
Data Sets
A data set consists of four key elements: a Target, a Target Map, a Module, and a Wing. All four

elements must be defined for the data set to function.

The Target is the actual definition of the data type that is being imported. The map Target Map relates

the type definition to the SQL database and ensures easy access using NHibernate, while the Module

and Bulk Import Mapper

MONAHRQ uses implementations of IBulkMapper to determine how data of a given Target type should

be loaded into the database. For Target types, a subclass DatasetRecordBulkInsertMapper<T> is used;

this type provides the logic necessary to map the DatasetRecord.Dataset CLR property to the

Dataset_Id SQL column.

If additional custom mapping logic is desired, create a new implementation of

DatasetRecordBulkInsertMapper<T> and override the

DatasetRecord.CreateBulkInsertMapper<T>(…) method. Refer to the following MONAHRQ types for

examples:

 Monahrq.Wing.Discharge.DischargeTargetBulkInsertMapper<T>
Maps diagnosis and procedure codes for various Target types defined by

Monahrq.Wing.Discharge.

 Monahrq.Infrastructure.Entities.Domain.Categories.CategoryBulkInsertMapper<T>

Maps the CategoryType SQL column to the CLR type name of the entity

Bulk Import User Interface
If desired, the default Host User interface for importing a dataset may be overridden. This may be

accomplished by defining a new UI context type that extends DatasetContextBase and a new wizard

step collection that extends StepCollection<YourDatasetContext>.

The StepCollection implementation is invoked by an event listener in the Module definition. See

Monahrq.Wing.HospitalCompare.HospitalCompareModule for a working example. Note that the

RECORD_KEY defined in the HospitalCompare Wing’s WizardContext class is the same GUID used in

HospitalCompareTarget.

Dataset Win provide additional information about the data set and expose the data set to the rest of

MONAHRQ.

Creating a new Data Set
Creation of a new Data Set requires the following components:

1. Target Definition: to define your data type

2. Target Map: to explain how MONAHRQ should store your data type in SQL

3. Module Definition: to provide additional installation and upgrade logic, and to provide column

name hints during the bulk import process

4. Dataset Wing Definition: to advertise the data set Target type to MONAHRQ

Optionally, the following components may also be developed:

1. Bulk Import Mapper: to change the way specific columns are handled during the import process

2. Bulk Import User Interface: to present a custom wizard UI to the Host User in place of the

standard data import interface

Target Definition
The foundation of a data set is the Target – a CLR representation of a single data set row. The Target

contains all columns that are imported from the source data along with some metadata to help

MONAHRQ interpret and validate data during the import process.

The bare minimum requirements for a Target are as follows:

 The type must inherit the DatasetRecord1 class

 The type must be decorated with the WingTarget attribute

 The type must declare one or more properties decorated with the WingTargetElement attribute

Inheriting from the DatasetRecord Class
The DatasetRecord class inherits from Entity<T> which implements IEntity<T>2. These types provide

functionality common to all entity types in MONAHRQ including support for bulk loading, field

validation, and property change notifications. The DatasetRecord class includes an Id property, which is

assumed to be a primary key and identity column in SQL.

The WingTarget Attribute
Each Target must be decorated with a WingTarget3 attribute which identifies the name and description

of the data set, a unique identifying GUID, and additional metadata.

The GUID selected for this attribute will be used to reference this data set type in other area of

MONAHRQ, such as during report generation.

1 Refer to the Monahrq.Infrastructure.Data.Extensibility.ContentManagement.Records namespace
2 Both types are in the Monahrq.Infrastructure.Entities.Domain namespace
3 Most attributes used in this document are defined in Monahrq.Infrastructure.Core.Attributes

[WingTarget(name: "My Custom Data Set Name",
 targetGuid: "71a308bb-05f8-4e18-84e6-8db6a7ecc7dc",
 description: "My Custom Data Set Description",
 isReferenceTarget: false,
 isTrendingEnabled: false,
 displayOrder: 0)]
public class HospitalSpendingByClaimTypeTarget : DatasetRecord
{

Figure 1 Example of the WingTarget attribute decorating a Target

Declaring Properties
Properties should be defined as standard CLR properties and decorated with the WingTargetElement3

attribute.

