Making Pictur es Wth GNU PIC

Eric S. Raymond
[@sr@snark.thysus.com(]

ABSTRAT

The pic language is a tiff extension that mads it easy to create and alter box-and-
arrav diagrams of the kind frequently used in technical papers atlibtéks. This paper
is both an introduction to and reference for gpic(1), the implementation disttiby the
Free Softvare Foundation for use with gff (1). It also catalogs other implementations
and eplains the diferences among them.

1. Introduction to PIC

1.1. Why PIC?

The pic language prades an easy &y to write procedural box-and-awaliagrams to be included in
tr off documents. The language is fciently flexible to be quite useful for state charts, Petri-net diagrams,
flow charts, simple circuit schematics, jumper layouts, and other kinds of illustratmwinig repetitve
uses of simple geometric forms and splines. Because these descriptions are procedural and object-based,
they are both compact and easy to modify

The phrase “GNU pic” may refer to either ofaic implementations distriied by the Free Soft-
ware Foundation and intended to accept the same input language. The gpic(1) implementation is for use
with the goff (1) implementation of wff. The pic2plot(1) implementation runs standalone and is part of
the plotutils package. Because both implementations are widailable in source form for free, thare
good bets for writing ery portable documentation.

1.2. PIC \ersions

The original 1984 pre-ditff (1) version of pic is long obsolete. Thewsdtten 1991 ersion is still
available as part of the DocumengWork Bench module of System V

Where diferences between DocumengefNork Bench (1991) pic and GNU pic need to be
described, original pic is referred to as\WB pic”. Details on the history of the program areegi at the
end of this document.

The pic2plot program does not require the rest of theffgd) toolchain to render graphics. It can
display pic diagrams in a X wind@ or generate output plots in agarnumber of other formats. These for
mats include: PNG, PBM, PGM, PPM, GIBVG, Adobe lllustrator format, idveeditable Postscript, the
WebCGM format for VEb-based ector graphics, the format used by the xfigndng editor the Hevlett-
Packard PCL 5 printer language, thewHett-Packard Graphics Language (by aat, HP-GL/2), the
ReGIS (remote graphics instruction set) formatettgped by DEC, @ktronix format, and déce-indepen-
dent GNU graphics metafile format.

In this document, gpic(1) and pic2plot(Xtensions are maekl as such.

2. Invoking PIC

Every pic description is a little program describing @iag actions. The [gtnjoff-dependent er-
sions compile the program by pic(1) intoaift(1) macros; the pic2plot(1) implementation uses a plotting
library to drav the picture directly Programs that process or displayadft(1) output need not kmoor care



that parts of the image gen life as pic descriptions.

The pic(1) program tries to translateytlring between .PS and .PE mark, and passes through
everything else. The normal definitions of .PS and .PE in the ms macro package avitketshae also
the side-dect of centering the pic output on the page.

2.1. PIC Error Messages

If you male a pic syntax errgigpic(1) issues an error message in the standard gcoglgylikax. A
typical error message looks dikhis,

pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

where [Ann(is a line numbeand [{blenls a tolen near (usually just after) the error location.

3. Basic PIC Concepts

Pictures are described procedurallg collections of objects connected by motions. Normpity
tries to string together objects left-to-right in the sequengeatedescribed, joining them at visually natu-
ral points. Here is arxample illustrating the flo of data in pic processing:

r-—-—-—-=-=-=-= -

| |

. | gtbl(1) or egn(1),
gpic(1) 47 (optional) }4> gtroff (1)

L - - - - — - - — — _

Figure 3-1: Flav of pic data

This was produced from the follng pic program:

.PS

ellipse "document";

arrow;

box width 0.6 "\flgpic\\fP(1)"
arrow;

box width 1.1 "\flgtb\\fP(1) or \flgegn\\fP(1)" "(optional)" dashed,;
arrow;

box width 0.6 "\flgtroff\\fP(1)";
arrow;

ellipse "PostScript"

.PE

This little program illustrates geral pic basics. Firstlywe see he to invoke three object types; ellipses,
arrons, and bogs. W see hw to declare tet lines to go within an object (and thakteean hae font
changes in it). W see hev to change the line style of an object from solid to dashed. And we see that a
box can be made wider than its @af size to accommodate morattéwve’ll discuss thisdcility in detail in

the net section).

We also get to see pg'simple syntax. Statements are ended lwiines or semicolons. String
guotes are required around akttarguments, whether or not theontain spaces. In general, the order of
command ayuments and modifiers BK'width 1.2” or “dashed” doesnmatter except that the order ofxe
arguments is significant.

Here are all bt one of the basic pic objects at their algt sizes:



line arrov J
box —_— —
arc

Figure 3-2: Basic pic objects

The missing simple object type is a spline. There is alsayatw collect objects into blaccompos-
ites which allavs you to treat the whole group as a single object (resembling a box) fgrpugoses.
We'll describe both of these later on.

The box, ellipse, circle, and block composite objects are closed; linessae@s and splines are
open. This distinction is often important ir@aining command modifiers.

Figure 3-2 vas produced by the folleng pic program, which introduces some more basic concepts:

.PS

box "box";
move;

line "line" ";
move;

arrow "arrow" "";
move;

circle "circle";
move;

ellipse "ellipse";
move;

arc; down; move; "arc"
.PE

The first thing to notice is the m® command, which nwes a dedult distance (1/2 inch) in the eur
rent movement direction.

Secondly see hy we can also decorate lines and agavith text. The line and arme commands
each tak two aguments here, specifyingxteto go abwe and bele the object. If you wnder wly one
argument vould not do, contemplate the output of @asr "ow!":

—owl e

Figure 3-3: &t centered on an amo

When a command tak one tet string, pic tries to place it at the objegtjeometric centerAs you
add more strings, pic treats them asestical block to be centered. The program

line "1";

line "1" "2";

line "1" "2" "3";

line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gves you this:



1
1

1 >

1 : 2 2 3

3 3 4

5

Figure 3-4: Hiects of multiple tgt aguments

The last line of Figure 3-&'program, ‘ac; down; move; "arc", describing the captioned arc, intro-
duces seeral nev ideas. Firstlywe see hw to change the direction in which objects are joined. Had we
written arc; move; "arc", omitting down the caption wuld have been joined to the top of the arcelik
this:

arc

)

Figure 3-5: Result of &, move;

This is because drang an arc changes the daft direction to the one itxi¢ end points at. @ rein-
force this point, consider:

arc

Figure 3-6: Result of arcw; move;

All we've done diferently here is specify “cw” for a clockwise arc (“ccw” specifies couolrk-
wise direction). Obseevhawv it changes the daifilt direction to dan, rather than up.

Another good &y to see this via with the folldng program:

line; arc; arc cw; line

which yields:

Figure 3-7: Result of line; ar; arc cw; line

Notice that we did not Ive to specify “up” for the second arc to be joined to the end of the first.

Finally, obsere that a string, alone, is treated ag te be surrounded by anvisible box of a size
either specified by width and height attiies or by the defilts textwid and textht. Both are initially zero
(because we donknow the deéult font size).

4. Sizes and Spacing

Sizes are specified in inches. If you ddiKe inches, i8 possible to set a global stylariable scale
that changes the unit. Setting scale = 2.5datively changes the internal unit to centimeters (all other size
variable alues are scaled correspondingly).



4.1. Default Sizes of Objects
Here are the datfilt sizes for pic objects:

Object | Default Size

box 0.75" wide by 0.5" high
circle 0.5" diameter

ellipse 0.75" wide by 0.5" high
arc 0.5" radius

line 0.5" long

arrov 0.5" long

The simplest wy to think about these drflts is that themalke the other basic objects fit snugly into
a dehult-sized box.

pic2plot(1) does not necessarily emit ygibal inch for each virtual inch in its dvang coordinate
system. Instead, it dnss on a cavas 8 virtual inches by 8 virtual inches wide. If its output page size is
“letter”, these virtual inches will map to real ones. Specifying ferdift page size (such as, saa”) will
scale virtual inches so thare output as one eighth of the page width. Also, pic2plot(1) centers all images
by defuult, though the —n option can be used toverd this.

