
SKYTRAXX FANET+ Module

Juergen Eckert

October 2, 2018

Figure 1: FANET+ Module

Key Product Features

• Physical (PHY) layer (LoRa Modem: SX1272):

– Up to +20 dBm (100 mW) constant RF output
– 157 dB maximum link budget
– 868 MHz and 915 MHz ISM-band compatible

• Medium Access Control (MAC) layer:

– CSMA/CA
– Ensures 1 % duty cycle
– Multi-hop and acknowledgment handling
– Receiving and transmitting queues

• Application (APP) layer (airborne units only):

– Tracking broadcast (areal and ground)
– FLARM beacon

• Low RX current of 12 mA
• Small form factor of 15×23×4 mm

1 General Description

Flying Adhoc Network (FANET) is an open communication
standard for multi-hop information exchange. It is specially
designed to suite the needs of flight instruments in an
infrastructure-less 3D environment. Its modular Open
Systems Interconnection (OSI) model based approach
allows for future extensions as well as the utilization for
other related applications like weather stations. LoRa is
used for maximizing coverage while keeping the transmission
power levels within the allowed ISM band limitations.

Despite of the OSI reference FANET is reduced to three
layers: PHY, MAC, and APP. The here described module,
depicted in Figure 1, fully handles the former two layers.
Optionally, the module can handle the areal and ground
tracking broadcasts which is part of the APP layer.

A brief description of the protocol as well as a reference
implementation can be found on GitHub1. The remainder
of this article purely focuses on the module and its
interaction with a host system.

1https://github.com/3s1d/fanet-stm32

2 Ordering Options

Skytraxx features two software variants. For exclusive
ground usage the open source version will be delivered. For
airborne usage FANET gets extended by FLARM. It is
than called FANET+. In order to transmit FLARM frames
one must use the integrated tracking service. Skytraxx will
provide free updates—including FLARM—on an at least
annual basis.

3 Characteristics

The sticker on top of the module (see fig. 1) depicts its
address in hexadecimal. It is stored in flash memory. The
former two digits represent the manufacturer identification
number. The remaining four digits are for user identification.
Nota bene: FLARM equipped modules can currently

only be supplied using the manufacturer ID: 1116

3.1 Physical Characteristics

Figure 2 shows the pin layout of the module. The antenna
connection is optimized for 50 Ω impedance. A high signal
during power-on or reset on the pin BOOT invokes the
STM32 build-in bootloader. The open source module can
than be programmed using the STM bootloader protocol.
For the airborne module this scheme will fail due to its
read-out protection. RESET (active low) performs a hard
reset. Pins RXD and TXD are the logic level UART pins
for receiving and transmitting, respectively. DNC (do not
connect) provides pins for future use like USB and I2C.

The recommended footprint is depicted in Figure 3. A
suitlable Eagle library can be found in the Git repository2.

3.2 Electrical Characteristics

Tables 1 to 3 show the electrical characteristics. RESET

and BOOT feature an internal 10 kΩ pull-up and pull-down
resistor, respectively. Please note that the PPS pin is 5V
tolerant, however the UART pins are not.

Description Conditions Typ. Unit
Supply Current idle - 1.2 mA
Supply Current RX - 12 mA
Supply Current TX +20 dBm 125 mA

+10 dBm 25 mA

Table 1: Power Consumption

2https://github.com/3s1d/fanet-stm32/blob/master/module/fanet.lbr
1

Description Min Typ. Max Unit
Supply Voltage (VDD) 1.8 3.3 3.6 V
Temperature −10 - 55 ◦C

Table 2: Operating Range

Symbol Condition Min Max Unit
VIL - 0.3·VDD V
VIH 0.7·VDD - V
VOL |IO|≤8mA - 0.4 V
VOH |IO|≤8mA VDD−0.4 - V

Table 3: I/O Characteristics

Figure 2: Pin Layout (top view)

4 Theory of Operation

The module fully handles the PHY and MAC layer. It
ensures to comply with the ETSI 1 % duty cycle regulations
for the fitting 868 MHz ISM-Band. It features two queuing
systems, one for transmitting and one for receiving which
enable forwarding and automated acknowledgment gener-
ation. A neighbor database is generated to support optimal
forwarding strategies. If the state of the instrument is
continuously feed into the module it can also automatically
generate and broadcast tracking information (APP layer
FANET type 1, type 7, and FLARM). No payload decoding
is implemented on the module. The received header gets
decoded and combined with the raw payload gets handed
over to the host system for further processing.

