 approach.	 In	 this	 approach,	we	 start
from	the	beginning	of	the	array	and	move	to	the	right.	As	soon	as	we	have	a	window	which	has	all
the	 required	 elements,	 try	 sliding	 the	 window	 as	 far	 right	 as	 possible	 with	 all	 the	 required
elements.	If	the	current	window	length	is	less	than	the	minimum	length	found	until	now,	update	the
minimum	length.	For	example,	if	the	input	array	is	ABBACBAA	and	the	minimum	window	should
cover	characters	AAB,	then	the	sliding	window	will	move	like	this:

Algorithm:	The	input	is	the	given	array	and	chars	is	the	array	of	characters	that	need	to	be	found.



1 Make	an	integer	array	shouldfind[]	of	len	256.	The	ith	element	of	this	array	will	have
the	count	of	how	many	times	we	need	to	find	the	element	of	ASCII	value	i.

2 Make	 another	 array	 hasfound	 of	 256	 elements,	 which	 will	 have	 the	 count	 of	 the
required	elements	found	until	now.

3 Count	<=	0
4 While	input[i]

a. If	input[i]	element	is	not	to	be	found→	continue
b. If	input[i]	element	is	required	=>	increase	count	by	1.
c. If	 count	 is	 length	 of	 chars[]	 array,	 slide	 the	window	 as	much	 right	 as

possible.
d. If	current	window	length	is	less	than	min	length	found	until	now,	update

min	length.

Complexity:	If	we	walk	through	the	code,	i	and	j	can	traverse	at	most	n	steps	(where	n	is	the	input



size)	in	the	worst	case,	adding	to	a	total	of	2n	times.	Therefore,	time	complexity	is	O(n).

Problem-14  We	are	given	a	2D	array	of	characters	and	a	character	pattern.	Give	an	algorithm
to	 find	 if	 the	 pattern	 is	 present	 in	 the	 2D	 array.	 The	 pattern	 can	 be	 in	 any	 order	 (all	 8
neighbors	 to	 be	 considered)	 but	we	 can’t	 use	 the	 same	 character	 twice	while	matching.
Return	 1	 if	 match	 is	 found,	 0	 if	 not.	 For	 example:	 Find	 “MICROSOFT”	 in	 the	 below
matrix.

Solution:	Manually	 finding	 the	 solution	 of	 this	 problem	 is	 relatively	 intuitive;	we	 just	 need	 to
describe	an	algorithm	for	it.	Ironically,	describing	the	algorithm	is	not	the	easy	part.

How	do	we	do	it	manually?	First	we	match	the	first	element,	and	when	it	is	matched	we	match
the	second	element	in	the	8	neighbors	of	the	first	match.	We	do	this	process	recursively,	and	when
the	last	character	of	the	input	pattern	matches,	return	true.

During	the	above	process,	take	care	not	to	use	any	cell	in	the	2D	array	twice.	For	this	purpose,
you	mark	 every	 visited	 cell	with	 some	 sign.	 If	 your	 pattern	matching	 fails	 at	 some	 point,	 start
matching	from	the	beginning	(of	 the	pattern)	 in	the	remaining	cells.	When	returning,	you	unmark
the	visited	cells.

Let’s	convert	the	above	intuitive	method	into	an	algorithm.	Since	we	are	doing	similar	checks	for
pattern	matching	 every	 time,	 a	 recursive	 solution	 is	what	we	need.	 In	 a	 recursive	 solution,	we
need	to	check	if	the	substring	passed	is	matched	in	the	given	matrix	or	not.	The	condition	is	not	to
use	the	already	used	cell,	and	to	find	the	already	used	cell,	we	need	to	add	another	2D	array	to	the
function	(or	we	can	use	an	unused	bit	in	the	input	array	itself.)	Also,	we	need	the	current	position
of	the	input	matrix	from	where	we	need	to	start.	Since	we	need	to	pass	a	lot	more	information	than
is	actually	given,	we	should	be	having	a	wrapper	function	to	initialize	the	extra	information	to	be
passed.

Algorithm:
If	we	are	past	the	last	character	in	the	pattern

Return	true
If	we	get	a	used	cell	again

Return	false	if	we	got	past	the	2D	matrix
Return	false

If	searching	for	first	element	and	cell	doesn’t	match
FindMatch	with	next	cell	in	row-first	order	(or	column-first	order)



Otherwise	if	character	matches
mark	this	cell	as	used
res	=	FindMatch	with	next	position	of	pattern	in	8	neighbors
mark	this	cell	as	unused
Return	res

Otherwise
Return	false



Problem-15  Given	two	strings	str1	and	str2,	write	a	function	that	prints	all	interleavings	of
the	 given	 two	 strings.	We	 may	 assume	 that	 all	 characters	 in	 both	 strings	 are	 different.
Example:	 Input:	 str1	 =	 “AB”,	 str2	 =	 “CD”	 and	 Output:	 ABCD	 ACBD	 ACDB	 CABD



CADB	CDAB.	An	interleaved	string	of	given	two	strings	preserves	the	order	of	characters
in	 individual	 strings.	 For	 example,	 in	 all	 the	 interleavings	 of	 above	 first	 example,	 ‘A’
comes	before	‘B’	and	‘C	comes	before	‘D’.

Solution:	Let	the	length	of	str1	be	m	and	the	length	of	str2	be	n.	Let	us	assume	that	all	characters
in	str1	and	str2	are	different.	Let	Count(m,n)	be	the	count	of	all	interleaved	strings	in	such	strings.
The	value	of	Count(m,n)	can	be	written	as	following.

To	print	all	 interleavings,	we	can	first	fix	the	first	character	of	strl[0..m-1]	in	output	string,	and
recursively	 call	 for	 str1[1..m-1]	 and	 str2[0..n-1].	 And	 then	 we	 can	 fix	 the	 first	 character	 of
str2[0..n-1]	and	recursively	call	for	str1[0..m-1]	and	str2[1..n-1].



Problem-16  Given	a	matrix	with	size	n	×	n	containing	random	integers.	Give	an	algorithm
which	 checks	 whether	 rows	 match	 with	 a	 column(s)	 or	 not.	 For	 example,	 if	 ith	 row
matches	with	jth	column,	and	 ith	row	contains	the	elements	-	[2,6,5,8,9].	Then;’’1	column
would	also	contain	the	elements	-	[2,6,5,8,9].

Solution:	We	can	build	a	trie	for	the	data	in	the	columns	(rows	would	also	work).	Then	we	can
compare	 the	rows	with	 the	 trie.	This	would	allow	us	 to	exit	as	soon	as	 the	beginning	of	a	 row
does	not	match	any	column	(backtracking).	Also	this	would	let	us	check	a	row	against	all	columns
in	one	pass.

If	we	do	not	want	to	waste	memory	for	empty	pointers	then	we	can	further	improve	the	solution	by
constructing	a	suffix	tree.



Problem-17  Write	a	method	to	replace	all	spaces	in	a	string	with	‘%20’.	Assume	string	has
sufficient	space	at	end	of	string	to	hold	additional	characters.

Solution:	Find	the	number	of	spaces.	Then,	starting	from	end	(assuming	string	has	enough	space),
replace	the	characters.	Starting	from	end	reduces	the	overwrites.

Time	Complexity:	O(n).	Space	Complexity:	O(1).	Here,	we	do	not	have	to	worry	about	the	space
needed	for	extra	characters.

Problem-18  Running	length	encoding:	Write	an	algorithm	to	compress	 the	given	string	by
using	the	count	of	repeated	characters	and	if	new	corn-pressed	string	length	is	not	smaller
than	the	original	string	then	return	the	original	string.

Solution:



With	extra	space	of	O(2):

Time	Complexity:	O(n).	Space	Complexity:	O(1),	but	it	uses	a	temporary	array	of	size	two.

Without	extra	space	(inplace):



Time	Complexity:	O(n).	Space	Complexity:	O(1).



16.1	Introduction

In	the	previous	chapters,	we	have	seen	many	algorithms	for	solving	different	kinds	of	problems.
Before	 solving	a	new	problem,	 the	general	 tendency	 is	 to	 look	 for	 the	 similarity	of	 the	current
problem	 to	 other	 problems	 for	 which	we	 have	 solutions.	 This	 helps	 us	 in	 getting	 the	 solution
easily.

In	 this	 chapter,	 we	 will	 see	 different	 ways	 of	 classifying	 the	 algorithms	 and	 in	 subsequent
chapters	we	will	focus	on	a	few	of	them	(Greedy,	Divide	and	Conquer,	Dynamic	Programming).

16.2	Classification

There	are	many	ways	of	classifying	algorithms	and	a	few	of	them	are	shown	below:

• Implementation	Method
• Design	Method
• Other	Classifications



16.3	Classification	by	Implementation	Method

Recursion	or	Iteration

A	recursive	algorithm	is	one	that	calls	itself	repeatedly	until	a	base	condition	is	satisfied.	It	is	a
common	method	used	in	functional	programming	languages	like	C,C	+	+,	etc.

Iterative	algorithms	use	constructs	like	loops	and	sometimes	other	data	structures	like	stacks	and
queues	to	solve	the	problems.

Some	 problems	 are	 suited	 for	 recursive	 and	 others	 are	 suited	 for	 iterative.	 For	 example,	 the
Towers	of	Hanoi	problem	can	be	easily	understood	in	recursive	implementation.	Every	recursive
version	has	an	iterative	version,	and	vice	versa.

Procedural	or	Declarative	(non-Procedural)

In	declarative	programming	languages,	we	say	what	we	want	without	having	to	say	how	to	do	it.
With	procedural	programming,	we	have	to	specify	the	exact	steps	to	get	the	result.	For	example,
SQL	is	more	declarative	than	procedural,	because	the	queries	don’t	specify	the	steps	to	produce
the	result.	Examples	of	procedural	languages	include:	C,	PHP,	and	PERL.

Serial	or	Parallel	or	Distributed

In	general,	while	discussing	the	algorithms	we	assume	that	computers	execute	one	instruction	at	a
time.	These	are	called	serial	algorithms.

Parallel	algorithms	take	advantage	of	computer	architectures	to	process	several	instructions	at	a
time.	They	divide	the	problem	into	subproblems	and	serve	them	to	several	processors	or	threads.
Iterative	algorithms	are	generally	parallelizable.

If	 the	parallel	 algorithms	are	distributed	on	 to	different	machines	 then	we	call	 such	 algorithms
distributed	algorithms.

Deterministic	or	Non-Deterministic

Deterministic	 algorithms	 solve	 the	 problem	 with	 a	 predefined	 process,	 whereas	 non	 –
deterministic	algorithms	guess	the	best	solution	at	each	step	through	the	use	of	heuristics.

Exact	or	Approximate



As	we	have	seen,	for	many	problems	we	are	not	able	to	find	the	optimal	solutions.	That	means,
the	algorithms	for	which	we	are	able	to	find	the	optimal	solutions	are	called	exact	algorithms.	In
computer	science,	if	we	do	not	have	the	optimal	solution,	we	give	approximation	algorithms.

Approximation	 algorithms	 are	 generally	 associated	 with	 NP-hard	 problems	 (refer	 to	 the
Complexity	Classes	chapter	for	more	details).

16.4	Classification	by	Design	Method

Another	way	of	classifying	algorithms	is	by	their	design	method.

Greedy	Method

Greedy	 algorithms	work	 in	 stages.	 In	 each	 stage,	 a	decision	 is	made	 that	 is	 good	at	 that	 point,
without	 bothering	 about	 the	 future	 consequences.	Generally,	 this	means	 that	 some	 local	 best	 is
chosen.	It	assumes	that	the	local	best	selection	also	makes	for	the	global	optimal	solution.

Divide	and	Conquer

The	D	&	C	strategy	solves	a	problem	by:

1) Divide:	 Breaking	 the	 problem	 into	 sub	 problems	 that	 are	 themselves	 smaller
instances	of	the	same	type	of	problem.

2) Recursion:	Recursively	solving	these	sub	problems.
3) Conquer:	Appropriately	combining	their	answers.

Examples:	merge	sort	and	binary	search	algorithms.

Dynamic	Programming

Dynamic	 programming	 (DP)	 and	 memoization	 work	 together.	 The	 difference	 between	 DP	 and
divide	and	conquer	is	that	in	the	case	of	the	latter	there	is	no	dependency	among	the	sub	problems,
whereas	 in	DP	there	will	be	an	overlap	of	sub-problems.	By	using	memoization	[maintaining	a
table	 for	 already	 solved	 sub	 problems],	DP	 reduces	 the	 exponential	 complexity	 to	 polynomial
complexity	(O(n2),	O(n3),	etc.)	for	many	problems.

The	difference	between	dynamic	programming	and	recursion	is	 in	 the	memoization	of	recursive
calls.	When	 sub	 problems	 are	 independent	 and	 if	 there	 is	 no	 repetition,	memoization	 does	 not
help,	hence	dynamic	programming	is	not	a	solution	for	all	problems.

By	 using	 memoization	 [maintaining	 a	 table	 of	 sub	 problems	 already	 solved],	 dynamic



programming	reduces	the	complexity	from	exponential	to	polynomial.

Linear	Programming

In	linear	programming,	there	are	inequalities	in	terms	of	inputs	and	maximizing	(or	minimizing)
some	linear	function	of	the	inputs.	Many	problems	(example:	maximum	flow	for	directed	graphs)
can	be	discussed	using	linear	programming.

Reduction	[Transform	and	Conquer]

In	this	method	we	solve	a	difficult	problem	by	transforming	it	into	a	known	problem	for	which	we
have	asymptotically	optimal	algorithms.	 In	 this	method,	 the	goal	 is	 to	 find	a	 reducing	algorithm
whose	 complexity	 is	 not	 dominated	 by	 the	 resulting	 reduced	 algorithms.	 For	 example,	 the
selection	algorithm	for	finding	the	median	in	a	list	involves	first	sorting	the	list	and	then	finding
out	the	middle	element	in	the	sorted	list.	These	techniques	are	also	called	transform	and	conquer.

16.5	Other	Classifications

Classification	by	Research	Area

In	computer	science	each	field	has	 its	own	problems	and	needs	efficient	algorithms.	Examples:
search	algorithms,	sorting	algorithms,	merge	algorithms,	numerical	algorithms,	graph	algorithms,
string	 algorithms,	 geometric	 algorithms,	 combinatorial	 algorithms,	 machine	 learning,
cryptography,	parallel	algorithms,	data	compression	algorithms,	parsing	techniques,	and	more.

Classification	by	Complexity

In	 this	classification,	algorithms	are	classified	by	the	 time	they	take	 to	find	a	solution	based	on
their	input	size.	Some	algorithms	take	linear	time	complexity	(O(n))	and	others	take	exponential
time,	and	some	never	halt.	Note	that	some	problems	may	have	multiple	algorithms	with	different
complexities.

Randomized	Algorithms

A	few	algorithms	make	choices	randomly.	For	some	problems,	the	fastest	solutions	must	involve
randomness.	Example:	Quick	Sort.

Branch	and	Bound	Enumeration	and	Backtracking



These	were	 used	 in	Artificial	 Intelligence	 and	we	 do	 not	 need	 to	 explore	 these	 fully.	 For	 the
Backtracking	method	refer	to	the	Recusion	and	Backtracking	chapter.

Note:	 In	 the	 next	 few	 chapters	 we	 discuss	 the	 Greedy,	 Divide	 and	 Conquer,	 and	 Dynamic
Programming]	design	methods.	These	methods	are	emphasized	because	they	are	used	more	often
than	other	methods	to	solve	problems.



17.1	Introduction

Let	us	start	our	discussion	with	simple	 theory	 that	will	give	us	an	understanding	of	 the	Greedy
technique.	In	the	game	of	Chess,	every	time	we	make	a	decision	about	a	move,	we	have	to	also
think	about	the	future	consequences.	Whereas,	in	the	game	of	Tennis	(or	Volleyball),	our	action	is
based	on	the	immediate	situation.

This	means	 that	 in	 some	cases	making	a	decision	 that	 looks	 right	at	 that	moment	gives	 the	best
solution	(Greedy),	but	in	other	cases	it	doesn’t.	The	Greedy	technique	is	best	suited	for	looking	at
the	immediate	situation.

17.2	Greedy	Strategy

Greedy	algorithms	work	 in	 stages.	 In	 each	 stage,	 a	decision	 is	made	 that	 is	 good	at	 that	 point,
without	bothering	about	the	future.	This	means	that	some	 local	best	 is	chosen.	 It	assumes	 that	a
local	good	selection	makes	for	a	global	optimal	solution.



17.3	Elements	of	Greedy	Algorithms

The	two	basic	properties	of	optimal	Greedy	algorithms	are:

1) Greedy	choice	property
2) Optimal	substructure

Greedy	choice	property

This	property	says	that	the	globally	optimal	solution	can	be	obtained	by	making	a	locally	optimal
solution	(Greedy).	The	choice	made	by	a	Greedy	algorithm	may	depend	on	earlier	choices	but	not
on	the	future.	It	iteratively	makes	one	Greedy	choice	after	another	and	reduces	the	given	problem
to	a	smaller	one.

Optimal	substructure

A	problem	exhibits	optimal	 substructure	 if	 an	optimal	 solution	 to	 the	problem	contains	optimal
solutions	to	the	subproblems.	That	means	we	can	solve	subproblems	and	build	up	the	solutions	to
solve	larger	problems.

17.4	Does	Greedy	Always	Work?

Making	locally	optimal	choices	does	not	always	work.	Hence,	Greedy	algorithms	will	not	always
give	 the	 best	 solutions.	 We	 will	 see	 particular	 examples	 in	 the	 Problems	 section	 and	 in	 the
Dynamic	Programming	chapter.

17.5	Advantages	and	Disadvantages	of	Greedy	Method

The	main	 advantage	 of	 the	Greedy	method	 is	 that	 it	 is	 straightforward,	 easy	 to	 understand	 and
easy	to	code.	In	Greedy	algorithms,	once	we	make	a	decision,	we	do	not	have	to	spend	time	re-
examining	the	already	computed	values.	Its	main	disadvantage	is	that	for	many	problems	there	is
no	greedy	algorithm.	That	means,	in	many	cases	there	is	no	guarantee	that	making	locally	optimal
improvements	in	a	locally	optimal	solution	gives	the	optimal	global	solution.

17.6	Greedy	Applications

• Sorting:	Selection	sort,	Topological	sort
• Priority	Queues:	Heap	sort
• Huffman	coding	compression	algorithm



• Prim’s	and	Kruskal’s	algorithms
• Shortest	path	in	Weighted	Graph	[Dijkstra’s]
• Coin	change	problem
• Fractional	Knapsack	problem
• Disjoint	sets-UNION	by	size	and	UNION	by	height	(or	rank)
• Job	scheduling	algorithm
• Greedy	techniques	can	be	used	as	an	approximation	algorithm	for	complex	problems

17.7	Understanding	Greedy	Technique

For	better	understanding	let	us	go	through	an	example.

Huffman	Coding	Algorithm

Definition

Given	 a	 set	 of	n	 characters	 from	 the	 alphabet	A	 [each	 character	 c	∈	 A]	 and	 their	 associated
frequency	 freq(c),	 find	 a	 binary	 code	 for	 each	 character	 c	 ∈	 A,	 such	 that	 ∑c	 ∈	 A
freq(c)|binarycode(c)|	is	minimum,	where	/binarycode(c)/represents	 the	length	of	binary	code	of
character	c.	That	means	the	sum	of	the	lengths	of	all	character	codes	should	be	minimum	[the	sum
of	each	character’s	frequency	multiplied	by	the	number	of	bits	in	the	representation].

The	 basic	 idea	 behind	 the	 Huffman	 coding	 algorithm	 is	 to	 use	 fewer	 bits	 for	more	 frequently
occurring	 characters.	 The	 Huffman	 coding	 algorithm	 compresses	 the	 storage	 of	 data	 using
variable	length	codes.	We	know	that	each	character	takes	8	bits	for	representation.	But	in	general,
we	 do	 not	 use	 all	 of	 them.	 Also,	 we	 use	 some	 characters	 more	 frequently	 than	 others.	When
reading	 a	 file,	 the	 system	 generally	 reads	 8	 bits	 at	 a	 time	 to	 read	 a	 single	 character.	 But	 this
coding	scheme	is	inefficient.	The	reason	for	this	is	that	some	characters	are	more	frequently	used
than	 other	 characters.	Let’s	 say	 that	 the	 character	 ′e′	 is	 used	 10	 times	more	 frequently	 than	 the
character	′q′.	 It	would	then	be	advantageous	for	us	 to	 instead	use	a	7	bit	code	for	e	and	a	9	bit
code	for	q	because	that	could	reduce	our	overall	message	length.

On	average,	using	Huffman	coding	on	standard	files	can	reduce	them	anywhere	from	10%	to	30%
depending	on	 the	character	 frequencies.	The	 idea	behind	 the	character	coding	 is	 to	give	 longer
binary	codes	for	less	frequent	characters	and	groups	of	characters.	Also,	the	character	coding	is
constructed	in	such	a	way	that	no	two	character	codes	are	prefixes	of	each	other.

An	Example

Let’s	assume	that	after	scanning	a	file	we	find	the	following	character	frequencies:



Character Frequency
a 12
b 2
c 7
d 13
e 14
f 85

Given	 this,	 create	 a	 binary	 tree	 for	 each	 character	 that	 also	 stores	 the	 frequency	with	which	 it
occurs	(as	shown	below).

The	 algorithm	 works	 as	 follows:	 In	 the	 list,	 find	 the	 two	 binary	 trees	 that	 store	 minimum
frequencies	at	their	nodes.

Connect	 these	 two	nodes	at	a	newly	created	common	node	that	will	store	no	character	but	will
store	 the	 sum	of	 the	 frequencies	of	all	 the	nodes	connected	below	 it.	So	our	picture	 looks	 like
this:

Repeat	this	process	until	only	one	tree	is	left:





Once	the	tree	is	built,	each	leaf	node	corresponds	to	a	letter	with	a	code.	To	determine	the	code
for	a	particular	node,	traverse	from	the	root	to	the	leaf	node.	For	each	move	to	the	left,	append	a	0
to	the	code,	and	for	each	move	to	the	right,	append	a	1.	As	a	result,	for	the	above	generated	tree,
we	get	the	following	codes:

Letter Code
a 001
b 0000
c 0001
d 010

e 011
f 1

Calculating	Bits	Saved

Now,	let	us	see	how	many	bits	that	Huffman	coding	algorithm	is	saving.	All	we	need	to	do	for	this
calculation	is	see	how	many	bits	are	originally	used	to	store	the	data	and	subtract	from	that	 the
number	of	bits	that	are	used	to	store	the	data	using	the	Huffman	code.	In	the	above	example,	since
we	have	six	characters,	 let’s	assume	each	character	 is	stored	with	a	 three	bit	code.	Since	there
are	133	such	characters	(multiply	total	frequencies	by	3),	the	total	number	of	bits	used	is	3	*	133
=	399.	Using	the	Huffman	coding	frequencies	we	can	calculate	the	new	total	number	of	bits	used:

Thus,	we	saved	399	–	238	=	161	bits,	or	nearly	40%	of	the	storage	space.



Time	Complexity:	O(nlogn),	since	there	will	be	one	build_heap,	2n	–	2	delete_mins,	and	n	–	2
inserts,	 on	 a	 priority	 queue	 that	 never	 has	more	 than	n	 elements.	Refer	 to	 the	Priority	Queues
chapter	for	details.

17.8	Greedy	Algorithms:	Problems	&	Solutions

Problem-1  Given	an	array	F	with	size	n.	Assume	the	array	content	F[i]	indicates	the	length	of
the	 ith	 file	 and	we	want	 to	merge	 all	 these	 files	 into	 one	 single	 file.	Check	whether	 the
following	algorithm	gives	the	best	solution	for	this	problem	or	not?

Algorithm:	Merge	the	files	contiguously.	That	means	select	 the	first	 two	files	and	merge
them.	Then	select	the	output	of	the	previous	merge	and	merge	with	the	third	file,	and	keep
going...

Note:	Given	two	files	A	and	B	with	sizes	m	and	n,	the	complexity	of	merging	is	O(m	+	n).

Solution:	 This	 algorithm	will	 not	 produce	 the	 optimal	 solution.	 For	 a	 counter	 example,	 let	 us
consider	the	following	file	sizes	array.

F	=	{10,5,100,50,20,15}

As	per	the	above	algorithm,	we	need	to	merge	the	first	two	files	(10	and	5	size	files),	and	as	a
result	we	get	 the	 following	 list	of	 files.	 In	 the	 list	below,	15	 indicates	 the	cost	of	merging	 two
files	with	sizes	10	and	5.

{15,100,50,20,15}

Similarly,	merging	15	with	the	next	file	100	produces:	{115,50,20,15}.	For	the	subsequent	steps



the	list	becomes

{165,20,15},	{185,15}

Finally,

{200}

The	total	cost	of	merging	=	Cost	of	all	merging	operations	=	15	+	115	+	165	+	185	+	200	=	680.

To	see	whether	the	above	result	is	optimal	or	not,	consider	the	order:	{5,10,15,20,50,100}.	For
this	example,	following	the	same	approach,	the	total	cost	of	merging	=	15	+	30	+	50	+	100	+	200
=	395.	So,	the	given	algorithm	is	not	giving	the	best	(optimal)	solution.

Problem-2  Similar	to	Problem-1,	does	the	following	algorithm	give	the	optimal	solution?

Algorithm:	Merge	the	files	in	pairs.	That	means	after	the	first	step,	the	algorithm	produces
the	n/2	intermediate	files.	For	the	next	step,	we	need	to	consider	these	intermediate	files
and	merge	them	in	pairs	and	keep	going.

Note:	Sometimes	this	algorithm	is	called	2-way	merging.	Instead	of	two	files	at	a	time,	if
we	merge	K	files	at	a	time	then	we	call	it	K-way	merging.

Solution:	This	algorithm	will	not	produce	the	optimal	solution	and	consider	the	previous	example
for	a	counter	example.	As	per	the	above	algorithm,	we	need	to	merge	the	first	pair	of	files	(10	and
5	size	files),	 the	second	pair	of	files	(100	and	50)	and	the	third	pair	of	files	(20	and	15).	As	a
result	we	get	the	following	list	of	files.

{15,150,35}

Similarly,	merge	the	output	in	pairs	and	this	step	produces	[below,	the	third	element	does	not	have
a	pair	element,	so	keep	it	the	same]:

{165,35}

Finally,

{185}

The	total	cost	of	merging	=	Cost	of	all	merging	operations	=	15	+	150	+	35	+	165	+	185	=	550.
This	is	much	more	than	395	(of	the	previous	problem).	So,	the	given	algorithm	is	not	giving	the
best	(optimal)	solution.

Problem-3  In	Problem-1,	what	is	the	best	way	to	merge	all	the	files	into	a	single	file?

Solution:	Using	the	Greedy	algorithm	we	can	reduce	the	total	time	for	merging	the	given	files.	Let
us	consider	the	following	algorithm.



Algorithm:
1. Store	file	sizes	in	a	priority	queue.	The	key	of	elements	are	file	lengths.
2. Repeat	the	following	until	there	is	only	one	file:

a. Extract	two	smallest	elements	X	and	Y.
b. Merge	X	and	Y	and	insert	this	new	file	in	the	priority	queue.

Variant	of	same	algorithm:
1. Sort	the	file	sizes	in	ascending	order.
2. Repeat	the	following	until	there	is	only	one	file:

a. Take	the	first	two	elements	(smallest)	X	and	Y.
b. Merge	X	and	Y	and	insert	this	new	file	in	the	sorted	list.

To	check	the	above	algorithm,	let	us	trace	it	with	the	previous	example.	The	given	array	is:

F	=	{10,5,100,50,20,15}

As	per	 the	above	algorithm,	after	 sorting	 the	 list	 it	becomes:	{5,10,15,20,50,100}.	We	need	 to
merge	the	two	smallest	files	(5	and	10	size	files)	and	as	a	result	we	get	the	following	list	of	files.
In	the	list	below,	15	indicates	the	cost	of	merging	two	files	with	sizes	10	and	5.

{15,15,20,50,100}

Similarly,	 merging	 the	 two	 smallest	 elements	 (15	 and	 15)	 produces:	 {20,30,50,100}.	 For	 the
subsequent	steps	the	list	becomes

{50,50,100}	//	merging	20	and	30
{100,100}	//	merging	20	and	30

Finally,

{200}

The	total	cost	of	merging	=	Cost	of	all	merging	operations	=	15	+	30	+	50	+	100	+	200	=	395.	So,
this	algorithm	is	producing	the	optimal	solution	for	this	merging	problem.

Time	Complexity:	O(nlogn)	time	using	heaps	to	find	best	merging	pattern	plus	the	optimal	cost	of
merging	the	files.

Problem-4  Interval	Scheduling	Algorithm:	Given	a	set	of	n	intervals	S	=	{(starti,	endj)|1	≤	i
≤	n}.	Let	us	assume	 that	we	want	 to	 find	a	maximum	subset	S′	of	S	 such	 that	no	pair	 of
intervals	in	S′	overlaps.	Check	whether	the	following	algorithm	works	or	not.

Algorithm:



Solution:	 This	 algorithm	 does	 not	 solve	 the	 problem	 of	 finding	 a	 maximum	 subset	 of	 non-
overlapping	 intervals.	 Consider	 the	 following	 intervals.	 The	 optimal	 solution	 is	 {M,O,N,K}.
However,	 the	 interval	 that	 overlaps	with	 the	 fewest	 others	 is	C,	 and	 the	 given	 algorithm	will
select	C	first.

