
MONAHRQ Generated Websites
The MONAHRQ website is generated through the desktop application by the Host User. It provides a

healthcare reporting website that dynamically customizes itself based on the data and configuration

provided by the Host User. It is split into two sub-sites.

The Consumer site is the portion of the website tailored for consumers of health care services, with

simplified and relevant messaging, reports, and UI affordances. The Professional site is targeted towards

health care professionals, with more technical and detailed information suited to their needs.

The website is a single page application built using the AngularJS v1.4 JavaScript framework. It relies

heavily on the capabilities provided by the Angular ecosystem, such as controllers, services, directives,

and routing. Key JavaScript and CSS libraries which the developer should be familiar with include

AngularJS, ui-router, underscore, bootstrap, and SCSS.

The web application’s toolchain and build processes are separate and distinct from those of the host

application. The web app is built with a Node.JS toolchain and deployed to a web server. The host

application is a .NET application that installs to the Host User’s workstation, and is used to generate the

data (Wings) that the web application reports on.

Development Copy
The development copy of the website template is not distributed with MONAHRQ. It may be found in

the source code under MONAHRQ\Resources\Templates\Site.Src and includes build scripts and

additional development dependencies.

Development Workflow
To begin development of the web application, it is first necessary to install the desktop application and

generate a website through it. This will create the data files from your Wings. These data files are then

available for use by the in-development version of the web app, and further site generations are not

required to customize it.

The workflow for customizing the web app will be familiar to those with experience building JavaScript

single page apps. A typical change would be developed as follows:

1. Obtain desired version of MONAHRQ

2. Copy a data directory from a previously generated site into Site.src/src

3. Make desired changes in Site.src/src

4. Run grunt build to update the distribution template used by MONAHRQ

Website Template for Distribution
The website template distributed with MONAHRQ may be found in the

MONAHRQ\Resources\Templates\Site directory. This template contains optimized templates and

dependencies and is copied as-is to generated websites.

External Runtime Dependencies
Dependency Purpose

Google Analytics Tracks End User behavior on the site

Google Maps All map visualizations, such as those in the Map tab of the hospital search
results page, are provided by Google Maps

Physician Compare Medicare API that provides information about physicians in the United States;
used to power consumer and professional physician reports

MapQuest Geocoder Used by the consumer website to translate End User-provided locations into
latitude and longitude coordinates for searching

The website template does not contain any data and is therefore not functional on its own. To

work directly with the template, copy a data directory from a working MONAHRQ website into

the template’s src directory.

Architecture
MONAHRQ’s generated websites are segmented into several key modules, which are described below.

Core
The core module has a small footprint, and is focused on bootstrapping the application. It handles tasks

such as loading 3rd party and MONAHRQ modules, initializing Flutter plugins, loading essential

configuration and data, global logging and error handling, managing top-level classes for styling, etc.

Services
The services module provides a variety of Angular services whose functionality is intended to be used

across the application. This includes tasks such as low-level data loading, string formatting, geo math

functions, and sorting.

UI Components
The UI Components module consists of a diverse array of Angular directives offering reusable UI widgets

and behaviors. Some widgets are generic, such as an accordion, autocomplete dropdown, menus,

modals, and tabs. Others are focused on domain-specific use cases, including charting, content

management, user help, and quality rating iconography.

Domain Model
The Domain Model module provides services for working with application data. This includes loading,

processing, and querying Wing reports, and loading Base data files.

Figure 1 Generated website architecture

End User Interface

Consumer Pages
Hospital, Nursing, and

Physician Reports

Professional Pages
Quality, Nursing, and

Physician Reports

Flutters
Custom pages and reports

MONAHRQ Core

AngularJS / ui-router

UI Framework

Content Management System
Pages and Menus

UI Components
Accordion, ratings, tabs, wizards

Services

Domain Model
Report Loading & Repositories

AngularJS Services
Report loader, mapping, user state, etc.

CMS
The CMS module provides an avenue for Host Users to customize the textual content of the website.

They can modify the navigation menus, edit the content of static pages such as “about” and “help”, and

insert headers and footers onto report pages.

Flutters
The Flutters module is a means to create custom plugins to extend the functionality of the website.

Developers can create completely custom reports using new or existing Wings as a data source, and

hook access to these reports into the website navigation.