4.1 Connection

Figure 4 shows the recommended connection diagram. All
the signal levels must be TTL compatible U∈ [0,VDD]. PPS

is 5 V tolerant. The absolute minimum is to connect the
UART of the FANET module. However, it is highly advised
to connect at least the RESET pin to a free GPIO pin of
the host system in order to be able to always enter a known
state. Connecting the PPS signal from the GPS/GNSS

Figure 3: Recommended Footprint (top view)

Figure 4: Recommended Connection Diagram

module is crucial for the FLARM timings. The modules
power consumption may in the future as well benefit from
this time synchronization as sleep modes could be entered
with a very high precision. For none-airborne modules
it is likely that no GPS/GNSS is present, therefore this
connection is not mandatory.

4.2 UART Commands

The UART is set to 115200 bits−1, 8 bit data length, no
parity bit, and one stop bit (aka. 8N1). Communication
is handled using an ASCII based human readable protocol.
In each byte the most significant bit must remain zero.

2

Each string starting with ’#’ (2316) and ending with ’\n’
(0A16) is considered to be a valid line and will be evaluated
according to the following set of instructions. Generally,
communication is based on an request-response scheme
were the host application acts as the master.

After the line start indicator the following two chars
define what subunit shall be addressed or which subunit
is reporting back. The three available types are:

• ’FN’ FANET for data exchange
• ’DG’ Dongle for module management
• ’FA’ FLARM for airborne units only

Always followed by a single subcommand char. In case
additional data is supplied a space (2016) must be inserted
followed by the actual data values as strings separated by
commas (2C16). Each line send from the host system will
trigger a response from the module.

For more details please see the reference implementation
serial interface.[h,cpp].

4.2.1 Response Lines

The module response format is depicted in Code 1. Unless
’OK’ is returned the status data is expected to be a 3-tuple con-
sisting of a general type, followed by a unique status number,
and an human understandable string. A list of all possible
return codes can be found in the reference implementation.

Code 1: Response Format

#[FN,DG,FA]R [OK,ERR,WRN,MSG] ,num, s t r \n

Other responses are possible in case more data needs
to be provided.

4.2.2 State Command (APP)

The command depicted in Code 2 extends the application
running on the host system into the module. All the values
are given in decimal float fashion. It triggers the automated
transmission of type 1 (tracking) or of type 7 (ground
tracking) packets on a regular basis. The mode of operation,
see Code 6, determines the generated type. Timings are
all handled by the module. As well as the generation
and transmission of the FLARM beaconing packets. For
continuous operation (w/ FLARM enabled) the host
application shall trigger this command at 1 Hz. Time, UTC
formated in struct tm style, Geoid separation, and turn
rate are optional values. Please note that time information
and Geoid separation information are mandatory for
FLARM to operate. Code 3 depicts all possible responses.

Code 2: State (APP layer)

#FNS l a t (deg) , lon (deg) , a l t (m MSL) ,
speed (km/h) , cl imb (m/ s) , heading (deg)
<, year (s i n c e 1900) , month(0−11) ,day ,
hour , min , sec , sep (m) , turn (deg/ s)>\n

Code 3: Possible State Responses (APP layer)

#FNR OK\n
#FNR ERR,10 , no source address \n
#FNR MSG,13 , power down\n

4.2.3 Config Command (APP)

The command depicted in Code 4 configures the user option
for the automated type 1 or type 7 transmissions. Code
5 depicts all possible responses. To remain backward com-
patibility ground type is an optional field. Default values
are 1 (Paraglider), 1 (do online tracking), and 1 (hiking).

Code 4: Config (APP layer)

#FNC airType (0 . . 7) , l i v eTrack ing (0 . . 1) ,
groundType (0 . . F in hex)\n

Code 5: Possible Config Responses (APP layer)

#FNR OK\n
#FNR ERR,12 , incompat ib le type \n

4.2.4 Mode Command (APP)

The command depicted in Code 6 sets the mode of
operation for the APP layer inside of the module. I.e.
it determines whether type 1 or type 7 packet will be
generated. Whereas 0 is air mode (default) and 1 is ground
mode. Code 7 depicts all possible responses.