4.2. Objects Do Not Stetch!

Text is rendered in the current font with normal tlofe spacing. Bogs, circles, and ellipses do not
automatically resize to fit enclosedcte Thus, if you say box "this text far too long 6r a default box"

you'll get this:
this text is %r too long for a defult box

Figure 4-1: Bors do not automatically resize

which is probably not the fefct you vant.

4.3. Resizing Boxes
To change the box size, you can specify a box width with the “width” modifier:

this text is far too long for a defult box

Figure 4-2: Result of box width 3

This modifier taks a dimension in inches. There is also a “height” modifier that changessa box’
height. The width leyword may be abbugated to wid; the height &word to ht.

4.4. Resizing Other Object ypes

To change the size of a circleygiit a rad[ius] or diam[eter] modifier; this changes the radius or
diameter of the circle, according to the numerguarent that follas.



0 ® (v

Figure 4-3: Circles with increasing radii

The mose command can also talka dimension, which just tells it Wwamary inches to mee in the
current direction.

Ellipses are sized to fit in the rectangular box defined by thes, &and can be resized with width
and height like boes.

You can also change the radius of atmve of an arc with rad[ius] (which specifies the radius of the
circle of which the arc is a gment). Lager \alues yield flatter arcs.

2

0.1

Figure 4-4: ac rad with increasing radii

Obsenre that because an arc is defined as a quarter circle, increasing the radius also increases the size
of the arcs bounding box.

4.5. The ‘'same’ Keyword
In place of a dimension specification, you can use ¢éhevdrd same. This gies the object the same
size as the pwéous one of its type. As axample, the program

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 4-5: The samedgword

5. Generalized Lines and Splines

5.1. Diagonal Lines

It is possible to specify diagonal lines or arsoby adding multiple up, den, left, and right modi-
fiers to the line object. Anof these can va a multiplier To understand the fefcts, think of the draing
area as being gridded with standard-sizedebox



NN T T

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 5-1: Diagonal arves (dotted bogs sha the implied 0.5-inch grid)

5.2. Multi-Segment Line Objects

A “line” or “arrow” object may actually be a path consisting ofyamumber of sgments of arying
lengths and directions.oTdescribe a path, connecvegal line or array commands with thedgword then.

Figure 5-2: line right 1 then devn .5 left 1 then right 1

If a path starts with then, the firstggment is assumed to be into the current direction, using the
default length.

5.3. Spline Objects

If you start a path with the splineskword, the path ertices are treated as control points for a spline
curwe fit.

34
The spline curs... ...with tangents displayed

Figure 5-3: spline right 1 then dwn .5 left 1 then right 1

You can describe mgmatural-looking ot irregular cunes this vay. For example:

C O\

spline right then up then left then davn ->; spline left then up right then down right ->;
Figure 5-4: Wo more splinexamples

Note the arrev decorations. Arnwheads can be applied naturally to grath-based object, line or spline.
We'll see hev in the net section.

6. Decorating Objects

6.1. Text Special Effects
All pic implementations support the folldng font-styling escapes withinXeobjects:

\fR, \f1
Set Roman style (the dadilt)



\fl, \f2
Set ltalic style

\fB, \f3
Set Bold style

\fP
Revert to preious style; only wrks one lgel deep, does not stack.

In the pic implementations that are preprocessors for a toolchain that includedijirigt objects
may also contain [gtnpff vertical- and horizontal-motion escapes such as \h ofrbff special glyphs are
also aailable. All \-escapes will be passed through to the postprocessing stage \andhba normal
effects. The base fonamily is set by the [gtnff ervironment at the time the picture is rendered.

pic2plot replaces [gtn]off horizontal- and ertical-motion escapes with \-escapes of W& .0 Troff
special glyphs are novailable, lut in most back ends Latin-1 special characters and a square-root radical
will be. See the pic2plot documentation for full details.

6.2. Dashed Objects

We've already seen that the modifier dashed can change the line style of an object from solid to
dashed. GNU gpic permits you to dot or dash ellipses, circles, and arcs (and splipgs nmodie only);
some ersions of VB may only permit dashing of lines and lsx Its possible to change the dash inter
val by specifying a number after the modifier

r———---- 1 r———---- 1 fﬁi_} ’77—1 ’702—‘

| | | |
| default | . 005 | |01 | 0.15
| | | |

L | L | Lo ] L ] L.J

Figure 6-1: Dashed objects

6.3. Dotted Objects

Another &ailable qualifier is dotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs
(and splines ingX mode only); someersions of VB may only permit dashing of lines and ksx It too
can be sdixed with a number to specify the intahbetween dots:

default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.4. Rounding Box Coners
It is also possible, in GNU gpic onlio modify a box so it has rounded corners:

Figure 6-3: box rad with increasing radiuses

Radius walues higher than half the minimum box dimension are silently truncated t@khet v



6.5. Slanted Boxes
GNU gpic supports slanted bex:

/ xslanted 0.1 / yslanted -0.1

Figure 6-4: \drious slanted bes.

xslanted -0.2
yslanted 0.1

The xslanted and yslanted attrilies specify the x and yfeét, respectely, of the box$ upper right
corner from its defult position.

6.6. Arrowheads

Lines and arcs can be decorated as welly e or arc (and anspline as well) can be decorated
with arrovheads by adding one or more as modifiers:

-

Figure 6-5: Double-headed line made with line <- ->

In fact, the arow command is just shorthand for line ->. And there is a double-head modifier <->,
so the figure ab@ could hae been made with line <->.

Arrowheads hee a width attrilute, the distance across the rear; and a height atrithe length of
the arrevhead along the shaft.

Arrowhead style is controlled by the stylariable arrowhead. The VB and GNU ‘ersions inter
pret it diferently DWB defaults to open armwheads and an aowhead \alue of 2; the Iérnighan paper
says a ’lue of 7 maks solid arrevheads. GNU gpic dedults to solid arnwheads and an aoiwhead \alue
of 1; a \alue of 0 produces open anloeads. Note that solid amdeads are alays filled with the current
outline color

6.7. Line Thickness

It's also possible to change the line thickness of an object (this is a xé®Hdien, VB pic doesnt
support it). The defult thickness of the lines used towlrabjects is controlled by the linethickaviable.
This gies the thickness of lines in points. Agative value means use the deft thickness: in gx output
mode, this means use a thickness of 8 millinchesgit dutput mode with the -c option, this means use
the line thickness specified by .ps lines; infirmfitput mode, this means use a thickness proportional to the
pointsize. A zero &lue means dvathe thinnest possible line supported by the outpuicde Initially it
has a wlue of -1. There is also a thickness attitid (which can be abhrated to thick). Br example, cir
cle thickness 1.5 wuld drav a circle using a line with a thickness of 1.5 points. The thickness of lines is
not afected by the alue of the scaleariable, nor by anwidth or height gien in the .PS line.

6.8. Invisible Objects

The modifier ivis[ible] makes an object entirelywisible. This used to be useful for positioningte
in an irvisible object that is properly joined to neighboring onesw@&eDWB versions and GNU pic treat
stand-alone td in exactly this vay.

6.9. Filled Objects

It is possible to fill bogs, circles, and ellipses. The maodifier fill[ed] accomplishes thigi ¢an suf-
fix it with a fill value; the defult is gven by the styleariable fillval.

DWB pic and gpic hae opposite corentions for fill \alues and dférent defults. DVB fillval
defaults to 0.3 and smallealues are dass; GNU fillval uses 0 for white and 1 for black.