Problem-5  In	Problem-4,	 if	we	select	 the	 interval	 that	 starts	earliest	 (also	not	overlapping
with	already	chosen	intervals),	does	it	give	the	optimal	solution?

Solution:	No.	It	will	not	give	the	optimal	solution.	Let	us	consider	the	example	below.	It	can	be
seen	that	the	optimal	solution	is	4	whereas	the	given	algorithm	gives	1.

Problem-6  In	 Problem-4,	 if	 we	 select	 the	 shortest	 interval	 (but	 it	 is	 not	 overlapping	 the
already	chosen	intervals),	does	it	give	the	optimal	solution?

Solution:	This	also	will	not	give	the	optimal	solution.	Let	us	consider	the	example	below.	It	can
be	seen	that	the	optimal	solution	is	2	whereas	the	algorithm	gives	1.



Problem-7  For	Problem-4,	what	is	the	optimal	solution?

Solution:	Now,	let	us	concentrate	on	the	optimal	greedy	solution.

Algorithm:

Time	complexity	=	Time	for	sorting	+	Time	for	scanning	=	O(nlogn	+	n)	=	O(nlogn).

Problem-8  Consider	the	following	problem.
Input:	S	=	{(starti,endi)|1	≤	i	≤	n}	of	intervals.	The	interval	(starti,endi)	we	can	treat	as	a
request	for	a	room	for	a	class	with	time	start;	to	time	endi.
Output:	Find	an	assignment	of	classes	to	rooms	that	uses	the	fewest	number	of	rooms.
Consider	the	following	iterative	algorithm.	Assign	as	many	classes	as	possible	to	the	first
room,	 then	 assign	 as	many	 classes	 as	 possible	 to	 the	 second	 room,	 then	 assign	 as	many
classes	as	possible	to	the	third	room,	etc.	Does	this	algorithm	give	the	best	solution?

Note:	 In	 fact,	 this	 problem	 is	 similar	 to	 the	 interval	 scheduling	 algorithm.	 The	 only
difference	is	the	application.

Solution:	This	 algorithm	does	 not	 solve	 the	 interval-coloring	problem.	Consider	 the	 following
intervals:



Maximizing	the	number	of	classes	in	the	first	room	results	in	having	{B,	C,	F,	G}	in	one	room,	and
classes	A,	D,	and	E	each	in	their	own	rooms,	for	a	total	of	4.	The	optimal	solution	is	to	put	A	 in
one	room,	{	B,	C,	D	}	in	another,	and	{E,F,	G}	in	another,	for	a	total	of	3	rooms.

Problem-9  For	 Problem-8,	 consider	 the	 following	 algorithm.	 Process	 the	 classes	 in
increasing	order	of	start	times.	Assume	that	we	are	processing	class	C.	If	there	is	a	room	R
such	 that	R	 has	 been	 assigned	 to	 an	 earlier	 class,	 and	C	 can	 be	 assigned	 to	R	 without
overlapping	previously	assigned	classes,	 then	assign	C	 to	R.	Otherwise,	put	C	 in	 a	new
room.	Does	this	algorithm	solve	the	problem?

Solution:	This	algorithm	solves	the	interval-coloring	problem.	Note	that	if	the	greedy	algorithm
creates	 a	 new	 room	 for	 the	 current	 class	ci,	 then	 because	 it	 examines	 classes	 in	 order	 of	 start
times,	ci	start	point	must	intersect	with	the	last	class	in	all	of	the	current	rooms.	Thus	when	greedy
creates	the	last	room,	n,	it	is	because	the	start	time	of	the	current	class	intersects	with	n	–	1	other
classes.	But	we	know	 that	 for	any	single	point	 in	any	class	 it	 can	only	 intersect	with	at	most	 s
other	class,	so	it	must	then	be	that	n	≤	S.	As	s	is	a	lower	bound	on	the	total	number	needed,	and
greedy	is	feasible,	it	is	thus	also	optimal.

Note:	For	optimal	solution	refer	to	Problem-7	and	for	code	refer	to	Problem-10.

Problem-10  Suppose	we	are	given	two	arrays	Start[1	..n]	and	Finish[1	..n]	listing	the	start
and	 finish	 times	 of	 each	 class.	 Our	 task	 is	 to	 choose	 the	 largest	 possible	 subset	 X	∈
{1,2,...,n}	so	that	for	any	pair	i,j	∈	X,	either	Start	[i]	>	Finish[j]	or	Start	[j]	>	Finish	[i]

Solution:	Our	aim	is	to	finish	the	first	class	as	early	as	possible,	because	that	leaves	us	with	the
most	 remaining	 classes.	We	 scan	 through	 the	 classes	 in	order	of	 finish	 time,	 and	whenever	we
encounter	a	class	that	doesn’t	conflict	with	the	latest	class	so	far,	then	we	take	that	class.

This	algorithm	clearly	runs	in	O(nlogn)	time	due	to	sorting.



Problem-11  Consider	 the	making	change	problem	 in	 the	country	of	 India.	The	 input	 to	 this
problem	is	an	integer	M.	The	output	should	be	 the	minimum	number	of	coins	 to	make	M
rupees	of	change.	In	India,	assume	the	available	coins	are	1,5,10,20,25,50	rupees.	Assume
that	we	have	an	unlimited	number	of	coins	of	each	type.

For	 this	problem,	does	 the	 following	algorithm	produce	 the	optimal	 solution	or	not?
Take	as	many	coins	as	possible	from	the	highest	denominations.	So	for	example,	to	make
change	for	234	rupees	the	greedy	algorithm	would	take	four	50	rupee	coins,	one	25	rupee
coin,	one	5	rupee	coin,	and	four	1	rupee	coins.

Solution:	 The	 greedy	 algorithm	 is	 not	 optimal	 for	 the	 problem	 of	 making	 change	 with	 the
minimum	number	of	coins	when	the	denominations	are	1,5,10,20,25,	and	50.	In	order	to	make	40
rupees,	the	greedy	algorithm	would	use	three	coins	of	25,10,	and	5	rupees.	The	optimal	solution
is	to	use	two	20-shilling	coins.

Note:	For	the	optimal	solution,	refer	to	the	Dynamic	Programming	chapter.

Problem-12  Let	 us	 assume	 that	we	 are	 going	 for	 a	 long	 drive	 between	 cities	A	 and	B.	 In
preparation	for	our	 trip,	we	have	downloaded	a	map	that	contains	 the	distances	 in	miles
between	all	the	petrol	stations	on	our	route.	Assume	that	our	car’s	tanks	can	hold	petrol	for
n	miles.	Assume	that	the	value	n	is	given.	Suppose	we	stop	at	every	point.	Does	it	give	the
best	solution?

Solution:	Here	the	algorithm	does	not	produce	optimal	solution.	Obvious	Reason:	filling	at	each
petrol	station	does	not	produce	optimal	solution.

Problem-13  For	problem	Problem-12,	 stop	 if	 and	 only	 if	 you	 don’t	 have	 enough	 petrol	 to
make	 it	 to	 the	 next	 gas	 station,	 and	 if	 you	 stop,	 fill	 the	 tank	 up	 all	 the	 way.	 Prove	 or
disprove	that	this	algorithm	correctly	solves	the	problem.

Solution:	The	greedy	approach	works:	We	start	our	 trip	 from	A	with	a	 full	 tank.	We	check	our
map	 to	determine	 the	 farthest	petrol	 station	on	our	 route	within	n	miles.	We	 stop	 at	 that	 petrol
station,	 fill	up	our	 tank	and	check	our	map	again	 to	determine	 the	 farthest	petrol	 station	on	our
route	within	n	miles	from	this	stop.	Repeat	the	process	until	we	get	to	B.

Note:	For	code,	refer	to	Dynamic	Programming	chapter.

Problem-14  Fractional	Knapsack	problem:	Given	items	t1:	t2,	...,tn	(items	we	might	want	to
carry	in	our	backpack)	with	associated	weights	s1;	s2,	...	,	sn	and	benefit	values	vx,	v2,	…,
vn,	how	can	we	maximize	the	total	benefit	considering	that	we	are	subject	to	an	absolute
weight	limit	C?

Solution:

Algorithm:



1) Compute	value	per	size	density	for	each	item	 .

2) Sort	each	item	by	its	value	density.
3) Take	as	much	as	possible	of	the	density	item	not	already	in	the	bag

Time	Complexity:	O(nlogn)	for	sorting	and	O(n)	for	greedy	selections.

Note:	The	items	can	be	entered	into	a	priority	queue	and	retrieved	one	by	one	until	either	the	bag
is	full	or	all	items	have	been	selected.	This	actually	has	a	better	runtime	of	O(n	+	clogn)	where	c
is	the	number	of	items	that	actually	get	selected	in	the	solution.	There	is	a	savings	in	runtime	if	c	=
O(n),	but	otherwise	there	is	no	change	in	the	complexity.

Problem-15  Number	of	railway-platforms:	At	a	railway	station,	we	have	a	time-table	with
the	trains’	arrivals	and	departures.	We	need	to	find	the	minimum	number	of	platforms	so
that	all	the	trains	can	be	accommodated	as	per	their	schedule.
Example:	The	timetable	is	as	given	below,	the	answer	is	3.	Otherwise,	the	railway	station
will	not	be	able	to	accommodate	all	the	trains.

Solution:	Let’s	take	the	same	example	as	described	above.	Calculating	the	number	of	platforms	is
done	by	determining	the	maximum	number	of	trains	at	the	railway	station	at	any	time.

First,	 sort	 all	 the	 arrival(A)	 and	departure(D)	 times	 in	 an	 array.	 Then,	 save	 the	 corresponding
arrivals	anddepartures	in	the	array	also.	After	sorting,	our	array	will	look	like	this:

Now	modify	the	array	by	placing	1	for	A	and	-1	for	D.	The	new	array	will	look	like	this:

Finally	make	a	cumulative	array	out	of	this:



Our	solution	will	be	the	maximum	value	in	this	array.	Here	it	is	3.

Note:	If	we	have	a	train	arriving	and	another	departing	at	the	same	time,	then	put	the	departure
time	first	in	the	sorted	array.

Problem-16  Consider	a	country	with	very	long	roads	and	houses	along	the	road.	Assume	that
the	residents	of	all	houses	use	cell	phones.	We	want	to	place	cell	phone	towers	along	the
road,	 and	 each	 cell	 phone	 tower	 covers	 a	 range	 of	 7	 kilometers.	 Create	 an	 efficient
algorithm	that	allow	for	the	fewest	cell	phone	towers.

Solution:

The	algorithm	to	locate	the	least	number	of	cell	phone	towers:

1) Start	from	the	beginning	of	the	road
2) Find	the	first	uncovered	house	on	the	road
3) If	there	is	no	such	house,	terminate	this	algorithm.	Otherwise,	go	to	next	step
4) Locate	a	cell	phone	tower	7	miles	away	after	we	find	this	house	along	the	road
5) Go	to	step	2

Problem-17  Preparing	Songs	Cassette:	Suppose	we	have	a	set	of	n	songs	and	want	to	store
these	on	a	tape.	In	the	future,	users	will	want	to	read	those	songs	from	the	tape.	Reading	a
song	from	a	tape	is	not	like	reading	from	a	disk;	first	we	have	to	fast-forward	past	all	the
other	songs,	and	that	takes	a	significant	amount	of	time.	Let	A[1	..	n]	be	an	array	listing	the
lengths	of	each	song,	specifically,	song	 i	has	length	A[i].	 If	 the	songs	are	stored	 in	order
from	1	to	n,	then	the	cost	of	accessing	the	kth	song	is:

The	cost	reflects	the	fact	that	before	we	read	song	k	we	must	first	scan	past	all	the	earlier
songs	on	the	tape.	If	we	change	the	order	of	the	songs	on	the	tape,	we	change	the	cost	of
accessing	the	songs,	with	the	result	 that	some	songs	become	more	expensive	to	read,	but
others	 become	 cheaper.	 Different	 song	 orders	 are	 likely	 to	 result	 in	 different	 expected
costs.	If	we	assume	that	each	song	is	equally	likely	to	be	accessed,	which	order	should	we
use	if	we	want	the	expected	cost	to	be	as	small	as	possible?

Solution:	The	answer	is	simple.	We	should	store	the	songs	in	the	order	from	shortest	to	longest.
Storing	the	short	songs	at	the	beginning	reduces	the	forwarding	times	for	the	remaining	jobs.



Problem-18  Let	 us	 consider	 a	 set	 of	 events	 at	HITEX	 (Hyderabad	 Convention	 Center).
Assume	that	there	are	n	events	where	each	takes	one	unit	of	time.	Event	i	will	provide	a
profit	of	P	[i	]	rupees	(P	[i	]	>	0)	if	started	at	or	before	time	T[i],	where	T[i]	is	an	arbitrary
number.	If	an	event	is	not	started	by	T[i]	then	there	is	no	benefit	in	scheduling	it	at	all.	All
events	 can	 start	 as	 early	 as	 time	 0.	 Give	 the	 efficient	 algorithm	 to	 find	 a	 schedule	 that
maximizes	the	profit.

Solution:

Algorithm:

• Sort	the	jobs	according	to	floor(T[i])	(sorted	from	largest	to	smallest).
• Let	time	t	be	the	current	time	being	considered	(where	initially	t	=	floor(T[i])).
• All	jobs	i	where	floor(T[i])	=	t	are	inserted	into	a	priority	queue	with	the	profit	g,

used	as	the	key.
• A	DeleteMax	is	performed	to	select	the	job	to	run	at	time	t.
• Then	t	is	decremented	and	the	process	is	continued.

Clearly	the	time	complexity	is	O(nlogn).	The	sort	takes	O(nlogn)	and	there	are	at	most	n	insert
and	DeleteMax	operations	performed	on	the	priority	queue,	each	of	which	takes	O(logn)	time.

Problem-19  Let	 us	 consider	 a	 customer-care	 server	 (say,	 mobile	 customer-care)	 with	 n
customers	to	be	served	in	the	queue.	For	simplicity	assume	that	the	service	time	required
by	 each	 customer	 is	 known	 in	 advance	 and	 it	 is	wt	 minutes	 for	 customer	 i.	 So	 if,	 for
example,	 the	 customers	 are	 served	 in	 order	 of	 increasing	 i,	 then	 the	 ith	 customer	 has	 to
wait:	 	 minutes.	 The	 total	 waiting	 time	 of	 all	 customers	 can	 be	 given	 as	

.	What	is	the	best	way	to	serve	the	customers	so	that	the	total	waiting
time	can	be	reduced?

Solution:	This	problem	can	be	easily	 solved	using	greedy	 technique.	Since	our	objective	 is	 to
reduce	the	total	waiting	time,	what	we	can	do	is,	select	the	customer	whose	service	time	is	less.
That	means,	 if	 we	 process	 the	 customers	 in	 the	 increasing	 order	 of	 service	 time	 then	we	 can
reduce	the	total	waiting	time.

Time	Complexity:	O(nlogn).



18.1	Introduction

In	the	Greedy	chapter,	we	have	seen	that	for	many	problems	the	Greedy	strategy	failed	to	provide
optimal	solutions.	Among	those	problems,	there	are	some	that	can	be	easily	solved	by	using	the
Divide	and	Conquer	 (D	&	C)	 technique.	Divide	and	Conquer	 is	an	 important	algorithm	design
technique	based	on	recursion.

The	D	 &	C	 algorithm	 works	 by	 recursively	 breaking	 down	 a	 problem	 into	 two	 or	 more	 sub
problems	of	the	same	type,	until	they	become	simple	enough	to	be	solved	directly.	The	solutions
to	the	sub	problems	are	then	combined	to	give	a	solution	to	the	original	problem.

18.2	What	is	Divide	and	Conquer	Strategy?

The	D	&	C	strategy	solves	a	problem	by:

1) Divide:	 Breaking	 the	 problem	 into	 sub	 problems	 that	 are	 themselves	 smaller
instances	of	the	same	type	of	problem.

2) Recursion:	Recursively	solving	these	sub	problems.



3) Conquer:	Appropriately	combining	their	answers.

18.3	Does	Divide	and	Conquer	Always	Work?

It’s	 not	 possible	 to	 solve	 all	 the	 problems	 with	 the	 Divide	 &	 Conquer	 technique.	 As	 per	 the
definition	of	D	&	C,	 the	 recursion	solves	 the	subproblems	which	are	of	 the	 same	 type.	For	all
problems	it	is	not	possible	to	find	the	subproblems	which	are	the	same	size	and	D	&	C	is	not	a
choice	for	all	problems.

18.4	Divide	and	Conquer	Visualization

For	better	understanding,	 consider	 the	 following	visualization.	Assume	 that	n	 is	 the	 size	 of	 the
original	problem.	As	described	above,	we	can	see	that	the	problem	is	divided	into	sub	problems
with	each	of	size	n/b	(for	some	constant	b).	We	solve	the	sub	problems	recursively	and	combine
their	solutions	to	get	the	solution	for	the	original	problem.



18.5	Understanding	Divide	and	Conquer

For	a	clear	understanding	of	D	&	C,	let	us	consider	a	story.	There	was	an	old	man	who	was	a	rich
farmer	and	had	seven	sons.	He	was	afraid	that	when	he	died,	his	land	and	his	possessions	would
be	divided	among	his	seven	sons,	and	that	they	would	quarrel	with	one	another.

So	he	gathered	them	together	and	showed	them	seven	sticks	that	he	had	tied	together	and	told	them
that	anyone	who	could	break	the	bundle	would	inherit	everything.	They	all	tried,	but	no	one	could
break	 the	 bundle.	 Then	 the	 old	 man	 untied	 the	 bundle	 and	 broke	 the	 sticks	 one	 by	 one.	 The
brothers	decided	that	they	should	stay	together	and	work	together	and	succeed	together.	The	moral
for	problem	solvers	is	different.	If	we	can’t	solve	the	problem,	divide	it	into	parts,	and	solve	one
part	at	a	time.

In	earlier	chapters	we	have	already	solved	many	problems	based	on	D	&	C	strategy:	like	Binary
Search,	Merge	Sort,	Quick	Sort,	etc....	Refer	to	those	topics	to	get	an	idea	of	how	D	&	C	works.
Below	are	a	few	other	real-time	problems	which	can	easily	be	solved	with	D	&	C	strategy.	For
all	these	problems	we	can	find	the	subproblems	which	are	similar	to	the	original	problem.

• Looking	 for	 a	 name	 in	 a	 phone	 book:	 We	 have	 a	 phone	 book	 with	 names	 in
alphabetical	order.	Given	a	name,	how	do	we	find	whether	that	name	is	there	in	the
phone	book	or	not?

• Breaking	a	stone	into	dust:	We	want	to	convert	a	stone	into	dust	(very	small	stones).
• Finding	the	exit	in	a	hotel:	We	are	at	the	end	of	a	very	long	hotel	lobby	with	a	long

series	of	doors,	with	one	door	next	to	us.	We	are	looking	for	the	door	that	leads	to
the	exit.

• Finding	our	car	in	a	parking	lot.

18.6	Advantages	of	Divide	and	Conquer

Solving	difficult	problems:	D	&	C	 is	a	powerful	method	 for	solving	difficult	problems.	As	an
example,	 consider	 the	 Tower	 of	 Hanoi	 problem.	 This	 requires	 breaking	 the	 problem	 into
subproblems,	 solving	 the	 trivial	 cases	 and	 combining	 the	 subproblems	 to	 solve	 the	 original
problem.	Dividing	the	problem	into	subproblems	so	that	subproblems	can	be	combined	again	is	a
major	difficulty	in	designing	a	new	algorithm.	For	many	such	problems	D	&	C	provides	a	simple
solution.

Parallelism:	 Since	D	&	C	 allows	 us	 to	 solve	 the	 subproblems	 independently,	 this	 allows	 for
execution	 in	 multiprocessor	 machines,	 especially	 shared-memory	 systems	 where	 the
communication	 of	 data	 between	 processors	 does	 not	 need	 to	 be	 planned	 in	 advance,	 because
different	subproblems	can	be	executed	on	different	processors.

Memory	access:	D	&	C	algorithms	naturally	tend	to	make	efficient	use	of	memory	caches.	This	is
because	once	a	subproblem	is	small,	all	its	subproblems	can	be	solved	within	the	cache,	without



accessing	the	slower	main	memory.

18.7	Disadvantages	of	Divide	and	Conquer

One	 disadvantage	 of	 the	D	 &	C	 approach	 is	 that	 recursion	 is	 slow.	 This	 is	 because	 of	 the
overhead	of	the	repeated	subproblem	calls.	Also,	the	D	&	C	approach	needs	stack	for	storing	the
calls	 (the	 state	 at	 each	 point	 in	 the	 recursion).	Actually	 this	 depends	 upon	 the	 implementation
style.	With	large	enough	recursive	base	cases,	 the	overhead	of	recursion	can	become	negligible
for	many	problems.

Another	problem	with	D	&	C	 is	 that,	 for	 some	problems,	 it	may	be	more	 complicated	 than	 an
iterative	approach.	For	example,	to	add	n	numbers,	a	simple	loop	to	add	them	up	in	sequence	is
much	easier	 than	a	D	&	C	 approach	 that	breaks	 the	 set	of	numbers	 into	 two	halves,	 adds	 them
recursively,	and	then	adds	the	sums.

18.8	Master	Theorem

As	stated	above,	in	the	D	&	C	method,	we	solve	the	sub	problems	recursively.	All	problems	are
generally	 defined	 in	 terms	 of	 recursive	 definitions.	 These	 recursive	 problems	 can	 easily	 be
solved	using	Master	theorem.	For	details	on	Master	theorem,	refer	to	the	Introduction	to	Analysis
of	Algorithms	chapter.	Just	for	continuity,	let	us	reconsider	the	Master	theorem.

If	the	recurrence	is	of	the	form	 ,	where	a	≥	1,	b	>	1,	k	≥
0	and	p	is	a	real	number,	then	the	complexity	can	be	directly	given	as:

1) If	a	>	bk,	then	
2) If	a	=	bk

a. If	p	>	–1,	then	

b. If	p	=	–1,	then	
c. If	p	<	–1,	then	

3) If	a	<	bk

a. If	p	>	0,	then	T(n)	=	Θ(nklogpn)
b. If	p	<	0,	then	T(n)	=	O(nk)

18.9	Divide	and	Conquer	Applications

• Binary	Search
• Merge	Sort	and	Quick	Sort



• Median	Finding
• Min	and	Max	Finding
• Matrix	Multiplication
• Closest	Pair	problem

18.10	Divide	and	Conquer:	Problems	&	Solutions

Problem-1  Let	us	consider	an	algorithm	A	which	solves	problems	by	dividing	them	into	five
subproblems	of	half	the	size,	recursively	solving	each	subproblem,	and	then	combining	the
solutions	in	linear	time.	What	is	the	complexity	of	this	algorithm?

Solution:	Let	us	assume	that	the	input	size	is	n	and	T(n)	defines	the	solution	to	the	given	problem.
As	per	the	description,	the	algorithm	divides	the	problem	into	5	sub	problems	with	each	of	size	

.	So	we	need	 to	 solve	 	 subproblems.	After	 solving	 these	 sub	problems,	 the	given	 array
(linear	 time)	 is	 scanned	 to	 combine	 these	 solutions.	 The	 total	 recurrence	 algorithm	 for	 this
problem	can	be	given	as:	 .	Using	the	Master	theorem	(of	D	&	C),	we

get	the	complexity	 .

Problem-2  Similar	 to	Problem-1,	an	algorithm	B	 solves	problems	of	 size	n	by	 recursively
solving	two	subproblems	of	size	n	–	1	and	then	combining	the	solutions	in	constant	time.
What	is	the	complexity	of	this	algorithm?

Solution:	Let	us	assume	that	the	input	size	is	n	and	T(n)	defines	the	solution	to	the	given	problem.
As	per	the	description	of	algorithm	we	divide	the	problem	into	2	sub	problems	with	each	of	size
n	 –	 1.	 So	 we	 have	 to	 solve	 2T(n	 –	 1)	 sub	 problems.	 After	 solving	 these	 sub	 problems,	 the
algorithm	takes	only	a	constant	time	to	combine	these	solutions.	The	total	recurrence	algorithm	for
this	problem	can	be	given	as:

Using	 Master	 theorem	 (of	 Subtract	 and	 Conquer),	 we	 get	 the	 complexity	 as	
.	(Refer	to	Introduction	chapter	for	more	details).

Problem-3  Again	 similar	 to	Problem-1,	 another	 algorithm	C	 solves	 problems	of	 size	n	 by
dividing	them	into	nine	subproblems	of	size	 ,	recursively	solving	each	subproblem,	and

then	combining	the	solutions	in	O(n2)	time.	What	is	the	complexity	of	this	algorithm?

Solution:	Let	us	assume	that	input	size	is	n	and	T(n)	defines	the	solution	to	the	given	problem.	As
per	the	description	of	algorithm	we	divide	the	problem	into	9	sub	problems	with	each	of	size	 .

So	we	need	to	solve	 	sub	problems.	After	solving	the	sub	problems,	 the	algorithm	takes



quadratic	time	to	combine	these	solutions.	The	total	recurrence	algorithm	for	this	problem	can	be
given	as:	 .	Using	D	&	C	Master	 theorem,	we	get	 the	complexity

as	O(n2logn).

Problem-4  Write	a	recurrence	and	solve	it.

Solution:	Let	us	assume	that	input	size	is	n	and	T(n)	defines	the	solution	to	the	given	problem.	As
per	the	given	code,	after	printing	the	character	and	dividing	the	problem	into	2	subproblems	with
each	of	size	 	and	solving	them.	So	we	need	to	solve	 	subproblems.	After	solving	these
subproblems,	the	algorithm	is	not	doing	anything	for	combining	the	solutions.	The	total	recurrence
algorithm	for	this	problem	can	be	given	as:

Using	Master	theorem	(of	D	&	C),	we	get	the	complexity	as	 .

Problem-5  Given	an	array,	give	an	algorithm	for	finding	the	maximum	and	minimum.

Solution:	Refer	Selection	Algorithms	chapter.

Problem-6  Discuss	Binary	Search	and	its	complexity.

Solution:	Refer	Searching	chapter	for	discussion	on	Binary	Search.

Analysis:	Let	us	assume	that	 input	size	is	n	and	T(n)	defines	 the	solution	 to	 the	given	problem.
The	elements	are	in	sorted	order.	In	binary	search	we	take	the	middle	element	and	check	whether
the	element	to	be	searched	is	equal	to	that	element	or	not.	If	it	is	equal	then	we	return	that	element.

If	 the	element	to	be	searched	is	greater	 than	the	middle	element	then	we	consider	the	right	sub-
array	 for	 finding	 the	 element	 and	 discard	 the	 left	 sub-array.	 Similarly,	 if	 the	 element	 to	 be
searched	 is	 less	 than	 the	 middle	 element	 then	 we	 consider	 the	 left	 sub-array	 for	 finding	 the
element	and	discard	the	right	sub-array.

What	this	means	is,	in	both	the	cases	we	are	discarding	half	of	the	sub-array	and	considering	the



remaining	half	only.	Also,	at	every	iteration	we	are	dividing	the	elements	into	two	equal	halves.

As	per	the	above	discussion	every	time	we	divide	the	problem	into	2	sub	problems	with	each	of
size	 	and	solve	one	 	sub	problem.	The	total	recurrence	algorithm	for	this	problem	can	be
given	as:

Using	Master	theorem	(of	D	&	C),	we	get	the	complexity	as	O(logn).

Problem-7  Consider	 the	modified	version	of	binary	search.	Let	us	assume	 that	 the	array	 is
divided	into	3	equal	parts	(ternary	search)	instead	of	2	equal	parts.	Write	the	recurrence
for	this	ternary	search	and	find	its	complexity.

Solution:	 From	 the	 discussion	 on	 Problem-5,	 binary	 search	 has	 the	 recurrence	 relation:	
.	Similar	 to	 the	Problem-5	discussion,	 instead	of	 2	 in	 the	 recurrence

relation	we	use	“3”.	That	 indicates	 that	we	are	dividing	 the	array	 into	3	sub-arrays	with	equal
size	and	considering	only	one	of	them.	So,	the	recurrence	for	the	ternary	search	can	be	given	as:

Using	Master	theorem	(of	D	&	C),	we	get	the	complexity	as	 	≈	O(logn)
(we	don’t	have	to	worry	about	the	base	of	log	as	they	are	constants).

Problem-8  In	Problem-5,	what	 if	we	divide	 the	array	 into	 two	sets	of	 sizes	approximately
one-third	and	two-thirds.

Solution:	 We	 now	 consider	 a	 slightly	 modified	 version	 of	 ternary	 search	 in	 which	 only	 one
comparison	is	made,	which	creates	two	partitions,	one	of	roughly	 	elements	and	the	other	of	 .

Here	 the	 worst	 case	 comes	 when	 the	 recursive	 call	 is	 on	 the	 larger	 	 element	 part.	 So	 the
recurrence	corresponding	to	this	worst	case	is:

Using	Master	theorem	(of	D	&	C),	we	get	the	complexity	as	O(logn).	It	is	interesting	to	note	that
we	will	get	the	same	results	for	general	k-ary	search	(as	long	as	k	is	a	fixed	constant	which	does
not	depend	on	n)	as	n	approaches	infinity.

Problem-9  Discuss	Merge	Sort	and	its	complexity.

