-
Notifications
You must be signed in to change notification settings - Fork 0
/
Q_A21.tex
32 lines (30 loc) · 2.31 KB
/
Q_A21.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
% Roll no 21, Chanchal Delson
\textbf{\textcolor{LightMagenta}{ What is meant by k-fold cross validation. Given a data set with 1200 instances, How k- fold cross validation is done with k=1200.? (Dec 2018) \hfill 4 marks}} \\[5pt]
(a) In K-fold cross-validation, the dataset X is divided randomly into K equal- sized parts,
Xi
, i = 1,...,K. To generate each pair, we keep one of the K parts out as the validation set
and combine the remaining K - 1 parts to form the training set. Doing this K times,
each time leaving out another one of the K parts out, hence by we get K pairs each
\\ \\
(b) When K = 1200 \\
\begin{math}
\hspace*{10mm}
V_1 = X_1 \hspace*{5mm} T_1= X_2 \hspace*{1 mm} U \hspace*{1 mm} X_3 \hspace*{1 mm} U \hspace*{1 mm} X_4 ......... \hspace*{1 mm} U \hspace*{1 mm} X_1_2_0_0 \\
\hspace*{10mm}
V_2 = X_2 \hspace*{5mm} T_1= X_1 \hspace*{1 mm} U \hspace*{1 mm} X_3 \hspace*{1 mm} U \hspace*{1 mm} X_4 ......... \hspace*{1 mm} U \hspace*{1 mm} X_1_2_0_0 \\
\hspace*{10mm}
V_3 = X_3 \hspace*{5mm} T_1= X_1 \hspace*{1 mm} U \hspace*{1 mm} X_2 \hspace*{1 mm} U \hspace*{1 mm} X_4 ......... \hspace*{1 mm} U \hspace*{1 mm} X_1_2_0_0 \\
\hspace*{10mm}
.............................................................. \\
\hspace*{10mm}
.............................................................. \\
\hspace*{10mm}
.............................................................. \\
\hspace*{10mm}
.............................................................. \\
\hspace*{10mm}
V_1_2_0_0 = X_1_2_0_0 \hspace*{5mm} T_1= X_1 \hspace*{1 mm} U \hspace*{1 mm} X_2 \hspace*{1 mm} U \hspace*{1 mm} X_3 ......... \hspace*{1 mm} U \hspace*{1 mm} X_1_1_9_9 \\ \\
where \\ X=\{....... is \hspace*{1 mm} the\hspace*{1 mm} subset \hspace*{1 mm} \hspace*{1 mm} of \hspace*{1 mm} all \hspace*{1 mm}the \hspace*{1 mm} datasets\} \\
T=\{ ....... is \hspace*{1 mm} the \hspace*{1 mm} subset\hspace*{1 mm} of\hspace*{1 mm} all \hspace*{1 mm} the \hspace*{1 mm} K \hspace*{1 mm} division \hspace*{1 mm} Combination \hspace*{1 mm} of \hspace*{1 mm} the \hspace*{1 mm} dataset\} \\
V=\{....... is \hspace*{1 mm} the\hspace*{1 mm} subset \hspace*{1 mm} \hspace*{1 mm} of \hspace*{1 mm} Test \hspace*{1 mm} values \hspace*{1 mm}of \hspace*{1 mm} the \hspace*{1 mm} datasets\} \\
\end{math}