-10-

Figure 6-6: cicle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic males some additional guarantees. A fidlue greater than 1 can also be used: this means
fill with the shade of gray that is currently being used fer &&d lines. Normally this is blackuboutput
devices may preide a mechanism for changing this. Theisible attribute does not &ct the filling of
objects. Ary text associated with a filled object is added after the object has been filled, so thzt ithe te
not obscured by the filling.

The closed-object modifier solid is egalent to fill with the darkst fill value (DNVB pic had this
capability lut mentioned it only in a reference section).

6.10. Coloed Objects

As a GNU atension, three additional modifiers akaidable to specify colored objects. outline sets
the color of the outline, shaded the fill colJ@nd color sets both. All threeswords expect a sufx speci-
fying the color Example:

Figure 6-7: box color "yellow"; arr ow color "cyan"; cir cle shaded "geen" outline "black";

Alternative spellings are colour, coled, coloured, and outlined.

Predefined color names for [gtojf -based pic implementations are defined in theicke macro files,
for example ps.tmac; additional colors can be defined with the .defcolor request (see the manual page of
GNU troff (1) for more details). Currentlgolor support is notailable at all in X mode.

The pic2plot(1) carries with itswn set of color names, essentially those recognized by the X win-
dow system with “grg” accepted as aariant of “gray”.

pic assumes that at thednaning of a picture both glyph and fill color are set to thaulefalue.

7. More About Text Placement

By default, text is centered at the geometric center of the object it is associated with. The modifier
ljust causes the left end to be at the specified point (which means thatdhigeteto the right of the speci-
fied place!), the modifier rjust puts the right end at the place. The modifierseabod bela center the
text one half line space in thevgh direction.

Text attributes can be combined:

ljust text rjust tex ljust abawe _
rjust belav

Figure 7-1: ‘&t attributes

What actually happens is that ixtstrings are centered in a box that is textwid wide by textht high.
Both these a&riables are initially zero (that is psc\way of not making assumptions about [tff(1)’s
default point size).



-11-

In GNU gpic, objects can ka an aligned attribte. This only verks if the postprocessor isaps or
gropdf. Any text associated with an objectuiag the aligned attribte is rotated about the center of the
object so that it is aligned in the direction from the start point to the end point of the object. Note that this
attribute has no é&ct for objects whose start and end points are coincident.

8. More About Direction Changes

We've already seen loto change the direction in which objects are composed from agéi$wo
downwards. Here are some more illustvatixamples:

right; box; arr ow; circle; arrow; ellipse

left; box; arr ow; circle; arrow; ellipse

Figure 8-1: Efiects of diferent motion directions (right and left)

down; box; arrow; circle; arrow; ellipse; up; box; arrow; circle; arrow; ellipse;

Figure 8-2: Hiects of diferent motion directions (up andwin)

Something that may appear surprising happens if you change directions inithes etay:



-12-

Figure 8-3: box; arow; circle; down; arr ow; ellipse

You might hae expected that program to yield this:

Figure 8-4: More intuitie?

But, in fact, to get Figure 8.3 youVmto do this:

.PS

box;

arrow;

circle;

move to last circle .s;
down;

arrow;

ellipse

.PE

Why is this? Because theiepoint for the current direction is already set when yowdtee object. The
second arn in Figure 8.2 dropped @mwards from the circlg’ attachment point for an object to be joined
to the right.

The meaning of the command woto last circle .s should be atious. In order to see kit gener
alizes, well need to go into detail on mvimportant topics; locations and object names.

9. Naming Objects

The most natural ay to name locations in pic is rekati to objects. In order to do this, yowhdo
be able you ha to be able to name objects. The pic language hasawilities for this that try to emulate
the syntax of English.

9.1. Naming Objects By Order Of Drawing

The simplest (and generally the most usefidywo name an object is with a last clause. It needs to
be folloved by an object type name; box, d#, ellipse, line, arow, spline, ", or [] (the last type refers
to a composite object which wietiscuss later). So, forxample, the last citle clause in the program
attached to Figure 9.1.3 refers to the last circlevdra



-13-

More generallyobjects of a gien type are implicitly numbered (starting from 1)ouYcan refer to
(say) the third ellipse in the current picture with 3rd ellipse, or to the first box as 1st box, or to thefifth te

string (which isnt an attritute to another object) as 5th ™.

Objects are also numbered baekds by type from the last oneowcan say 2nd last box to get the
second-to-last box, or 3rd last ellipse to get the third-to-last ellipse.

In places where nth is aleed, ‘expr’th is also allaved. Note that 'th is a single t@n: no space is
allowed between the ' and the th.oFexample,

fori=1to 4 do{
line from ‘i'th box.nw to ‘i+1'th box.se

}

9.2. Naming Objects Wth Labels

You can also specify an object by referring to a label. A label ierd {which must bgin with a
capital letter) folleved by a colon; you declare it by placing it immediately before the objegtrdraom-
mand. er example, the program

.PS

A: box "first" "object”
move;

B: ellipse "second
move;

arrow right at A .r;
.PE

object”

declares labels A and B for its first and second objects. Blarkat that looks li:

first second
object object

Figure 9-1: Example of label use

The at statement in the fourth line uses the label A (the biehaf at is explained in the nd section).
We’'ll see later on that labels are most useful for referring to block composite objects.

Labels are not constantsitbvariables (you can we colon as a sort of assignment)ouycan say
something lile A: A + (1,0); and the dct is to reassign the label A to designate a position one inch to the
right of its old \alue.

10. Describing locations

The location of points can be described in yndifferent ways. All these forms are interchangeable
as for as the pic language syntax is concerned; where you can use ypmoé,tha others that euld male
semantic sense are ailed.

The special label Heralvays refers to the current position.

10.1. Absolute Coordinates

The simplest is absolute coordinates in inches; pic uses a Cartesian system with (0,0 atrtheftio
corner of the virtual draing surbice for each picture (that is, X increases to the right and Y increases
upwards). An absolute location mayalys be written in the coantional form as tew comma-separated
numbers surrounded by parentheses (and this is recommended for clarity). ktsoohtse it creates no
ambiguity the pair of X and Y coordinates 8oés without parentheses.



-14-

It is a good idea tovaid absolute coordinates,Wever. They tend to mak picture descriptions diif
cult to understand and modifynstead, there are quite a number a@fys to specify locations reled to pic
objects and prgous locations.

Another possibility of surprise is thadt that pic crops the picture to the smallest bounding box
before writing it out. Br example, if you hee a picture consisting of a small box with iteséy left corner
at (2,2) and another small box with its upper right corner at (5,5), the width and height of the image are
both 3 units and not 5. oTget the origin at (0,0) included, simply add avisiible object to the picture,
positioning the objecd’left corner at (0,0).

10.2. Locations Relatve to Objects

The symbol Hee alvays refers to the position of the last objectarar the destination of the last
move.

Alone and unqualified, a last @le or aly other way of specifying a closed-object or arc location
refers as a position to the geometric center of the object. Unqualified, the name of a line or spline object
refers to the position of the object start.

Also, pic objects hae quite a fer named locations associated with them. One of these is the object
center which can be indicated (redundantly) with theigu€enter (or just .c). Thus, last cale .center is
equivalent to last cicle.

10.2.1. Locations Relatie to Closed Objects

Every closed object (box, circle, ellipse, or block composite) also has eight compass points associ-
ated with it;

.nw .n .ne
We e.C 0. W
.SW S .se

Figure 10-1: Compass points

these are the locations where eight compass rays from the geometric certemeersect the figure. So
when we say last cale .s we are referring to the south compass point of the last ciralendrahe epla-
nation of Figure 8-3 program is n@ complete.

(In case you disli& compass points, the names .top, .bottom, .left and .right are symsrfor .n, .s,
.e, and .w respeetly; they can @en be abbrgated to .t, .b, .l and .r).