The Name property of WingTargetElement must correspond exactly with the name of the property to

prevent runtime errors. The Description property should be used for the full descriptive name of the

property.

Data Validation
Validation is possible at the class level and at the property level using attributes derived from

ValidationAttribute4. Several MONAHRQ-specific validation attributes are provided:

Attribute Purpose Applies To
Monahrq.Infrastructure.ICDValidation Validates ICD9 and ICD10

codes found in commonly
named properties

Class

Monahrq.Infrastructure.NonEmptyList IList contains at least one
element

IList
properties

Monahrq.Infrastructure.Numeric Value can be parsed as a
double

Properties

Monahrq.Infrastructure.RegexWarning Raises a warning if the regex
pattern doesn’t match

Properties

Monahrq.Infrastructure.RejectIfAnyPropertyHasValue Suppresses rows that have
the given value for any
property

Class

Monahrq.Infrastructure.RequiredWarning Raises a warning if the value
wasn’t provided

Properties

Monahrq.Infrastructure.UniqueConstraintCheck,

Monahrq.Sdk.ViewModels.UniqueAttribute
Prevent duplicate values Properties

Monahrq.Sdk.RangeToCurrentYear Given value is between the
given year and the current
year

Properties

4 System.ComponentModel.DataAnnotations.ValidationAttribute

[WingTargetElement("AverageSpendingPerEpisodeHospital",
 description: "Average Spending per Episode - Hospital",
 isRequired: true,
 ordinal: 4,
 longDecription: "The average amount of money spent per admission at
 this hospital")]
public double AverageSpendingPerEpisodeHospital { get; set; }

Figure 2 Sample Property Declaration

Handling Enum Type Members
Enum type properties do not require any special handling in the Target definition; however, the enum

types themselves must be decorated with the WingScope3 attribute and enum members must be

decorated with the WingScopeValue3 attribute.

Note: only integer values are currently supported

Using a Custom Bulk Import Mapper
IBulkMapper instances are used to transform source data before it is stored in the database. They are

utilized in MONAHRQ to populate the ICD version column for discharge-related targets in the

Monahrq.Wing.Discharge module, for XML Wing targets in Monahrq.Wing.Dynamic, and for some base

data types.

If you require the functionality provided by IBulkMapper, you should override the

CreateBulkInsertMapper<T>(…) method in your target type to return a new instance of your custom

IBulkMapper.

For additional information about creating a bulk import mapper, see Bulk Import Mapper.

Performing In-Place Schema Upgrades
Since the schema for a target is defined in the Fluent NHibernate configuration of the Target Map and

MONAHRQ’s use of Fluent NHibernate does not support in-place upgrades. All logic for in-place

upgrades must be implemented separately from the schema definition. There are two options for

integrating such an upgrade into MONAHRQ:

1. As a core database schema upgrade. This is most appropriate for targets that are built-in to

MONAHRQ. See Error! Reference source not found. for more information.

2. As a base data importer. This is most appropriate for .NET Wings that define their own targets.

See Error! Reference source not found..

Target Map
The Fluent NHibernate mapping for your Target relates the CLR type definition to your desired SQL

schema and is defined in a class that derives from DatasetRecordMap<T>1, where T : DatasetRecord.

[WingScope("Claim Type", typeof(ClaimType))]
public enum ClaimType
{
 [WingScopeValue("Exclude", -1)]
 Exclude = -1,

 [WingScopeValue("Unknown", 0)]
 Unknown = 0,

 [WingScopeValue("HomeHealthAgency", 1, "Home Health Agency")]
 HomeHealthAgency = 1,

Figure 3 A sample enum type with WingScope and WingScopeValue attributes

The specifics of how to use Fluent NHibernate are not within the scope of MONAHRQ documentation;

for information, refer to the Fluent NHibernate documentation5.

