
Reports
In MONAHRQ, reports are interpreted data that has been written to .js file(s) by a Report Generator.

Installed reports may be browsed using the “Reports” library, and reports available for a website are

listed on the “Select Reports” tab for that website.

Creating a New Report
Creating new .js files to be consumed by the MONAHRQ-generated website requires two components

to be defined:

1. Report Definition File

2. Report Generator1

Report Definition File
The report definition file is an XML serialized ReportManifest instance2. This file describes the data

contained in the report, information necessary to render the report, and includes a unique identifier for

the report used to relate the report definition to the report generator.

Creating a Report Definition
The following describes the information that must be contained within a report definition file; for

additional information about the capabilities of report definitions, please refer to the source code for

the report definition type.

1 When developing an XML Wing, the report generator is provided in the report definition as a SQL statement
2 See Monahrq.Infrastructure.Entities.Domain.Reports.ReportManifest and
Monahrq.Infrastructure\Domain\ReportManifest.xsd

This document does not describe how to render reports on the generated website. For

information about rendering reports, please refer to the documentation for creating a new

Flutter using the MONAHRQ Open Source Framework at https://github.com/AHRQ/MONAHRQ-

Framework.

Define

Columns

Measures

Audiences

Datasets

Pages & Zones

Create

.NET Report Generator

SQL Query in Report
Definition File

Present

Flutter

Figure 1 Logical groupings of report components

https://github.com/AHRQ/MONAHRQ-Framework
https://github.com/AHRQ/MONAHRQ-Framework

XPath Description Example or Permitted Values
@RptId Report GUID, which should match

the GUID specified in the report
definition3. This is not used as a
unique identifier.

"{E5C24EC4-6583-41D8-87A1-
9F45B143819B}"

@Name The name of the report. This
doubles as the unique identifier of
the report.

"My Sample Report"

@Category The report’s category "Quality" or "Utilization"

@PreviewImage Optional path to an image of a
rendered sample report

"MySampleReportPreview.png"

@IsTrending Indicates whether this report
displays trend data

true or false

@InterpretationText,
@ShowInterpretationText

End User explanation for how the
report should be interpreted

.\Audiences Specifies the intended audience of
the report

<Audience
AudienceType="Professionals"/>

.\Datasets A listing of the datasets this report
consumes. At least one dataset
must be listed for the report to be
available for use. This text is
displayed in the footer of each
report on the website.

<Dataset Name="Hospital Spending
 by Claim Type"/>

.\Filters Options available for filtering the
report output, displayed in the
Report Filters tab; may also
describe UI behaviors (e.g.: radio
buttons)

<Filter Type="Hospital">
 <Values>
 <FilterValue Name="Hospital
Name" />
 <FilterValue Name="Hospital
Type" />
 <FilterValue Name="Region" />
 <FilterValue Name="County" />
 </Values>
</Filter>

.\ReportAttributes Selects elements to be displayed in
the MONAHRQ UI for this report

HospitalFilters, DRGsDischargesFilters,
ConditionsAndDiagnosisFilters, KeysForRatings,
IncludedHospitals, ReportColumns, Display,
CountyFilters

.\Columns Lists measures to be displayed in
the “Customize Site” > “Website
Pages” tab of the Websites library

<Column IsMeasure="true"
 MeasureCode="HS-01"
 Name="Average spending per
 episode - Hospital"/>

.\WebsitePages Places the report on pages in the
generated MONAHRQ website

See below

For working examples, refer to the definitions for existing reports in the Domain\Reports\Data

subdirectory of the MONAHRQ program directory.

Columns
Report columns are either static or dynamic; static columns are listed in the Columns collection while

dynamic columns are determined by the report generator at runtime. A column may refer to a measure.

3 Flutters made using the open source framework do not need to define the RptId attribute because they do not
have generators

The list of columns included in a report is accessible in the MONAHRQ UI in the Websites library, under

“Customize Site” > “Website Pages”.

A report implementing a dynamic column list, such as HospitalComparison-icons.xml, may list all

possible columns in the Columns collection.

For an example of a report with static columns, refer to one of the Inpatient Utilization reports, such as

IPUtilizationDetail.xml.

WebsitePages and WebsitePageZones
The WebsitePages collection lists all the pages where the report is displayed and controls whether the

Host User is permitted to customize the report’s header or footer. A single report may define many

WebsitePages (e.g.: one for consumers and another for professionals, or multiple pages for each

audience). This information is used by the built-in content management system.

The Path attribute describes the path to the page template in the local filesystem. Url describes the URL

used in the generated website to refer to the page.

Deploying a Report Definition
To install a report definition, copy it to the Domain\Reports\Data subdirectory of the MONAHRQ

program directory and restart MONAHRQ. The report will be installed on startup. The report’s @Name is

used to uniquely identify it.

For an automatic deployment as part of the MONAHRQ solution build process, refer to the post-build

actions of the Monahrq.Wing.HospitalSpendingSample project.