The names center, top, bottom, left, right, north, south, east, and west can also be used (without
the leading dot) in a prefix form matk by of; thus, center of last code and top of 2nd last ellipse are
both \alid object references. Finallthe names left and right can be predok with upper and laver which
both hae the obious meaning.

Arc objects also hee compass points; thare the compass points of the implied circle.

Non-closed objects (line, amp or spline) hae compass points tooutbthe locations of them are
completely arbitrary In particular different pic implementations return t&fent locations.

10.2.2. Locations Relatie to Open Objects

Every open object (line, ang arc, or spline) has three named points: .start, .center (or .c), and .end.
They can also be used without leading dots in the of prefix form. The center of an arc is the center of its
circle, hut the center of a line, path, or spline is haljvbetween its endpoints.



-15-

.end .Start
.center
.Start .center . .end
start .end A
.center '
.start )

Figure 10-2: Special points on open objects

10.3. Ways of Composing Bsitions

Once you hee two positions to wrk with, there are seral ways to combine them to specifywe
positions.

10.3.1. \éctor Sums and Displacements

Positions may be added or subtracted to yieldnapuasition (to be more precise, you can only add a
position and anxression pair; the latter must be on the right side of the addition or subtraction sign). The
result is the corentional ector sum or dference of coordinates.oFexample, last box .ne + (0.1, 0) is a
valid position. This xample illustrates a common use, to define a position sligltgtdfom a named one
(say for captioning purposes).

10.3.2. Intempolation Between Bsitions

A position may be interpolated betweernyawo positions. The syntax is dction of the way
between positionl and position2’. df example, you can say 1/3 of the way between Ildeand last
ellipse .ne. The fraction may be in numerator/denominator form or may be an ordinary nuraloes(sre
not restricted to [0,1]). As an alternedi to this erbose syntax, you can saya€tion <positionl , posi-
tion2>"; thus, the xample could also be written as 1/3 <ldefast ellipse>.

Figure 10-3: P: 1/3 of the way between last aow .start and last arrow .end

This facility can be used, foxample, to drev double connections.

yin yang

Figure 10-4: Doubled arves

You can get Figure 10-4 from the folling program:



-16-

.PS

A: box "yin"; move;

B: box "yang";

arrow right at 1/4 <A.e,A.ne>;
arrow left at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

10.3.3. Ppjections of Rints

Given two positions p and q, the position (p, q) has the X coordinate of p and the Y coordinate of g.
This can be helpful in placing an object at one of the corners of the virtual box defined loyhax
objects.
A (B,A) is here

(A,B) is here ° B

Figure 10-5: Using (X, y) composition

10.4. Using Locations

There are four ays to use locations; at,dm, to, and with. All four are object modifiers; that is,
you use them as dix¥es to a draing command.

The at modifier says to dva a closed object or arc with its center at the foihg location, or to
draw a line/spline/arna starting at the folling location.

The to modifier can be used alone to specify avenadestination. The éim modifier can be used
alone in the sameay as at.

The from and to modifiers can be used with a line ocarommand to specify start and end points of
the object. In conjunction with named locations, thifersf a ery flexible mechanism for connecting
objects. Br example, the follving program

PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \
between last box .n and last box .ne to last ellipse .n;
.PE

yields:



-17-

from c

Figure 10-6: A triclk connection specified with English-éilsyntax

The with modifier allavs you to identify a named attachment point of an object (or a position within
the object) with another point. This isry useful for connecting objects in a naturaywFor an &ample,
consider these twprograms:

box wid 0.5 ht 0.5;

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 10-7: Using the with modifier for attachments

10.5. The ‘chop’ Modifier

When draving lines between circles that dointersect them at a compass point, it is useful to be
able to shorten a line by the radius of the circle at either or both ends. Consider wiadglogram:

.PS

circle "x"

circle "y" at 1st circle - (0.4, 0.6)

circle "z" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 2nd circle to 3rd circle chop
arrow from 3rd circle to 1st circle chop
.PE

It yields the follaving:



-18-

Figure 10-8: The chop modifier

Notice that the chop attriie mwes arravheads rather than stepping on them. Bwdkefthe chop modi-
fier shortens both ends of the line byctérad. By sufixing it with a number you can change the amount
of chopping.

If you say line ... chop rl chop r2 with r1 and r2 both numbers, you carnywthe amount of chop-
ping at both ends. du can use this in combination with trigonometric functions to write code that deals
with more comple intersections.

11. Object Groups
There are tw different ways to group objects in pic; &ce gouping and blok composites.

11.1. Brace Gpouping

The simpler method is simply to group a set of objects within curly brawkbrace characters. On
exit from this grouping, the current position and direction are restored to #ilei when the opening
brace vas encountered.

11.2. Block Composites

A block composite object is created a series of commands enclosed by squaets biEe& compos-
ite can be treated for most purposes kksingle closed object, with the size and shape of its bounding box.
Here is anxample. The program fragment

A: [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 11-1, which we shdoth with and without its attachment points. The blsck’
location becomes thelue of A.



-19-

nw .n .ne

)
N
@
\_o

Figure 11-1: A sample composite object

To refer to one of the compos#eattachment points, you can say (faample) A .s. Br purposes of
object naming, composites are a classu ¥ould write last [] .s as an eqailent reference, usableyan
where a location is needed. This constructioneiy vmportant for putting together gg, multi-part dia-
grams.

Blocks are also aariable-scoping mechanism, dila goff (1) ervironment. All\ariable assignments
done inside a block are undone at the end ofatgédt at alues within a block, write a name of the block
followed by a dot, follwed by the label you &ant. For ekample, we could refer the the center of the box in
the abwe composite as last [] .Caption or A.Caption.

This kind of reference to a label can be used inveay ary other location can be.oF eckample, if
we added "Hi!" at A.Caption the result vould look like this:

)
N

Figure 11-2: Adding a caption using interior labeling

You can also use interior labels in either part of a with modifidiis means that thexample com-
posite could be placed relatito its caption box by a command containing with A.Caption at.

Note that both width and height of the block composite object aayalpositie:



-20-

box wid -0.5 ht 0.5; box wid 0.75 ht 0.75 [box wid -0.5 ht 0.5]; box wid 0.75 ht 0.75

Figure 11-3: Composite block objectsvays hae positve width and height

Blocks may be nested. This means you can use block attachment poiaiisl topbcomple dia-
grams hierarchicallyfrom the inside out. Note that last and the other sequential naming mechanistns don’
look inside blocks, so if you kia a program that looks &k

.PS
P: [box "foo"; ellipse "bar'];
Q:[
[box "baz"; ellipse "quxx"]
"random text";

]

arrow from 2nd last [];
.PE

the arrav in the last line is attached to object P, not object Q.

In DWB pic, only references oneJel deep into enclosed blocks were permitted. GNU gpic
removes this restriction.

The combination of blockariable scoping, assignability of labels and the maacdity that well
describe later on can be used to simulate functions with lacables (just wrap the macro body in block
braces).

12. Style \ariables

There are a number of global stylariables in pic that can be used to change itsrall behasior.
We've mentioned s@ral of them in préous sections. There all described here.oF each ariable, the
default is gien.

Style Variable | Default | What It Does

boxht 0.5 Deéult height of a box

boxwid 0.75 Deéult width of a box

lineht 0.5 Deéult length of wertical line

linewid 0.75 Detult length of horizontal line

linethick -1 Dehult line thickness

arcrad 0.25 Dedult radius of an arc

circlerad 0.25 Dedult radius of a circle

ellipseht 0.5 Dedult height of an ellipse

ellipsewid 0.75 Detult width of an ellipse

moveht 0.5 Deéult length of ertical mawe

movewid 0.75 Deault length of horizontal me

textht 0 Default height of box enclosing axteobject
textwid 0 Default width of box enclosing axeobject
arrovht 0.1 Length of amttead along shaft
arrovwid 0.05 Wdth of rear of arrevhead

arrovhead 1 Enable/disablevainead filling



-21-

Style Variable | Default | What It Does

dashwid 0.05 Interad for dashed lines
maxpswid 8.5 Maximum width of picture
maxpsht 11 Maximum height of picture
scale 1 Unit scaletdr

fillval 0.5 Detult fill value

Any of these driables can be set with a simple assignment statemenexdmple:

Figure 12-1: boxht=1; boxwid=0.3; meewid=0.2; box; mare; box; move; box; move; box;

In GNU pic, setting the scaleaviable re-scales all size-related stateiables so that theiralues
remain equialent in the ne units.