Solution:	Refer	to	Sorting	chapter	for	discussion	on	Merge	Sort.	In	Merge	Sort,	if	the	number	of
elements	are	greater	than	1,	then	divide	them	into	two	equal	subsets,	the	algorithm	is	recursively



invoked	on	the	subsets,	and	the	returned	sorted	subsets	are	merged	to	provide	a	sorted	list	of	the
original	set.	The	recurrence	equation	of	the	Merge	Sort	algorithm	is:

If	we	solve	this	recurrence	using	D	&	C	Master	theorem	it	gives	O(nlogn)	complexity.

Problem-10  Discuss	Quick	Sort	and	its	complexity.

Solution:	 Refer	 to	 Sorting	 chapter	 for	 discussion	 on	 Quick	 Sort.	 For	 Quick	 Sort	 we	 have
different	complexities	for	best	case	and	worst	case.

Best	Case:	In	Quick	Sort,	if	the	number	of	elements	is	greater	than	1	then	they	are	divided	into
two	equal	subsets,	and	the	algorithm	is	recursively	invoked	on	the	subsets.	After	solving	the	sub
problems	we	 don’t	 need	 to	 combine	 them.	 This	 is	 because	 in	Quick	 Sort	 they	 are	 already	 in
sorted	order.	But,	we	need	to	scan	the	complete	elements	to	partition	the	elements.	The	recurrence
equation	of	Quick	Sort	best	case	is

If	we	solve	this	recurrence	using	Master	theorem	of	D	&	C	gives	O(nlogn)	complexity.

Worst	Case:	 In	 the	worst	case,	Quick	Sort	divides	 the	 input	elements	 into	 two	sets	and	one	of
them	 contains	 only	 one	 element.	 That	means	 other	 set	 has	n	 –	 1	 elements	 to	 be	 sorted.	 Let	 us
assume	that	the	input	size	is	n	and	T(n)	defines	the	solution	to	the	given	problem.	So	we	need	to
solve	T(n	–	1),	T(1)	subproblems.	But	to	divide	the	input	into	two	sets	Quick	Sort	needs	one	scan
of	the	input	elements	(this	takes	O(n)).

After	 solving	 these	 sub	 problems	 the	 algorithm	 takes	 only	 a	 constant	 time	 to	 combine	 these
solutions.	The	total	recurrence	algorithm	for	this	problem	can	be	given	as:

This	is	clearly	a	summation	recurrence	equation.	So,	 .

Note:	For	the	average	case	analysis,	refer	to	Sorting	chapter.

Problem-11  Given	an	infinite	array	in	which	the	first	n	cells	contain	integers	in	sorted	order
and	the	rest	of	the	cells	are	filled	with	some	special	symbol	(say,	$).	Assume	we	do	not
know	the	n	value.	Give	an	algorithm	that	takes	an	integer	K	as	input	and	finds	a	position	in
the	array	containing	K,	if	such	a	position	exists,	in	O(logn)	time.



Solution:	Since	we	need	an	O(logn)	algorithm,	we	should	not	search	for	all	the	elements	of	the
given	 list	 (which	gives	O(n)	 complexity).	 To	 get	O(logn)	 complexity	 one	 possibility	 is	 to	 use
binary	search.	But	in	the	given	scenario	we	cannot	use	binary	search	as	we	do	not	know	the	end
of	 the	 list.	Our	 first	 problem	 is	 to	 find	 the	 end	 of	 the	 list.	To	 do	 that,	we	 can	 start	 at	 the	 first
element	and	keep	searching	with	doubled	index.	That	means	we	first	search	at	index	1	then,	2,4,8
...

It	 is	 clear	 that,	 once	we	have	 identified	 a	 possible	 interval	A[i,...,2i]	 in	which	K	might	 be,	 its
length	is	at	most	n	(since	we	have	only	n	numbers	in	the	array	A),	so	searching	for	K	using	binary
search	takes	O(logn)	time.

Problem-12  Given	a	sorted	array	of	non-repeated	integers	A[1..	n],	check	whether	there	is	an
index	i	for	which	A[i]	=	i.	Give	a	divide-and-conquer	algorithm	that	runs	in	time	O(logn).

Solution:	We	can’t	use	binary	search	on	the	array	as	it	is.	If	we	want	to	keep	the	O(logn)	property
of	the	solution	we	have	to	implement	our	own	binary	search.	If	we	modify	the	array	(in	place	or
in	a	copy)	and	subtract	i	from	A[i],	we	can	then	use	binary	search.	The	complexity	for	doing	so	is
O(n).

Problem-13  We	are	given	two	sorted	lists	of	size	n.	Give	an	algorithm	for	finding	the	median
element	in	the	union	of	the	two	lists.

Solution:	We	use	the	Merge	Sort	process.	Use	merge	procedure	of	merge	sort	(refer	to	Sorting
chapter).	Keep	track	of	the	count	while	comparing	elements	of	two	arrays.	If	the	count	becomes	n
(since	there	are	2n	elements),	we	have	reached	the	median.	Take	the	average	of	the	elements	at
indexes	n	–	1	and	n	in	the	merged	array.

Time	Complexity:	O(n).

Problem-14  Can	we	give	the	algorithm	if	the	size	of	the	two	lists	are	not	the	same?



Solution:	The	solution	is	similar	to	the	previous	problem.	Let	us	assume	that	the	lengths	of	two
lists	are	m	and	n.	In	this	case	we	need	to	stop	when	the	counter	reaches	(m	+	n)/2.

Time	Complexity:	O((m	+	n)/2).

Problem-15  Can	we	improve	the	time	complexity	of	Problem-13	to	O(logn)?

Solution:	Yes,	using	the	D	&	C	approach.	Let	us	assume	that	the	given	two	lists	are	L1	and	L2.

Algorithm:
1. Find	 the	medians	of	 the	given	sorted	 input	arrays	L1[]	and	L2[].	Assume	 that	 those

medians	are	m1	and	m2.
2. If	m1	and	m2	are	equal	then	return	m1	(or	m2).
3. If	m1	is	greater	than	m2,	then	the	final	median	will	be	below	two	sub	arrays.
4. From	first	element	of	L1	to	m1.
5. From	m2	to	last	element	of	L2.
6. If	m2	is	greater	than	m1,	then	median	is	present	in	one	of	the	two	sub	arrays	below.
7. From	m1	to	last	element	of	L1.
8. From	first	element	of	L2	to	m2.
9. Repeat	the	above	process	until	the	size	of	both	the	sub	arrays	becomes	2.
10. If	size	of	the	two	arrays	is	2,	then	use	the	formula	below	to	get	the	median.
11. Median	=	(max(L1[0],L2[0])	+	min(L1[1],L2[1])/2

Time	 Complexity:	 O(logn)	 since	 we	 are	 considering	 only	 half	 of	 the	 input	 and	 throwing	 the
remaining	half.

Problem-16  Given	an	 input	array	A.	Let	 us	 assume	 that	 there	 can	be	duplicates	 in	 the	 list.
Now	search	for	an	element	in	the	list	in	such	a	way	that	we	get	the	highest	index	if	there
are	duplicates.

Solution:	Refer	to	Searching	chapter.

Problem-17  Discuss	Strassen’s	Matrix	Multiplication	Algorithm	using	Divide	and	Conquer.
That	means,	given	two	n	×	n	matrices,	A	and	B,	compute	the	n	×	n	matrix	C	=	A	×	B,	where
the	elements	of	C	are	given	by

Solution:	Before	Strassen’s	algorithm,	first	let	us	see	the	basic	divide	and	conquer	algorithm.	The
general	 approach	we	 follow	 for	 solving	 this	 problem	 is	 given	below.	To	determine,	C[i,j]	we
need	to	multiply	the	ith	row	of	A	with	jth	column	of	B.



The	matrix	multiplication	problem	can	be	solved	with	the	D	&	C	technique.	To	implement	a	D	&
C	algorithm	we	need	to	break	the	given	problem	into	several	subproblems	that	are	similar	to	the
original	one.	In	this	instance	we	view	each	of	the	n	×	n	matrices	as	a	2	×	2	matrix,	the	elements	of
which	are	 	submatrices.	So,	the	original	matrix	multiplication,	C	=	A	×	B	can	be	written	as:

From	the	given	definition	o	f	Ci,j,	we	get	that	the	result	sub	matrices	can	be	computed	as	follows:

Here	 the	 symbols	 +	 and	 ×	 are	 taken	 to	mean	 addition	 and	multiplication	 (respectively)	 of	
matrices.

In	 order	 to	 compute	 the	 original	n	 ×	n	matrix	multiplication	we	must	 compute	 eight	 	matrix

products	(divide)	followed	by	four	 	matrix	sums	(conquer).	Since	matrix	addition	is	an	O(n2)
operation,	the	total	running	time	for	the	multiplication	operation	is	given	by	the	recurrence:

Using	master	theorem,	we	get	T(n)	=	O(n3).

Fortunately,	 it	 turns	 out	 that	 one	 of	 the	 eight	 matrix	 multiplications	 is	 redundant	 (found	 by
Strassen).	Consider	the	following	series	of	seven	 	matrices:



Each	 equation	 above	 has	 only	 one	multiplication.	 Ten	 additions	 and	 seven	multiplications	 are
required	to	compute	M0	through	M6.	Given	M0	through	M6,	we	can	compute	 the	elements	of	 the
product	matrix	C	as	follows:

This	 approach	 requires	 seven	 	 matrix	 multiplications	 and	 18	 	 additions.	 Therefore,	 the
worst-case	running	time	is	given	by	the	following	recurrence:

Using	master	theorem,	we	get,	 .

Problem-18  Stock	 Pricing	 Problem:	 Consider	 the	 stock	 price	 of	 CareerMonk.com	 in	 n
consecutive	 days.	 That	 means	 the	 input	 consists	 of	 an	 array	 with	 stock	 prices	 of	 the
company.	We	know	that	 the	stock	price	will	not	be	the	same	on	all	 the	days.	In	the	input
stock	 prices	 there	 may	 be	 dates	 where	 the	 stock	 is	 high	 when	 we	 can	 sell	 the	 current
holdings,	and	there	may	be	days	when	we	can	buy	the	stock.	Now	our	problem	is	to	find
the	day	on	which	we	can	buy	the	stock	and	the	day	on	which	we	can	sell	the	stock	so	that
we	can	make	maximum	profit.

Solution:	 As	 given	 in	 the	 problem,	 let	 us	 assume	 that	 the	 input	 is	 an	 array	 with	 stock	 prices
[integers].	Let	us	say	the	given	array	is	A[1],...,A[n].	From	this	array	we	have	 to	 find	 two	days
[one	 for	buy	and	one	 for	 sel1]	 in	 such	a	way	 that	we	can	make	maximum	profit.	Also,	 another
point	to	make	is	that	the	buy	date	should	be	before	sell	date.	One	simple	approach	is	to	look	at	all
possible	buy	and	sell	dates.

http://CareerMonk.com


The	two	nested	loops	take	n(n	+	l)/2	computations,	so	this	takes	time	Θ(n2).

Problem-19  For	Problem-18,	can	we	improve	the	time	complexity?

Solution:	Yes,	by	opting	for	the	Divide-and-Conquer	Θ(nlogn)	solution.	Divide	the	input	list	into
two	parts	and	recursively	find	the	solution	in	both	the	parts.	Here,	we	get	three	cases:

• buyDatelndex	and	sellDatelndex	both	are	in	the	earlier	time	period.
• buyDatelndex	and	sellDatelndex	both	are	in	the	later	time	period.
• buyDatelndex	is	in	the	earlier	part	and	sellDatelndex	is	in	the	later	part	of	the	time

period.

The	 first	 two	 cases	 can	 be	 solved	with	 recursion.	 The	 third	 case	 needs	 care.	 This	 is	 because
buyDatelndex	 is	 one	 side	 and	 sellDatelndex	 is	 on	other	 side.	 In	 this	 case	we	need	 to	 find	 the
minimum	and	maximum	prices	in	the	two	sub-parts	and	this	we	can	solve	in	linear-time.



Algorithm	StockStrategy	is	used	recursively	on	two	problems	of	half	the	size	of	the	input,	and	in
addition	 Θ(n)	 time	 is	 spent	 searching	 for	 the	 maximum	 and	 minimum	 prices.	 So	 the	 time
complexity	is	characterized	by	the	recurrence	T(n)	=	2T(n/2)	+	Θ(n)	and	by	the	Master	theorem
we	get	O(nlogn).

Problem-20  We	 are	 testing	 “unbreakable”	 laptops	 and	 our	 goal	 is	 to	 find	 out	 how
unbreakable	they	really	are.	In	particular,	we	work	in	an	n-story	building	and	want	to	find
out	the	lowest	floor	from	which	we	can	drop	the	laptop	without	breaking	it	(call	this	“the
ceiling”).	Suppose	we	are	given	two	laptops	and	want	to	find	the	highest	ceiling	possible.
Give	an	algorithm	that	minimizes	the	number	of	tries	we	need	to	make	f(n)	(hopefully,	f(n)
is	sub-linear,	as	a	linear	f(n)	yields	a	trivial	solution).

Solution:	For	the	given	problem,	we	cannot	use	binary	search	as	we	cannot	divide	the	problem
and	solve	it	recursively.	Let	us	take	an	example	for	understanding	the	scenario.	Let	us	say	14	is
the	answer.	That	means	we	need	14	drops	to	find	the	answer.	First	we	drop	from	height	14,	and	if
it	breaks	we	try	all	floors	from	1	to	13.	If	it	doesn’t	break	then	we	are	left	13	drops,	so	we	will
drop	it	from	14	+	13	+	1	=	28th	floor.	The	reason	being	if	it	breaks	at	the	28th	floor	we	can	try	all
the	floors	from	15	to	27	in	12	drops	(total	of	14	drops).	If	it	did	not	break,	then	we	are	left	with
11	drops	and	we	can	try	to	figure	out	the	floor	in	14	drops.

From	 the	 above	 example,	 it	 can	 be	 seen	 that	 we	 first	 tried	with	 a	 gap	 of	 14	 floors,	 and	 then
followed	by	13	floors,	then	12	and	so	on.	So	if	the	answer	is	k	then	we	are	trying	the	intervals	at
k,	k	–	1,	k	–	2	....1.	Given	that	the	number	of	floors	is	n,	we	have	to	relate	these	two.	Since	the
maximum	floor	from	which	we	can	try	is	n,	the	total	skips	should	be	less	than	n.	This	gives:



Complexity	of	this	process	is	 .

Problem-21  Given	n	numbers,	check	if	any	two	are	equal.

Solution:	Refer	to	Searching	chapter.

Problem-22  Give	an	algorithm	to	find	out	if	an	integer	is	a	square?	E.g.	16	is,	15	isn’t.

Solution:	 Initially	 let	 us	 say	 i	=	 2.	Compute	 the	value	 i	×	 i	 and	 see	 if	 it	 is	 equal	 to	 the	 given
number.	 If	 it	 is	 equal	 then	we	are	done;	otherwise	 increment	 the	 i	 vlaue.	Continue	 this	process
until	we	reach	i	×	i	greater	than	or	equal	to	the	given	number.

Time	Complexity:	 .	Space	Complexity:	O(1).

Problem-23  Given	an	array	of	2n	 integers	in	the	following	format	a1	a2	a3	 ...an	b1	b2	b3
...bn.	Shuffle	the	array	to	a1	b1	a2	b2	a3	b3	...	an	bn	without	any	extra	memory	[MA].

Solution:	Let	us	take	an	example	(for	brute	force	solution	refer	to	Searching	chapter)

1. Start	with	the	array:	a1	a2	a3	a4	b1	b2	b3	b4
2. Split	the	array	into	two	halves:	a1	a2	a3	a4	:	b1	b2	b3	b4
3. Exchange	elements	around	the	center:	exchange	a3	a4	with	b1	b2	you	get:	a1	a2	b1

b2	a3	a4	b3	b4
4. Split	a1	a2	b1	b2	into	a1	a2	:	b1	b2	then	split	a3	a4	b3	b4	into	a3	a4	:	b3	b4
5. Exchange	elements	around	the	center	for	each	subarray	you	get:	a1	b1	a2	b2	and	a3

b3	a4	b4

Please	note	 that	 this	 solution	only	handles	 the	case	when	n	=	2i	where	 i	=	 0,1,2,3,	 etc.	 In	 our
example	n	=	22	=	4	which	makes	it	easy	to	recursively	split	the	array	into	two	halves.	The	basic
idea	 behind	 swapping	 elements	 around	 the	 center	 before	 calling	 the	 recursive	 function	 is	 to
produce	 smaller	 size	problems.	A	 solution	with	 linear	 time	complexity	may	be	 achieved	 if	 the
elements	are	of	a	specific	nature.	For	example	you	can	calculate	the	new	position	of	the	element
using	the	value	of	the	element	itself.	This	is	a	hashing	technique.



Time	Complexity:	O(nlogn).

Problem-24  Nuts	and	Bolts	Problem:	Given	a	 set	of	n	 nuts	of	different	 sizes	 and	n	 bolts
such	that	there	is	a	one-to-one	correspondence	between	the	nuts	and	the	bolts,	find	for	each
nut	its	corresponding	bolt.	Assume	that	we	can	only	compare	nuts	to	bolts	(cannot	compare
nuts	to	nuts	and	bolts	to	bolts).

Solution:	Refer	to	Sorting	chapter.

Problem-25  Maximum	Value	Contiguous	 Subsequence:	 Given	 a	 sequence	 of	 n	 numbers
A(1)	...A(n),	give	an	algorithm	for	finding	a	contiguous	subsequence	A(i)	...A(j)	for	which
the	sum	of	elements	in	the	subsequence	is	maximum.	Example	:	{-2,	11,	-4,	13,	-5,	2}	→
20	and	{1,	-3,	4,	-2,	-1,	6	}	→	7.

Solution:	Divide	this	input	into	two	halves.	The	maximum	contiguous	subsequence	sum	can	occur
in	one	of	3	ways:

• Case	1:	It	can	be	completely	in	the	first	half
• Case	2:	It	can	be	completely	in	the	second	half
• Case	3:	It	begins	in	the	first	half	and	ends	in	the	second	half

We	 begin	 by	 looking	 at	 case	 3.	To	 avoid	 the	 nested	 loop	 that	 results	 from	 considering	 all	n/2
starting	 points	 and	 n/2	 ending	 points	 independently,	 replace	 two	 nested	 loops	 with	 two
consecutive	loops.	The	consecutive	loops,	each	of	size	n/2,	combine	to	require	only	linear	work.
Any	contiguous	subsequence	that	begins	in	the	first	half	and	ends	in	the	second	half	must	include
both	the	last	element	of	the	first	half	and	the	first	element	of	the	second	half.	What	we	can	do	in
cases	 1	 and	2	 is	 apply	 the	 same	 strategy	of	 dividing	 into	more	halves.	 In	 summary,	we	do	 the
following:

1. Recursively	compute	the	maximum	contiguous	subsequence	that	resides	entirely	in	the
first	half.

2. Recursively	compute	the	maximum	contiguous	subsequence	that	resides	entirely	in	the



second	half.
3. Compute,	via	two	consecutive	loops,	the	maximum	contiguous	subsequence	sum	that

begins	in	the	first	half	but	ends	in	the	second	half.
4. Choose	the	largest	of	the	three	sums.

The	base	case	cost	is	1.	The	program	performs	two	recursive	calls	plus	the	linear	work	involved
in	computing	the	maximum	sum	for	case	3.	The	recurrence	relation	is:

Using	D	&	C	Master	theorem,	we	get	the	time	complexity	as	T(n)	=	O(nlogn).

Note:	For	an	efficient	solution	refer	to	the	Dynamic	Programming	chapter.

Problem-26  Closest-Pair	of	Points:	Given	a	set	of	n	points,	S	=	{p1,p2,p3,…,pn},	where	pi	=
(xi,yi).	Find	the	pair	of	points	having	the	smallest	distance	among	all	pairs	(assume	that	all
points	are	in	one	dimension).



Solution:	Let	us	assume	that	we	have	sorted	the	points.	Since	the	points	are	in	one	dimension,	all
the	points	are	in	a	line	after	we	sort	them	(either	on	X-axis	or	Y-axis).	The	complexity	of	sorting
is	O(nlogn).	After	 sorting	we	can	go	 through	 them	 to	 find	 the	consecutive	points	with	 the	 least
difference.	 So	 the	 problem	 in	 one	 dimension	 is	 solved	 in	 O(nlogn)	 time	 which	 is	 mainly
dominated	by	sorting	time.

Time	Complexity:	O(nlogn).

Problem-27  For	Problem-26,	how	do	we	solve	it	if	the	points	are	in	two-dimensional	space?

Solution:	Before	going	to	the	algorithm,	let	us	consider	the	following	mathematical	equation:

The	above	equation	calculates	the	distance	between	two	points	p1	=	(x1,y1)	and	p2	=	(x2,y2).

Brute	Force	Solution:

• Calculate	the	distances	between	all	the	pairs	of	points.	From	n	points	there	are	
ways	of	selecting	2	points.	 .

• After	finding	distances	for	all	n2	possibilities,	we	select	the	one	which	is	giving	the
minimum	distance	and	this	takes	O(n2).

The	overall	time	complexity	is	O(n2).

Problem-28  Give	O(nlogn)	solution	for	closest	pair	problem	(Problem-27)?

Solution:	To	find	O(nlogn)	solution,	we	can	use	the	D	&	C	technique.	Before	starting	the	divide-
and-conquer	process	let	us	assume	that	the	points	are	sorted	by	increasing	x-coordinate.	Divide
the	points	 into	 two	equal	halves	based	on	median	of	x-coordinates.	That	means	 the	problem	 is
divided	 into	 that	 of	 finding	 the	 closest	 pair	 in	 each	 of	 the	 two	 halves.	 For	 simplicity	 let	 us
consider	the	following	algorithm	to	understand	the	process.

Algorithm:

1) Sort	 the	 given	 points	 in	 S	 (given	 set	 of	 points)	 based	 on	 their	 x	 –coordinates.
Partition	S	 into	 two	subsets,	S1	and	S2,	about	 the	 line	 l	 through	median	of	S.	 This
step	is	the	Divide	part	of	the	D	&	C	technique.

2) Find	the	closest-pairs	in	S1	andS2	and	call	them	L	and	R	recursively.
3) Now,	steps	4	to	8	form	the	Combining	component	of	the	D	&	C	technique.
4) Let	us	assume	that	δ	=	min	(L,R).
5) Eliminate	points	that	are	farther	than	δ	apart	from	l.
6) Consider	the	remaining	points	and	sort	based	on	their	y-coordinates.
7) Scan	the	remaining	points	in	the	y	order	and	compute	the	distances	of	each	point	to

all	its	neighbors	that	are	distanced	no	more	than	2	×	δ	(that’s	the	reason	for	sorting



according	to	y).
8) If	any	of	these	distances	is	less	than	δ	then	update	δ.

Combining	the	results	in	linear	time



Let	δ	=	min(L,R),	where	L	is	the	solution	to	first	sub	problem	and	R	is	the	solution	to	second	sub
problem.	The	possible	candidates	for	closest-pair,	which	are	across	the	dividing	line,	are	those
which	are	less	than	δ	distance	from	the	line.	So	we	need	only	the	points	which	are	inside	the	2	×	δ
area	across	the	dividing	line	as	shown	in	the	figure.	Now,	to	check	all	points	within	distance	δ
from	the	line,	consider	the	following	figure.



From	the	above	diagram	we	can	see	that	a	maximum	of	12	points	can	be	placed	inside	the	square
with	a	distance	not	less	than	δ.	That	means,	we	need	to	check	only	the	distances	which	are	within
11	positions	in	the	sorted	list.	This	is	similar	to	the	one	above,	but	with	the	difference	that	in	the
above	combining	of	subproblems,	there	are	no	vertical	bounds.	So	we	can	apply	the	12-point	box
tactic	over	all	the	possible	boxes	in	the	2	×	δ	area	with	the	dividing	line	as	the	middle	line.	As
there	can	be	a	maximum	of	n	such	boxes	in	the	area,	the	total	time	for	finding	the	closest	pair	in
the	corridor	is	O(n).

Analysis:

1) Step-1	and	Step-2	take	O(nlogn)	for	sorting	and	recursively	finding	the	minimum.
2) Step-4	takes	O(1).
3) Step-5	takes	O(n)	for	scanning	and	eliminating.
4) Step-6	takes	O(nlogn)	for	sorting.
5) Step-7	takes	O(n)	for	scanning.

The	total	complexity:	T(n)	=	O(nlogn)	+	O(1)	+	O(n)	+	O(n)	+	O(n)	≈	O(nlogn).

Problem-29  To	calculate	kn,	give	algorithm	and	discuss	its	complexity.

Solution:	The	naive	algorithm	to	compute	kn	is:	start	with	1	and	multiply	by	k	until	reaching	kn.
For	 this	 approach;	 there	 are	 n	 –	 1	multiplications	 and	 each	 takes	 constant	 time	 giving	 a	Θ(n)
algorithm.

But	there	is	a	faster	way	to	compute	kn.	For	example,



Note	that	taking	the	square	of	a	number	needs	only	one	multiplication;	this	way,	to	compute	924	we
need	only	5	multiplications	instead	of	23.

Let	T(n)	be	the	number	of	multiplications	required	to	compute	kn.	For	simplicity,	assume	k	=	2i
for	some	i	≥	1.

Using	master	theorem	we	get	T(n)	=	O(logn).

Problem-30  The	Skyline	Problem:	Given	 the	 exact	 locations	 and	 shapes	of	n	 rectangular
buildings	 in	 a	 2-dimensional	 city.	 There	 is	 no	 particular	 order	 for	 these	 rectangular
buildings.	Assume	 that	 the	bottom	of	 all	 buildings	 lie	on	a	 fixed	horizontal	 line	 (bottom
edges	 are	 collinear).	 The	 input	 is	 a	 list	 of	 triples;	 one	 per	 building.	 A	 building	 Bi	 is
represented	by	 the	 triple	 (li,	hi,	 ri)	where	 li	 denote	 the	x-position	of	 the	 left	 edge	 and	 ri
denote	 the	 x-position	 of	 the	 right	 edge,	 and	 hi	 denotes	 the	 building’s	 height.	 Give	 an
algorithm	 that	 computes	 the	 skyline	 (in	 2	 dimensions)	 of	 these	 buildings,	 eliminating
hidden	lines.	In	the	diagram	below	there	are	8	buildings,	represented	from	left	to	right	by
the	triplets	(1,	14,	7),	(3,	9,	10),	(5,	17,	12),	(14,	11,	18),	(15,	6,	27),	(20,	19,	22),	(23,	15,
30)	and	(26,	14,	29).



The	output	is	a	collection	of	points	which	describe	the	path	of	the	skyline.	In	some	versions	of	the
problem	this	collection	of	points	is	represented	by	a	sequence	of	numbers	p1;	p2,	...,	pn,	such	that
the	point	pi	represents	a	horizontal	line	drawn	at	height	pi	if	i	is	even,	and	it	represents	a	vertical
line	drawn	at	position	pi	if	i	is	odd.	In	our	case	the	collection	of	points	will	be	a	sequence	of	p1,
p2,	...,	pn	pairs	of	(xi,	hi)	where	pi(xi,	hi)	represents	the	hi	height	of	the	skyline	at	position	xi.	In	the
diagram	above	the	skyline	is	drawn	with	a	thick	line	around	the	buildings	and	it	is	represented	by
the	sequence	of	position-height	pairs	(1,	14),	(5,	17),	(12,	0),	(14,	11),	(18,	6),	(20,	19),	(22,	6),
(23,	15)	and	(30,	0).	Also,	assume	 that	Ri	of	 the	 right	most	building	can	be	maximum	of	1000.
That	means,	 the	Li	 co-ordinate	 of	 left	 building	 can	 be	minimum	 of	 1	 and	Ri	 of	 the	 right	most
building	can	be	maximum	of	1000.

Solution:	 The	 most	 important	 piece	 of	 information	 is	 that	 we	 know	 that	 the	 left	 and	 right
coordinates	of	each	and	every	building	are	non-negative	integers	less	than	1000.	Now	why	is	this
important?	 Because	 we	 can	 assign	 a	 height-value	 to	 every	 distinct	 xi	 coordinate	 where	 i	 is
between	0	and	9,999.

Algorithm:

• Allocate	an	array	for	1000	elements	and	initialize	all	of	the	elements	to	0.	Let’s	call
this	array	auxHeights.



• Iterate	over	all	of	the	buildings	and	for	every	Bi	building	iterate	on	the	range	of	[li..
ri)	where	li	is	the	left,	ri	is	the	right	coordinate	of	the	building	Bi.

• For	every	xj	element	of	this	range	check	if	hi>auxHeights[xj],	that	is	if	building	Bi	is
taller	than	the	current	height-value	at	position	xj.	If	so,	replace	auxHeights[xj]	with
hi.

Once	we	checked	all	the	buildings,	the	auxHeights	array	stores	the	heights	of	the	tallest	buildings
at	every	position.	There	 is	one	more	 thing	 to	do:	convert	 the	auxHeights	 array	 to	 the	expected
output	 format,	 that	 is	 to	 a	 sequence	 of	 position-height	 pairs.	 It’s	 also	 easy:	 just	map	 each	 and
every	i	index	to	an	(i,	auxHeights[i])	pair.

Let’s	have	a	look	at	the	time	complexity	of	this	algorithm.	Assume	that,	n	indicates	the	number	of
buildings	in	the	input	sequence	and	m	indicates	the	maximum	coordinate	(right	most	building	ri).
From	the	above	code,	it	is	clear	that	for	every	new	input	building,	we	are	traversing	from	left	(li)
to	right	(ri)	to	update	the	heights.	In	the	worst	case,	with	n	equal-size	buildings,	each	having	l	=	0
left	and	r	=	m	–	1	right	coordinates,	that	is	every	building	spans	over	the	whole	[0..	m)	 interval.



