
Writing a .NET Wing
A .NET Wing is the most versatile means of extending MONAHRQ’s functionality; it can perform the

functions of all the other extensibility options, with the exception of Flutters. Creating a new .NET Wing

involves,

1. Creating a new class library project

2. Referencing the MONAHRQ, NHibernate, and MEF dependencies listed in Project Structure and

Dependencies

3. Defining a WingModule with any relevant installation logic (see Error! Reference source not

found.)

4. Implementing or overriding any desired functionality, such as creating a Error! Reference source

not found., custom Error! Reference source not found., or a Error! Reference source not found.

Project Structure and Dependencies
There are no specific requirements for the way a MONAHRQ plugin is structured; however, several

assemblies must be referenced to provide access to shared types:

Assembly Name Description
Monahrq.Infrastructure Common data types and extensibility framework

Monahrq.sdk Additional data types and UI

NHibernate ORM used for most database interactions

FluentHibernate Used for NHibernate SQL to CLR mappings

MEF & Prism Extensibility framework

The WingModule Implementation
The key component of a .NET Wing is the WingModule implementation, which describes the plugin to

MONAHRQ, provides installation and uninstallation logic, and gives the module the opportunity to react

to events in MONAHRQ.

The WingModule type implements Prism’s IModule interface.

WingModule Lifecycle
During the MONAHRQ startup sequence, modules are loaded from the Modules folder of the MONAHRQ

program directory. Detected modules undergo the following initialization procedure:

•OnWingAdded()

•OnApplyDatasetHints()

Reconcile()OnInitialize()Initialize()

Figure 1 WingModule initialization process diagram

Initialize() is called, which posts a MessageUpdateEvent to the UI reporting that the module is
loading; this calls the virtual method OnInitialize()

OnInitialize() calls Reconcile()
Reconcile() determines whether the module is new to the MONAHRQ database; if the

module is new, Reconcile() creates a record for the module in the Wings database

table and calls OnWingAdded() and OnApplyDatasetHints()

OnWingAdded() calls Install(), InstallDb(), Update(), and UpdateDb()

Types that derive from WingModule may alter their initialization procedures.

Hooking into MONAHRQ
Developers wishing to override any of MONAHRQ’s default functions may wish to do so by listening for

events raised by MONAHRQ. This is most often done by overriding the OnInitialize() method and

using the Events property, an implementation of IEventAggregator, to subscribe to one or more

events.

For an example of using events, see Error! Reference source not found.. This example, taken from

Monahrq.Wing.Ahrq.AhrqModuleBase, shows a module listening for a WizardStepsRequestEvent; this

event is used by MONAHRQ to query modules for wizard steps to be used when bulk importing data for

a data set.

Supported Events
The following events are used internally by MONAHRQ to send signals between components. Any event

may be subscribed to, but publishing some of these events may cause unexpected problems. Events

marked with an asterisk (*) may be safely raised by Wings.

Category Event Description

Database

ConnectionFailedEvent Failed to connect to the MONAHRQ
database

ConnectionSuccessEvent Successfully tested, created, or deleted a
MONAHRQ database

Dataset

DeleteEntryEvent A dataset is deleted, or an import is
canceled or aborted

UpdateEntryEvent A dataset import is completed

General ErrorNotificationEvent* An exception was encountered

Import SimpleImportCompletedEvent A file import was completed

Measure MeasureFilterApplied A list of measures was filtered by dataset
TopicFilterApplied A list of measures was filtered by topic
TopicsUpdatedEvent A measure topic is added, updated, or

deleted

Services ServiceErrorEvent* An exception was encountered in a service

UI

DialogButtonClickEvent A dialog box button was clicked
DisableNavigationEvent Raised when UI controls should be

disabled or re-enabled because of
background processing

* Denotes an event that may be safely published by a Wing

GenericNotificationEvent Displays a notification to the Host User
GenericNotificationExEvent Displays a notification to the Host User
MessageUpdateEvent* Raised during MONAHRQ startup to

update the splash screen text
OpenContextualHelpContextEvent Opens the help file to the specified topic
SetContextualHelpContextEvent Opens the help file to the specified topic
ShutdownEvent MONAHRQ is shutting down
StatusbarUpdateEvent* Updates the status bar of the MONAHRQ

window
UiMessageUpdateEventForeGround Raised during MONAHRQ startup to

update the splash screen text
UpdateTabIndexEvent The selected tab was changed
WizardBackEvent The back button was pressed in a wizard
WizardCancelEvent A wizard was canceled
WizardCancellingEvent The Host User requested cancelation of a

wizard
WizardStepsRequestEvent<T,TId,TId2> A wizard is being opened and a list of steps

is needed

Website

CancellingWebsitePublishingEvent A website generation process was
canceled

MeasureFilterApplied A filter was applied to a list of measures
WebsiteCreatedOrUpdatedEvent A new or existing website was saved
WebsiteDeletedEvent A website was deleted
WebsitePublishEvent Reports website generation progress