The commandeset resets all styleaviables to their dafilts. You can gie it a list of \ariable names
as aguments (optionally separated by commas), in which case it resets only those.

State \ariables retain theiralues across pictures until reset.

13. Expressions, driables, and Assignment

A number is a &lid expression, of course (all numbers are stored internally as floating-point). Deci-
mal-point notation is acceptable; in GNU gpic, scientific notation '€ 'format (like 5e-2) is accepted.

Anywhere a number isxpected, the language also acceptargable. \ariables may be theubt-in
style \ariable described in the last section, avwariables created by assignment.

DWB pic supports only the ordinary assignment via =, which definesdhiable (on the left side of
the equal sign) in the current block if it is not already defined there, and then changdselfervthe right
side) in the current block. Thamable is not visible outside of the block. This is similar to the C program-
ming language where afable within a block sha#ls a \ariable with the same name outside of the block.

GNU gpic supports an alternate form of assignment using :=. Hn@ble must already be defined,
and the alue is assigned to thaanable without creating aaviable local to the current block.ofFexam-
ple, this

o1 Ol

y=3
]

print x

y

prints 3 5.

You can use the height, width, radius, and x and y coordinatey obgtt or corner inx@ressions.
If A'is an object label or name, all the folldng are \alid:



-22-

A.X # x coordinate of the center of A

A.ney # y coordinate of the northeast corner of A
A.wid # the width of A

A.ht # and its height

2nd last circle.rad # the radius of the 2nd last circle

Note the secondxpression, sheing how to extract a corner coordinate.

Basic arithmetic resembling those of C operators agable; +, *, -, /, and %. Sois "~ forgonen-
tiation. Grouping is permitted in the usuabyusing parentheses. GNU gpic allogical operators to
appear in epressions; ! (logical rgation, not &ctorial), &&, ||, ==, =, >=, <=, <, >.

Various lyilt-in functions are supported: sin(x), cos(x), log(x), exp(x), sqrt(x), max(x,y), atan2(x,y),
min(x,y), int(x), rand(), and srand(). Both exp and log are base 10; int doesgateruncation; rand()
returns a random number in [0-1), and srand() sets the seed fav aagience of pseudo-random numbers
to be returned by rand() (srand() is a GNWension).

GNU gpic also documents a onegament form or rand, rand(x), which returns a random number
between 1 and xubthis is deprecated and may be regatbin a future ersion.

The function sprintf() behees like a C sprintf (3) function that only te& %, %e, %f, and %g format
strings.

14. Macros

You can define macros in pic, with up to 3gwnents (up to 16 on EBCDIC platforms). This is use-
ful for diagrams with repetite parts. In conjunction with the scope rules for block compositeded-ef
tively gives you the ability to write functions.

The syntax is

define name { eplacement te }

This defines name as a macro to be replaced by the replacemiefmtaeincluding the braces). The macro
may be called as

name(agl, ag2, ... agn)

The aguments (if ay) are substituted for teks $1, $2 ... $n appearing in the replacemexit te
As an eample of macro use, consider this:



-23-

.PS
# Plot a single jumper in a box, $1 is the on-off state.
define jumper {[

shrinkfactor = 0.8;

Outer: box invis wid 0.45 ht 1;

# Count on end ] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (1$1) with .s at center of Outer;
box fill ($1) with .n at center of Outer;

1}

# Plot a block of six jumpers.

define jumperblock {
jumper($1);
jumper($2);
jumper($3);
jumper($4);
jumper($5);
jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [J.nw wid 6*jwidth ht jheight;

# Use {} to avoid changing position from last box draw.
# This is necessary so move in any direction works as expected
{"Jumpers in state $1$2$3%4$5%$6" at last box .s + (0,-0.2);}

}

# Sample macro invocations.
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);
.PE

It yields the follaving:

Jumpers in state 110010 Jumpers in state 101011

Figure 14-1: Sample use of a macro

This macro rample illustrates he you can combine [], brace grouping, aratiable assignment to write
true functions.

One detail thexample abwe does not illustrate is thadt that macro gument parsing is not tek-
oriented. If you call jumper(1), thealue of $1is " 1". You could gen call jumper(big string) to give
$1 the walue "big string".



-24-

If you want to pass in a coordinate paiou can woid getting tripped up by the comma by wrapping
the pair in parentheses.

Macros persist through pictureso indefine a macro, say undef name; feample,

undef jumper
undef jumperblock

would undefine the tavemacros in the jumper blockample.

15. Import/Export Commands
Commands that import oxport data between pic and itsvéronment are described here.

15.1. File and &ble Insertion
The statement

copy filename

inserts the contents of filename in the pic input streamy &%/.PE pair in the file is ignored. ou can
use this to include pre-generated images.

A variant of this statement replicates the copy thru feature ap@t). The call

copy filename thru macr o

calls maco (which may be either a name or replacemenrt)ten the ayuments obtained by breaking each
line of the file into blank-separated fields. The macro mag k@ to 9 aguments. The replacemenkte
may be delimited by braces or by a pair of instancesytharacter not appearing in the rest of thxé te

If you write

copythrumacr o

omitting the filename, lines to be parsed aremakom the input source up to thexhd’E.

In either of the last tw copy commands, GNU gpic permits a trailing ‘until wabr clause to be
added which terminates the gowhen the first wrd matches the gument (the defult behaior is there-
fore equvalent to until .PE).

Accordingly the command

.PS

copy thru % circle at ($1,%$2) % until "END"
12

34

56

END

box

.PE

is equialent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

15.2. Delug Messages

The command print accepts gmumber of aguments, concatenates their output forms, and writes
the result to standard erroEach agument must be arxpression, a position, or axtestring.



-25-

15.3. Escape to Bst-Processor
If you write

command ag. . .

pic concatenates the guments and pass them through as a line tdé erofleX. Each ag must be an
expression, a position, ore This has a similar &ct to a line bginning with . or\, lnt allows the alues
of variables to be passed through.

For example,

PS
x=14
command ".ds string x is " x "."
.PE
\*[string]
prints

x is 14.

15.4. Executing Shell Commands
The command
sh{anything ...}

macro-&pands the td in braces, thenxecutes it as a shell command. This could be used to generate
images or data tables for later inclusion. The delimiters/shas {} here may also be twcopies of an

one character not present in the shell commaxid t@ either case, the body may contain balanced {}
pairs. Strings in the body may contain balanced or unbalanced bracesdasm

16. Control-flow constructs
The pic language prades conditionals and looping.oFexample,

pi = atan2(0,-1);

fori=0to 2 * pi by 0.1 do {
"-"at (i/2, 0);
""at (i/12, sin(i)/2);
""at (i/2, cos(i)/2);

}

which yields this:

Figure 16-1: Plotting with aof loop

The syntax of thedk statement is:
for variable = exprl to expr2 [by [*]expr3] do X body X

The semantics are as folle: Set variable toxprl. While the alue of variable is less than or equal to



-26-

expr2, do body and increment variable bype3; if by is not given, increment variable by 1. Ifxer3 is
prefixed by * then variable is multiplied instead by@3. The alue of &pr3 can be ngative for the addi-
tive case; variable is then tested whether it is greater than or equaptd. eFor the multiplicatve case,
expr3 must be greater than zero. If the constraints araet, the loop ist’executed. X can be grcharac-
ter not occurring in body; or the &viX's may be paired braces (as in the sh command).