Thus	 the	 running	 time	 of	 setting	 the	 height	 of	 every	 position	 is	 O(n	 ×	m).	 The	 overall	 time-
complexity	is	O(n	×	m),	which	is	a	lot	larger	than	O(n2)	if	m	>	n.

Problem-31  Can	we	improve	the	solution	of	the	Problem-30?

Solution:	It	would	be	a	huge	speed-up	if	somehow	we	could	determine	the	skyline	by	calculating
the	height	for	those	coordinates	only	where	it	matters,	wouldn’t	it?	Intuition	tells	us	that	if	we	can
insert	 a	building	 into	 an	existing	skyline	 then	 instead	 of	 all	 the	 coordinates	 the	 building	 spans
over	we	only	need	to	check	the	height	at	the	left	and	right	coordinates	of	the	building	plus	those
coordinates	of	the	skyline	the	building	overlaps	with	and	may	modify.

Is	 merging	 two	 skylines	 substantially	 different	 from	 merging	 a	 building	 with	 a	 skyline?	 The
answer	 is,	 of	 course,	No.	This	 suggests	 that	we	 use	 divide-and-conquer.	Divide	 the	 input	 of	 n
buildings	into	two	equal	sets.	Compute	(recursively)	the	skyline	for	each	set	then	merge	the	two
skylines.	Inserting	the	buildings	one	after	the	other	is	not	the	fastest	way	to	solve	this	problem	as
we’ve	seen	it	above.	If,	however,	we	first	merge	pairs	of	buildings	into	skylines,	then	we	merge
pairs	of	these	skylines	into	bigger	skylines	(and	not	two	sets	of	buildings),	and	then	merge	pairs
of	 these	bigger	skylines	 into	even	bigger	ones,	 then	-	since	 the	problem	size	 is	halved	 in	every
step	-after	logn	steps	we	can	compute	the	final	skyline.







For	example,	given	two	skylines	A=(a1,	ha1,	a2,	ha2,	...,	an,	0)	and	B=(b1,	hb1,	b2,	hb2,	...,	bm,	0),
we	merge	these	lists	as	the	new	list:	(c1,	hc1,	c2,	hc2,	...,	cn+m,	0).	Clearly,	we	merge	the	list	of	a’s
and	b’s	just	like	in	the	standard	Merge	algorithm.	But,	in	addition	to	that,	we	have	to	decide	on	the
correct	 height	 in	 between	 these	 boundary	 values.	 We	 use	 two	 variables	 currentHeight1	 and
currentHeight2	(note	that	these	are	the	heights	prior	to	encountering	the	heads	of	the	lists)	to	store
the	 current	 height	 of	 the	 first	 and	 the	 second	 skyline,	 respectively.	When	 comparing	 the	 head
entries	 (currentHeight1,	 currentHeight2)	 of	 the	 two	 skylines,	 we	 introduce	 a	 new	 strip	 (and
append	to	the	output	skyline)	whose	x-coordinate	is	the	minimum	of	the	entries’	x-coordinates	and
whose	 height	 is	 the	 maximum	 of	 currentHeight1	 and	 currentHeight2.	 This	 algorithm	 has	 a
structure	similar	 to	Mergesort.	So	 the	overall	 running	 time	of	 the	divide	and	conquer	approach
will	be	O(nlogn).



19.1	Introduction

In	this	chapter	we	will	try	to	solve	the	problems	for	which	we	failed	to	get	the	optimal	solutions
using	 other	 techniques	 (say,	Divide	 &	Conquer	 and	Greedy	 methods).	 Dynamic	 Programming
(DP)	is	a	simple	technique	but	it	can	be	difficult	to	master.	One	easy	way	to	identify	and	solve	DP
problems	is	by	solving	as	many	problems	as	possible.	The	term	Programming	 is	not	 related	 to
coding	but	it	is	from	literature,	and	means	filling	tables	(similar	to	Linear	Programming).

19.2	What	is	Dynamic	Programming	Strategy?

Dynamic	 programming	 and	memoization	work	 together.	 The	main	 difference	 between	 dynamic
programming	 and	 divide	 and	 conquer	 is	 that	 in	 the	 case	 of	 the	 latter,	 sub	 problems	 are
independent,	 whereas	 in	 DP	 there	 can	 be	 an	 overlap	 of	 sub	 problems.	 By	 using	 memoization
[maintaining	 a	 table	 of	 sub	 problems	 already	 solved],	 dynamic	 programming	 reduces	 the
exponential	 complexity	 to	 polynomial	 complexity	 (O(n2),	 O(n3),	 etc.)	 for	many	 problems.	 The
major	components	of	DP	are:

• Recursion:	Solves	sub	problems	recursively.



• Memoization:	 Stores	 already	 computed	 values	 in	 table	 (Memoization	 means
caching).

Dynamic	Programming	=	Recursion	+	Memoization

19.3	Properties	of	Dynamic	Programming	Strategy

The	two	dynamic	programming	properties	which	can	tell	whether	it	can	solve	the	given	problem
or	not	are:

• Optimal	substructure:	an	optimal	solution	 to	a	problem	contains	optimal	solutions
to	sub	problems.

• Overlapping	sub	problems:	a	recursive	solution	contains	a	small	number	of	distinct
sub	problems	repeated	many	times.

19.4	Can	Dynamic	Programming	Solve	All	Problems?

Like	 Greedy	 and	 Divide	 and	 Conquer	 techniques,	 DP	 cannot	 solve	 every	 problem.	 There	 are
problems	which	cannot	be	solved	by	any	algorithmic	technique	[Greedy,	Divide	and	Conquer	and
Dynamic	Programming].

The	difference	between	Dynamic	Programming	and	straightforward	recursion	is	 in	memoization
of	recursive	calls.	If	the	sub	problems	are	independent	and	there	is	no	repetition	then	memoization
does	not	help,	so	dynamic	programming	is	not	a	solution	for	all	problems.

19.5	Dynamic	Programming	Approaches

Basically	there	are	two	approaches	for	solving	DP	problems:

• Bottom-up	dynamic	programming
• Top-down	dynamic	programming

Bottom-up	Dynamic	Programming

In	this	method,	we	evaluate	the	function	starting	with	the	smallest	possible	input	argument	value
and	 then	 we	 step	 through	 possible	 values,	 slowly	 increasing	 the	 input	 argument	 value.	While
computing	the	values	we	store	all	computed	values	in	a	table	(memory).	As	larger	arguments	are
evaluated,	pre-computed	values	for	smaller	arguments	can	be	used.

Top-down	Dynamic	Programming



In	this	method,	 the	problem	is	broken	into	sub	problems;	each	of	 these	sub	problems	is	solved;
and	 the	 solutions	 remembered,	 in	 case	 they	 need	 to	 be	 solved.	Also,	 we	 save	 each	 computed
value	as	the	final	action	of	the	recursive	function,	and	as	the	first	action	we	check	if	pre-computed
value	exists.

Bottom-up	versus	Top-down	Programming

In	bottom-up	programming,	the	programmer	has	to	select	values	to	calculate	and	decide	the	order
of	calculation.	In	this	case,	all	sub	problems	that	might	be	needed	are	solved	in	advance	and	then
used	to	build	up	solutions	to	larger	problems.	In	top-down	programming,	the	recursive	structure
of	 the	 original	 code	 is	 preserved,	 but	 unnecessary	 recalculation	 is	 avoided.	 The	 problem	 is
broken	into	sub	problems,	these	sub	problems	are	solved	and	the	solutions	remembered,	in	case
they	need	to	be	solved	again.

Note:	Some	problems	can	be	solved	with	both	the	techniques	and	we	will	see	examples	in	 the
next	section.

19.6	Examples	of	Dynamic	Programming	Algorithms

• Many	 string	 algorithms	 including	 longest	 common	 subsequence,	 longest	 increasing
subsequence,	longest	common	substring,	edit	distance.

• Algorithms	on	graphs	can	be	solved	efficiently:	Bellman-Ford	algorithm	for	finding
the	shortest	distance	in	a	graph,	Floyd’s	All-Pairs	shortest	path	algorithm,	etc.

• Chain	matrix	multiplication
• Subset	Sum
• 0/1	Knapsack
• Travelling	salesman	problem,	and	many	more

19.7	Understanding	Dynamic	Programming

Before	going	to	problems,	let	us	understand	how	DP	works	through	examples.

Fibonacci	Series

In	Fibonacci	series,	the	current	number	is	the	sum	of	previous	two	numbers.	The	Fibonacci	series
is	defined	as	follows:



The	recursive	implementation	can	be	given	as:

Solving	the	above	recurrence	gives:

Note:	For	proof,	refer	to	Introduction	chapter.

How	does	Memoization	help?

Calling	fib(5)	produces	a	call	tree	that	calls	the	function	on	the	same	value	many	times:

fib(5)
fib(4)	+	fib(3)
(fib(3)	+	fib(2))	+	(fib(2)	+	fib(1))
((fib(2)	+	fib(1))	+	(fib(1)	+	fib(0)))	+	((fib(1)	+	fib(0))	+	fib(1))
(((fib(1)	+	fib(0))	+	fib(1))	+	(fib(1)	+	fib(0)))	+	((fib(1)	+	fib(0))	+	fib(1))

In	the	above	example,	fib(2)	was	calculated	three	times	(overlapping	of	subproblems).	If	n	is	big,
then	many	more	values	of	fib	(sub	problems)	are	recalculated,	which	leads	to	an	exponential	time
algorithm.	Instead	of	solving	 the	same	sub	problems	again	and	again	we	can	store	 the	previous
calculated	values	and	reduce	the	complexity.

Memoization	 works	 like	 this:	 Start	 with	 a	 recursive	 function	 and	 add	 a	 table	 that	 maps	 the
function’s	parameter	values	to	the	results	computed	by	the	function.	Then	if	this	function	is	called
twice	with	the	same	parameters,	we	simply	look	up	the	answer	in	the	table.

Improving:	 Now,	 we	 see	 how	 DP	 reduces	 this	 problem	 complexity	 from	 exponential	 to
polynomial.	As	discussed	earlier,	there	are	two	ways	of	doing	this.	One	approach	is	bottom-up:
these	methods	start	with	lower	values	of	input	and	keep	building	the	solutions	for	higher	values.



The	 other	 approach	 is	 top-down.	 In	 this	 method,	 we	 preserve	 the	 recursive	 calls	 and	 use	 the
values	if	they	are	already	computed.	The	implementation	for	this	is	given	as:

Note:	For	all	problems,	it	may	not	be	possible	to	find	both	top-down	and	bottom-up	programming
solutions.

Both	versions	of	the	Fibonacci	series	implementations	clearly	reduce	the	problem	complexity	to
O(n).	This	 is	 because	 if	 a	 value	 is	 already	 computed	 then	we	 are	 not	 calling	 the	 subproblems
again.	Instead,	we	are	directly	taking	its	value	from	the	table.

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	table.

Further	Improving:	One	more	observation	from	the	Fibonacci	series	is:	The	current	value	is	the
sum	 of	 the	 previous	 two	 calculations	 only.	 This	 indicates	 that	 we	 don’t	 have	 to	 store	 all	 the
previous	values.	Instead,	if	we	store	just	the	last	two	values,	we	can	calculate	the	current	value.
The	implementation	for	this	is	given	below:



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Note:	This	method	may	not	be	applicable	(available)	for	all	problems.

Observations

While	solving	the	problems	using	DP,	try	to	figure	out	the	following:

• See	how	the	problems	are	defined	in	terms	of	subproblems	recursively.
• See	if	we	can	use	some	table	[memoization]	to	avoid	the	repeated	calculations.

Factorial	of	a	Number

As	another	example,	consider	 the	factorial	problem:	n!	 is	 the	product	of	all	 integers	between	n
and	1.	The	definition	of	recursive	factorial	can	be	given	as:

This	definition	can	easily	be	converted	to	implementation.	Here	the	problem	is	finding	the	value
of	n!,	and	the	sub-problem	is	finding	the	value	of	(n	–	l)!.	In	the	recursive	case,	when	n	is	greater
than	1,	the	function	calls	itself	to	find	the	value	of	(n	–	l)!	and	multiplies	that	with	n.	In	the	base
case,	when	n	is	0	or	1,	the	function	simply	returns	1.



The	recurrence	for	the	above	implementation	can	be	given	as:	T(n)	=	n	×	T(n	–	1)	≈	O(n)
Time	Complexity:	O(n).	Space	Complexity:	O(n),	recursive	calls	need	a	stack	of	size	n.

In	 the	 above	 recurrence	 relation	 and	 implementation,	 for	 any	 n	 value,	 there	 are	 no	 repetitive
calculations	(no	overlapping	of	sub	problems)	and	the	factorial	function	is	not	getting	any	benefits
with	dynamic	programming.	Now,	let	us	say	we	want	to	compute	a	series	of	m!	for	some	arbitrary
value	m.	Using	the	above	algorithm,	for	each	such	call	we	can	compute	it	in	O(m).	For	example,
to	find	both	n!	and	m!	we	can	use	the	above	approach,	wherein	the	total	complexity	for	finding	n!
and	m!	is	O(m	+	n).

Time	Complexity:	O(n	+	m).
Space	Complexity:	O(max(m,n)),	recursive	calls	need	a	stack	of	size	equal	to	the	maximum	of	m
and	n.

Improving:	Now	let	us	see	how	DP	reduces	the	complexity.	From	the	above	recursive	definition
it	can	be	seen	that	fact(n)	is	calculated	from	fact(n	-1)	and	n	and	nothing	else.	Instead	of	calling
fact(n)	every	time,	we	can	store	the	previous	calculated	values	in	a	table	and	use	these	values	to
calculate	a	new	value.	This	implementation	can	be	given	as:

For	simplicity,	let	us	assume	that	we	have	already	calculated	n!	and	want	to	find	m!.	For	finding
m!,	we	just	need	to	see	the	table	and	use	the	existing	entries	if	they	are	already	computed.	If	m	<	n
then	we	do	not	have	to	recalculate	m!.	If	m	>	n	then	we	can	use	n!	and	call	the	factorial	on	the
remaining	numbers	only.

The	above	implementation	clearly	reduces	the	complexity	to	O(max(m,n)).	This	is	because	if	the
fact(n)	 is	 already	 there,	 then	 we	 are	 not	 recalculating	 the	 value	 again.	 If	 we	 fill	 these	 newly
computed	values,	then	the	subsequent	calls	further	reduce	the	complexity.

Time	Complexity:	O(max(m,n)).	Space	Complexity:	O(max(m,n))	for	table.



19.8	Longest	Common	Subsequence

Given	 two	 strings:	 string	X	 of	 length	m	 [X(1..m)],	 and	 string	 Y	 of	 length	 n	 [Y(1..n)],	 find	 the
longest	common	subsequence:	the	longest	sequence	of	characters	that	appear	left-to-right	(but	not
necessarily	 in	a	contiguous	block)	 in	both	 strings.	For	example,	 if	X	=	 “ABCBDAB”	and	Y	=
“BDCABA”,	 the	LCS(X,	 Y)	 =	 {“BCBA”,	 “BDAB”,	 “BCAB”}.	We	 can	 see	 there	 are	 several
optimal	solutions.

Brute	Force	Approach:	One	 simple	 idea	 is	 to	 check	every	 subsequence	of	X[1..	m]	 (m	 is	 the
length	of	sequence	X)	to	see	if	it	is	also	a	subsequence	of	Y[1..n]	(n	is	the	length	of	sequence	Y).
Checking	 takes	 O(n)	 time,	 and	 there	 are	 2m	 subsequences	 of	 X.	 The	 running	 time	 thus	 is
exponential	O(n.	2m)	and	is	not	good	for	large	sequences.

Recursive	Solution:	Before	going	to	DP	solution,	let	us	form	the	recursive	solution	for	this	and
later	we	can	add	memoization	to	reduce	the	complexity.	Let’s	start	with	some	simple	observations
about	 the	LCS	problem.	 If	we	have	 two	strings,	 say	“ABCBDAB”	and	“BDCABA”,	and	 if	we
draw	 lines	 from	 the	 letters	 in	 the	 first	 string	 to	 the	corresponding	 letters	 in	 the	 second,	no	 two
lines	cross:

From	the	above	observation,	we	can	see	 that	 the	current	characters	of	X	and	Y	may	or	may	not
match.	That	means,	suppose	that	the	two	first	characters	differ.	Then	it	is	not	possible	for	both	of
them	 to	 be	 part	 of	 a	 common	 subsequence	 -	 one	 or	 the	 other	 (or	maybe	 both)	will	 have	 to	 be
removed.	Finally,	observe	that	once	we	have	decided	what	to	do	with	the	first	characters	of	the
strings,	the	remaining	sub	problem	is	again	a	LCS	problem,	on	two	shorter	strings.	Therefore	we
can	solve	it	recursively.

The	 solution	 to	LCS	 should	 find	 two	 sequences	 in	X	 and	Y	 and	 let	 us	 say	 the	 starting	 index	of
sequence	 in	X	 is	 i	 and	 the	starting	 index	of	 sequence	 in	Y	 is	 j.	Also,	 assume	 that	X[i	 ...m]	 is	 a
substring	of	X	starting	at	character	i	and	going	until	the	end	of	X,	and	that	Y[j	...n]	is	a	substring	of
Y	starting	at	character	j	and	going	until	the	end	of	Y.

Based	on	the	above	discussion,	here	we	get	the	possibilities	as	described	below:

1) If	X[i]	==	Y[j]	:	1	+	LCS(i	+	1,j	+	1)
2) If	X[i]	≠	Y[j].	LCS(i,j	+	1)	//	skipping	jth	character	of	Y
3) If	X[i]	≠	Y[j].	LCS(i	+	1,j)	//	skipping	ith	character	of	X

In	the	first	case,	if	X[i]	is	equal	to	Y[j],	we	get	a	matching	pair	and	can	count	it	towards	the	total
length	of	the	LCS.	Otherwise,	we	need	to	skip	either	ith	character	of	X	or	jth	character	of	Y	and
find	the	longest	common	subsequence.	Now,	LCS(i,j)	can	be	defined	as:



LCS	has	many	applications.	In	web	searching,	if	we	find	the	smallest	number	of	changes	that	are
needed	to	change	one	word	into	another.	A	change	here	is	an	insertion,	deletion	or	replacement	of
a	single	character.

This	is	a	correct	solution	but	it	is	very	time	consuming.	For	example,	if	the	two	strings	have	no
matching	characters,	the	last	line	always	gets	executed	which	gives	(if	m	==	n)	close	to	O(2n).

DP	Solution:	Adding	Memoization:	 The	 problem	with	 the	 recursive	 solution	 is	 that	 the	 same
subproblems	get	called	many	different	times.	A	subproblem	consists	of	a	call	to	LCS_length,	with
the	 arguments	 being	 two	 suffixes	 of	 X	 and	 Y,	 so	 there	 are	 exactly	 (i	 +	 1)(j	 +	 1)	 possible
subproblems	 (a	 relatively	 small	 number).	 If	 there	 are	 nearly	2n	 recursive	 calls,	 some	 of	 these
subproblems	must	be	being	solved	over	and	over.

The	DP	solution	is	to	check,	whenever	we	want	to	solve	a	sub	problem,	whether	we’ve	already
done	 it	before.	So	we	 look	up	 the	solution	 instead	of	solving	 it	again.	 Implemented	 in	 the	most
direct	way,	we	just	add	some	code	to	our	recursive	solution.	To	do	this,	look	up	the	code.	This
can	be	given	as:



First,	 take	care	of	the	base	cases.	We	have	created	an	LCS	 table	with	one	row	and	one	column
larger	than	the	lengths	of	the	two	strings.	Then	run	the	iterative	DP	loops	to	fill	each	cell	in	the
table.	This	is	like	doing	recursion	backwards,	or	bottom	up.

The	value	of	LCS[i][j]	depends	on	3	other	values	(LCS[i	+	1][j	+	1],	LCS[i][j	+	1]	and	LCS[i	+
1][j]),	 all	 of	 which	 have	 larger	 values	 of	 i	 or	 j.	 They	 go	 through	 the	 table	 in	 the	 order	 of
decreasing	i	and	j	values.	This	will	guarantee	that	when	we	need	to	fill	in	the	value	of	LCS[i][j],
we	already	know	the	values	of	all	the	cells	on	which	it	depends.

Time	Complexity:	O(mn),	since	i	takes	values	from	1	to	m	and	and	j	takes	values	from	1	to	n.



Space	Complexity:	O(mn).

Note:	In	the	above	discussion,	we	have	assumed	LCS(i,j)	is	the	length	of	the	LCS	with	X[i	 ...m]
and	Y[j	...n].	We	can	solve	the	problem	by	changing	the	definition	as	LCS(i,j)	is	the	length	of	the
LCS	with	X[1	...i]	and	Y[1...j].

Printing	 the	 subsequence:	 The	 above	 algorithm	 can	 find	 the	 length	 of	 the	 longest	 common
subsequence	 but	 cannot	 give	 the	 actual	 longest	 subsequence.	 To	 get	 the	 sequence,	 we	 trace	 it
through	the	table.	Start	at	cell	(0,0).	We	know	that	the	value	of	LC5[0][0]	was	the	maximum	of	3
values	of	the	neighboring	cells.	So	we	simply	recompute	LC5[0][0]	and	note	which	cell	gave	the
maximum	value.	Then	we	move	to	that	cell	(it	will	be	one	of	(1,1),	(0,1)	or	(1,0))	and	repeat	this
until	we	hit	the	boundary	of	the	table.	Every	time	we	pass	through	a	cell	(i,j’)	where	X[i]	==	Y[j],
we	have	 a	matching	pair	 and	print	X[i].	At	 the	 end,	we	will	 have	 printed	 the	 longest	 common
subsequence	in	O(mn)	time.

An	alternative	way	of	getting	path	is	to	keep	a	separate	table	for	each	cell.	This	will	tell	us	which
direction	we	came	from	when	computing	the	value	of	that	cell.	At	the	end,	we	again	start	at	cell
(0,0)	and	follow	these	directions	until	the	opposite	corner	of	the	table.

From	 the	 above	 examples,	 I	 hope	 you	 understood	 the	 idea	 behind	 DP.	 Now	 let	 us	 see	 more
problems	which	can	be	easily	solved	using	the	DP	technique.

Note:	As	we	have	seen	above,	in	DP	the	main	component	is	recursion.	If	we	know	the	recurrence
then	converting	that	to	code	is	a	minimal	task.	For	the	problems	below,	we	concentrate	on	getting
the	recurrence.

19.9	Dynamic	Programming:	Problems	&	Solutions

Problem-1  Convert	the	following	recurrence	to	code.

Solution:	The	code	for	the	given	recursive	formula	can	be	given	as:



Problem-2  Can	we	improve	the	solution	to	Problem-1	using	memoization	of	DP?

Solution:	Yes.	Before	finding	a	solution,	let	us	see	how	the	values	are	calculated.

T(0)	=	T(1)	=	2
T(2)	=	2	*	T(1)	*	T(0)
T(3)	=	2	*	T(1)	*	T(0)	+	2	*	T(2)	*	T(1)
T(4)	=	2	*	T(1)	*	T(0)	+	2	*	T(2)	*	T(1)	+	2	*	T(3)	*	T(2)

From	the	above	calculations	it	is	clear	that	there	are	lots	of	repeated	calculations	with	the	same
input	values.	Let	us	use	a	table	for	avoiding	these	repeated	calculations,	and	the	implementation
can	be	given	as:

Time	Complexity:	O(n2),	two	for	loops.	Space	Complexity:	O(n),	for	table.

Problem-3  Can	we	further	improve	the	complexity	of	Problem-2?

Solution:	Yes,	 since	all	 sub	problem	calculations	are	dependent	only	on	previous	calculations,
code	can	be	modified	as:



Time	Complexity:	O(n),	since	only	one	for	loop.	Space	Complexity:	O(n).

Problem-4  Maximum	Value	Contiguous	Subsequence:	Given	an	array	of	n	numbers,	give
an	 algorithm	 for	 finding	 a	 contiguous	 subsequence	 A(i)...	 A(j)	 for	 which	 the	 sum	 of
elements	is	maximum.	Example:	{-2,	11,	-4,	13,	-5,	2}	→	20	and	{1,	-3,	4,	-2,	-1,	6}	→	7

Solution:

Input:	Array.	A(1)	...	A(n)	of	n	numbers.

Goal:	 If	 there	 are	no	negative	numbers,	 then	 the	 solution	 is	 just	 the	 sum	of	 all	 elements	 in	 the
given	array.	 If	negative	numbers	are	 there,	 then	our	aim	is	 to	maximize	 the	sum	[there	can	be	a
negative	number	in	the	contiguous	sum].

One	 simple	and	brute	 force	approach	 is	 to	 see	all	possible	 sums	and	 select	 the	one	which	has
maximum	value.

Time	Complexity:	O(n3).	Space	Complexity:	O(1).

Problem-5  Can	we	improve	the	complexity	of	Problem-4?



Solution:	Yes.	One	 important	observation	 is	 that,	 if	we	have	already	calculated	 the	sum	for	 the
subsequence	i,...,j	–	1,	 then	we	need	only	one	more	addition	to	get	 the	sum	for	 the	subsequence
i,...,j.	But,	 the	Problem-4	algorithm	 ignores	 this	 information.	 If	we	use	 this	 fact,	we	can	get	 an
improved	algorithm	with	the	running	time	O(n2).

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-6  Can	we	solve	Problem-4	using	Dynamic	Programming?

Solution:	Yes.	For	simplicity,	let	us	say,	M(i)	indicates	maximum	sum	over	all	windows	ending	at
i.

To	find	maximum	sum	we	have	to	do	one	of	the	following	and	select	maximum	among	them.

• Either	extend	the	old	sum	by	adding	A[i]
• or	start	new	window	starting	with	one	element	A[i]

Where,	M(i	–	1)	+	A[i]	 indicates	 the	case	of	extending	 the	previous	 sum	by	adding	A[i]	 and	0
indicates	the	new	window	starting	at	A[i].



Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	table.

Problem-7  Is	there	any	other	way	of	solving	Problem-4?

Solution:	Yes.	We	can	solve	this	problem	without	DP	too	(without	memory).	The	algorithm	is	a
little	 tricky.	 One	 simple	 way	 is	 to	 look	 for	 all	 positive	 contiguous	 segments	 of	 the	 array
(sumEndingHere)	 and	 keep	 track	 of	 the	maximum	 sum	 contiguous	 segment	 among	 all	 positive
segments	 (sumSoFar).	 Each	 time	 we	 get	 a	 positive	 sum	 compare	 it	 (sumEndingHere)	 with
sumSoFar	 and	update	 sumSoFar	 if	 it	 is	 greater	 than	 sumSoFar.	 Let	 us	 consider	 the	 following
code	for	the	above	observation.



Note:	The	algorithm	doesn’t	work	 if	 the	 input	contains	all	negative	numbers.	 It	 returns	0	 if	 all
numbers	 are	 negative.	 To	 overcome	 this,	 we	 can	 add	 an	 extra	 check	 before	 the	 actual
implementation.	The	phase	will	 look	 if	 all	 numbers	 are	 negative,	 and	 if	 they	 are	 it	will	 return
maximum	of	them	(or	smallest	in	terms	of	absolute	value).

Time	Complexity:	O(n),	because	we	are	doing	only	one	scan.	Space	Complexity:	O(1),	for	table.

Problem-8  In	Problem-7	solution,	we	have	assumed	that	M(i)	indicates	maximum	sum	over
all	windows	ending	at	i.	Can	we	assume	M(i)	indicates	maximum	sum	over	all	windows
starting	at	i	and	ending	at	n?

Solution:	Yes.	For	simplicity,	let	us	say,	M(i)	indicates	maximum	sum	over	all	windows	starting
at	i.

To	find	maximum	window	we	have	to	do	one	of	the	following	and	select	maximum	among	them.

• Either	extend	the	old	sum	by	adding	A[i]
• Or	start	new	window	starting	with	one	element	A[i]

Where,	M(i	+	1)	+	A[t]	 indicates	 the	case	of	extending	 the	previous	sum	by	adding	A[i],	and	0
indicates	the	new	window	starting	at	A[i].

Time	Complexity:	O(n).	Space	Complexity:	O(n),	for	table.

Note:	For	O(nlogn)	solution,	refer	to	the	Divide	and	Conquer	chapter.

Problem-9  Given	 a	 sequence	 of	 n	 numbers	 A(1)	 ...A(n),	 give	 an	 algorithm	 for	 finding	 a
contiguous	subsequence	A(i)	 ...A(j)	 for	which	 the	 sum	of	 elements	 in	 the	 subsequence	 is
maximum.	Here	the	condition	is	we	should	not	select	two	contiguous	numbers.

Solution:	Let	us	see	how	DP	solves	this	problem.	Assume	that	M(i)	represents	the	maximum	sum
from	 1	 to	 i	 numbers	 without	 selecting	 two	 contiguous	 numbers.	 While	 computing	 M(i),	 the
decision	 we	 have	 to	 make	 is,	 whether	 to	 select	 the	 ith	 element	 or	 not.	 This	 gives	 us	 two
possibilities	and	based	on	this	we	can	write	the	recursive	formula	as:



• The	first	case	indicates	whether	we	are	selecting	the	ith	element	or	not.	If	we	don’t
select	the	ith	element	then	we	have	to	maximize	the	sum	using	the	elements	1	to	i	–
1.	 If	 ith	 element	 is	 selected	 then	we	should	not	 select	 i	–	1th	 element	and	need	 to
maximize	the	sum	using	1	to	i	–	2	elements.