Once deployed, reports are added to the Reports database table (and other tables prefixed with

Reports_), along with the complete manifest. Note that the IsCustom column of the Reports table is a

misnomer; it actually indicates whether the report was defined in CLR code (0) or by an XML wing (1).

Refer to Monahrq.Reports.ReportsModule for additional information regarding the loading and

updating of individual reports.

On startup, MONAHRQ compares the last modified timestamp of all report definition files to the

LastReportManifestUpdate timestamp in the Reports table of the database; if the file is newer,

the manifest in the database is updated. Otherwise, the manifest from the database is used.

<WebsitePage Name="Compare Hospitals"
 Audience="Consumers"
 Path="app/products/consumer/hospitals/views/compare.html"
 Url="/hospitals/compare?ids=1,2"
 IsEditable="true">
 <WebsitePageZones>
 <WebsitePageZone Name="Header" CodePath=""/>
 <WebsitePageZone Name="Footer" CodePath=""/>
 </WebsitePageZones>
</WebsitePage>

Figure 2 Example WebsitePage declaration

Report Generator
The report generator is responsible for building reports from datasets and outputting .js files that may

be consumed by the generated website. All report generators inherit from the BaseReportGenerator

class and are decorated with ReportGeneratorAttribute4 and ExportAttribute5.

Lifecycle Overview
Report generators are utilized at two times when MONAHRQ is running: at startup and during website

generation.

At startup, while the splash screen is visible, the report generator is given a chance to initialize itself

using the InitGenerator() method.

When the Host User starts the process of generating the website, BaseReportGenerator’s

GenerateReport(Website, PublishTask) method is called, which calls

ValidateDependencies(Website, IList<ValidationResult>) , followed by

RefreshRptDataObjects(), LoadReportData(), and finally, OutputDataFiles(), as follows:

For more information about how unsuccessful results are handled, please refer to the

BaseReportGenerator source code.

Initialization
Although overriding the InitGenerator() method is required, most report generators should not need

to do anything during initialization. Some of MONAHRQ’s built-in generators broadcast their

initialization through a MessageUpdateEvent while others have an empty method body.

4 Defined in the Monahrq.Sdk.Generators namespace
5 Provided by MEF

[Export(typeof(IReportGenerator))]
[ReportGenerator(
 // must match GUID from report XML definition
 reportIds: new[] {"E5C24EC4-6583-41D8-87A1-9F45B143819B"},
 moduleDependencies: new string[] { },
 datasetTargetDependencies: new[] { typeof(MyTargetType) }
)]
public class MyReportGenerator : BaseReportGenerator
{

Figure 3 Sample report generator class header

if (ValidateDependencies(website, validationResults))
{
 RefreshRptDataObjects();
 if (LoadReportData())
 OutputDataFiles();
}

Figure 4 Excerpt from BaseReportGenerator.GenerateReport(Website, PublishTask)

Dependency Validation
BaseReportGenerator’s implementation of the ValidateDependencies(…) confirms that the output

directory specified by the Website.OutPutDirectory property has been provided and that any modules

listed as dependencies are initialized. This method does not validate that required datasets are

available, so any override of the ValidateDependencies() method should perform its own check for

datasets; refer to HospitalSpendingReportGenerator for an example of such a check.

Loading Report Data
Most of the information needed to load the report data is available in the base class’s CurrentWebsite

property, including Datasets and Measures selected by the Host User.

There are two approaches to loading data: either doing it all at once and committing to disk or memory

in the LoadReportData() method, or doing nothing in the LoadReportData() method and doing

everything in the OutputDataFiles() method. The approach taken does not matter to MONAHRQ as

nothing happens between these two method calls.

Writing Data Files
The OutputDataFiles() method is responsible for writing the report data as .js files that will be read

by the generated website. If your data is in a format that can be serialized to JSON6 and small enough to

fit in memory, BaseReportGenerator offers a helper method, GenerateJsonFile(…) to write your

output file(s). Otherwise, you may need to manually write your output files. Refer to existing wings as

well as the four generator applications for examples.

For information about where to place and how to consume your output files, refer to the open source

Flutter documentation.

Execution Order
Report generators each advertise a priority through the ExecutionOrder property of the

ReportGeneratorAttribute. Property values generally range from 1 to 10. Report generators with the

same ExecutionOrder are executed in parallel with each other while reports with different

ExecutionOrders are executed starting with the lowest values.

User Interface
Reports are accessible in the UI from both the Error! Reference source not found. library and the “Select

Reports” tab of the Error! Reference source not found. library.

Flutters: Rendering Reports in Generated Website
A “flutter” defines the layout, style, and flow of a report. Flutters are written using the AngularJS

framework.

For more information about writing a flutter, please refer to the MONAHRQ Open Source FrameworkError!

Bookmark not defined. documentation at https://github.com/AHRQ/MONAHRQ-Framework.

For more information about how flutters are consumed, please refer to the DynamicReportGenerator

class in the Monahrq.Wing.Dynamic source code.

6 Using Newtonsoft’s JsonConvert.SerializeObject(object)

https://github.com/AHRQ/MONAHRQ-Framework