Code 6: Mode (APP layer)

#FNM mode (0 . . 1) \ n

Code 7: Possible Mode Responses (APP layer)

#FNR OK\n
#FNR ERR,12 , incompat ib le type \n

4.3 Address Command

The command depicted in Code 8 returns the address for the
module in hexadecimal, see Code 9. The value must be glob-
ally unique and therefore must not be changed but the user.

Code 8: Address

#FNA\n

Code 9: Address Response

#FNA manufacturer , id \n

4.3.1 Transmit Command

The command depicted in Code 10 provides an interface
for transmitting general data. Code 11 is the corresponding
response. The package payload needs to be encoded on
the host side according to the protocol specification. All
values will be given in hexadecimal format. The address
00:0000 is considered to be the broadcast address. Each

3

payload byte is formated as 2-byte-chars in hex format.
The signature is optional. It must not exceed 32bit and
must differ from 0. Transmission is done automatically.

Code 10: Transmit

#FNT type , dest manufacturer , de s t id ,
forward (0 . . 1) , a ck r equ i r ed (0 . . 1) ,
length , payload (length ∗2 hex chars)
<, s i gnature >\n

Code 11: Possible Transmit Responses

#FNR OK\n
#FNR MSG,13 , power down\n
#FNR ERR,10 , no source address \n
#FNR ERR,14 , tx b u f f e r f u l l \n
#FNR ERR,30 , too short \n
#FNR ACK, dest manufacturer , d e s t i d \n
#FNR NACK, dest manufacturer , d e s t i d \n

4.3.2 Received Packet

The command depicted in Code 12 will be received from
the host system every time the dongle successfully decodes
a received FANET packet. All values will be given in
hexadecimal format. Each payload byte is formated as
2-byte-chars in hex format.

Code 12: Receive

#FNF src manufacturer , s r c i d ,
broadcast (0 . . 1) , s ignature , type ,
length , payload (length ∗2 hex chars)\n

4.3.3 Version Command

The command depicted in Code 13 returns the build
version for the module, see Code 14.

Code 13: Version

#DGV\n

Code 14: Version Response

#DGV build−datecode \n

4.3.4 Enable Command

The command depicted in Code 15 sets the power mode
or returns the current power mode of the module if no
additional data is presented, see Code 16. If enabled the
receiver chip is turned on.

Code 15: Enable

#DGP <powermode (0 . .1) >\n

Code 16: Enable Responses

#DGP (0 . . 1) \ n
#DGR OK\n
#DGR ERR,70 , power switch f a i l e d \n

4.3.5 Region Command

The command depicted in Code 17 sets the regional charac-
teristics: the frequency and the maximal allowed power level.
By setting the output power one must take the antenna
gain into account. Please note that the 915 MHz option is
currently unavailable. Code 18 depicts all possible responses.

Code 17: Region

#DGL f r e q (868 ,915) ,dBm(2 . . 2 0) \ n

Code 18: Region Responses

#DGR OK\n
#DGR ERR,80 , too l e s s parameter \n
#DGR ERR,81 , unknown parameter \n

4.3.6 Jump to Boot-loader Command

The command depicted in Code 17 enables the firmware
to directly jump to its boot-loaders. For the open source
version the default STM built-in program is used (’BLstm’).
For FANET+ devices a boot-loader which supports
decryption is used (’BLxld’). No return answer is provided
upon success. On error Code 20 is returned.

Please note that the recommended procedure for entering
the bootload is to use GPIO pins connected to ’RESET’ and
’BOOT’ pins of the module (the later one is only required
in case of the open source option).

Code 19: Jump

#DGJ BL[stm , xld]\ n

Code 20: Jump Responses

#DGR ERR,61 , unknown jump point \n

4.3.7 Enable Command (FLARM)

The command depicted in Code 21 sets the power mode
for the FLARM submodule or returns its current power
mode if no additional data is presented, see Code 22. If
enabled the receiver chip is turned on.

Code 21: Enable (FLARM)

#FAP <powermode (0 . .1) >\n

Code 22: Enable Responses (FLARM)

#FAP (0 . . 1) \ n
#FAP OK\n

4.3.8 Expiration Command (FLARM)

The command depicted in Code 23 returns the expiration
date of FLARM submodule in Code 24. The user must
perform an update prior to that date to keep the FLRAM
submodule functional. The date is formated in struct tm

style. If FLARM is used past this date an error message
will be received once, see Code 25.