• In	the	above	representation,	the	last	two	cases	indicate	the	base	cases.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-10  In	Problem-9,	we	assumed	 that	M(i)	 represents	 the	maximum	sum	 from	1	 to	 i
numbers	without	 selecting	 two	 contiguous	 numbers.	Can	we	 solve	 the	 same	problem	by
changing	the	definition	as:	M(i)	represents	the	maximum	sum	from	i	to	n	numbers	without
selecting	two	contiguous	numbers?

Solution:	Yes.	Let	us	assume	that	M(i)	represents	the	maximum	sum	from	i	to	n	numbers	without
selecting	two	contiguous	numbers:



As	similar	to	Problem-9	solution,	we	can	write	the	recursive	formula	as:

• The	first	case	indicates	whether	we	are	selecting	the	ith	element	or	not.	If	we	don’t
select	the	ith	element	then	we	have	to	maximize	the	sum	using	the	elements	i	+	1	to
n.	 If	 ith	 element	 is	 selected	 then	 we	 should	 not	 select	 i	 +	 1th	 element	 need	 to
maximize	the	sum	using	i	+	2	to	n	elements.

• In	the	above	representation,	the	last	two	cases	indicate	the	base	cases.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-11  Given	 a	 sequence	 of	 n	 numbers	A(1)	 ...A(n),	 give	 an	 algorithm	 for	 finding	 a
contiguous	subsequence	A(i)	 ...A(j)	 for	which	 the	 sum	of	 elements	 in	 the	 subsequence	 is
maximum.	Here	the	condition	is	we	should	not	select	three	continuous	numbers.

Solution:	Input:	Array	A(1)	...A(n)	of	n	numbers.

Assume	 that	M(i)	 represents	 the	 maximum	 sum	 from	 1	 to	 i	 numbers	 without	 selecting	 three
contiguous	numbers.	While	computing	M(i),	the	decision	we	have	to	make	is,	whether	to	select	ith
element	or	not.	This	gives	us	the	following	possibilities:

• In	the	given	problem	the	restriction	is	not	to	select	three	continuous	numbers,	but	we
can	select	 two	elements	continuously	and	skip	 the	third	one.	That	 is	what	 the	first
case	says	in	the	above	recursive	formula.	That	means	we	are	skipping	A[i	–	2].

• The	other	possibility	 is,	 selecting	 ith	 element	and	skipping	second	 i	–	1th	 element.
This	is	the	second	case	(skipping	A[i	–	1]).

• The	third	term	defines	the	case	of	not	selecting	ith	element	and	as	a	result	we	should
solve	the	problem	with	i	–	1	elements.



Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-12  In	Problem-11,	we	assumed	that	M(i)	 represents	the	maximum	sum	from	1	to	 i
numbers	without	selecting	three	contiguous	numbers.	Can	we	solve	the	same	problem	by
changing	the	definition	as:	M(i)	represents	the	maximum	sum	from	i	to	n	numbers	without
selecting	three	contiguous	numbers?

Solution:	Yes.	 The	 reasoning	 is	 very	 much	 similar.	 Let	 us	 see	 how	 DP	 solves	 this	 problem.
Assume	 that	M(i)	 represents	 the	 maximum	 sum	 from	 i	 to	 n	 numbers	 without	 selecting	 three
contiguous	numbers.

While	computing	M(i),	the	decision	we	have	to	make	is,	whether	to	select	ith	element	or	not.	This
gives	us	the	following	possibilities:

• In	the	given	problem	the	restriction	is	to	not	select	three	continuous	numbers,	but	we
can	select	 two	elements	continuously	and	skip	 the	third	one.	That	 is	what	 the	first
case	says	in	the	above	recursive	formula.	That	means	we	are	skipping	A[i	+	2].

• The	other	possibility	 is,	 selecting	 ith	 element	and	skipping	second	 i	–	1th	 element.
This	is	the	second	case	(skipping	A[i	+	1]).

• And	 the	 third	case	 is	not	selecting	 ith	 element	and	as	a	 result	we	should	 solve	 the
problem	with	i	+	1	elements.

Time	Complexity:	O(n).	Space	Complexity:	O(n).

Problem-13  Catalan	Numbers:	How	many	binary	search	trees	are	there	with	n	vertices?

Solution:	Binary	Search	Tree	 (BST)	 is	 a	 tree	where	 the	 left	 subtree	elements	are	 less	 than	 the
root	 element,	 and	 the	 right	 subtree	 elements	 are	 greater	 than	 the	 root	 element.	 This	 property
should	be	satisfied	at	every	node	in	the	tree.	The	number	of	BSTs	with	n	nodes	is	called	Catalan
Number	and	 is	denoted	by	Cn.	For	example,	 there	are	2	BSTs	with	2	nodes	 (2	choices	 for	 the
root)	and	5	BSTs	with	3	nodes.



Let	us	assume	that	the	nodes	of	the	tree	are	numbered	from	1	to	n.	Among	the	nodes,	we	have	to
select	some	node	as	root,	and	then	divide	 the	nodes	which	are	 less	 than	root	node	into	 left	sub
tree,	and	elements	greater	than	root	node	into	right	sub	tree.	Since	we	have	already	numbered	the
vertices,	let	us	assume	that	the	root	element	we	selected	is	ith	element.

If	we	select	ith	element	as	root	then	we	get	i	–	1	elements	on	left	sub-tree	and	n	–	i	elements	on
right	sub	tree.	Since	Cn	is	the	Catalan	number	for	n	elements,	Ci–1	represents	the	Catalan	number
for	 left	sub	 tree	elements	 (i	–	1	elements)	and	Cn–i	 represents	 the	Catalan	number	for	 right	sub
tree	elements.	The	 two	sub	 trees	are	 independent	of	each	other,	 so	we	simply	multiply	 the	 two
numbers.	That	means,	the	Catalan	number	for	a	fixed	i	value	is	Ci–1	×	Cn–i.

Since	there	are	n	nodes,	for	i	we	will	get	n	choices.	The	total	Catalan	number	with	n	nodes	can
be	given	as:



Time	Complexity:	O(4n).	For	proof,	refer	Introduction	chapter.

Problem-14  Can	we	improve	the	time	complexity	of	Problem-13	using	DP?

Solution:	The	recursive	call	Cn	depends	only	on	the	numbers	C0	to	Cn–1	and	for	any	value	of	i,
there	are	a	lot	of	recalculations.	We	will	keep	a	table	of	previously	computed	values	of	Ci.	If	the
function	CatalanNumber()	is	called	with	parameter	i,	and	if	it	has	already	been	computed	before,
then	we	can	simply	avoid	recalculating	the	same	subproblem.

The	 time	complexity	of	 this	 implementation	O(n2),	because	 to	compute	CatalanNumber(n),	 we
need	to	compute	all	of	the	CatalanNumber(i)	values	between	0	and	n	–	1,	and	each	one	will	be
computed	exactly	once,	in	linear	time.

In	mathematics,	Catalan	Number	can	be	represented	by	direct	equation	as:	

Problem-15  Matrix	Product	Parenthesizations:	Given	a	series	of	matrices:	A1	×	A2	×	A3	×
.	 .	 .	 ×	 An	 with	 their	 dimensions,	 what	 is	 the	 best	 way	 to	 parenthesize	 them	 so	 that	 it
produces	the	minimum	number	of	total	multiplications.	Assume	that	we	are	using	standard
matrix	and	not	Strassen’s	matrix	multiplication	algorithm.

Solution:	 Input:	Sequence	of	matrices	A1	×	A2	×	A3	×	 .	 .	 .	×	An,	where	Ai	 is	 a	Pi–1	 ×	Pi.	 The
dimensions	are	given	in	an	array	P.



Goal:	 Parenthesize	 the	 given	 matrices	 in	 such	 a	 way	 that	 it	 produces	 the	 optimal	 number	 of
multiplications	needed	to	compute	A1	×	A2	×	A3	×	.	.	.	×	An.

For	 the	 matrix	 multiplication	 problem,	 there	 are	 many	 possibilities.	 This	 is	 because	 matrix
multiplication	is	associative.	It	does	not	matter	how	we	parenthesize	the	product,	the	result	will
be	the	same.	As	an	example,	for	four	matrices	A,	B,	C,	and	D,	the	possibilities	could	be:

(ABC)D	=	(AB)(CD)	=	A(BCD)	=	A(BC)D	=..

Multiplying	(p	×	q)	matrix	with	(q	×	r)	matrix	 requires	pqr	multiplications.	Each	of	 the	 above
possibilities	 produces	 a	 different	 number	 of	 products	 during	multiplication.	 To	 select	 the	 best
one,	we	can	go	through	each	possible	parenthesization	(brute	force),	but	this	requires	O(2n)	time
and	 is	 very	 slow.	 Now	 let	 us	 use	 DP	 to	 improve	 this	 time	 complexity.	 Assume	 that,	M[i,j]
represents	the	least	number	of	multiplications	needed	to	multiply	Ai	…	Aj.

The	above	recursive	formula	says	that	we	have	to	find	point	k	such	that	it	produces	the	minimum
number	of	multiplications.	After	computing	all	possible	values	for	k,	we	have	to	select	the	k	value
which	gives	minimum	value.	We	can	use	one	more	 table	 (say,	S[i,j])	 to	 reconstruct	 the	optimal
parenthesizations.	Compute	the	M[i,j]	and	S[i,j]	in	a	bottom-up	fashion.



How	many	sub	problems	are	 there?	 In	 the	above	 formula,	 i	 can	 range	 from	1	 to	n	 and	 j	 can
range	 from	1	 to	n.	 So	 there	 are	 a	 total	 of	n2	 subproblems,	 and	 also	we	 are	 doing	n	 –	 1	 such
operations	[since	the	total	number	of	operations	we	need	for	A1	×	A2	×A3	×.	.	.	×	An	ise	n	–	1].	So
the	time	complexity	is	O(n3).
Space	Complexity:	O(n2).

Problem-16  For	the	Problem-15,	can	we	use	greedy	method?

Solution:	Greedy	method	is	not	an	optimal	way	of	solving	this	problem.	Let	us	go	through	some
counter	example	for	this.	As	we	have	seen	already,	greedy	method	makes	the	decision	that	is	good
locally	and	it	does	not	consider	the	future	optimal	solutions.	In	this	case,	if	we	use	Greedy,	 then
we	always	do	the	cheapest	multiplication	first.	Sometimes	it	returns	a	parenthesization	that	is	not
optimal.

Example:	Consider	A1	×	A2	×	A3	with	dimentions	3	×	100,	100	×	2	and	2	×	2.	Based	on	greedy
we	parenthesize	them	as:	A1	×	(A2	×A3)	with	100	·	2	·	2	+	3	·	100	·	2	=	1000	multiplications.	But
the	 optimal	 solution	 to	 this	 problem	 is:	 (A1	 ×	A2)	 ×	A3	 with	 3	 ·	 100	 ·	 2	 +	 3	 ·	 2	 ·	 2	 =	 612



multiplications.	∴	we	cannot	use	greedy	for	solving	this	problem.

Problem-17  Integer	Knapsack	 Problem	 [Duplicate	 Items	 Permitted]:	 Given	 n	 types	 of
items,	 where	 the	 ith	 item	 type	 has	 an	 integer	 size	 si	 and	 a	 value	 vi.	 We	 need	 to	 fill	 a
knapsack	of	total	capacity	C	with	items	of	maximum	value.	We	can	add	multiple	items	of
the	same	type	to	the	knapsack.
Note:	For	Fractional	Knapsack	problem	refer	to	Greedy	Algorithms	chapter.

Solution:	 Input:	n	 types	of	 items	where	 ith	 type	 item	has	 the	size	si	and	value	vi.	Also,	 assume
infinite	number	of	items	for	each	item	type.

Goal:	Fill	the	knapsack	with	capacity	C	by	using	n	types	of	items	and	with	maximum	value.

One	important	note	is	that	it’s	not	compulsory	to	fill	the	knapsack	completely.	That	means,	filling
the	 knapsack	 completely	 [of	 size	 C]	 if	 we	 get	 a	 value	 V	 and	 without	 filling	 the	 knapsack
completely	[1et	us	say	C	–	1]	with	value	U	and	if	V	<	U	then	we	consider	the	second	one.	In	this
case,	we	are	basically	filling	the	knapsack	of	size	C	–	1.	If	we	get	the	same	situation	for	C	–	1
also,	then	we	try	to	fill	the	knapsack	with	C	–	2	size	and	get	the	maximum	value.

Let	us	say	M(j)	denotes	the	maximum	value	we	can	pack	into	a	j	size	knapsack.	We	can	express
M(j)	recursively	in	terms	of	solutions	to	sub	problems	as	follows:

For	 this	 problem	 the	 decision	 depends	 on	whether	we	 select	 a	 particular	 ith	 item	 or	 not	 for	 a
knapsack	of	size	j.

• If	we	select	ith	item,	then	we	add	its	value	vi	to	the	optimal	solution	and	decrease	the
size	of	the	knapsack	to	be	solved	to	j	–	si.

• If	we	do	not	select	the	item	then	check	whether	we	can	get	a	better	solution	for	the
knapsack	of	size	j	–	1.

The	value	of	M(C)	will	contain	the	value	of	the	optimal	solution.	We	can	find	the	list	of	items	in
the	optimal	solution	by	maintaining	and	following	“back	pointers”.

Time	Complexity:	Finding	each	M(j)	value	will	require	Θ(n)	 time,	and	we	need	to	sequentially
compute	C	such	values.	Therefore,	total	running	time	is	Θ(nC).

Space	Complexity:	Θ(C).

Problem-18  0-1	Knapsack	Problem:	For	Problem-17,	how	do	we	solve	it	 if	 the	items	are
not	 duplicated	 (not	 having	 an	 infinite	 number	 of	 items	 for	 each	 type,	 and	 each	 item	 is
allowed	to	be	used	for	0	or	1	time)?



Real-time	 example:	 Suppose	 we	 are	 going	 by	 flight,	 and	 we	 know	 that	 there	 is	 a
limitation	on	the	luggage	weight.	Also,	the	items	which	we	are	carrying	can	be	of	different
types	(like	 laptops,	etc.).	 In	 this	case,	our	objective	 is	 to	select	 the	 items	with	maximum
value.	That	means,	we	need	to	tell	the	customs	officer	to	select	the	items	which	have	more
weight	and	less	value	(profit).

Solution:	Input	is	a	set	of	n	items	with	sizes	si	and	values	vi	and	a	Knapsack	of	size	C	which	we
need	to	fill	with	a	subset	of	items	from	the	given	set.	Let	us	try	to	find	the	recursive	formula	for
this	problem	using	DP.	Let	M(i,j)	represent	the	optimal	value	we	can	get	for	filling	up	a	knapsack
of	size	j	with	items	1...	i.	The	recursive	formula	can	be	given	as:

Time	Complexity:	O(nC),	 since	 there	are	nC	 subproblems	 to	be	solved	and	each	of	 them	 takes
O(1)	to	compute.	Space	Complexity:	O(nC),	where	as	Integer	Knapsack	takes	only	O(C).

Now	let	us	consider	the	following	diagram	which	helps	us	in	reconstructing	the	optimal	solution
and	also	gives	further	understanding.	Size	of	below	matrix	is	M.

Since	i	takes	values	from	1	...n	and	j	takes	values	from	1...	C,	there	are	a	total	of	nC	subproblems.
Now	let	us	see	what	the	above	formula	says:

• M(i	–	1,j):	Indicates	the	case	of	not	selecting	the	ith	item.	In	this	case,	since	we	are
not	 adding	 any	 size	 to	 the	 knapsack	 we	 have	 to	 use	 the	 same	 knapsack	 size	 for
subproblems	but	excluding	the	ith	item.	The	remaining	items	are	i	–	1.

• M(i	–	1,j	–	si)	+	vi	indicates	the	case	where	we	have	selected	the	ith	item.	If	we	add



the	ith	item	then	we	have	to	reduce	the	subproblem	knapsack	size	to	j	–	si	and	at	the
same	time	we	need	to	add	the	value	vi	to	the	optimal	solution.	The	remaining	items
are	i	–	1.

Now,	 after	 finding	 all	 M(i,j)	 values,	 the	 optimal	 objective	 value	 can	 be	 obtained	 as:
Maxj{M(n,j)}
This	is	because	we	do	not	know	what	amount	of	capacity	gives	the	best	solution.

In	order	to	compute	some	value	M(i,j),	we	take	the	maximum	of	M(i	–	1,j)	and	M(i	–	1,j	–	si)	+	vi.
These	 two	 values	 (M(i,j)	 and	M(i	 –	 1,j	 –	 si))	 appear	 in	 the	 previous	 row	 and	 also	 in	 some
previous	columns.	So,	M(i,j)	can	be	computed	just	by	looking	at	two	values	in	the	previous	row
in	the	table.

Problem-19	Making	Change:	Given	n	 types	of	 coin	denominations	of	values	v1	<	v2	 <...<	 vn
(integers).	Assume	v1	=	1,	so	that	we	can	always	make	change	for	any	amount	of	money	C.
Give	an	algorithm	which	makes	change	 for	an	amount	of	money	C	with	 as	 few	coins	 as
possible.

Solution:

This	 problem	 is	 identical	 to	 the	 Integer	 Knapsack	 problem.	 In	 our	 problem,	 we	 have	 coin
denominations,	each	of	value	vi.	We	can	construct	 an	 instance	of	 a	Knapsack	problem	for	each
item	that	has	a	sizes	si,	which	is	equal	to	the	value	of	vi	coin	denomination.	In	the	Knapsack	we
can	give	the	value	of	every	item	as	–1.

Now	 it	 is	 easy	 to	 understand	 an	 optimal	 way	 to	 make	 money	 C	 with	 the	 fewest	 coins	 is
completely	equivalent	 to	 the	optimal	way	 to	 fill	 the	Knapsack	of	 size	C.	This	 is	because	 since
every	value	has	a	value	of	–1,	and	the	Knapsack	algorithm	uses	as	few	items	as	possible	which
correspond	to	as	few	coins	as	possible.



Let	us	try	formulating	the	recurrence.	Let	M(j)	indicate	the	minimum	number	of	coins	required	to
make	change	for	the	amount	of	money	equal	to	j.

M(j)	=	Mini{M(j	–	vj)}	+	1

What	 this	 says	 is,	 if	coin	denomination	 i	was	 the	 last	denomination	coin	added	 to	 the	 solution,
then	 the	 optimal	 way	 to	 finish	 the	 solution	 with	 that	 one	 is	 to	 optimally	 make	 change	 for	 the
amount	of	money	j	–	vi	and	then	add	one	extra	coin	of	value	vi.

Time	 Complexity:	 O(nC).	 Since	 we	 are	 solving	 C	 sub-problems	 and	 each	 of	 them	 requires
minimization	of	n	terms.	Space	Complexity:	O(nC).

Problem-20  Longest	Increasing	Subsequence:	Given	a	sequence	of	n	numbers	A1	.	 .	 .	An,
determine	 a	 subsequence	 (not	 necessarily	 contiguous)	 of	 maximum	 length	 in	 which	 the
values	in	the	subsequence	form	a	strictly	increasing	sequence.

Solution:

Input:	Sequence	of	n	numbers	A1	.	.	.	An.

Goal:	 To	 find	 a	 subsequence	 that	 is	 just	 a	 subset	 of	 elements	 and	 does	 not	 happen	 to	 be
contiguous.	But	the	elements	in	the	subsequence	should	form	a	strictly	increasing	sequence	and	at
the	same	time	the	subsequence	should	contain	as	many	elements	as	possible.

For	example,	if	the	sequence	is	(5,6,2,3,4,1.9,9,8,9,5),	then	(5,6),	(3,5),	(1,8,9)	are	all	increasing
sub-sequences.	The	longest	one	of	them	is	(2,3,4,8,9),	and	we	want	an	algorithm	for	finding	it.

First,	 let	us	concentrate	on	 the	algorithm	for	 finding	 the	 longest	 subsequence.	Later,	we	can	 try
printing	 the	 sequence	 itself	by	 tracing	 the	 table.	Our	 first	 step	 is	 finding	 the	 recursive	 formula.



First,	let	us	create	the	base	conditions.	If	there	is	only	one	element	in	the	input	sequence	then	we
don’t	have	to	solve	the	problem	and	we	just	need	to	return	that	element.	For	any	sequence	we	can
start	with	the	first	element	(A[1]).	Since	we	know	the	first	number	in	the	LIS,	let’s	find	the	second
number	(A[2]).	If	A[2]	is	larger	than	A[1]	then	include	A[2]	also.	Otherwise,	we	are	done	-	the	LIS
is	the	one	element	sequence(A[1]).

Now,	let	us	generalize	the	discussion	and	decide	about	ith	element.	Let	L(i)	represent	the	optimal
subsequence	which	 is	starting	at	position	A[1]	and	ending	at	A[i].	The	optimal	way	 to	obtain	a
strictly	 increasing	 subsequence	 ending	 at	 position	 i	 is	 to	 extend	 some	 subsequence	 starting	 at
some	earlier	position	j.	For	this	the	recursive	formula	can	be	written	as:

L(i)	=	Maxj	<	i	and	A	[j]	<	A	[i]{L(j)}	+	1

The	 above	 recurrence	 says	 that	 we	 have	 to	 select	 some	 earlier	 position	 j	 which	 gives	 the
maximum	sequence.	The	1	in	the	recursive	formula	indicates	the	addition	of	ith	element.

Now	after	 finding	 the	maximum	sequence	for	all	positions	we	have	 to	select	 the	one	among	all
positions	which	gives	the	maximum	sequence	and	it	is	defined	as:

Maxi{L(i)}



Time	Complexity:	O(n2),	since	two	for	loops.	Space	Complexity:	O(n),	for	table.

Problem-21  Longest	 Increasing	 Subsequence:	 In	 Problem-20,	 we	 assumed	 that	 L(i)
represents	 the	optimal	subsequence	which	 is	starting	at	position	A[1]	and	ending	at	A[i].
Now,	let	us	change	the	definition	of	L(i)	as:	L(i)	represents	the	optimal	subsequence	which
is	 starting	 at	 position	 A[i]	 and	 ending	 at	 A[n].	 With	 this	 approach	 can	 we	 solve	 the
problem?

Solution:	Yes.

Let	L(i)	represent	the	optimal	subsequence	which	is	starting	at	position	A[i]	and	ending	at	A[n].
The	optimal	way	to	obtain	a	strictly	increasing	subsequence	starting	at	position	i	is	going	to	be	to
extend	some	subsequence	starting	at	some	later	position	j.	For	this	the	recursive	formula	can	be
written	as:

L(i)	=	Maxj	<	i	and	A	[j]	<	A	[i]{L(j)}	+	1

We	have	to	select	some	later	position	j	which	gives	the	maximum	sequence.	The	1	in	the	recursive
formula	is	the	addition	of	ith	element.	After	finding	the	maximum	sequence	for	all	positions	select



the	one	among	all	positions	which	gives	the	maximum	sequence	and	it	is	defined	as:

Maxi{L(i)}

Time	Complexity:	O(n2)	since	two	nested	for	loops.	Space	Complexity:	O(n),	for	table.

Problem-22  Is	there	an	alternative	way	of	solving	Problem-21?

Solution:	Yes.	The	other	method	is	to	sort	the	given	sequence	and	save	it	into	another	array	and
then	 take	out	 the	 “Longest	Common	Subsequence”	 (LCS)	of	 the	 two	arrays.	This	method	has	 a
complexity	of	O(n2).	For	LCS	problem	refer	theory	section	of	this	chapter.

Problem-23  Box	Stacking:	Assume	that	we	are	given	a	set	of	n	rectangular	3	–	D	boxes.	The
dimensions	of	ith	box	are	height	hi,	width	wi	and	depth	di.	Now	we	want	to	create	a	stack
of	boxes	which	is	as	tall	as	possible,	but	we	can	only	stack	a	box	on	top	of	another	box	if
the	dimensions	of	the	2	–D	base	of	the	lower	box	are	each	strictly	larger	than	those	of	the	2
–D	base	of	the	higher	box.	We	can	rotate	a	box	so	that	any	side	functions	as	its	base.	It	is
possible	to	use	multiple	instances	of	the	same	type	of	box.

Solution:	Box	stacking	problem	can	be	reduced	to	LIS	[Problem-21.

Input:	 n	 boxes	 where	 ith	 with	 height	 hi,	 width	wi	 and	 depth	 di.	 For	 all	 n	 boxes	 we	 have	 to
consider	all	the	orientations	with	respect	to	rotation.	That	is,	if	we	have,	in	the	original	set,	a	box
with	dimensions	1	×	2	×	3,	then	we	consider	3	boxes,



This	simplification	allows	us	to	forget	about	the	rotations	of	the	boxes	and	we	just	focus	on	the
stacking	of	n	boxes	with	each	height	as	hi	and	a	base	area	of	(wi	x	di).	Also	assume	that	wi	≤	di.
Now	what	we	do	is,	make	a	stack	of	boxes	that	is	as	tall	as	possible	and	has	maximum	height.	We
allow	a	box	 i	 on	 top	of	box	 j	 only	 if	 box	 i	 is	 smaller	 than	 box	 j	 in	 both	 the	 dimensions.	That
means,	if	wi	<	wj	&&	di	<	dj.	Now	let	us	solve	this	using	DP.	First	select	the	boxes	in	the	order
of	decreasing	base	area.

Now,	let	us	say	H(j)	represents	the	tallest	stack	of	boxes	with	box	j	on	top.	This	is	very	similar	to
the	LIS	problem	because	the	stack	of	n	boxes	with	ending	box	j	is	equal	to	finding	a	subsequence
with	the	first	 j	boxes	due	 to	 the	sorting	by	decreasing	base	area.	The	order	of	 the	boxes	on	 the
stack	is	going	to	be	equal	to	the	order	of	the	sequence.

Now	we	can	write	H(j)	 recursively.	 In	order	 to	 form	a	stack	which	ends	on	box	 j,	we	need	 to
extend	a	previous	stack	ending	at	i.	That	means,	we	need	to	put	j	box	at	the	top	of	the	stack	[i	box
is	the	current	top	of	the	stack].	To	put	j	box	at	the	top	of	the	stack	we	should	satisfy	the	condition
wi	>	wj	and	di	>	dj	[this	ensures	that	the	low	level	box	has	more	base	than	the	boxes	above	it].
Based	on	this	logic,	we	can	write	the	recursive	formula	as:

Similar	to	the	LIS	problem,	at	the	end	we	have	to	select	the	best	j	over	all	potential	values.	This
is	because	we	are	not	sure	which	box	might	end	up	on	top.

Maxj{H(j)}

Time	Complexity:	O(n2).

Problem-24  Building	Bridges	 in	 India:	 Consider	 a	 very	 long,	 straight	 river	which	moves
from	north	to	south.	Assume	there	are	n	cities	on	both	sides	of	the	river:	n	cities	on	the	left
of	 the	 river	and	n	cities	on	 the	 right	 side	of	 the	 river.	Also,	 assume	 that	 these	cities	are
numbered	from	1	to	n	but	the	order	is	not	known.	Now	we	want	to	connect	as	many	left-



right	 pairs	 of	 cities	 as	 possible	 with	 bridges	 such	 that	 no	 two	 bridges	 cross.	 When
connecting	cities,	we	can	only	connect	city	i	on	the	left	side	to	city	i	on	the	right	side.

Solution:

Input:	Two	pairs	of	sets	with	each	numbered	from	1	to	n.

Goal:	Construct	as	many	bridges	as	possible	without	any	crosses	between	left	side	cities	to	right
side	cities	of	the	river.

To	understand	better	let	us	consider	the	diagram	below.	In	the	diagram	it	can	be	seen	that	there
are	n	cities	on	the	left	side	of	river	and	n	cities	on	the	right	side	of	river.	Also,	note	that	we	are
connecting	the	cities	which	have	the	same	number	[a	requirement	in	the	problem].	Our	goal	is	to
connect	the	maximum	cities	on	the	left	side	of	river	to	cities	on	the	right	side	of	the	river,	without
any	cross	edges.	Just	to	make	it	simple,	let	us	sort	the	cities	on	one	side	of	the	river.

If	we	observe	carefully,	since	 the	cities	on	 the	 left	side	are	already	sorted,	 the	problem	can	be
simplified	 to	 finding	 the	 maximum	 increasing	 sequence.	 That	 means	 we	 have	 to	 use	 the	 LIS
solution	for	finding	the	maximum	increasing	sequence	on	the	right	side	cities	of	the	river.

Time	Complexity:	O(n2),	(same	as	LIS).

Problem-25  Subset	 Sum:	 Given	 a	 sequence	 of	 n	 positive	 numbers	 A1	 .	 .	 .	 An,	 give	 an
algorithm	which	checks	whether	there	exists	a	subset	of	A	whose	sum	of	all	numbers	is	T?

Solution:	This	 is	 a	variation	of	 the	Knapsack	problem.	As	an	example,	 consider	 the	 following
array:



A	=	[3,2,4,19,3,7,13,10,6,11]

Suppose	we	want	 to	 check	whether	 there	 is	 any	 subset	 whose	 sum	 is	 17.	 The	 answer	 is	 yes,
because	the	sum	of	4	+	13	=	17	and	therefore	{4,13}	is	such	a	subset.