Module Definition
A Wing module in MONAHRQ serves two key purposes:

 Advertise database installation and refresh logic to MONAHRQ

 Provide default column name hints for a target definition to be used when importing new data

Module Lifecycle
A module for a Data Set has the same startup sequence and lifecycle as other modules in MONAHRQ.

See Error! Reference source not found. for more information.

Choosing a Base Class
All modules in MONAHRQ derive from the abstract WingModule class, but modules that specifically

describe a Target should derive from the more specific TargetedModuleBase<T>; this class provides

convenient references to the WingTargetAttribute3 decorating your Target as well as

IDomainSessionFactoryProvider.

5 https://github.com/jagregory/fluent-nhibernate/wiki/Getting-started

public class HospitalSpendingByClaimTypeTargetMap
 : DatasetRecordMap<HospitalSpendingByClaimTypeTarget>
{
 public HospitalSpendingByClaimTypeTargetMap()
 {
 this.Map(m => m.CmsProviderId).Not.Nullable().Length(12);
 this.Map(m => m.ClaimType).CustomType<ClaimType>();

Figure 4 Excerpt from sample DatasetRecordMap<T> implementation

If your module also provides measures and/or topics, you may wish to derive your

module class from TargetedModuleWithMeasuresAndTopics<T>, which includes

additional overrides for the installation of measures and measure topics. This is

covered in greater depth in The WingModule Attribute

The module must be decorated with a WingModuleAttribute3 which identifies the

name and description of the module as well as a unique identifying GUID. This GUID

differs from the GUID specified in the WingTargetAttribute and is used to uniquely

identify the WingModule to MONAHRQ.

Refer to the Subscribe() method of the Monahrq.Wing.Ahrq.AhrqModuleBase

module implementation for an example of how the WingModule GUID can be used.

Overriding Default Database Installation and Update Procedure
The default behavior for a module is to run the Install(), InstallDb(), Update(),

and UpdateDb() functions on MONAHRQ startup only if the module has not been

previously installed into the database. If this behavior is not appropriate for your

implementation, it may be changed by overriding the protected Reconcile()

method.

If you are implementing from TargetedModuleBase<T>, the four install and update

methods mentioned above have an empty default implementation and may be

https://github.com/jagregory/fluent-nhibernate/wiki/Getting-started

The WingModule Attribute
The module must be decorated with a WingModuleAttribute3 which identifies the name and

description of the module as well as a unique identifying GUID. This GUID differs from the GUID

specified in the WingTargetAttribute and is used to uniquely identify the WingModule to MONAHRQ.

Refer to the Subscribe() method of the Monahrq.Wing.Ahrq.AhrqModuleBase module

implementation for an example of how the WingModule GUID can be used.

Overriding Default Database Installation and Update Procedure
The default behavior for a module is to run the Install(), InstallDb(), Update(), and UpdateDb()

functions on MONAHRQ startup only if the module has not been previously installed into the database.

If this behavior is not appropriate for your implementation, it may be changed by overriding the

protected Reconcile() method6.

If you are implementing from TargetedModuleBase<T>, the four install and update methods mentioned

above have an empty default implementation and may be overridden in any way.

If you are implementing from TargetedModuleWithMeasuresAndTopics<T>, the InstallDb() method

calls the virtual ImportMeasures() and ImportMeasureTopics() methods.

Providing Default Column Name Hints
If the dataset being imported contains column names that differ from those of the WingTargetElement

properties defined in your Target, you may override the method OnApplyDatasetHints() to tell

MONAHRQ about their other name(s); call the Target<T>(Expression<Func<T,object>>) method to

obtain a reference to the metadata object for a particular property, and call the ApplyMappingHints on

that object to specify alternate column names.