The syntax of the if statement is as fols
if expr then X if-true X [else Y if-false Y]

Its semantics are as folls: E\aluate &pr; if it is non-zero then do if-true, otherwise do if-false. X can be
ary character not occurring in if-true. Y can bg aharacter not occurring in if-false.

Eithe or both of the X or Y pairs may instead be balanced pairs of braces ({ and }) as in the sh com-
mand. In either case, the if-true may contain balanced pairs of braces. None of these delimiters are seen
inside strings.

All the usual relational operators my be used in conditiox@essions; ! (logical rgation, not &c-
torial), &&, ||, ==, =, >=, <=, <, >.

String comparison is also supported using == and !=. String comparisons may need to be parenthe-
sized to ®oid syntactic ambiguities.

17. Interface To [gt]r off

The output of pic is [gt]off drawing commands. The GNU gpic(1) commandrias that it relies on
drawing extensions present in gff (1) that are not present iroff (1).

17.1. Scaling Aguments

The DWB pic(1) program accepts one orawvaiguments to .PS, which is interpreted as a width and
height in inches to which the results of pic(1) should be scaled (width and height scale independently). If
there is only one gument, it is interpreted as a width to scale the picture to, and height is scaled by the
same proportion.

GNU gpic is less general; it accepts a single width to scale to, or a zero width and a maximum height
to scale to. Wh two non-zero ajuments, it scales to the maximum height.

17.2. Haov Scaling is Handled

When pic processes a picture description on input, it passes .PS and .PE through to the postproces-
sor The .PS gets decorated withdwmumeric aguments which are the X and Y dimensions of the picture
in inches. The post-processor can use these to eesgace for the picture and center it.

The GNU incarnation of the ms macro package, f@meple, includes the foleing definitions:

.de PS
.br
.sp \\n[DD]Ju
.ie \n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)
el\\
ds@need (u;\$1)+1v
in +(u;\n[.[I-\n[.i]-\$2/2>70)
Ay
.de PE
.par@reset
.sp \n[DD]Ju+.5m

Equivalent definition is supplied by GNU pic(1) if you use the —mpic option; this shoulé ihaisable
with macro pages other than ms(1).



-27-

If .PF is used instead of .PE, the dff position is restored to what it @ at the picture start
(Kernighan notes that the F stands for “flyback”).

The invocation

.PS <file

causes the contents of file to replace the .PS line. This feature is deprecated; use ‘copy file’ instead).

17.3. PIC and [gt]roff commands

By default, input lines that lggn with a period are passed to the postprocessabedded at the cor
responding point in the output. Messing with horizontal extizal spacing is an eus recipe for bgs,
but point size and font changes are usually safe.

Point sizes and font changes are also safe witkinstengs, as long as thare undone before the
end of string.

The state of [gt]off's fill mode is presebd across pictures.

17.4. PIC and EQN

The Kernighan paper notes that there is a subtle problem with complicated equations inside pic pic-
tures; thg come out wrong if eqn(1) has to Weaextra \ertical space for the equation. If your equation
involves more than subscripts and superscripts, you must add togiheibg of each equation thetea
information space 0. He geés the follaving example:

arrow
box "$space 0 {H( omega )} over {1 - H( omega )}$"
arrow

H(o)
1-H(w

Figure 17-1: Equations within pictures

17.5. Absolute Bsitioning of Pictures

A pic picture is positioned ertically by trof at the current position. The topmost position possible
on a page is not the paper edge & position which is one baselinavier so that the first vo of glyphs is
visible. To male a picture really start at the paper edge yme ha male the baseline-to-baseline distance
zero, this is, you must set thertical spacing to 0 (using .vs) before starting the picture.

18. Interface to TeX

TeX mode is enabled by the —t option. IpXI'mode, pic defines a vbox called \graph for each pic-
ture; the name can be changed with the pseadable figname (which is actually a specially parsed com-
mand). You must yourself print that vbox using, foraenple, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero (it is defined with \vtop) this produces slightly entical v
space abee the picture than beloit;

\centerline{\raise 1em\box\graph}
would avoid this.

To male the vbox haing a positve height and a depth of zero (as used e.g. AigXls
graphics.sty), define the follo  wing macro in your document:



-28-

\def\gpicbox#1{%
\vbox{\unvbox\csname #1\endcsname\kern Opt}}

Now you can simply say \gpicbox{graph} instead of \box\graph.
You must use agK driver that supports the tpic specialgrsion 2.

Lines bginning with \ are passed through transparently; a % is added to the end of the lingido a
unwanted spaces. oY can safely use this feature to change fonts or to changaltieeof \baselineskip.
Anything else may well produce undesirable results; use at yauriek. Lines bginning with a period
are not gien ary special treatment.

The BX mode of pic(1) does not translateff font and size changes included irxtestrings!
Here an gample hav to use figname.

.PS

figname = foo;

.PE

.PS

figname = bar;

.PE

\centerline{\box\foo \hss \box\bar}

Use this feature sparsingly and only if really needed: ferdiht name means awmdox reagister in EX,

and the maximum number of boxgisters is only 256. Also be careful not to use a predefipXdoil
IATEX macro name as angarment to figname since this iniéably causes an error

19. Obsolete Commands
GNU gpic(1) has a command

plot expr ["text"]

This is a t&t object which is constructed by usingttas a format string for sprintf with angument of
expr. If text is omitted a format string of "%g" is used. Attriltes can be specified in the sans/vas for
a normal t&t object. Be wery careful that you specify an appropriate format string; pic does emyylvn-
ited checking of the string. This is deprecatedaodr of sprintf.

20. Some Lager Examples

Here are a i@ larger xamples, with complete source code. One of our eal@Enples is generated
in an instructre way using a for loop:



-29-

.PS
# Draw a demonstration up left arrow with grid box overlay
define gridarrow
{
move right 0.1
[
{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
fori=2to ($1/0.5) do
{

}

move down from last arrow .center;

[

box wid 0.5 ht 0.5 dotted with .sw at last box .se;

if ($1 == boxht )\
then { "\fBline up left\fP" } \
else { sprintf("\fBarrow up left %g\fP", $1) };
]
]
move right 0.1 from last [] .e;
}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);
undef gridarrow
.PE

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 20-1: Diagonal arves (dotted bogs shav the implied 0.5-inch grid)

Heres an @ample concocted to demonstrate layout of gdamultiple-part pattern:



-30-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [
right;
box "\fBms\fR" "sources";
move;
box "fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgmI\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;

A: line down;

line down from 2nd box .s; filter "\fBhtmI2ms\fP";

B: line down;

line down from 3rd box .s; filter "\fBformat\fP";

C: line down;

line down from 4th box .s; filter "\fBtexi2roff\fP";

D: line down;
]
move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate" "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{

# PostScript column

move to Anchor .sw;

line down left then down ->;

filter "\fBpic\fP";

arrow;

filter "\fBeqn\fP";

arrow;

filter "\fBtbI\fP";

arrow;

filter "\fBgroff\fP";

arrow;

box "PostScript";

# HTML column

move to Anchor .se;

line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;

B: filter dotted "\fBeqn2htmI\fP";
arrow;

C: filter dotted "\fBtbI2htmI\fP";
arrow;

filter "\fBms2htmI\fP";

arrow;

box "HTML";

# Nonexistence caption

box dashed wid 1 at B + (2,0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;

line chop 0 chop 0.1 dashed from last box .w to B.e ->;



-31-

line chop 0 chop 0.1 dashed from last box .sw to C.e ->;

.PE

ms HTML linuxdoc-sgml Texinfo
sources sources sources sources

( html2ms format ) ( texi2roff

N

intermediate
form

\J
pic2img -

| e :