Let	us	try	solving	this	problem	using	DP.	We	will	define	n	×	T	matrix,	where	n	is	the	number	of
elements	in	our	input	array	and	T	is	the	sum	we	want	to	check.

Let,	M[i,j]	=	1	if	it	is	possible	to	find	a	subset	of	the	numbers	1	through	i	that	produce	sum/	and
M[i,j]	=	0	otherwise.

M[i,	j]	=	Max(M[i	–	1,j],	M[i	–	1,	j	–	Ai])

According	to	the	above	recursive	formula	similar	to	the	Knapsack	problem,	we	check	if	we	can
get	the	sum	j	by	not	including	the	element	i	in	our	subset,	and	we	check	if	we	can	get	the	sum	j	by
including	 i	 and	 checking	 if	 the	 sum	 j	 –	Ai	 exists	 without	 the	 ith	 element.	 This	 is	 identical	 to
Knapsack,	except	that	we	are	storing	0/1’s	instead	of	values.	In	the	below	implementation	we	can
use	binary	OR	operation	to	get	the	maximum	among	M[i	–	1,j]	and	M[i	–	1,j	–	Ai].

How	many	subproblems	are	there?	In	the	above	formula,	i	can	range	from	1	to	n	and	j	can	range
from	l	to	T.	There	are	a	total	of	nT	subproblems	and	each	one	takes	O(1).	So	the	time	complexity
is	O(nT)	and	this	is	not	polynomial	as	the	running	time	depends	on	two	variables	[n	and	T],	and
we	can	see	that	they	are	anexponential	function	of	the	other.

Space	Complexity:	O(nT).

Problem-26  Given	a	set	of	n	integers	and	the	sum	of	all	numbers	is	at	most	if.	Find	the	subset
of	these	n	elements	whose	sum	is	exactly	half	of	the	total	sum	of	n	numbers.

Solution:	Assume	that	the	numbers	are	A1	.	.	.	An.	Let	us	use	DP	to	solve	this	problem.	We	will



create	a	boolean	array	T	with	size	equal	to	K	+	1.	Assume	that	T[x]	is	1	if	there	exists	a	subset	of
given	n	elements	whose	sum	is	x.	That	means,	after	the	algorithm	finishes,	T[K]	will	be	1,	if	and
only	if	there	is	a	subset	of	the	numbers	that	has	sum	K.	Once	we	have	that	value	then	we	just	need
to	return	T[K/2].	If	it	is	1,	then	there	is	a	subset	that	adds	up	to	half	the	total	sum.

Initially	we	set	all	values	of	T	to	0.	Then	we	set	T[0]	to	1.	This	is	because	we	can	always	build	0
by	taking	an	empty	set.	If	we	have	no	numbers	in	A,	then	we	are	done!	Otherwise,	we	pick	the	first
number,	A[0].	We	can	either	throw	it	away	or	take	it	into	our	subset.	This	means	that	the	new	T[]
should	have	T[0]	and	T[A[0]]	set	to	1.	This	creates	the	base	case.	We	continue	by	taking	the	next
element	of	A.

Suppose	that	we	have	already	taken	care	of	the	first	i	–	1	elements	of	A.	Now	we	take	A[i]	and
look	at	our	table	T[].	After	processing	i	–	1	elements,	the	array	T	has	a	1	in	every	location	that
corresponds	to	a	sum	that	we	can	make	from	the	numbers	we	have	already	processed.	Now	we
add	 the	new	number,	A[i].	What	 should	 the	 table	 look	 like?	First	of	 all,	we	can	 simply	 ignore
A[i].	That	means,	 no	 one	 should	 disappear	 from	T[]	 -	we	 can	 still	make	 all	 those	 sums.	Now
consider	some	 location	of	T[j]	 that	has	a	1	 in	 it.	 It	corresponds	 to	some	subset	of	 the	previous
numbers	that	add	up	to	j.	If	we	add	A[i]	to	that	subset,	we	will	get	a	new	subset	with	total	sum	j	+
A[i].	So	we	should	set	T[j	+	A[i]]	to	1	as	well.	That’s	all.	Based	on	the	above	discussion,	we	can
write	the	algorithm	as:

In	the	above	code,	j	loop	moves	from	right	to	left.	This	reduces	the	double	counting	problem.	That
means,	if	we	move	from	left	to	right,	then	we	may	do	the	repeated	calculations.



Time	Complexity:	O(nK),	for	the	two	for	loops.	Space	Complexity:	O(K),	for	the	boolean	table	T.

Problem-27  Can	we	improve	the	performance	of	Problem-26?

Solution:	Yes.	 In	 the	above	code	what	we	are	doing	 is,	 the	 inner	 j	 loop	 is	starting	from	K	 and
moving	left.	That	means,	it	is	unnecessarily	scanning	the	whole	table	every	time.

What	we	actually	want	is	to	find	all	the	1	entries.	At	the	beginning,	only	the	0th	entry	is	1.	If	we
keep	the	location	of	the	rightmost	1	entry	in	a	variable,	we	can	always	start	at	that	spot	and	go	left
instead	of	starting	at	the	right	end	of	the	table.

To	take	full	advantage	of	this,	we	can	sort	A[]	first.	That	way,	the	rightmost	1	entry	will	move	to
the	right	as	slowly	as	possible.	Finally,	we	don’t	really	care	about	what	happens	in	the	right	half
of	 the	 table	 (after	 T[K/2])	 because	 if	 T[x]	 is	 1,	 then	 T[Kx]	 must	 also	 be	 1	 eventually	 –	 it
corresponds	to	the	complement	of	the	subset	that	gave	us	x.	The	code	based	on	above	discussion
is	given	below.

After	the	improvements,	 the	time	complexity	is	still	O(nK),	but	we	have	removed	some	useless
steps.

Problem-28  Partition	 partition	 problem	 is	 to	 determine	 whether	 a	 given	 set	 can	 be
partitioned	into	two	subsets	such	that	the	sum	of	elements	in	both	subsets	is	the	same	[the
same	as	the	previous	problem	but	a	different	way	of	asking].	For	example,	if	A[]	=	{1,	5,



11,	5},	the	array	can	be	partitioned	as	{1,	5,	5}	and	{11}.	Similarly,	if	A[]	=	{1,	5,	3},	the
array	cannot	be	partitioned	into	equal	sum	sets.

Solution:	Let	us	try	solving	this	problem	another	way.	Following	are	the	two	main	steps	to	solve
this	problem:

1. Calculate	the	sum	of	the	array.	If	the	sum	is	odd,	there	cannot	be	two	subsets	with	an
equal	sum,	so	return	false.

2. If	the	sum	of	the	array	elements	is	even,	calculate	sum/2	and	find	a	subset	of	the	array
with	a	sum	equal	to	sum/2.

The	first	step	is	simple.	The	second	step	is	crucial,	and	it	can	be	solved	either	using	recursion	or
Dynamic	Programming.

Recursive	Solution:	Following	is	the	recursive	property	of	the	second	step	mentioned	above.	Let
subsetSum(A,	n,	sum/2)	be	the	function	that	returns	true	if	there	is	a	subset	of	A[0..n-1]	with	sum
equal	to	sum/2.	The	isSubsetSum	problem	can	be	divided	into	two	sub	problems:

a) isSubsetSum()	without	considering	last	element	(reducing	n	to	n	–	1)
b) isSubsetSum	considering	the	last	element	(reducing	sum/2	by	A[n-1]	and	n	to	n	–	1)

If	any	of	the	above	sub	problems	return	true,	then	return	true.

subsetSum	(A,n,sum/2)	=	isSubsetSum	(A,n	–	1,sum/2)	\\	subsetSum	(A,n	–	1,sum/2	–	A[n	–	1])



Time	Complexity:	O(2n)	In	worst	case,	this	solution	tries	two	possibilities	(whether	to	include	or
exclude)	for	every	element.

Dynamic	Programming	Solution:	The	problem	can	be	solved	using	dynamic	programming	when
the	sum	of	the	elements	is	not	too	big.	We	can	create	a	2D	array	part[][]	of	size	(sum/2)*(n	+	1).
And	 we	 can	 construct	 the	 solution	 in	 a	 bottom-up	 manner	 such	 that	 every	 filled	 entry	 has	 a
following	property

part	[i][j]	=	true	if	a	subset	of	{A[0],A[1],..A[j	–	1]}	has	sum	equal	to	sum/2,	otherwise	false



Time	Complexity:	O(sum	×	n).	Space	Complexity:	O(sum	×	n).	Please	note	that	this	solution	will
not	be	feasible	for	arrays	with	a	big	sum.

Problem-29  Counting	 Boolean	 Parenthesizations:	 Let	 us	 assume	 that	 we	 are	 given	 a
boolean	expression	consisting	of	symbols	‘true’,	‘false’,	‘and’,	‘or’,	and	‘xor’.	Find	the
number	 of	 ways	 to	 parenthesize	 the	 expression	 such	 that	 it	 will	 evaluate	 to	 true.	 For
example,	 there	 is	 only	 1	 way	 to	 parenthesize	 ‘true	 and	 false	 xor	 true’	 such	 that	 it
evaluates	to	true.

Solution:	Let	the	number	of	symbols	be	n	and	between	symbols	there	are	boolean	operators	like
and,	or,	xor,	etc.	For	example,	if	n	=	4,	T	or	F	and	T	xor	F.	Our	goal	is	to	count	the	numbers	of
ways	 to	 parenthesize	 the	 expression	with	 boolean	 operators	 so	 that	 it	 evaluates	 to	 true.	 In	 the
above	case,	if	we	use	T	or	(	(F	and	T)	xor	F)	then	it	evaluates	to	true.



T	or{	(F	and	T)xor	F)	=	True

Now	 let	 us	 see	 how	 DP	 solves	 this	 problem.	 Let	 T(i,j)	 represent	 the	 number	 of	 ways	 to
parenthesize	 the	 sub	 expression	with	 symbols	 i	 ...j	 [symbols	means	 only	T	 and	F	 and	 not	 the
operators]	with	boolean	operators	so	that	it	evaluates	to	true.	Also,	i	and	j	take	the	values	from	1
to	n.	 For	 example,	 in	 the	 above	 case,	T(2,4)	 =	 0	 because	 there	 is	 no	way	 to	 parenthesize	 the
expression	F	and	T	xor	F	to	make	it	true.

Just	for	simplicity	and	similarity,	let	F(i,j)	represent	the	number	of	ways	to	parenthesize	the	sub
expression	with	symbols	i	...j	with	boolean	operators	so	that	it	evaluates	to	false.	The	base	cases
are	T(i,i)	and	F(i,i).

Now	we	are	going	to	compute	T(i,	i	+	1)	and	F(i,	i	+	1)	for	all	values	of	i.	Similarly,	T(i,	i	+	2)
and	F(i,	i	+	2)	for	all	values	of	i	and	so	on.	Now	let’s	generalize	the	solution.

What	this	above	recursive	formula	says	is,	T(i,j)	indicates	the	number	of	ways	to	parenthesize	the
expression.	Let	us	assume	that	we	have	some	sub	problems	which	are	ending	at	k.	Then	the	total
number	of	ways	to	parenthesize	from	i	to	j	is	the	sum	of	counts	of	parenthesizing	from	i	to	k	and
from	k	+	1	 to	 j.	To	parenthesize	between	k	 and	k	+	1	 there	 are	 three	ways:	“and”,	 “or”	 and
“xor”.

• If	we	use	“and”	between	k	and	k	+	1,	then	the	final	expression	becomes	true	only
when	both	are	true.	If	both	are	true	then	we	can	include	them	to	get	the	final	count.

• If	we	use	“or”,	then	if	at	least	one	of	them	is	true,	the	result	becomes	true.	 Instead
of	including	all	three	possibilities	for	“or”,	we	are	giving	one	alternative	where	we
are	subtracting	the	“false”	cases	from	total	possibilities.



• The	same	is	the	case	with	“xor”.	The	conversation	is	as	in	the	above	two	cases.

After	finding	all	the	values	we	have	to	select	the	value	of	k,	which	produces	the	maximum	count,
and	for	k	there	are	i	to	j	–	1	possibilities.

How	many	subproblems	are	 there?	 In	 the	 above	 formula,	 i	 can	 range	 from	1	 to	n,	 and	 j	 can
range	from	1	to	n.	So	there	are	a	total	of	n2	subproblems,	and	also	we	are	doing	summation	for	all
such	values.	So	the	time	complexity	is	O(n3).

Problem-30  Optimal	Binary	Search	Trees:	Given	a	set	of	n	(sorted)	keys	A[1..n],	build	the
best	binary	search	tree	for	the	elements	of	A.	Also	assume	that	each	element	is	associated
with	frequency	which	indicates	the	number	of	times	that	a	particular	item	is	searched	in	the
binary	search	trees.	That	means	we	need	to	construct	a	binary	search	tree	so	that	the	total
search	time	will	be	reduced.

Solution:	 Before	 solving	 the	 problem	 let	 us	 understand	 the	 problem	 with	 an	 example.	 Let	 us
assume	 that	 the	 given	 array	 is	 A	 =	 [3,12,21,32,35].	 There	 are	 many	 ways	 to	 represent	 these
elements,	two	of	which	are	listed	below.

Of	 the	 two,	which	 representation	 is	 better?	 The	 search	 time	 for	 an	 element	 depends	 on	 the
depth	of	the	node.	The	average	number	of	comparisons	for	the	first	tree	is:	 	and

for	the	second	tree,	the	average	number	of	comparisons	is:	 .	Of	the	two,	the	first
tree	gives	better	results.

If	 frequencies	 are	 not	 given	 and	 if	 we	 want	 to	 search	 all	 elements,	 then	 the	 above	 simple



calculation	 is	 enough	 for	deciding	 the	best	 tree.	 If	 the	 frequencies	 are	given,	 then	 the	 selection
depends	on	the	frequencies	of	the	elements	and	also	the	depth	of	the	elements.	For	simplicity	let
us	assume	that	the	given	array	is	A	and	the	corresponding	frequencies	are	in	array	F.	F[i]	indicates
the	frequency	of	ith	element	A[i].	With	this,	the	total	search	time	S(root)	of	the	tree	with	root	can
be	defined	as:

In	the	above	expression,	depth(root,	i)	+	1	indicates	the	number	of	comparisons	for	searching	the
ith	element.	Since	we	are	trying	to	create	a	binary	search	tree,	the	left	subtree	elements	are	less
than	root	element	and	the	right	subtree	elements	are	greater	than	root	element.	If	we	separate	the
left	subtree	time	and	right	subtree	time,	then	the	above	expression	can	be	written	as:

If	we	replace	the	left	subtree	and	right	subtree	times	with	their	corresponding	recursive	calls,	then
the	expression	becomes:

Binary	Search	Tree	node	declaration
Refer	to	Trees	chapter.

Implementation:



Problem-31  Edit	Distance:	Given	two	strings	A	of	length	m	and	B	of	length	n,	 transform	A
into	B	with	 a	minimum	number	 of	 operations	 of	 the	 following	 types:	 delete	 a	 character
from	A,	insert	a	character	into	A,	or	change	some	character	in	A	into	a	new	character.	The
minimal	 number	 of	 such	 operations	 required	 to	 transform	 A	 into	 B	 is	 called	 the	 edit
distance	between	A	and	B.

Solution:

Input:	Two	text	strings	A	of	length	m	and	B	of	length	n.

Goal:	Convert	string	A	into	B	with	minimal	conversions.

Before	going	to	a	solution,	let	us	consider	the	possible	operations	for	converting	string	A	into	B.

• If	m	>	n,	we	need	to	remove	some	characters	of	A
• If	m	==	n,	we	may	need	to	convert	some	characters	of	A
• If	m	<	n,	we	need	to	remove	some	characters	from	A

So	the	operations	we	need	are	the	insertion	of	a	character,	the	replacement	of	a	character	and	the
deletion	of	a	character,	and	their	corresponding	cost	codes	are	defined	below.

Costs	of	operations:

Insertion	of	a	character ci

Replacement	of	a	character cr



Deletion	of	a	character cd

Now	 let	 us	 concentrate	 on	 the	 recursive	 formulation	 of	 the	 problem.	 Let,	T(i,j)	 represents	 the
minimum	cost	required	to	 transform	first	 i	characters	of	A	 to	 first;	characters	of	B.	That	means,
A[1...	i]	to	B[1...j].

Based	on	the	above	discussion	we	have	the	following	cases.

• If	we	delete	ith	character	from	A,	then	we	have	to	convert	remaining	i	–	1	characters
of	A	to	j	characters	of	B

• If	we	insert	ith	character	in	A,	then	convert	these	i	characters	of	A	to	j	–	1	characters
of	B

• If	A[i]	==	B[j],	then	we	have	to	convert	the	remaining	i	–	1	characters	of	A	to	j	–	1
characters	of	B

• If	A[i]	≠	B[j],	 then	we	have	 to	 replace	 ith	 character	of	A	 to	 jth	 character	 of	B	 and
convert	remaining	i	–	1	characters	of	A	to	j	–	1	characters	of	B

After	calculating	all	the	possibilities	we	have	to	select	the	one	which	gives	the	lowest	cost.

How	many	subproblems	are	there?	In	the	above	formula,	i	can	range	from	l	to	m	and	j	can	range
from	 1	 to	 n.	 This	 gives	mn	 subproblems	 and	 each	 one	 takes	O(1)	 and	 the	 time	 complexity	 is
O(mn).	Space	Complexity:	O(mn)	where	m	is	number	of	rows	and	n	is	number	of	columns	in	the
given	matrix.

Problem-32  All	 Pairs	 Shortest	 Path	 Problem:	 Floyd’s	 Algorithm:	 Given	 a	 weighted
directed	graph	G	=	(V,E),	where	V	=	{1,2,...,n}.	Find	the	shortest	path	between	any	pair	of
nodes	in	the	graph.	Assume	the	weights	are	represented	in	the	matrix	C[V][V],	where	C[i]
[j]	indicates	the	weight	(or	cost)	between	the	nodes	i	and	j.	Also,	C[i][j]	=	∞	or	-1	if	there
is	no	path	from	node	i	to	node	j.

Solution:	 Let	 us	 try	 to	 find	 the	DP	 solution	 (Floyd’s	 algorithm)	 for	 this	 problem.	The	 Floyd’s
algorithm	for	all	pairs	shortest	path	problem	uses	matrix	A[1.	.n][1..n]	to	compute	the	lengths	of
the	shortest	paths.	Initially,

From	the	definition,	C[i,j]	=	∞	if	there	is	no	path	from	i	to	j.	The	algorithm	makes	n	passes	over
A.	Let	A0,A1,	...,An	be	the	values	of	A	on	the	n	passes,	with	A0	being	the	initial	value.



Just	after	the	k–	1th	iteration,	Ak–1[i,j]	=	smallest	length	of	any	path	from	vertex	i	to	vertex	j	 that
does	not	pass	through	the	vertices	{k	+	1,	k	+	2,....	n}.	That	means,	it	passes	through	the	vertices
possibly	through	{1,2,3,...,	k	–	1}.

In	each	iteration,	the	value	A[i][j]	is	updated	with	minimum	of	Ak–1[i,j]	and	Ak–1[i,	k]	+	Ak–1[k,j].

The	kth	pass	explores	whether	the	vertex	k	lies	on	an	optimal	path	from	i	to	j,	for	all	i,j.	The	same
is	shown	in	the	diagram	below.

Time	Complexity:	O(n3).



Problem-33  Optimal	Strategy	for	a	Game:	Consider	a	row	of	n	coins	of	values	v1	 ...	vn,
where	n	 is	even	[since	it’s	a	two	player	game].	We	play	this	game	with	the	opponent.	In
each	 turn,	a	player	selects	either	 the	 first	or	 last	coin	 from	the	 row,	 removes	 it	 from	the
row	 permanently,	 and	 receives	 the	 value	 of	 the	 coin.	 Determine	 the	maximum	 possible
amount	of	money	we	can	definitely	win	if	we	move	first.

Alternative	way	of	framing	the	question:	Given	n	pots,	each	with	some	number	of	gold
coins,	are	arranged	in	a	line.	You	are	playing	a	game	against	another	player.	You	take	turns
picking	a	pot	of	gold.	You	may	pick	a	pot	from	either	end	of	the	line,	remove	the	pot,	and
keep	the	gold	pieces.	The	player	with	the	most	gold	at	the	end	wins.	Develop	a	strategy	for
playing	this	game.

Solution:	 Let	 us	 solve	 the	 problem	 using	 our	 DP	 technique.	 For	 each	 turn	 either	 we	 or	 our
opponent	selects	the	coin	only	from	the	ends	of	the	row.	Let	us	define	the	subproblems	as:

V(i,j):	denotes	 the	maximum	possible	value	we	can	definitely	win	 if	 it	 is	our	 turn	and	 the	only
coins	remaining	are	vi	...	vj.

Base	Cases:	V(i,i),V(i,	i	+	1)	for	all	values	of	i.
From	these	values,	we	can	compute	V(i,	i	+	2),V(i,i	+	3)	and	so	on.	Now	let	us	define	V(i,j)	for
each	sub	problem	as:

In	the	recursive	call	we	have	to	focus	on	ith	coin	to	jth	coin	(vi...	vj).	Since	it	is	our	turn	to	pick	the
coin,	we	have	two	possibilities:	either	we	can	pick	vi	or	vj.	The	first	term	indicates	the	case	if	we
select	ith	coin	(vi)	and	the	second	term	indicates	the	case	if	we	select	jth	coin	(vj).	The	outer	Max
indicates	 that	we	have	 to	select	 the	coin	which	gives	maximum	value.	Now	let	us	 focus	on	 the
terms:

• Selecting	ith	coin:	If	we	select	the	ith	coin	then	the	remaining	range	is	from	i	+	1	to	j.
Since	we	selected	the	ith	coin	we	get	the	value	vi	for	that.	From	the	remaining	range



i	+	1	to	j,	the	opponents	can	select	either	i	+	1th	coin	or	jth	coin.	But	the	opoonents
selection	 should	 be	minimized	 as	much	 as	 possible	 [the	Min	 term].	 The	 same	 is
described	in	the	below	figure.

• Selecting	the	jth	coin:	Here	also	the	argument	is	the	same	as	above.	If	we	select	the
jth	coin,	then	the	remaining	range	is	fromitoj-1.	Since	we	selected	the	jth	coin	we	get
the	value	vj	 for	 that.	From	 the	 remaining	 range	 i	 to	 j	 -	1,	 the	opponent	 can	 select
either	 the	 ith	 coin	 or	 the	 j	 –	 1th	 coin.	 But	 the	 opponent’s	 selection	 should	 be
minimized	as	much	as	possible	[the	Min	term].

How	many	subproblems	are	there?	In	the	above	formula,	i	can	range	from	1	to	n	and	j	can	range
from	1	to	n.	There	are	a	total	of	n2	subproblems	and	each	takes	O(1)	and	the	total	time	complexity
is	O(n2).

Problem-34  Tiling:	Assume	that	we	use	dominoes	measuring	2	×	1	to	tile	an	infinite	strip	of
height	2.	How	many	ways	can	one	tile	a	2	×	n	strip	of	square	cells	with	1x2	dominoes?

Solution:	 Notice	 that	 we	 can	 place	 tiles	 either	 vertically	 or	 horizontally.	 For	 placing	 vertical
tiles,	we	need	a	gap	of	at	least	2	×	2.	For	placing	horizontal	tiles,	we	need	a	gap	of	2	×	1.	In	this
manner,	the	problem	is	reduced	to	finding	the	number	of	ways	to	partition	n	using	the	numbers	1
and	2	with	order	considered	relevant	[1].	For	example:	11	=	1	+	2	+	2+1+2	+	2	+	1.



If	we	have	to	find	such	arrangements	for	12,	we	can	either	place	a	1	at	the	end	or	we	can	add	2	in
the	arrangements	possible	with	10.	Similarly,	let	us	say	we	have	Fn	possible	arrangements	for	n.
Then	for	(n	+	1),	we	can	either	place	just	1	at	the	end	or	we	can	find	possible	arrangements	for	(n
–	1)	and	put	a	2	at	the	end.	Going	by	the	above	theory:

Let’s	verify	the	above	theory	for	our	original	problem:

• In	how	many	ways	can	we	fill	a	2	×	1	strip:	1	→	Only	one	vertical	tile.
• In	how	many	ways	can	we	fill	a	2	×	2	strip:	2	→	Either	2	horizontal	or	2	vertical

tiles.
• In	how	many	ways	can	we	fill	a	2	×	3	strip:	3	→	Either	put	a	vertical	tile	in	the	2

solutions	 possible	 for	 a	 2	×	 2	 strip,	 or	 put	 2	 horizontal	 tiles	 in	 the	 only	 solution
possible	for	a	2	×	1	strip.	(2	+	1	=	3).

• Similarly,	in	how	many	ways	can	we	fill	a	2	×	n	strip:	Either	put	a	vertical	tile	in	the
solutions	 possible	 for	 2	X	 (n	 –	 1)	 strip	 or	 put	 2	 horizontal	 tiles	 in	 the	 solution
possible	for	a	2	×	(n	–	2)	strip.	(Fn–1	+	Fn–2).

• That’s	how	we	verified	that	our	final	solution	is:	Fn	=	Fn–1	+	Fn–2	with	F1	=	1	and
F2	=	2.

Problem-35  Longest	Palindrome	Subsequence:	A	sequence	is	a	palindrome	if	it	reads	the
same	whether	we	read	it	 left	 to	right	or	right	 to	left.	For	example	A,	C,	G,	G,	G,	G,C,A.
Given	 a	 sequence	 of	 length	 n,	 devise	 an	 algorithm	 to	 output	 the	 length	 of	 the	 longest
palindrome	 subsequence.	 For	 example,	 the	 string	 A,G,C,T,C,B,M,A,A,C,T,G,G,A,M	 has
many	palindromes	as	subsequences,	for	instance:	A,G,T,C,M,C,T,G,A	has	length	9.

Solution:	Let	us	use	DP	to	solve	this	problem.	If	we	look	at	the	sub-string	A[i,..,j]	of	the	string	A,
then	we	can	find	a	palindrome	sequence	of	 length	at	 least	2	 if	A[i]	==	A[j].	 If	 they	are	not	 the
same,	 then	we	have	 to	 find	 the	maximum	 length	palindrome	 in	 subsequences	A[i	+	1,...,	 j]	 and
A[i,...,	j	–	1].

Also,	every	character	A[i]	is	a	palindrome	of	length	1.	Therefore	the	base	cases	are	given	by	A[i,
i]	=	1.	Let	us	define	the	maximum	length	palindrome	for	the	substring	A[i,...,j]	as	L(i,j).



Time	Complexity:	First	 ‘for’	 loop	 takes	O(n)	 time	while	 the	 second	 ‘for’	 loop	 takes	O(n	 –	k)
which	is	also	O(n).	Therefore,	the	total	running	time	of	the	algorithm	is	given	by	O(n2).

Problem-36  Longest	Palindrome	Substring:	Given	a	string	A,	we	need	 to	 find	 the	 longest
sub-string	of	A	such	that	the	reverse	of	it	is	exactly	the	same.

Solution:	 The	 basic	 difference	 between	 the	 longest	 palindrome	 substring	 and	 the	 longest
palindrome	subsequence	is	that,	in	the	case	of	the	longest	palindrome	substring,	the	output	string
should	be	the	contiguous	characters,	which	gives	the	maximum	palindrome;	and	in	the	case	of	the
longest	 palindrome	 subsequence,	 the	 output	 is	 the	 sequence	 of	 characters	where	 the	 characters
might	 not	 be	 contiguous	 but	 they	 should	 be	 in	 an	 increasing	 sequence	 with	 respect	 to	 their
positions	in	the	given	string.



Brute-force	solution	exhaustively	checks	all	n	(n	+	1)	/	2	possible	substrings	of	the	given	n-length
string,	tests	each	one	if	it’s	a	palindrome,	and	keeps	track	of	the	longest	one	seen	so	far.	This	has
worst-case	 complexity	 O(n3),	 but	 we	 can	 easily	 do	 better	 by	 realizing	 that	 a	 palindrome	 is
centered	 on	 either	 a	 letter	 (for	 odd-length	 palindromes)	 or	 a	 space	 between	 letters	 (for	 even-
length	palindromes).	Therefore	we	can	examine	all	n	+	1	possible	centers	and	 find	 the	 longest
palindrome	for	that	center,	keeping	track	of	the	overall	longest	palindrome.	This	has	worst-case
complexity	O(n2).

Let	us	use	DP	to	solve	this	problem.	It	is	worth	noting	that	there	are	no	more	than	O(n2)	substrings
in	a	string	of	length	n	(while	there	are	exactly	2n	subsequences).	Therefore,	we	could	scan	each
substring,	 check	 for	 a	 palindrome,	 and	 update	 the	 length	 of	 the	 longest	 palindrome	 substring
discovered	so	far.	Since	the	palindrome	test	 takes	time	linear	in	the	length	of	the	substring,	 this
idea	takes	O(n3)	algorithm.	We	can	use	DP	to	improve	this.	For	1	≤	i	≤	j	≤	n,	define

Also,	for	string	of	length	at	least	3,

Note	that	in	order	to	obtain	a	well-defined	recurrence,	we	need	to	explicitly	initialize	two	distinct
diagonals	of	the	boolean	array	L[i,j],	since	the	recurrence	for	entry	[i,j]	uses	the	value	[i	–	1,j	–
1],	which	 is	 two	diagonals	away	from	[i,j]	 (that	means,	 for	a	substring	of	 length	k,	we	need	 to
know	the	status	of	a	substring	of	length	k	–	2).