6 Refer to the base implementation in WingModule to determine what functionality should be replicated in your
implementation

[WingModule(typeof(SampleModule),
 "{7D39A125-315D-47B0-BE69-E7D6DFB64BB3}",
 "Hospital Spending",
 "Hospital Spending Sample Module")]
public class SampleModule
 : TargetedModuleWithMeasuresAndTopics<SampleTarget>
{

Figure 5 Sample WingModule Attribute

protected override void OnApplyDatasetHints()
{
 Target<SampleTarget>(t => t.ClaimType)
 .ApplyMappingHints("Claim_Type");
 Target<SampleTarget>(t => t.CmsProviderId)
 .ApplyMappingHints("Provider_ID", "ID");

Figure 6 Sample OnApplyDatasetHints() override

In this example, the ClaimType property may be imported using the column names “ClaimType” or

“Claim_Type”, and the CmsProviderId property may be using the column names “CmsProviderId”,

“Provider_ID”, or “ID”.

Adding Measures and Measure Topics to a Target
Modules that derive from TargetedModuleWithMeasuresAndTopics<T> may override the

ImportMeasures() and ImportMeasureTopics() methods to define Measure Categories, Measure

Topics, and individual Measures. For more information, refer to Error! Reference source not found..

Bulk Import Mapper
MONAHRQ uses implementations of IBulkMapper to determine how data of a given Target type should

be loaded into the database. For Target types, a subclass DatasetRecordBulkInsertMapper<T>7 is used;

this type provides the logic necessary to map the DatasetRecord.Dataset CLR property to the

Dataset_Id SQL column.

If additional custom mapping logic is desired, create a new implementation of

DatasetRecordBulkInsertMapper<T> and override the

DatasetRecord.CreateBulkInsertMapper<T>(…) method. Refer to the following MONAHRQ types for

examples:

 Monahrq.Wing.Discharge.DischargeTargetBulkInsertMapper<T>
Maps diagnosis and procedure codes for various Target types defined by

Monahrq.Wing.Discharge.

 Monahrq.Infrastructure.Entities.Domain.Categories.CategoryBulkInsertMapper<T>

Maps the CategoryType SQL column to the CLR type name of the entity

Bulk Import User Interface
If desired, the default Host User interface for importing a dataset may be overridden. This may be

accomplished by defining a new UI context type that extends DatasetContextBase8 and a new wizard

step collection that extends StepCollection<YourDatasetContext>9.

The StepCollection implementation is invoked by an event listener in the Module definition. See

Monahrq.Wing.HospitalCompare.HospitalCompareModule for a working example. Note that the

RECORD_KEY defined in the HospitalCompare Wing’s WizardContext class is the same GUID used in

HospitalCompareTarget.

7 See the Monahrq.Infrastructure.Data.Extensibility.ContentManagement.Records namespace
8 See Monahrq.Datasets.Model.DatasetContextBase
9 See Monahrq.Theme.Controls.Wizard.Models.StepCollection<T>

Column name hints are stored in the Hints column of the Wings_Elements database

table. When a hostuser specifies a column mapping manually in MONAHRQ, that

mapping is added to the value of the Hints column.

Dataset Wing Definition
The purpose of the Dataset Wing, an implementation of IDatasetWing, is to advertise the Target type

and its metadata to MONAHRQ. If your Target type is decorated with WingTargetAttribute, the only

requirements for creating a Wing are to inherit from DatasetWing<T>, where T is your Target type, and

decorate the Wing with DatasetWingExportAttribute3.

The Dataset Wing does not expose any other functionality or serve any other purpose.

[DatasetWingExport]
public class HospitalSpendingByClaimTypeDatasetWing
 : DatasetWing<HospitalSpendingByClaimTypeTarget>
{
}

Figure 8 Entire IDatasetWing implementation

protected override void OnInitialize()
{
 base.OnInitialize();
 this.Subscribe();
}

private void Subscribe()
{
 Events.GetEvent<WizardStepsRequestEvent<DataTypeModel, Guid, int?>>()
 .Subscribe(this.OnWizardStepRequestEvent);
}

private void OnWizardStepRequestEvent(
 WizardStepsRequestEventArgs<DataTypeModel, Guid, int?> args)
{
 if (args.WingId == WingGUID)
 args.WizardSteps = FactoryWizardSteps(args.Data, args.ExistingDatasetId);
}

Figure 7 Overriding the WizardSteps collection