B | Thesetools |
} don't yet eist |

¢ [ i J

tbI2html

ANANANAL
JU U U

groff ms2html

PostScript HTML

Figure 20-2: Hypothetical productionfidor dual-mode publishing



-32-

Master

1 Slave

Figure 20-3: Three-dimensional Bex

Here the source code for figure 20-3:

.PS

# a three-dimensional block

#

# tblock(<width>, <height>, <text>)

define tblock { [

box ht $2 wid $1\
color "gold" outlined "black™ \
xslanted 0 yslanted 0\
$3;

box ht .1 wid $1\
color "yellow" outlined "black™" \
xslanted .1 yslanted 0\
with .sw at last box .nw;

box ht $2 wid .1\
color "goldenrod"” outlined "black™" \
xslanted 0 yslanted .1\
with .nw at 2nd last box .ne;

1}

tblock(1, .5, "Master" "1");
move -.1

tblock(.5, 1, "Slave™);

.PE

21. PIC Reference
This is an annotated grammar of pic.

21.1. Lexical Iltems

In general, pic is a free-format, tek-oriented language that ignores whitespace outside strings. But
certain lines and contructs are specially interpreted attfmldevel:

A comment bgins with # and continues to \n (comments may also Yellext in a line). A line
beginning with a period or backslash may be interpretedxasddée passed through to the post-processor
depending on command-line options. An end-of-line backslash is interpreted as a request to continue the
line; the backslash and follang navline are ignored.

Here are the grammar terminals:

INT A positive integer

NUMBER

A floating point numeric constant. May contain a decimal point or x@essed in scientific
notation in the style of printf (33'%e escape. A trailing ‘i’ or ‘I’ (indicating the unit ‘inch’) is



-33-

ignored.

TEXT
A string enclosed in double quotes. A double quote witflXT must be preceded by a back-
slash. Instead ofEXT you can use

sprintf ( TEXT [, <expr>...])

except after the ‘until’ and ‘last’ éywords, and after all ordinaklewords (‘th’ and friends).

VARIABLE
A string starting with a character from the set [a-z], optionally fekal by one or more charac-
ters of the set [a-zA-Z0-9_]. @lues of ariables are presezd across pictures.)

LABEL
A string starting with a character from the set [A-Z], optionally falled by one or more char
acters of the set [a-zA-Z0-9_].

COMMAND-LINE
A line starting with a command charactet (h groff mode, ‘\' in TeX mode).

BALANCED-TEXT
A string either enclosed by ‘{" and ‘}’ or with X and X, where X dodsoccur in the string.

BALANCED-BODY
Delimiters as irBALANCED-TEXT; the body is interpreted as ‘[dommandLl..".

FILENAME
The name of a file. This has the same semantidExg .

MACRONAME
Either VARIABLE or LABEL.

21.2. Semi-lBrmal Grammar

Tokens not enclosed in [Tare literaloept:

\n is a navline.

Three dots is a sfik meaning ‘replace with O or more repetitions of the preceding element(s).
An enclosure in square braatk has its usual meaning of ‘this clause is optional’.

P w DR

Square-bracit-enclosed portions within teks are optional. Thus, ‘hl[eigh]t’ matches either
‘height’ or ‘ht’.

If one of these special tekis has to be referred to literailyis surrounded with single quotes.

The top-level pic object is a picture.

<picture> ::=
.PS [NUMBER [NUMBER]]\n
<statement> ...
.PE\n

The aguments, if present, represent the width and height of the picture, causing pic to attempt to
scale it to the gen dimensions in inches. In no casewler, the X and Y dimensions of the picture
exceed the &lues of the styleariables maxpswid and maxpsheight (which @eflt to the normal 8.5i by
11i page size).

If the ending ‘.PE’ is replaced by ‘.PF’, the pag®tical position is restored to itglue at the time
*.PS’ was encountered. Another alternate form gbaation is ‘.PS RILENAME’, which replaces the *.PS’
line with a file to be interpreted by picybthis feature is deprecated).

The ".PS’, ".PE’, and ‘.PF’ macros to perform centering and scaling are normally supplied by the
post-processor



-34-

In the follawing, either ‘|’ or a n& line starts an alternas.

<statement> ;=
<command> ;
<command>\n

<command> ::=
<primitive> [<attribute>]
LABEL : [;] <command>
LABEL : [;] <command> [<position>]
{ <command> ... }
VARIABLE [;] = <any-expr>
figname = MACRONAME
up | down | left | right
COMMAND-LINE
command <print-arg> ...
print <print-arg> ...
sh BALANCED-TEXT
copy FILENAME
copy [FILENAME] thru MACRONAME [until TEXT]
copy [FILENAME] thru BALANCED-BODY [until TEXT]
for VARIABLE = <expr> to <expr> [by [*] <expr>] do BALANCED-BODY
if <any-expr> then BALANCED-BODY [else BALANCED-BODY]
reset [VARIABLE [[,] VARIABLE ...]]

<print-arg> ::=
TEXT
<expr>
<position>

The current position and direction arevesh on entry to a { ...} construction and restored otit e
from it.

Note that in ‘if’ constructions, mdines can only occur iBALANCED-BODY. This means that

if

{..}
else
{..}
fails. You hare to use the braces on the same line asahedtds:
if {
}else {
}

This restriction doeshhold for the body after the ‘do’ in a ‘for’ construction.

At the beinning of each picture, ‘figname’ is reset to the vbox name ‘graph’; this command has only
a meaning in gX mode. While the grammar rules alladigits and the underscore in thalue of ‘fig-
name’, BX normally accepts uppercase andvéocase letters only as box names (yoweh#o use
‘\csname’ if you really need to circuramt this limitation).



-35-

<any-expr> ;=
<expr>
<text-expr>
<any-expr> <logical-op> <any-expr>
I <any-expr>

<logical-op> ::=
== && |

<text-expr> ::=
TEXT == TEXT
TEXT = TEXT

Logical operators are handled specially by pic sincg tan deal with te strings also. pic uses
stremp(3) to test for equality of strings; an empty string is consideredlss’ for ‘&&’ and ‘| |'.

<primitive> ::=
box # closed object — rectangle
circle # closed object — circle
ellipse # closed object — ellipse
arc # open object — quartercircle
line # open object — line
arrow # open object — line with arravhead
spline # open object — spline curve
move
TEXT TEXT ... #1te xt within invisible box
plot <expr> TEXT  # formatted te xt

T <command> ... T

Drawn objects within ‘[...] are treated as a single composite object with a rectangular shape (that
of the bounding box of all the elements)arible and label assignments within a block are local to the
block. Current direction of motion is restored to thalue at start of block uporxie Position is not
restored (unlike {}); instead, the current position becomes thét @osition for the current direction on
the blocks bounding box.



-36-

<attribute> ::=
h[eigh]t <expr> # set height of closed figure
wid[th] <expr> # set width of closed figure
rad[ius] <expr> # set radius of circle/arc
diam[eter] <expr> # set diameter of circle/arc

up [<expr>] #mo ve up

down [<expr>] # mo ve davn

left [<expr>] # mo ve left

right [<expr>] # mo ve right

from <position> # set from position of open figure

to <position> # set to position of open figure

at <position> # set center of open figure

with <path> # fix corner/named point at specified location
with <position> # fix position of object at specified location
by <expr-pair> # set object’ s attachment point
then # sequential sgment composition

dotted [<expr>] # set dotted line style
dashed [<expr>] # set dashed line style
thick[ness] <expr> # set thickness of lines

chop [<expr>] # chop end(s) of se gment
->'|'<-"| '<->" # decorate with arro ws
invis[ible] # mak e primitive invisible
solid # mak e closed figure solid
fillled] [<expr>] # set fill density for figure

xscaled <expr> # slant box into x direction

yscaled <expr> # slant box into y direction

colo[u]r[ed] TEXT  # set fill and outline color for figure
outline[d] TEXT # set outline color for figure

shaded TEXT # set fill color for figure

same # copy size of preious object
cw | ccw # set orientation of curv es

ljust | rjust # adjust te xt horizontally

above | below # adjust te xt vertically

aligned # align parallel to object

TEXT TEXT ... #te xt within object

<expr> # motion in the current direction

Missing attrilutes are supplied from deflts; inappropriate ones are silently ignorear Fnes,
splines, and arcs, height and width refer tovahnead size.

