
Measures and Topics
Measures are entities used to quantify healthcare processes, outcomes, and patient survey results for

hospitals, nursing homes, physicians, and clinical groups. Measures are mostly represented as rates in

percentage and used in the reports for comparing various providers.

Organization
Similar measures are grouped into Topics, which are further grouped into Topic Categories. A measure

may be assigned to multiple topics.

Measures, their Topics, and Topic Categories are directly related to the Targets that define them. They

are imported into the MONAHRQ database along with a custom Error! Reference source not found.’s

other installation logic. They may be associated with one or more websites, and are consumed by Error!

Reference source not found.s.

Associations between measures and topics may also be changed by MONAHRQ Host Users from the

“Measures” library.

Built-In Measures and Topics
There are more than 100 topics shipped with MONAHRQ. Most of these are maintained in a CSV file

located in Monahrq.Infrastructure\Resource\BaseData\MeasureTopics*.csv and are loaded by the

TopicsStrategy1 class. See Error! Reference source not found. for more information on the import and

update process for topics included in this CSV file.

Most built-in measures are installed as part of the installation process for built-in Wings, which is

described in Defining Custom Measures and Topics

The specific steps for defining custom measures and topics varies depending on the method chosen to

maintain those measures and topics. At a high level, the procedure is roughly the same:

1. Insert any missing TopicCategories

2. Insert any missing Topics

3. Insert or update Measures and associate them with your Topics and Target type

Installing into the MONAHRQ Database.

1 See Monahrq.Infrastructure.BaseDataLoader.Loaders.TopicsStrategy, an implementation of
IBasedataImporter

Figure 1 Relationship between Categories, Topics and Measures

Defining Custom Measures and Topics
The specific steps for defining custom measures and topics varies depending on the method chosen to

maintain those measures and topics. At a high level, the procedure is roughly the same:

4. Insert any missing TopicCategories

5. Insert any missing Topics

6. Insert or update Measures and associate them with your Topics and Target type

Installing into the MONAHRQ Database
Installation of Measures, their Topics and Topic Categories into the MONAHRQ database is handled by

the Target’s Error! Reference source not found.. Although not required, this section assumes that your

Module Definition inherits from TargetedModuleWithMeasuresAndTopics<T>.

The ImportMeasureTopics() Method
This method is intended to create or update database rows related to measure Topics and their Topic

Categories. It is executed before ImportMeasures() as Measures must be associated with a Topic.

Implementers of this method should query the database for required TopicCategory and Topic

records, inserting any missing records or updating existing records as needed.

The ImportMeasures() Methods
This method is intended to create or update database rows related to individual Measures, if the

required Topics have already been created. It is executed after ImportMeasureTopics(). Implementers

of this method should query the database for required Measure records, inserting any missing records

or updating existing records as needed.

var session = base.SessionFactoryProvider.SessionFactory.OpenSession();
var category = session.Query<TopicCategory>()
 .FirstOrDefault(c => c.Name == "My Category Name");
if (category == null)
 session.Save(category = new TopicCategory("My Category Name"));
var topic = session.Query<Topic>()
 .FirstOrDefault(t => t.Name == "My Sample Topic");
if (topic == null)
 session.Save(topic = new Topic(category, "My Sample Topic"));

Figure 2 Sample TopicCategory and Topic creation

var measure = session.Query<Measure>().FirstOrDefault(m => m.Name == "Sample Measure");
var target = session.Query<Target>().FirstOrDefault(
 t => t.Name == this.TargetAttribute.Name);
if (measure == null)
{
 measure = Measure.CreateMeasure(typeof(HospitalMeasure), target, "SMPL-1");
 measure.MeasureTitle.Plain = "My Sample Hospital Measure";
 measure.MeasureTitle.Clinical = "Sample Hospital Measure SMPL-1";
 measure.MeasureTitle.Policy = "Sample Hospital Measure SMPL-1";
 measure.AddTopic(topic);
 topic.Measures.Add(measure);
 session.Save(measure);
}

Figure 3 Sample Measure creation

IMeasureService provides simple methods for importing topics and measures from

the filesystem. For information about the expected file format, refer to

Monahrq.Infrastructure.Entities.Domain.Measures.MeasureService.

The MeasureFilePath and MeasureTopicFilePath Properties
If you choose to define your measures and/or measure topics in the filesystem, these properties may be

used to determine if measures and/or measure topics have changed2 and need to be re-installed.

To use this functionality, return the path of your measure and/or measure topic files. To disable this

functionality, return a null value from these properties.

Measure Types
Several different types of Measures are included with MONAHRQ

 CountyMeasure

 DynamicMeasure

 HospitalMeasure

 Measure

 NursingHomeMeasure

 PhysicianMeasure

 RegionMeasure

While different measure types receive slightly different treatment in the MONAHRQ Host User

interface3, there is no functional difference in the different types. For consistency, choose the most

appropriate measure type for your purpose; if no type is directly applicable, use the Measure base class.

The chosen measure type implementation is passed as the first parameter to the

Measure.CreateMeasure(Type, Target, String) method. The measure type is stored in the

Measures.ClassType database column.

Measure Names / ID Codes
Each measure is given a unique, human readable, string identifier. In the example above, the ID is

“SMPL-1”; this suggests that the measure belongs to the SMPL (or “Sample”) module and is the first

measure in that module. Other examples of measure IDs are “IQI 01” (inpatient quality indicators #1),

“IP-10” (inpatient county median cost). There are no conventions or requirements for this code if it is

supplied and unique.

The terms “measure name” and “measure ID” are sometimes used interchangeably.

2 This determination is made by comparing the last write timestamp of the file to the LastWingUpdate column in
the Wing table; for more information, refer to the
TargetedModuleWithMeasuresAndTopics<T>.RefreshDb() source code
3 Refer to Monahrq.Measures.ViewModels.MeasureDetailsViewModel,
Monahrq.Website.ViewModels.WebsiteEditMeasuresViewModel, and
Monahrq.Website.ViewModels.WebsiteMeasuresViewModel

Best Practices for Managing Measures and Topics
The recommended method for managing topics and measures is to store them in XML or CSV files,

which are parsed during the installation process; these files may be stored in the filesystem or as

embedded resources. Refer Monahrq.Wing.Ahrq for a sample using CSV files, and

Monahrq.Wing.HospitalSpendingSample for a sample using XML files.

User Interface
Measures and topics are exposed in the MONAHRQ Host User interface in the Error! Reference source

not found. library, and in the “Modify Measures” tab of the Error! Reference source not found. library.

In either location, measure names and descriptions

The schema of these files is defined by the module(s) that read them. Although there

is some consistency (i.e.: CSV and XML files from one module are very similar to CSV

and XML files from another module), there is no standard.