Consumer and Professional
The Consumer and Professional modules implement their respective sections of the website. They share

many of the same underlying Wings, components, and data services, but their Angular controllers and

views are entirely separate to provide the best experience to each audience.

Directory Structure
Directory Purpose
app AngularJS application code
 components Custom AngularJS directives
 core Application bootstrapper that loads modules, key data files, etc.
 domain The domain model of the application: from lower-level data loading

services to repositories for base, hospital, nursing home, and physician
report data

 lib Third-party libraries not managed by a package manager
 products AngularJS states, controllers, and views used to produce each of the

pages available on the web site
 consumer Sub-site intended for consumer use

 components
Custom AngularJS directives specific to the consumer sub-site

 hospitals
Reports

 nursing-homes
Reports

 pages
Non-report pages and reusable templates

 physicians
Reports

 professional
Sub-site intended for use by professionals

 nursing-homes
Reports

 pages
Non-report pages and reusable templates

 physicians
Reports

 quality-ratings
Reports

 usage-data
Reports

 services Utility functions used by the application, including sorting collections,
string formatting, and geographic calculations

 vendor Third-party libraries managed by a package manager
data Base (lookup) data, and reports generated from Wings
flutters Reports generated from installed Flutters
theme CSS styling
 base Shared CSS stylesheets
 consumer CSS stylesheets for the consumer sub-site
 professional CSS stylesheets for the professional sub-site

Section 508 Compliance
The majority of the code required for section 508 compliance may be found in the components under

app\components.

CSS-related accessibility fixes may be found under theme/consumer/_508.scss and

theme/professional/_508.scss.

Cross-Browser Compatibility
The file theme/consumer/_ie.scss maintains compatibility tweaks required for Internet Explorer

versions 11 and earlier.

Request Routing
The web application uses the UI-Router (https://ui-router.github.io/) library to translate End User

interactions to the corresponding application pages and states. The core application manages several

top-level states, while individual modules are responsible for configuring the states specific to their

scope.

The root state of the application is top, defined in core/app.js. All other states are descendants of this

state. Its purpose is to load core data files. The file, websiteConfig is the core configuration, specifying

details such as global behavior, which products are available and their properties, API keys, etc.

reportConfig specifies the properties and behavior of individual reports. menu details the End User-

facing navigational elements on the pages. The bootstrap also loads the Content Management System

pages and elements, initializes any Flutter plugins, and starts Google Analytics.

Each product, consumer and professional, then defines a state that all its modules descend from, which

is defined in pages/index.js. For example consumer defines the top.consumer state. This state also

loads several UI components shared across the entire product – the page header, footer, and navigation.

The modules within a product, such as hospitals or nursing-homes within consumer, then define a

shared state from which individual reports and pages derive from. This is simply an organizational state

– it doesn’t use any controllers or data loading.

https://ui-router.github.io/

The individual pages within a module are all straightforward. They define a URL with its parameters, a

template, a controller, and any data they need upfront before the controller runs. Additionally, two

parameters are specified for each page: pageTitle is the title that should be shown in the browser title

bar, and report is the report id(s) for any reports that live on the page. It is used to retrieve the

ReportConfig record for those reports.

Loading Data
MONAHRQ’s design requirements dictate that generated websites must be able to be loaded from a

web server and from the local filesystem. While an application would typically load data via XHR

requests, this is not possible in the local scenario due to the same-origin policy imposed by the browser

security model.

The solution used by the application is to inject <script> tags into the browser DOM, with those tags

referencing syntactically-valid JavaScript files containing a particular unit of data to be loaded. The files

contain an array or object assigned to a namespaced location within the global window object. All

modern browsers support this method of loading data without running afoul of security restrictions.

Data Loader Service
The data loading code is implemented by the DataLoaderSvc, defined in services/data_loader.js,

which provides a standardized method for accomplishing the load, using a single API function:

function loadScript(url, callback, errorcallback, forceRefresh)

If forceRefresh is false, the service will not reinject the <script> tag for a URL that was previously

successfully loaded.

Report Loader Service
Most of the report loading code does not interact directly with the DataLoaderSvc. Instead, report

loaders use a simplified interfaced provided by SimpleReportLoaderSvc, which allows reports to be

loaded in a configuration-driven manner.