4

Code 23: Expiration (FLARM)

#FAX\n

Code 24: Expiration Responses (FLARM)

#FAX year (s i n c e 1900) , month(0−11) , day\n

Code 25: Expired (FLARM)

#FAR ERR,91 ,FLARM expired \n

4.4 Example

Upon power-on or reset the module enters the idle mode.
The receiver is in sleep mode and needs to be enabled
for FANET and FLARM separately. Code 26 shows
an exemplary boot-up sequence. -> depicts bytes that
get received by the module. <- depicts bytes that get
transmitted by the module. % indicates a comment.

Code 26: Example Data Flow

% FANET+ custom boot loader (xmodem)
% wait 10 sec or terminate with \n
<− C
−> \n
% In case o f an hardware f a u l t
% an e r r o r (ERR) w i l l occure
<− #FNR MSG, 1 , i n i t i a l i z e d \n
% Check f o r c o r r e c t ve r s i on
% i f not perform an update
−> #DGV\n
<− #DGV build −201709261354\n
% Get module addr
−> #FNA\n
<− #FNA 11 ,003F\n
% Check FLARM e x p i r a t i o n
% Expires on 31 . January 2018
−> #FAX\n
<− #FAX 118 ,0 ,31
% Conf igure APP
% PG, on l i n e t rack ing
−> #FNC 1 ,1\n
<− #FNC OK\n
% Enable r e c e i v e r
−> #DGP 1\n
<− #DGR OK\n
−> #FAP 1\n
<− #FAP OK\n
%%%%%

% Update s t a t e in a loop
% once a second
−> #FNS 45.1234 ,10 .5678 ,500 ,37 , −1 .5 ,45 ,

117 ,9 ,30 ,12 ,35 ,2\n
<− #FNS OK\n

% Module r e c e i v ed a packet
<− #FNF 11 ,2E,1 , 0 , 1 ,B,

7963469 EC507369100002\n

4.5 FLARM (airborne modules only)

All airborne FANET modules manufactured by SKY-
TRAXX get equipped with FLARM. The following
limitations must be followed:
• FLARM is in beacon/passive mode only; no FLARM

packet will get received.
• Aircraft types are limited to paraglider (1) and hangglider

(2), otherwise FLARM will get disabled.
• Annual (free) updates are required.
• Custom boot-loader to upload the firmware, see section 5.

The FLARM and the FANET address will be kept in
sync with each other. The most significant byte of the
FLARM address correspond to the manufacturer ID of
FANET. The middle and least significant bytes of the
FLARM address correspond to the user ID of FANET.

FLARM requires the PPS pulse to arrive within ±5 ms
of the true second start. The status command must be
received within the next 300 ms.

5 Firmware Update

To determine whether an update must be performed the
version of the current module must be check using the
command explained in section 4.3.3.

5.1 Ground/Base Module

The build version of the available binary file can be checked
by performing a global search for the regular expression
’build-’ (’strings file.bin | grep build-’). If both
versions differ the new firmware can be flashed using the well
known STM32 boot-loader protocol. The boot-loader can
be entered using the RESET and BOOT pin (recommended)
or by utilizing the command introduced in section 4.3.6.

5.2 Airborne Module

The version of the firmware file (fanet.xlb) can be found
at byte position 24. It is formated as a string. The upload
is done using the custom boot-loader. It supports the
xmodem protocol for 128 B and 1 kB chunks. It is entered
automatically upon reset or by utilizing the command
introduced in section 4.3.6.

An example upload using python with the pyserial and
xmodem libraries is depicted in Code 27.

Code 27: Example Firmware Upload

import s e r i a l
from xmodem import XMODEM
ser = s e r i a l . S e r i a l (port=<port >,

baudrate =115200)
#assuming r e s e t i s connected to RTS
se r . setRTS (True)
time . s l e e p (0 . 1)

5

s e r . setRTS (False)
de f getc (s i z e , t imeout =1):

re turn s e r . read (s i z e) or None
def putc (data , timeout =1):

re turn s e r . wr i t e (data)
modem = XMODEM(getc , putc)
fwstream = open (’ f ane t . xlb ’ , ’ rb ’)
modem . send (fwstream) :
fwstream . c l o s e ()
s e r . c l o s e ()

5.3 Changelog

• 2018/10/2 FANET 1.1
– Added Ground-Tracking to the APP layer by

extending section 4.2.3 and introducing section 4.2.4.
– Added Geoid separation information for status

updates. See section 4.2.2.
This update is fully backward compatible (if turn rate
was previously not used).

6