Time	Complexity:	First	for	loop	takes	O(n)	time	while	the	second	for	loop	takes	O(n	–	k)	which
is	also	O(n).	Therefore	the	total	running	time	of	the	algorithm	is	given	by	O(n2).

Problem-37  Given	 two	 strings	 S	 and	 T,	 give	 an	 algorithm	 to	 find	 the	 number	 of	 times	 S
appears	 in	T.	 It’s	not	compulsory	 that	all	characters	of	S	should	appear	contiguous	 to	T.
For	example,	if	S	=	ab	and	T	=	abadcb	then	the	solution	is	4,	because	ab	 is	appearing	4
times	in	abadcb.

Solution:

Input:	Given	two	strings	S[1..	m]	and	T[1	...m].

Goal:	Count	the	number	of	times	that	S	appears	in	T.

Assume	 L(i,j)	 represents	 the	 count	 of	 how	 many	 times	 i	 characters	 of	 S	 are	 appearing	 in	 j
characters	of	T.



If	we	concentrate	on	the	components	of	the	above	recursive	formula,

• If	j	=	0,	then	since	T	is	empty	the	count	becomes	0.
• If	 i	=	0,	 then	we	can	 treat	empty	string	S	also	appearing	 in	T	and	we	can	give	 the

count	as	1.
• If	S[i]	==	T[i],	it	means	ith	character	of	S	and	jth	character	of	T	are	the	same.	In	this

case	 we	 have	 to	 check	 the	 subproblems	 with	 i	 –	 1	 characters	 of	 S	 and	 j	 –	 1
characters	of	T	and	also	we	have	to	count	the	result	of	i	characters	of	S	withy	–	1
characters	of	T.	This	is	because	even	all	i	characters	of	S	might	be	appearing	in	j	–
1	characters	of	T.

• If	S[i]	≠	T[i],	then	we	have	to	get	the	result	of	subproblem	with	i	–	1	characters	of	S
and	j	characters	of	T.

After	computing	all	the	values,	we	have	to	select	the	one	which	gives	the	maximum	count.

How	many	 subproblems	are	 there?	 In	 the	 above	 formula,	 i	 can	 range	 from	1	 to	m	 and	 j	 can
range	 from	 1	 to	 n.	 There	 are	 a	 total	 of	 ran	 subproblems	 and	 each	 one	 takes	 O(1).	 Time
Complexity	is	O(mn).
Space	Complexity:	O(mn)	where	m	is	number	of	rows	and	n	 is	number	of	columns	in	the	given
matrix.

Problem-38  Given	a	matrix	with	n	 rows	and	m	 columns	 (n	 ×	m).	 In	 each	 cell	 there	 are	 a
number	of	apples.	We	start	 from	the	upper-left	corner	of	 the	matrix.	We	can	go	down	or
right	 one	 cell.	 Finally,	we	 need	 to	 arrive	 at	 the	 bottom-right	 corner.	 Find	 the	maximum
number	 of	 apples	 that	we	 can	 collect.	When	we	 pass	 through	 a	 cell,	we	 collect	 all	 the
apples	left	there.

Solution:	Let	us	assume	that	the	given	matrix	is	A[n][m].	The	first	thing	that	must	be	observed	is
that	there	are	at	most	2	ways	we	can	come	to	a	cell	-	from	the	left	(if	it’s	not	situated	on	the	first
column)	and	from	the	top	(if	it’s	not	situated	on	the	most	upper	row).



To	find	the	best	solution	for	that	cell,	we	have	to	have	already	found	the	best	solutions	for	all	of
the	cells	from	which	we	can	arrive	 to	 the	current	cell.	From	above,	a	recurrent	relation	can	be
easily	obtained	as:

S(i,j)	must	be	calculated	by	going	first	from	left	to	right	in	each	row	and	process	the	rows	from
top	to	bottom,	or	by	going	first	from	top	to	bottom	in	each	column	and	process	the	columns	from
left	to	right.

How	many	such	subproblems	are	there?	In	the	above	formula,	i	can	range	from	1	to	n	and	j	can
range	 from	 1	 to	 m.	 There	 are	 a	 total	 of	 run	 subproblems	 and	 each	 one	 takes	 O(1).	 Time
Complexity	is	O(nm).	Space	Complexity:	O(nm),	where	m	is	number	of	rows	and	n	is	number	of
columns	in	the	given	matrix.

Problem-39  Similar	to	Problem-38,	assume	that	we	can	go	down,	right	one	cell,	or	even	in	a
diagonal	direction.	We	need	to	arrive	at	the	bottom-right	corner.	Give	DP	solution	to	find
the	maximum	number	of	apples	we	can	collect.

Solution:	Yes.	The	discussion	is	very	similar	to	Problem-38.	Let	us	assume	that	the	given	matrix
is	A[n][m].	The	first	thing	that	must	be	observed	is	that	there	are	at	most	3	ways	we	can	come	to	a
cell	 -	 from	 the	 left,	 from	 the	 top	 (if	 it’s	 not	 situated	 on	 the	 uppermost	 row)	 or	 from	 the	 top
diagonal.	To	find	the	best	solution	for	that	cell,	we	have	to	have	already	found	the	best	solutions
for	all	of	the	cells	from	which	we	can	arrive	to	the	current	cell.	From	above,	a	recurrent	relation
can	be	easily	obtained:



S(i,j)	must	be	calculated	by	going	first	from	left	to	right	in	each	row	and	process	the	rows	from
top	to	bottom,	or	by	going	first	from	top	to	bottom	in	each	column	and	process	the	columns	from
left	to	right.

How	many	such	subproblems	are	there?	In	the	above	formula,	i	can	range	from	1	to	n	and	j	can
range	 from	 1	 to	m.	 There	 are	 a	 total	 of	mn	 subproblems	 and	 and	 each	 one	 takes	 O(1).	 Time
Complexity	is	O(nm).
Space	Complexity:	O(nm)	where	m	 is	number	of	rows	and	n	is	number	of	columns	in	the	given
matrix.

Problem-40  Maximum	size	 square	 sub-matrix	with	all	 1’s:	Given	 a	matrix	with	 0’s	 and
1’s,	 give	 an	 algorithm	 for	 finding	 the	maximum	 size	 square	 sub-matrix	 with	 all	 Is.	 For
example,	consider	the	binary	matrix	below.

The	maximum	square	sub-matrix	with	all	set	bits	is

Solution:	Let	us	try	solving	this	problem	using	DP.	Let	the	given	binary	matrix	be	B[m][m].	The
idea	 of	 the	 algorithm	 is	 to	 construct	 a	 temporary	 matrix	 L[][]	 in	 which	 each	 entry	 L[i][j]
represents	size	of	the	square	sub-matrix	with	all	1’s	including	B[i][j]	and	B[i][j]	is	the	rightmost



and	bottom-most	entry	in	the	sub-matrix.

Algorithm:

1) Construct	a	sum	matrix	L[m][n]	for	the	given	matrix	B[m][n].
a. Copy	first	row	and	first	columns	as	is	from	B[	][	]	to	L[	][	].
b. For	other	entries,	use	the	following	expressions	to	construct	L[	][	]

2) Find	the	maximum	entry	in	L[m][n].
3) Using	the	value	and	coordinates	of	maximum	entry	in	L[i],	print	sub-matrix	of	B[][].



How	many	subproblems	are	there?	In	the	above	formula,	i	can	range	from	1	to	n	and	j	can	range
from	1	to	m.	There	are	a	total	of	nm	subproblems	and	each	one	takes	O(1).	Time	Complexity	is
O(nm).	Space	Complexity	is	O(nm),	where	n	is	number	of	rows	and	m	 is	number	of	columns	in
the	given	matrix.

Problem-41  Maximum	size	sub-matrix	with	all	1’s:	Given	a	matrix	with	0’s	and	1’s,	give
an	algorithm	for	 finding	 the	maximum	size	sub-matrix	with	all	 Is.	For	example,	consider



the	binary	matrix	below.

The	maximum	sub-matrix	with	all	set	bits	is

Solution:	 If	we	draw	a	histogram	of	 all	1’s	 cells	 in	 the	 above	 rows	 for	 a	particular	 row,	 then
maximum	all	1’s	sub-matrix	ending	in	that	row	will	be	equal	to	maximum	area	rectangle	in	that
histogram.	Below	is	an	example	for	3rdrow	in	the	above	discussed	matrix	[1]:

If	we	calculate	this	area	for	all	the	rows,	maximum	area	will	be	our	answer.	We	can	extend	our
solution	very	easily	to	find	start	and	end	co-ordinates.	For	this,	we	need	to	generate	an	auxiliary
matrix	S[][]	where	each	element	represents	the	number	of	Is	above	and	including	it,	up	until	the
first	0.	S[][]	for	the	above	matrix	will	be	as	shown	below:

Now	we	can	simply	call	our	maximum	rectangle	in	histogram	on	every	row	in	S[][]	and	update
the	maximum	area	every	time.	Also	we	don’t	need	any	extra	space	for	saving	S.	We	can	update
original	matrix	(A)	to	S	and	after	calculation,	we	can	convert	S	back	to	A.



Problem-42  Maximum	sum	sub-matrix:	Given	an	n	×	n	matrix	M	of	positive	and	negative
integers,	give	an	algorithm	to	find	the	sub-matrix	with	the	largest	possible	sum.

Solution:	Let	Aux[r,	c]	 represent	 the	sum	of	rectangular	subarray	of	M	with	one	corner	at	entry
[1,1]	and	the	other	at	[r,c].	Since	there	are	n2	such	possibilities,	we	can	compute	them	in	O(n2)
time.	 After	 computing	 all	 possible	 sums,	 the	 sum	 of	 any	 rectangular	 subarray	 of	M	 can	 be
computed	in	constant	time.	This	gives	an	O(n4)	algorithm:	we	simply	guess	the	lower-left	and	the
upper-right	corner	of	the	rectangular	subarray	and	use	the	Aux	table	to	compute	its	sum.

Problem-43  Can	we	improve	the	complexity	of	Problem-42?

Solution:	 We	 can	 use	 the	 Problem-4	 solution	 with	 little	 variation,	 as	 we	 have	 seen	 that	 the
maximum	sum	array	of	a	1	–	D	array	algorithm	scans	the	array	one	entry	at	a	 time	and	keeps	a
running	 total	 of	 the	 entries.	At	 any	 point,	 if	 this	 total	 becomes	 negative,	 then	 set	 it	 to	 0.	 This
algorithm	 is	 called	Kadane’s	 algorithm.	We	 use	 this	 as	 an	 auxiliary	 function	 to	 solve	 a	 two-
dimensional	problem	in	the	following	way.



Time	Complexity:	O(n3).

Problem-44  Given	a	number	n,	find	the	minimum	number	of	squares	required	to	sum	a	given
number	n.
Examples:	min[1]	=	1	=	12,	min[2]	=	2	=	12	+	12,	min[4]	=	1	=	22,	min[13]	=	2	=	32	+	22.

Solution:	This	problem	can	be	reduced	 to	a	coin	change	problem.	The	denominations	are	1	 to	
.	Now,	we	just	need	to	make	change	for	n	with	a	minimum	number	of	denominations.

Problem-45  Finding	Optimal	Number	of	Jumps	To	Reach	Last	Element:	Given	an	array,
start	from	the	first	element	and	reach	the	last	by	jumping.	The	jump	length	can	be	at	most
the	value	at	the	current	position	in	the	array.	The	optimum	result	is	when	you	reach	the	goal



in	the	minimum	number	of	jumps.	Example:	Given	array	A	=	{2,3,1,1,4}.	Possible	ways
to	reach	the	end	(index	list)	are:

• 0,2,3,4	 (jump	2	 to	 index	 2,	 and	 then	 jump	1	 to	 index	3,	 and	 then	 jump	1	 to
index	4)

• 0,1,4	(jump	1	to	index	1,	and	then	jump	3	to	index	4)
Since	second	solution	has	only	2	jumps	it	is	the	optimum	result.

Solution:	This	problem	is	a	classic	example	of	Dynamic	Programming.	Though	we	can	solve	this
by	brute-force,	it	would	be	complex.	We	can	use	the	LIS	problem	approach	for	solving	this.	As
soon	 as	we	 traverse	 the	 array,	we	 should	 find	 the	minimum	number	 of	 jumps	 for	 reaching	 that
position	 (index)	 and	 update	 our	 result	 array.	 Once	 we	 reach	 the	 end,	 we	 have	 the	 optimum
solution	at	last	index	in	result	array.

How	can	we	find	the	optimum	number	of	jumps	for	every	position	(index)?	For	first	index,	the
optimum	number	of	jumps	will	be	zero.	Please	note	that	if	value	at	first	index	is	zero,	we	can’t
jump	to	any	element	and	return	 infinite.	For	n	+	1th	element,	 initialize	 result[n	+	1]	as	 infinite.
Then	we	should	go	through	a	loop	from	0	...	n,	and	at	every	index	i,	we	should	see	if	we	are	able
to	jump	to	n	+	1	from	i	or	not.	If	possible,	then	see	if	total	number	of	jumps	(result[i]	+	1)	is	less
than	result[n	+	1],	then	update	result[n	+	1],	else	just	continue	to	next	index.



The	above	code	will	return	optimum	number	of	jumps.	To	find	the	jump	indexes	as	well,	we	can
very	easily	modify	the	code	as	per	requirement.

Time	Complexity:	Since	we	are	running	2	loops	here	and	iterating	from	0	to	i	in	every	loop	then
total	time	takes	will	be	1	+	2	+	3	+	4	+	...	+	n	–	1.	So	time	efficiency	O(n)	=	O(n	*	(n	–	1)/2)	=
O(n2).
Space	Complexity:	O(n)	space	for	result	array.

Problem-46  Explain	what	would	happen	if	a	dynamic	programming	algorithm	is	designed	to
solve	a	problem	that	does	not	have	overlapping	sub-problems.

Solution:	It	will	be	just	a	waste	of	memory,	because	the	answers	of	sub-problems	will	never	be
used	again.	And	the	running	time	will	be	the	same	as	using	the	Divide	&	Conquer	algorithm.

Problem-47  Christmas	 is	 approaching.	 You’re	 helping	 Santa	 Claus	 to	 distribute	 gifts	 to
children.	For	ease	of	delivery,	you	are	asked	to	divide	n	gifts	into	two	groups	such	that	the
weight	difference	of	these	two	groups	is	minimized.	The	weight	of	each	gift	is	a	positive
integer.	 Please	 design	 an	 algorithm	 to	 find	 an	 optimal	 division	 minimizing	 the	 value



difference.	 The	 algorithm	 should	 find	 the	 minimal	 weight	 difference	 as	 well	 as	 the
groupings	 in	O(nS)	 time,	where	S	 is	 the	 total	weight	 of	 these	n	 gifts.	Briefly	 justify	 the
correctness	of	your	algorithm.

Solution:	 This	 problem	 can	 be	 converted	 into	 making	 one	 set	 as	 close	 to	 	 as	 possible.	We

consider	 an	 equivalent	 problem	 of	 making	 one	 set	 as	 close	 to	 	 as	 possible.	 Define

FD(i,w)	to	be	the	minimal	gap	between	the	weight	of	the	bag	and	W	when	using	the	first	 i	gifts
only.	WLOG,	we	can	assume	the	weight	of	the	bag	is	always	less	than	or	equal	to	W.	Then	fill	the
DP	table	for	0≤i≤	n	and	0≤	w	≤W	in	which	F(0,	w)	=	W	for	all	w,	and

This	 takes	 O(nS)	 time.	 FD(n,W)	 is	 the	 minimum	 gap.	 Finally,	 to	 reconstruct	 the	 answer,	 we
backtrack	from	(n,W).	During	backtracking,	if	FD(i,j)	=	FD(i	–	1,j)	then	i	 is	not	selected	 in	 the
bag	and	we	move	to	F(i	–	1,j).	Otherwise,	i	is	selected	and	we	move	to	F(i	–	1,j	–	wi).

Problem-48  A	 circus	 is	 designing	 a	 tower	 routine	 consisting	 of	 people	 standing	 atop	 one
another’s	shoulders.	For	practical	and	aesthetic	reasons,	each	person	must	be	both	shorter
and	lighter	than	the	person	below	him	or	her.	Given	the	heights	and	weights	of	each	person
in	the	circus,	write	a	method	to	compute	the	largest	possible	number	of	people	in	such	a
tower.

Solution:	It	is	same	as	Box	stacking	and	Longest	increasing	subsequence	(LIS)	problem.



20.1	Introduction

In	 the	 previous	 chapters	we	 have	 solved	 problems	 of	 different	 complexities.	 Some	 algorithms
have	lower	rates	of	growth	while	others	have	higher	rates	of	growth.	The	problems	with	lower
rates	of	growth	are	called	easy	problems	(or	easy	solved	problems)	and	the	problems	with	higher
rates	of	growth	are	called	hard	problems	(or	hard	solved	problems).	This	classification	is	done
based	on	the	running	time	(or	memory)	that	an	algorithm	takes	for	solving	the	problem.



There	are	 lots	of	problems	for	which	we	do	not	know	the	solutions.	All	 the	problems	we	have
seen	so	far	are	the	ones	which	can	be	solved	by	computer	in	deterministic	time.	Before	starting
our	discussion	let	us	look	at	the	basic	terminology	we	use	in	this	chapter.

20.2	Polynomial/Exponential	Time

Exponential	 time	 means,	 in	 essence,	 trying	 every	 possibility	 (for	 example,	 backtracking
algorithms)	 and	 they	 are	 very	 slow	 in	 nature.	 Polynomial	 time	 means	 having	 some	 clever
algorithm	 to	 solve	 a	 problem,	 and	 we	 don’t	 try	 every	 possibility.	 Mathematically,	 we	 can
represent	these	as:

• Polynomial	time	is	O(nk),	for	some	k.
• Exponential	time	is	O(kn),	for	some	k.

20.3	What	is	a	Decision	Problem?

A	decision	problem	is	a	question	with	a	yes/no	answer	and	the	answer	depends	on	the	values	of
input.	 For	 example,	 the	 problem	 “Given	 an	 array	 of	 n	 numbers,	 check	 whether	 there	 are	 any
duplicates	or	not?”	is	a	decision	problem.	The	answer	for	this	problem	can	be	either	yes	or	no
depending	on	the	values	of	the	input	array.



20.4	Decision	Procedure

For	 a	given	decision	problem	 let	us	 assume	we	have	given	 some	algorithm	 for	 solving	 it.	The
process	 of	 solving	 a	 given	 decision	 problem	 in	 the	 form	 of	 an	 algorithm	 is	 called	 a	 decision
procedure	for	that	problem.

20.5	What	is	a	Complexity	Class?

In	computer	 science,	 in	order	 to	understand	 the	problems	 for	which	solutions	are	not	 there,	 the
problems	are	divided	into	classes	and	we	call	them	as	complexity	classes.	In	complexity	theory,	a
complexity	 class	 is	 a	 set	 of	 problems	 with	 related	 complexity.	 It	 is	 the	 branch	 of	 theory	 of
computation	that	studies	the	resources	required	during	computation	to	solve	a	given	problem.

The	most	common	resources	are	time	(how	much	time	the	algorithm	takes	to	solve	a	problem)	and
space	(how	much	memory	it	takes).

20.6	Types	of	Complexity	Classes

P	Class

The	 complexity	 class	P	 is	 the	 set	 of	 decision	 problems	 that	 can	 be	 solved	 by	 a	 deterministic
machine	 in	polynomial	 time	 (P	 stands	 for	polynomial	 time).	P	 problems	 are	 a	 set	 of	 problems
whose	solutions	are	easy	to	find.

NP	Class

The	complexity	class	NP	(NP	stands	for	non-deterministic	polynomial	time)	is	the	set	of	decision
problems	 that	 can	 be	 solved	 by	 a	 non-deterministic	 machine	 in	 polynomial	 time.	 NP	 class
problems	refer	to	a	set	of	problems	whose	solutions	are	hard	to	find,	but	easy	to	verify.

For	 better	 understanding	 let	 us	 consider	 a	 college	 which	 has	 500	 students	 on	 its	 roll.	 Also,
assume	that	there	are	100	rooms	available	for	students.	A	selection	of	100	students	must	be	paired
together	 in	 rooms,	but	 the	dean	of	students	has	a	 list	of	pairings	of	certain	students	who	cannot
room	together	for	some	reason.

The	total	possible	number	of	pairings	is	too	large.	But	the	solutions	(the	list	of	pairings)	provided
to	the	dean,	are	easy	to	check	for	errors.	If	one	of	the	prohibited	pairs	is	on	the	list,	that’s	an	error.
In	this	problem,	we	can	see	that	checking	every	possibility	is	very	difficult,	but	the	result	is	easy
to	validate.



That	means,	if	someone	gives	us	a	solution	to	the	problem,	we	can	tell	them	whether	it	is	right	or
not	 in	polynomial	 time.	Based	on	the	above	discussion,	for	NP	class	problems	 if	 the	answer	 is
yes,	then	there	is	a	proof	of	this	fact,	which	can	be	verified	in	polynomial	time.

Co-NP	Class

Co	–	NP	is	the	opposite	of	NP	(complement	of	NP).	If	the	answer	to	a	problem	in	Co	–	NP	is	no,
then	there	is	a	proof	of	this	fact	that	can	be	checked	in	polynomial	time.

P Solvable	in	polynomial	time

NP Yes	answers	can	be	checked	in	polynomial	time

Co-NP No	answers	can	be	checked	in	polynomial	time

Relationship	between	P,	NP	and	Co-NP

Every	decision	problem	in	P	is	also	in	NP.	If	a	problem	is	in	P,	we	can	verify	YES	answers	in
polynomial	time.	Similarly,	any	problem	in	P	is	also	in	Co	–	NP.

One	of	the	important	open	questions	in	theoretical	computer	science	is	whether	or	not	P	=	NP.
Nobody	knows.	Intuitively,	it	should	be	obvious	that	P	≠	NP,	but	nobody	knows	how	to	prove	it.

Another	open	question	 is	whether	NP	and	Co	–	NP	 are	 different.	Even	 if	we	 can	verify	 every
YES	answer	quickly,	there’s	no	reason	to	think	that	we	can	also	verify	NO	answers	quickly.

It	is	generally	believed	that	NP	≠	Co	–	NP,	but	again	nobody	knows	how	to	prove	it.

NP-hard	Class

It	is	a	class	of	problems	such	that	every	problem	in	NP	reduces	to	it.	All	NP-hard	problems	are
not	in	NP,	so	it	takes	a	long	time	to	even	check	them.	That	means,	if	someone	gives	us	a	solution
for	NP-hard	problem,	it	takes	a	long	time	for	us	to	check	whether	it	is	right	or	not.



A	problem	K	is	NP-hard	indicates	that	if	a	polynomial-time	algorithm	(solution)	exists	for	K	then
a	polynomial-time	algorithm	for	every	problem	is	NP.	Thus:

NP-complete	Class

Finally,	a	problem	is	NP-complete	if	 it	 is	part	of	both	NP-hard	and	NP.	NP-complete	problems
are	the	hardest	problems	in	NP.	If	anyone	finds	a	polynomial-time	algorithm	for	one	NP-complete
problem,	 then	 we	 can	 find	 polynomial-time	 algorithm	 for	 every	 NP-complete	 problem.	 This
means	that	we	can	check	an	answer	fast	and	every	problem	in	NP	reduces	to	it.

Relationship	between	P,	NP	Co-NP,	NP-Hard	and	NP-Complete

From	 the	 above	 discussion,	 we	 can	 write	 the	 relationships	 between	 different	 components	 as
shown	below	(remember,	this	is	just	an	assumption).



The	set	of	problems	that	are	NP-hard	is	a	strict	superset	of	the	problems	that	are	NP-complete.
Some	problems	(like	the	halting	problem)	are	NP-hard,	but	not	in	NP.	NP-hard	problems	might	be
impossible	to	solve	in	general.	We	can	tell	the	difference	in	difficulty	between	NP-hard	and	NP-
complete	problems	because	the	class	NP	includes	everything	easier	than	its	“toughest”	problems	-
if	a	problem	is	not	in	NP,	it	is	harder	than	all	the	problems	in	NP.

Does	P==NP?

If	 P	 =	 NP,	 it	 means	 that	 every	 problem	 that	 can	 be	 checked	 quickly	 can	 be	 solved	 quickly
(remember	the	difference	between	checking	if	an	answer	is	right	and	actually	solving	a	problem).

This	is	a	big	question	(and	nobody	knows	the	answer),	because	right	now	there	are	lots	of	NP-
complete	problems	 that	can’t	be	solved	quickly.	 If	P	=	NP,	 that	means	 there	 is	a	way	 to	solve
them	fast.	Remember	that	“quickly”	means	not	trial-and-error.	It	could	take	a	billion	years,	but	as
long	as	we	didn’t	use	trial	and	error,	it	was	quick.	In	future,	a	computer	will	be	able	to	change
that	billion	years	into	a	few	minutes.

20.7	Reductions

Before	 discussing	 reductions,	 let	 us	 consider	 the	 following	 scenario.	 Assume	 that	 we	want	 to
solve	problem	X	but	feel	it’s	very	complicated.	In	this	case	what	do	we	do?

The	first	thing	that	comes	to	mind	is,	if	we	have	a	similar	problem	to	that	of	X	(let	us	say	Y),	then
we	try	to	map	X	to	Y	and	use	Y’s	solution	to	solve	X	also.	This	process	is	called	reduction.



In	order	to	map	problem	X	to	problem	Y,	we	need	some	algorithm	and	that	may	take	linear	time	or
more.	Based	on	this	discussion	the	cost	of	solving	problem	X	can	be	given	as:

Cost	of	solving	X	=	Cost	of	solving	Y	+	Reduction	time

Now,	let	us	consider	the	other	scenario.	For	solving	problem	X,	sometimes	we	may	need	to	use
Y’s	algorithm	(solution)	multiple	times.	In	that	case,

Cost	of	solving	X	=	Number	of	Times	*	Cost	of	solving	X	+	Reduction	time

The	main	thing	in	NP-Complete	is	reducibility.	That	means,	we	reduce	(or	transform)	given	NP-
Complete	problems	to	other	known	NP-Complete	problem.	Since	the	NP-Complete	problems	are
hard	to	solve	and	in	order	to	prove	that	given	NP-Complete	problem	is	hard,	we	take	one	existing
hard	problem	(which	we	can	prove	is	hard)	and	try	to	map	given	problem	to	that	and	finally	we
prove	that	the	given	problem	is	hard.

Note:	 It’s	 not	 compulsory	 to	 reduce	 the	 given	 problem	 to	 known	 hard	 problem	 to	 prove	 its
hardness.	Sometimes,	we	reduce	the	known	hard	problem	to	given	problem.

Important	NP-Complete	Problems	(Reductions)

Satisfiability	 Problem:	 A	 boolean	 formula	 is	 in	 conjunctive	 normal	 form	 (CNF)	 if	 it	 is	 a
conjunction	(AND)	of	several	clauses,	each	of	which	is	the	disjunction	(OR)	of	several	literals,
each	of	which	is	either	a	variable	or	its	negation.	For	example:	(a	∨	b	∨	c	∨	d	∨	e)∧(b	∨	~c	∨
~d)	∧	(~a	∨	c	∨	d)	∨	(a	∨	~b)

A	3-CNF	formula	is	a	CNF	formula	with	exactly	three	literals	per	clause.	The	previous	example
is	not	a	3-CNF	formula,	since	its	first	clause	has	five	literals	and	its	last	clause	has	only	two.

2-SAT	Problem:	 3-SAT	 is	 just	 SAT	 restricted	 to	 3-CNF	 formulas:	Given	 a	 3-CNF	 formula,	 is
there	an	assignment	to	the	variables	so	that	the	formula	evaluates	to	TRUE?



2-SAT	Problem:	 2-SAT	 is	 just	 SAT	 restricted	 to	 2-CNF	 formulas:	Given	 a	 2-CNF	 formula,	 is
there	an	assignment	to	the	variables	so	that	the	formula	evaluates	to	TRUE?

Circuit-Satisfiability	Problem:	Given	a	boolean	combinational	circuit	 composed	of	AND,	OR
and	NOT	gates,	is	it	satisfiable?.	That	means,	given	a	boolean	circuit	consisting	of	AND,	OR	and
NOT	 gates	 properly	 connected	 by	wires,	 the	 Circuit-SAT	 problem	 is	 to	 decide	 whether	 there
exists	an	input	assignment	for	which	the	output	is	TRUE.

Hamiltonian	Path	Problem	(Ham-Path):	Given	an	undirected	graph,	 is	 there	a	path	 that	visits



every	vertex	exactly	once?

Hamiltonian	Cycle	Problem	(Ham-Cycle):	Given	an	undirected	graph,	is	there	a	cycle	(where
start	and	end	vertices	are	same)	that	visits	every	vertex	exactly	once?

Directed	 Hamiltonian	 Cycle	 Problem	 (Dir-Ham-Cycle):	 Given	 a	 directed	 graph,	 is	 there	 a
cycle	(where	start	and	end	vertices	are	same)	that	visits	every	vertex	exactly	once?

Travelling	Salesman	Problem	 (TSP):	Given	 a	 list	 of	 cities	 and	 their	 pair-wise	 distances,	 the
problem	is	to	find	the	shortest	possible	tour	that	visits	each	city	exactly	once.

Shortest	Path	Problem	(Shortest-Path):	Given	a	directed	graph	and	two	vertices	s	and	t,	check
whether	there	is	a	shortest	simple	path	from	s	to	t.