SimpleReportLoaderSvc API

It supports data file layouts where a single directory contains a set of one or more data files, which is

typical of Wings. The service provides two API functions:

function load(configuration, id)

function bulkLoad(configuration, ids)

The load function is used to load a single data file from the report directory. The id parameter specifies

which file to load, in cases where there are multiple data files. The function returns a promise that

provides the loaded data when resolved.

The bulkLoad function is similar to the load function, except that it accepts a list of ids that all resolve in

a single promise.

Both functions accept the same configuration object; the following is a typical example:

rootObj is the where the loaded report is found in the MONAHRQ global data object. rootObj is either a

JavaScript object reference to the report data, or a string value that is appended to the $.monahrq.

object.

reportName is the leaf attribute following the object path specified by reportObj. It is expected to refer

to either a JavaScript object or list containing the data.

reportDir is the filesystem path to the Wing report data being loaded.

filePrefix is report filename without the id value and extension. For example, a filePrefix of “Hospital_”

and an ID number of 25 would yield the filename, “Hospital_25.js”.

When the promise returned by the load function resolves, it returns an object containing the id

parameter and report data: { id: 25, data: { … } }. If the report file failed to load — e.g., a 404 —

the promise will still resolve, but the data attribute will be null.

The bulkLoad function will return an array of the above objects.

Consuming SimpleReportLoaderSvc

The consumer and professional sites share a common domain model, found in src/app/domain. Each

category of data (hospitals, nursing homes, and physicians) will have at least two services to assist with

report loading: *ReportLoaderSvc and *RepositorySvc.

The report loader service is a thin wrapper around SimpleReportLoaderSvc. It provides the correct

configuration needed to load the standard Wings generated by MONAHRQ, along with functions for

loading specific reports. For example, hospitals have a method named getQualityByHospitalReports

which will load the quality reports for an array of hospital IDs provided by the caller.

The repository service is used to encapsulate search algorithms commonly used by various pages on the

website. For example, hospital has methods for finding reports by the hospital name, id, or within a

certain distance of an arbitrary street address. There are other repositories provided as well: both

physicians and nursing homes have specialized repositories for working with CAHPS reports, and

{
 rootObj: $.monahrq.NursingHomes.Report,
 reportName: 'Measures',
 reportDir: 'Data/NursingHomes/Measures/',
 filePrefix: 'Measure_'
}

Figure 2 Typical example of the "configuration" parameter value

For example of how these properties work, consider a flutter specifying a rootObj of

flutters.hcupcountyhospitalstaysdata.report and a reportName of summary. The report

generator must output the data to a .js file in the reportDir directory using a JavaScript

namespace of $.monahrq.flutters.hcupcountyhospitalstaysdata.report.summary.

physicians has an additional repository for loading data from a remote Medicare-provided web service

API.

End User Interface Theming
The themes/base directory contains the bootstrap.css and bootstrap-theme.css files. These files

should not need to be modified unless updating bootstrap.

The themes/consumer and themes/professional directories of the compiled website template

contain two key files:

 consumer.css or professional.css: a compilation of all lower level .scss files from the

development website

 user-settings*.css: a standalone CSS file that may be customized as needed to tweak

website colors

The source .scss files that make up these .css files are located in the development website. In

general, one .scss file corresponds to one UI component. Notable exceptions to this are the _508.scss

and _ie.scss files used for section 508 compliance and Internet Explorer compatibility, respectively.

To compile the SCSS files into CSS, run grunt build in the Site.Src folder.

Differences between Consumer and Professional Themes
The core of the consumer website theme is located in the consumer\kentucky directory. The

professional theme does not contain this directory; instead, the _base, _button and _mixins files

provide the core styles.

The consumer theme contains four built-in color schemes (user-settings*.css files); the professional

site contains only one.

User Settings Files
The End User settings files for the consumer and professional themes are generated by MONAHRQ

based on the theme and/or colors selected by the Host User. The following area of the site may be

customized by the End User settings file:

 Text link colors

 Button background colors

 Main navigation active link color

 Footer background color

 Search hero background color

 Report result background color

 “About the Ratings” background colors

All other colors are hard-coded and cannot be changed by the Host User. Text colors are chosen

automatically by MONAHRQ to ensure readability.

If you’d like to have Grunt monitor the source directory for changes as you make them, use grunt

watch instead.