The ‘at’ primitive sets the center of the current object. The ‘with’ attelfixes the specified feature
of the gven object to a specified location. (Note that ‘with’ is incorrectly described in d¢neighan
paper)

The ‘by’ primitive is not documented in the tutorial portion of theridghan papeiand should prob-
ably be considered unreliable.

The primitive ‘arron’ is a synoym for ‘line ->'.
Text is normally an attribte of some object, in which case successirings are ertically stackd

and centered on the objectenter by defult. Standalone % is treated as though placed in awisible
box.

A text item consists of a string or sprintfgression, optionally follwed by positioning information.
Text (or strings specified with ‘sprintf’) may contain font changes, size changes, and local motions, pro-
vided those changes are undone before the end of the current #éetnmal also contain \-escapes denot-
ing special characters. The base font and specific set of escapes supported is implementation dependent,
but supported escapesvalys include the folling:



-37-

\fR, \f1
Set Roman style (the deadilt)

\fl, \f2
Set ltalic style

\fB, \f3
Set Bold style

\fP

Revert to preious style; only wrks one lgel deep, does not stack.

Color names are dependent on the pic implementatidnn lall modern ersions color names recog-
nized by the X winder system are supported.

A position is an (x,y) coordinate paiThere are lots of diérent ways to specify positions:

<position> ::=
<position-not-place>
<place>
( <position>)

<position-not-place> ::=
<expr-pair>
<position> + <expr-pair>
<position> - <expr-pair>
( <position>, <position>)
<expr> [of the way] between <position> and <position>
<expr> <’ <position> , <position> ">’

<expr-pair> ::=
<expr>, <expr>
( expr-pair )

<place> ::=
<label>
<label> <corner>
<corner> [of] <label>
Here

<label> ::=
LABEL [. LABEL ..]
<nth-primitive>

<corner> ::=
.nl.e|lwl|.s
.ne|.se|.nw|.sw
.Clenter] | .start | .end
.flop] | .bl[ot[tom]] | .I[eft] | .r[ight]
left | right | <top-of> | <bottom-of>
<north-of> | <south-of> | <east-of> | <west-of>
<center-of> | <start-of> | <end-of>
upper left | lower left | upper right | lower right

<xxx-of> ::=
XXX # follo wed by ‘of’



-38-

<nth-primitive> ::=
<ordinal> <object-type>
[<ordinal>] last <object-type>

<ordinal> ::=
INT th
INT st| INT nd | INT rd
‘ <any-expr>'th

<object-type> ::=

box

circle

ellipse

arc

line

arrow

spline

it

TEXT

As Kernighan notes, “since barbarismslikth and 3th are barbaric, syngms like 1st and 3rd are

accepted as weéll.Objects of a given type are numbered from 1 ugnds in order of declaration; the last
modifier counts backards.

The “th” form (which allonvs you to select a prsus object with an>gression, as opposed to a
numeric literal) is not documented iWWB'’s pic(1).

The xxx-of Orule is special: The ¥&cal parser checks whether xxx is folked by the tokn ‘of’
without eliminating it so that the grammar parser can still see ‘odlid\é&xamples of specifying a place
with corner and label are thus

A.n
.nof A
.NA
north of A

while

north A
A north

both cause a syntax errdiDWB pic also allavs the weird formA north of’.)
Here the special rules for the ‘with&word using a path:
<path> ::=
<relative-path>
( <relative-path> , <relative-path> )

<relative-path> ::=
<corner>
. LABEL [. LABEL ...] [<corner>]

The following style \ariables control output:

Style Variable ‘ Default‘ What It Does

boxht 0.5 Deéult height of a box
boxwid 0.75 Deéult width of a box




-30-

Style Variable | Default | What It Does

lineht 0.5 Deéult length of ertical line

linewid 0.75 Detult length of horizontal line

arcrad 0.25 Dedult radius of an arc

circlerad 0.25 Dedult radius of a circle

ellipseht 0.5 Dedult height of an ellipse

ellipsewid 0.75 Detult width of an ellipse

moveht 0.5 Deéult length of ertical moe

movewid 0.75 Deault length of horizontal me

textht 0 Default height of box enclosing axteobject
textwid 0 Default width of box enclosing axeobject
arrovht 0.1 Length of amttead along shaft
arrovwid 0.05 Wdth of rear of arrevhead

arrovhead 1 Enable/disablevainead filling

dashwid 0.05 Interad for dashed lines

maxpswid 8.5 Maximum width of picture

maxpsht 11 Maximum height of picture

scale 1 Unit scaletdr

fillval 0.5 Detult fill value

Any of these can be set by assignment, or reset usings$ie¢ statement. Styleaxiables assigned within
‘1 blocks are restored to their baning-of-block alue on git; top-level assignments persist across pic-
tures. Dimensions arevdded by scale on output.

All pic expressions arevaluated in floating point; units arewalys inches (a trailing i" or ‘I' is
ignored). Expressions hathe follaving simple grammamith semanticsery similar to C gpressions:

<expr>:=
VARIABLE
NUMBER
<place> <place-attribute>
<expr> <op> <expr>
- <expr>
( <any-expr>)
I <expr>
<funcl> ( <any-expr>)
<func2> ( <any-expr>, <any-expr>)
rand ()

<place-attribute>
X |.y| .h[eigh]t | .wid[th] | .rad

<0p>j::
- %< <= >

<funcl> :=
sin | cos | log | exp | sqrt | int | rand | srand

<func2> ::=
atan2 | max | min
Both exp and log are base 10; int does e truncation; and rand() returns a random number in [0-1).

There are define and undef statements which are not part of the grammabghae as pre-proces-
sor macros to the language). These may be used to define pseudo-functions.



-40-

define name { eplacement-td }

This defines name as a macro to be replaced by the replacemiefmtaeincluding the braces). The macro
may be called as

name(agl, ag2, ..., agn)

The aguments (if ap) are substituted for taks $1, $2 ... $n appearing in the replacement f® unde-
fine a macro, say undef name, specifying the name to be undefined.

22. History and Acknowledgements

Original pic was written to go with Joseph Ossarsnariginal toff (1) by Brian Kernighan, and later
re-written by kernighan with substantial enhancements (apparently as part ofolinéian of troff (1) into
ditroff (1) to generate dice-independent output).

The language had been inspired by some earlier graphics languages including ideal and grap.
Kernighan credits Chrisan Wyk (the designer of ideal) with mgrof the ideas that went into pic.

The pic language @as originally described by Brianeknighan in Bell Labs Computing Science
Technical Report #116 (you can obtain a PostScripy obghe revised \ersion, [1], by sending a mail mes-
sage to netlib@seach.att.com with a body of ‘send 116 from research/cstr’). Theke tseen tw revi-
sions, in 1984 and 1991.

The document you are readindeetively subsumes &rnighans description; it \w&s written to fill in
lacunee in thexposition and intgrate in descriptions of the GNU gpic(1) and pic2plot(1) features.

The GNU gpic implementation as written by James Clark Ojc@jclark.com( It is currently main-
tained by Wrner Lembeay wl@gnu.og[l

The GNU pic2plot implementation is based on James Céapdrser code and maintained by Robert
Maier, principal author of plotutils.

23. Bibliography
1. Kernighan, B. W PIC — A Graphics Language r Typesetting (Reised User Manual). Bell
Labs Computing Sciencee@hnical Report #116, December 1991.

2. Van Wk, C. J. A high-level language 6r specifying pictures. ACM Transactions On Gaphics 1,2
(1982) 163-182.