Graph	Coloring:	A	k-coloring	of	a	graph	is	to	map	one	of	k	‘colors’	to	each	vertex,	so	that	every
edge	has	two	different	colors	at	its	endpoints.	The	graph	coloring	problem	is	to	find	the	smallest
possible	number	of	colors	in	a	legal	coloring.

3-Color	problem:	Given	a	graph,	is	it	possible	to	color	the	graph	with	3	colors	in	such	a	way	that
every	edge	has	two	different	colors?

Clique	 (also	 called	 complete	 graph):	Given	 a	 graph,	 the	CLIQUE	 problem	 is	 to	 compute	 the
number	 of	 nodes	 in	 its	 largest	 complete	 subgraph.	 That	means,	 we	 need	 to	 find	 the	maximum
subgraph	which	is	also	a	complete	graph.

Independent	Set	Problem	(Ind_Set):	Let	G	be	an	arbitrary	graph.	An	independent	set	in	G	is	a
subset	of	the	vertices	of	G	with	no	edges	between	them.	The	maximum	independent	set	problem	is
the	size	of	the	largest	independent	set	in	a	given	graph.

Vertex	 Cover	 Problem	 (Vertex-Cover):	 A	 vertex	 cover	 of	 a	 graph	 is	 a	 set	 of	 vertices	 that
touches	every	edge	in	the	graph.	The	vertex	cover	problem	is	to	find	the	smallest	vertex	cover	in
a	given	graph.

Subset	 Sum	 Problem	 (Subset-Sum):	 Given	 a	 set	 S	 of	 integers	 and	 an	 integer	 T,	 determine
whether	5	has	a	subset	whose	elements	sum	to	T.

Integer	Programming:	Given	integers	bi,	aij	 find	0/1	variables	xi	 that	satisfy	a	 linear	system	of
equations.



In	 the	 figure,	 arrows	 indicate	 the	 reductions.	 For	 example,	 Ham-Cycle	 (Hamiltonian	 Cycle
Problem)	 can	 be	 reduced	 to	 CNF-SAT.	 Same	 is	 the	 case	 with	 any	 pair	 of	 problems.	 For	 our
discussion,	we	 can	 ignore	 the	 reduction	 process	 for	 each	 of	 the	 problems.	There	 is	 a	 theorem
called	Cook’s	Theorem	which	proves	that	Circuit	satisfiability	problem	is	NP-hard.	That	means,
Circuit	satisfiability	is	a	known	NP-hard	problem.

Note:	Since	the	problems	below	are	NP-Complete,	they	are	NP	and	NP-hard	too.	For	simplicity
we	can	ignore	the	proofs	for	these	reductions.

20.8	Complexity	Classes:	Problems	&	Solutions

Problem-1  What	is	a	quick	algorithm?

Solution:	A	quick	algorithm	(solution)	means	not	trial-and-error	solution.	It	could	take	a	billion
years,	but	as	long	as	we	do	not	use	trial	and	error,	 it	 is	efficient.	Future	computers	will	change
those	billion	years	to	a	few	minutes.

Problem-2  What	is	an	efficient	algorithm?

Solution:	An	algorithm	is	said	to	be	efficient	if	it	satisfies	the	following	properties:

• Scale	with	input	size.
• Don’t	care	about	constants.
• Asymptotic	running	time:	polynomial	time.

Problem-3  Can	we	solve	all	problems	in	polynomial	time?

Solution:	No.	The	answer	is	trivial	because	we	have	seen	lots	of	problems	which	take	more	than
polynomial	time.

Problem-4  Are	there	any	problems	which	are	NP-hard?

Solution:	By	definition,	NP-hard	implies	that	it	is	very	hard.	That	means	it	is	very	hard	to	prove
and	to	verify	that	it	is	hard.	Cook’s	Theorem	proves	that	Circuit	satisfiability	problem	is	NP-hard.

Problem-5  For	2-SAT	problem,	which	of	the	following	are	applicable?
(a) P
(b) NP
(c) CoNP
(d) NP-Hard
(e) CoNP-Hard
(f) NP-Complete
(g) CoNP-Complete

Solution:	2-SAT	is	solvable	in	poly-time.	So	it	is	P,	NP,	and	CoNP.

Problem-6  For	3-SAT	problem,	which	of	the	following	are	applicable?



(a) P
(b) NP
(c) CoNP
(d) NP-Hard
(e) CoNP-Hard
(f) NP-Complete
(g) CoNP-Complete

Solution:	3-SAT	is	NP-complete.	So	it	is	NP,	NP-Hard,	and	NP-complete.

Problem-7  For	2-Clique	problem,	which	of	the	following	are	applicable?
(a) P
(b) NP
(c) CoNP
(d) NP-Hard
(e) CoNP-Hard
(f) NP-Complete
(g) CoNP-Complete

Solution:	2-Clique	is	solvable	in	poly-time	(check	for	an	edge	between	all	vertex-pairs	in	O(n2)
time).	So	it	is	P.NP,	and	CoNP.

Problem-8  For	3-Clique	problem,	which	of	the	following	are	applicable?
(a) P
(b) NP
(c) CoNP
(d) NP-Hard
(e) CoNP-Hard
(f) NP-Complete
(g) CoNP-Complete

Solution:	 3-Clique	 is	 solvable	 in	poly-time	 (check	 for	 a	 triangle	between	all	 vertex-triplets	 in
O(n3)	time).	So	it	is	P,	NP,	and	CoNP.

Problem-9  Consider	 the	 problem	 of	 determining.	 For	 a	 given	 boolean	 formula,	 check
whether	 every	 assignment	 to	 the	 variables	 satisfies	 it.	 Which	 of	 the	 following	 is
applicable?
(a) P
(b) NP
(c) CoNP
(d) NP-Hard
(e) CoNP-Hard
(f) NP-Complete
(g) CoNP-Complete

Solution:	 Tautology	 is	 the	 complimentary	 problem	 to	 Satisfiability,	 which	 is	 NP-complete,	 so
Tautology	is	CoNP-complete.	So	it	is	CoNP,	CoNP-hard,	and	CoNP-complete.



Problem-10  Let	S	 be	 an	NP-complete	 problem	 and	Q	 and	 R	 be	 two	 other	 problems	 not
known	to	be	in	NP.	Q	is	polynomial	time	reducible	to	S	and	S	is	polynomial-time	reducible
to	R.	Which	one	of	the	following	statements	is	true?
(a) R	is	NP-complete
(b) R	is	NP-hard
(c) Q	is	NP-complete
(d) Q	is	NP	-hard.

Solution:	R	is	NP-hard	(b).

Problem-11  Let	A	be	the	problem	of	finding	a	Hamiltonian	cycle	in	a	graph	G	=	(V	,E),	with
|V|	 divisible	 by	 3	 and	B	 the	 problem	of	 determining	 if	Hamiltonian	 cycle	 exists	 in	 such
graphs.	Which	one	of	the	following	is	true?
(a) Both	A	and	B	are	NP-hard
(b) A	is	NP-hard,	but	B	is	not
(c) A	is	NP-hard,	but	B	is	not
(d) Neither	A	nor	B	is	NP-hard

Solution:	Both	A	and	B	are	NP-hard	(a).

Problem-12  Let	A	be	a	problem	that	belongs	to	the	class	NP.	State	which	of	the	following	is
true?
(a) There	is	no	polynomial	time	algorithm	for	A.
(b) If	A	can	be	solved	deterministically	in	polynomial	time,	then	P	=	NP.
(c) If	A	is	NP-hard,	then	it	is	NP-complete.
(d) A	may	be	undecidable.

Solution:	If	A	is	NP-hard,	then	it	is	NP-complete	(c).

Problem-13  Suppose	we	assume	Vertex	–	Cover	is	known	to	be	NP-complete.	Based	on	our
reduction,	can	we	say	Independent	–	Set	is	NP-complete?

Solution:	Yes.	This	follows	from	the	two	conditions	necessary	to	be	NP-complete:

• Independent	Set	is	in	NP,	as	stated	in	the	problem.
• A	reduction	from	a	known	NP-complete	problem.

Problem-14  Suppose	Independent	Set	is	known	to	be	NP-complete.	Based	on	our	reduction,
is	Vertex	Cover	NP-complete?

Solution:	No.	By	reduction	from	Vertex-Cover	to	Independent-Set,	we	do	not	know	the	difficulty
of	solving	Independent-Set.	This	is	because	Independent-Set	could	still	be	a	much	harder	problem
than	Vertex-Cover.	We	have	not	proved	that.

Problem-15  The	class	of	NP	is	the	class	of	languages	that	cannot	be	accepted	in	polynomial
time.	Is	it	true?	Explain.

Solution:



• The	class	of	NP	is	the	class	of	languages	that	can	be	verified	in	polynomial	time.
• The	class	of	P	is	the	class	of	languages	that	can	be	decided	in	polynomial	time.
• The	class	of	P	is	the	class	of	languages	that	can	be	accepted	in	polynomial	time.

P	⊆	NP	and	“languages	in	P	can	be	accepted	in	polynomial	time”,	the	description	“languages	in
NP	cannot	be	accepted	in	polynomial	time”	is	wrong.

The	 term	NP	 comes	 from	nondeterministic	 polynomial	 time	 and	 is	 derived	 from	 an	 alternative
characterization	by	using	nondeterministic	polynomial	time	Turing	machines.	It	has	nothing	to	do
with	“cannot	be	accepted	in	polynomial	time”.

Problem-16  Different	 encodings	 would	 cause	 different	 time	 complexity	 for	 the	 same
algorithm.	Is	it	true?

Solution:	True.	The	 time	complexity	of	 the	same	algorithm	is	different	between	unary	encoding
and	binary	 encoding.	But	 if	 the	 two	 encodings	 are	 polynomially	 related	 (e.g.	 base	 2	&	base	 3
encodings),	then	changing	between	them	will	not	cause	the	time	complexity	to	change.

Problem-17  If	P	=	NP,	then	NPC	(NP	Complete)	⊆	P.	Is	it	true?
Solution:	True.	If	P	=	NP,	then	for	any	language	L	∈	NP	C	(1)	L	∈	NPC	(2)	L	is	NP-hard.	By	the
first	condition,	L	∈	NPC	⊆	NP	=	P	⇒	NPC	⊆	P.

Problem-18  If	NPC	⊆	P,	then	P	=	NP.	Is	it	true?
Solution:	True.	All	the	NP	problem	can	be	reduced	to	arbitrary	NPC	problem	in	polynomial	time,
and	NPC	problems	can	be	solved	in	polynomial	time	because	NPC	⊆	P.	⇒	NP	problem	solvable
in	polynomial	time	⇒	NP	⊆	P	and	trivially	P	⊆	NP	implies	NP	=	P.



21.1	Introduction

In	this	chapter	we	will	cover	the	topics	which	are	useful	for	interviews	and	exams.

21.2	Hacks	on	Bitwise	Programming

In	C	 and	C	 +	 +	we	 can	work	with	 bits	 effectively.	 First	 let	 us	 see	 the	 definitions	 of	 each	 bit
operation	and	then	move	onto	different	techniques	for	solving	the	problems.	Basically,	there	are
six	operators	that	C	and	C	+	+	support	for	bit	manipulation:

Symbol Operation

& Bitwise	AND

1 Bitwise	OR

A Bitwise	Exclusive-OR

≪ Bitwise	left	shift



≫ Bitwise	right	shift

~ Bitwise	complement

21.2.1	Bitwise	AND

The	bitwise	AND	tests	two	binary	numbers	and	returns	bit	values	of	1	for	positions	where	both
numbers	had	a	one,	and	bit	values	of	0	where	both	numbers	did	not	have	one:

21.2.2	Bitwise	OR

The	bitwise	OR	tests	two	binary	numbers	and	returns	bit	values	of	1	for	positions	where	either	bit
or	both	bits	are	one,	the	result	of	0	only	happens	when	both	bits	are	0:

21.2.3	Bitwise	Exclusive-OR

The	 bitwise	 Exclusive-OR	 tests	 two	 binary	 numbers	 and	 returns	 bit	 values	 of	 1	 for	 positions
where	both	bits	are	different;	if	they	are	the	same	then	the	result	is	0:

21.2.4	Bitwise	Left	Shift

The	bitwise	left	shift	moves	all	bits	in	the	number	to	the	left	and	fills	vacated	bit	positions	with	0.



21.2.5	Bitwise	Right	Shift

The	bitwise	right	shift	moves	all	bits	in	the	number	to	the	right.

Note	the	use	of	?	for	the	fill	bits.	Where	the	left	shift	filled	the	vacated	positions	with	0,	a	right
shift	will	do	the	same	only	when	the	value	is	unsigned.	If	the	value	is	signed	then	a	right	shift	will
fill	the	vacated	bit	positions	with	the	sign	bit	or	0,	whichever	one	is	implementation-defined.	So
the	best	option	is	to	never	right	shift	signed	values.

21.2.6	Bitwise	Complement

The	bitwise	complement	inverts	the	bits	in	a	single	binary	number.

21.2.7	Checking	Whether	K-th	Bit	is	Set	or	Not

Let	us	assume	that	the	given	number	is	n.	Then	for	checking	the	Kth	bit	we	can	use	the	expression:
n	&	(1	≪	K	1).	If	the	expression	is	true	then	we	can	say	the	Kth	bit	is	set	(that	means,	set	to	1).

Example:

21.2.8	Setting	K-th	Bit



For	a	given	number	n,	to	set	the	Kth	bit	we	can	use	the	expression:	n	|	1	≪	(K	–	1)

Example:

21.2.9	Clearing	K-th	Bit

To	clear	Kth	bit	of	a	given	number	n,	we	can	use	the	expression:	n	&	~(1	≪	K	–	1)

Example:

21.2.10	Toggling	K-th	Bit

For	a	given	number	n,	for	toggling	the	Kth	bit	we	can	use	the	expression:	n	 (̂1	≪	K	–	1)

Example:

21.2.11	Toggling	Rightmost	One	Bit

For	a	given	number	n,	for	toggling	rightmost	one	bit	we	can	use	the	expression:	n	&	n	–	1

Example:



21.2.12	Isolating	Rightmost	One	Bit

For	a	given	number	n,	for	isolating	rightmost	one	bit	we	can	use	the	expression:	n	&	–	n

Example:

Note:	For	computing	–n,	use	 two’s	complement	 representation.	That	means,	 toggle	all	bits	and
add	1.

21.2.13	Isolating	Rightmost	Zero	Bit

For	a	given	number	n,	for	isolating	rightmost	zero	bit	we	can	use	the	expression:	~n	&	n	+	1

Example:

21.2.14	Checking	Whether	Number	is	Power	of	2	or	Not

Given	number	n,	 to	check	whether	the	number	is	in	2n	 form	for	not,	we	can	use	the	expression:
if(n	&	n	–	1	==	0)

Example:

21.2.15	Multiplying	Number	by	Power	of	2

For	a	given	number	n,	to	multiply	the	number	with	2K	we	can	use	the	expression:	n	≪	K



Example:

21.2.16	Dividing	Number	by	Power	of	2

For	a	given	number	n,	to	divide	the	number	with	2K	we	can	use	the	expression:	n	≫	K

Example:

21.2.17	Finding	Modulo	of	a	Given	Number

For	a	given	number	n,	to	find	the	%8	we	can	use	the	expression:	n	&	0x7.	Similarly,	to	find	%32,
use	the	expression:	n	&	0x1F

Note:	Similarly,	we	can	find	modulo	value	of	any	number.

21.2.18	Reversing	the	Binary	Number

For	 a	 given	number	n,	 to	 reverse	 the	 bits	 (reverse	 (mirror)	 of	 binary	 number)	we	 can	 use	 the
following	code	snippet:

Time	Complexity:	This	requires	one	iteration	per	bit	and	the	number	of	iterations	depends	on	the
size	of	the	number.

21.2.19	Counting	Number	of	One’s	in	Number



For	a	given	number	n,	to	count	the	number	of	1’s	in	its	binary	representation	we	can	use	any	of	the
following	methods.

Method	1:	Process	bit	by	bit	with	bitwise	and	operator

Time	 Complexity:	 This	 approach	 requires	 one	 iteration	 per	 bit	 and	 the	 number	 of	 iterations
depends	on	system.

Method	2:	Using	modulo	approach

Time	Complexity:	 This	 requires	 one	 iteration	 per	 bit	 and	 the	 number	 of	 iterations	 depends	 on
system.

Method	3:	Using	toggling	approach:	n	&	n	–	1

Time	Complexity:	The	number	of	iterations	depends	on	the	number	of	1	bits	in	the	number.

Method	4:	Using	preprocessing	idea.	In	this	method,	we	process	the	bits	in	groups.	For	example
if	we	process	them	in	groups	of	4	bits	at	a	time,	we	create	a	table	which	indicates	the	number	of
one’s	for	each	of	those	possibilities	(as	shown	below).



The	following	code	to	count	the	number	of	Is	in	the	number	with	this	approach:

Time	Complexity:	This	 approach	 requires	one	 iteration	per	4	bits	 and	 the	number	of	 iterations
depends	on	system.

21.2.20	Creating	Mask	for	Trailing	Zero’s

For	a	given	number	n,	to	create	a	mask	for	trailing	zeros,	we	can	use	the	expression:	(n	&	–	n)	–	1

Example:

Note:	In	the	above	case	we	are	getting	the	mask	as	all	zeros	because	there	are	no	trailing	zeros.

27.2.21	Swap	all	odd	and	even	bits

Example:



21.2.22	Performing	Average	without	Division

Is	there	a	bit-twiddling	algorithm	to	replace	mid	=	(low	+	high)	/	2	(used	in	Binary	Search	and
Merge	Sort)	with	something	much	faster?

We	can	use	mid	=	(low	+	high)	>>	1.	Note	that	using	(low	+	high)	/	2	for	midpoint	calculations
won’t	work	correctly	when	integer	overflow	becomes	an	issue.	We	can	use	bit	shifting	and	also
overcome	a	possible	overflow	issue:	 low	+	((high	–	 low)/	2)	and	 the	bit	shifting	operation	for
this	is	low	+	((high	–	low)	>>	1).

21.3	Other	Programming	Questions	with	Solutions

Problem-1  Give	an	algorithm	for	printing	the	matrix	elements	in	spiral	order.

Solution:	 Non-recursive	 solution	 involves	 directions	 right,	 left,	 up,	 down,	 and	 dealing	 their
corresponding	indices.	Once	the	first	row	is	printed,	direction	changes	(from	right)	to	down,	the
row	 is	 discarded	 by	 incrementing	 the	 upper	 limit.	 Once	 the	 last	 column	 is	 printed,	 direction
changes	to	left,	the	column	is	discarded	by	decrementing	the	right	hand	limit.

Time	Complexity:	O(n2).	Space	Complexity:	O(1).

Problem-2  Give	an	algorithm	for	shuffling	the	desk	of	cards.

Solution:	Assume	that	we	want	to	shuffle	an	array	of	52	cards,	from	0	to	51	with	no	repeats,	such
as	we	might	want	for	a	deck	of	cards.	First	fill	the	array	with	the	values	in	order,	then	go	through



the	array	and	exchange	each	element	with	a	randomly	chosen	element	in	the	range	from	itself	to
the	end.	It’s	possible	that	an	element	will	swap	with	itself,	but	there	is	no	problem	with	that.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-3  Reversal	 algorithm	 for	 array	 rotation:	 Write	 a	 function	 rotate(A[],	 d,	 n)	 that
rotates	 A[]	 of	 size	 n	 by	 d	 elements.	 For	 example,	 the	 array	 1,2,3,4,5,6,7	 becomes
3,4,5,6,7,1,2	after	2	rotations.

Solution:	Consider	the	following	algorithm.

Algorithm:
rotate(Array[],	d,	n)
reverse(Array[],	1,	d)	;	reverse(Array[],	d	+	1,	n);
reverse(Array[],	1,	n);

Let	AB	be	the	two	parts	of	the	input	Arrays	where	A	=	Array[0..d-1]	and	B	=	Array[d..n-1].	The
idea	of	the	algorithm	is:

Reverse	A	to	get	ArB.	/*	Ar	is	reverse	of	A	*/
Reverse	B	to	get	ArBr.	/*	Br	is	reverse	of	B	*/
Reverse	all	to	get	(ArBr)	r	=	BA.
For	example,	if	Array[]	=	[1,	2,	3,	4,	5,	6,	7],	d	=2	and	n	=	7	then,	A	=	[1,	2]	and	B	=	[3,
4,	5,	6,	7]
Reverse	A,	we	get	ArB	=	[2,	1,	3,	4,	5,	6,	7],	Reverse	B,	we	get	ArBr	=	[2,	1,	7,	6,	5,	4,
3]
Reverse	all,	we	get	(ArBr)r	=	[3,	4,	5,	6,	7,	1,	2]

Implementation	:



Problem-4  Suppose	 you	 are	 given	 an	 array	 s[1...n]	 and	 a	 procedure	 reverse	 (s,i,j)	 which
reverses	the	order	of	elements	in	between	positions	i	and	j	(both	inclusive).	What	does	the
following	sequence

a) Rotates	s	left	by	k	positions
b) Leaves	s	unchanged
c) Reverses	all	elements	of	s
d) None	of	the	above

Solution:	(b).	Effect	of	the	above	3	reversals	for	any	k	is	equivalent	to	left	rotation	of	the	array	of
size	n	by	k	[refer	Problem-3].



Problem-5  Finding	Anagrams	 in	Dictionary:	 you	 are	given	 these	2	 files:	 dictionary.txt	 and
jumbles.txt

Thejumbles.txt	file	contains	a	bunch	of	scrambled	words.	Your	job	is	to	print	out	those	jumbles
words,	1	word	to	a	line.	After	each	jumbled	word,	print	a	list	of	real	dictionary	words	that	could
be	formed	by	unscrambling	the	jumbled	word.	The	dictionary	words	that	you	have	to	choose	from
are	in	the	dictionary.txt	file.	Sample	content	of	jumbles.txt:

Solution:	Step-By-Step
Step	1:	Initialization

• Open	 the	dictionary.txt	 file	 and	 read	 the	words	 into	 an	 array	 (before	going	 further
verify	by	echoing	out	the	words	back	from	the	array	out	to	the	screen).

• Declare	a	hash	table	variable.
Step	2:	Process	the	Dictionary	for	each	dictionary	word	in	the	array.	Do	the	following:
We	now	have	a	hash	table	where	each	key	is	the	sorted	form	of	a	dictionary	word	and	the	value
associated	to	it	is	a	string	or	array	of	dictionary	words	that	sort	to	that	same	key.

• Remove	the	newline	off	the	end	of	each	word	via	chomp($word);
• Make	a	sorted	copy	of	the	word	-	i.e.	rearrange	the	individual	chars	in	the	string	to

be	sorted	alphabetically
• Think	of	the	sorted	word	as	the	key	value	and	think	of	the	set	of	all	dictionary	words

that	sort	to	the	exact	same	key	word	as	being	the	value	of	the	key
• Query	the	hashtable	to	see	if	the	sortedWord	is	already	one	of	the	keys
• If	 it	 is	 not	 already	 present	 then	 insert	 the	 sorted	 word	 as	 key	 and	 the	 unsorted

original	of	the	word	as	the	value
• Else	concat	the	unsorted	word	onto	the	value	string	already	out	there	(put	a	space	in

between)
Step	3:	Process	the	jumbled	word	file

• Read	through	the	jumbled	word	file	one	word	at	a	time.	As	you	read	each	jumbled
word	chomp	it	and	make	a	sorted	copy	(the	sorted	copy	is	your	key)

• Print	the	unsorted	jumble	word
• Query	the	hashtable	for	the	sorted	copy.	If	found,	print	the	associated	value	on	same

line	as	key	and	then	a	new	line.



Step	4:	Celebrate,	we	are	all	done

Sample	code	in	Perl:



Problem-6	 Pathways:	 Given	 a	 matrix	 as	 shown	 below,	 calculate	 the	 number	 of	 ways	 for



reaching	destination	B	from	A.

Solution:	Before	finding	the	solution,	we	try	to	understand	the	problem	with	a	simpler	version.
The	smallest	problem	that	we	can	consider	is	the	number	of	possible	routes	in	a	1	×	1	grid.

From	the	above	figure,	it	can	be	seen	that:

• From	both	the	bottom-left	and	the	top-right	corners	there’s	only	one	possible	route	to
the	destination.

• From	the	top-left	corner	there	are	trivially	two	possible	routes.

Similarly,	for	2x2	and	3x3	grids,	we	can	fill	the	matrix	as:

From	the	above	discussion,	it	is	clear	that	to	reach	the	bottom	right	corner	from	left	top	corner,	the
paths	are	overlapping.	As	unique	paths	could	overlap	at	certain	points	(grid	cells),	we	could	try
to	alter	the	previous	algorithm,	as	a	way	to	avoid	following	the	same	path	again.	If	we	start	filling
4x4	and	5x5,	we	can	easily	figure	out	the	solution	based	on	our	childhood	mathematics	concepts.

Are	you	able	to	figure	out	the	pattern?	It	is	the	same	as	Pascals	triangle.	So,	to	find	the	number	of
ways,	we	can	simply	scan	through	the	table	and	keep	counting	them	while	we	move	from	left	to
right	and	top	to	bottom	(starting	with	left-top).	We	can	even	solve	this	problem	with	mathematical
equation	of	Pascals	triangle.



Problem-7  Given	a	string	that	has	a	set	of	words	and	spaces,	write	a	program	to	move	the
spaces	to	front	of	string.	You	need	to	traverse	the	array	only	once	and	you	need	to	adjust
the	string	in	place.
Input	=	“move	these	spaces	to	beginning”	Output	=“	movethesepacestobeginning”

Solution:	 Maintain	 two	 indices	 i	 and	 j;	 traverse	 from	 end	 to	 beginning.	 If	 the	 current	 index
contains	char,	swap	chars	in	index	i	with	index	j.	This	will	move	all	the	spaces	to	beginning	of
the	array.

Time	Complexity:	O(n)	where	n	is	the	number	of	characters	in	the	input	array.	Space	Complexity:
O(1).

Problem-8  For	the	Problem-7,	can	we	improve	the	complexity?

Solution:	We	 can	 avoid	 a	 swap	 operation	 with	 a	 simple	 counter.	 But,	 it	 does	 not	 reduce	 the
overall	complexity.

Time	Complexity:	O(n)	where	n	 is	 the	number	of	 characters	 in	 input	 array.	Space	Complexity:
O(1).



Problem-9  Given	a	string	that	has	a	set	of	words	and	spaces,	write	a	program	to	move	the
spaces	to	end	of	string.	You	need	to	traverse	the	array	only	once	and	you	need	to	adjust	the
string	in	place.
Input	=	“move	these	spaces	to	end”	Output	=	“movethesepacestoend	“

Solution:	Traverse	the	array	from	left	to	right.	While	traversing,	maintain	a	counter	for	non-space
elements	in	array.	For	every	non-space	character	A[i],	put	the	element	at	A[count]	and	increment
count.	After	complete	traversal,	all	non-space	elements	have	already	been	shifted	to	front	end	and
count	is	set	as	index	of	first	0.	Now,	all	we	need	to	do	is	run	a	loop	which	fills	all	elements	with
spaces	from	count	till	end	of	the	array.

Time	Complexity:	O(n)	where	n	is	number	of	characters	in	input	array.	Space	Complexity:	O(1).

Problem-10  Moving	Zeros	to	end:	Given	an	array	of	n	integers,	move	all	the	zeros	of	a	given
array	to	the	end	of	the	array.	For	example,	if	the	given	array	is	{1,	9,	8,	4,	0,	0,	2,	7,	0,	6,
0},	it	should	be	changed	to	{1,	9,	8,	4,	2,	7,	6,	0,	0,	0,	0}.	The	order	of	all	other	elements
should	be	same.

Solution:	Maintain	two	variables	i	and	j;	and	initialize	with	0.	For	each	of	the	array	element	A[i],
if	A[i]	non-zero	element,	then	replace	the	element	A[j]	with	element	A[i].	Variable	i	will	always
be	incremented	till	n	-	1	but	we	will	increment	j	only	when	the	element	pointed	by	i	is	non-zero.



Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-11  For	Problem-10,	can	we	improve	the	complexity?

Solution:	Using	simple	swap	technique	we	can	avoid	the	unnecessary	second	while	loop	from	the
above	code.

Time	Complexity:	O(n).	Space	Complexity:	O(1).

Problem-12  Variant	of	Problem-10	and	Problem-11:	Given	an	array	containing	negative	and
positive	 numbers;	 give	 an	 algorithm	 for	 separating	 positive	 and	 negative	 numbers	 in	 it.
Also,	maintain	the	relative	order	of	positive	and	negative	numbers.	Input:	-5,	3,	2,	-1,	4,	-8
Output:	-5-1	-8342

Solution:	In	the	moveZerosToEnd	function,	just	replace	the	condition	A[i]	!=0	with	A[i]	<	0.

Problem-13  Given	a	number,	swap	odd	and	even	bits.

Solution:



Problem-14  Count	the	number	of	set	bits	in	all	numbers	from	1	to	n

Solution:	We	can	use	the	technique	of	section	21.2.19	and	iterate	through	all	the	numbers	from	1
to	n.

Problem-15  Count	the	number	of	set	bits	in	all	numbers	from	1	to	n

Solution:	We	can	use	the	technique	of	section	21.2.19	and	iterate	through	all	the	numbers	from	1
to	n.

Time	complexity:	O(number	of	set	bits	in	all	numbers	from	1	to	n).
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