git-as-svn User Manual

Artem Navrotskiy, Marat Radchenko, Andrew Thornton

Version 4.0.0, 2024-09-04

Table of Contents

1. About project
1.1. What is it?
1.2. Features
1.3. What is project goal?
1.4. Why do we need it?
2. Installation
2.1. .gitattributes
2.2. Installation on Debian/Ubuntu
2.2.1. git-as-svn package
Used directories
2.2.2. git-as-svn-lfs package
2.3. Manual download
3. Command-line parameters
4. GitLab integration
4.1. Configuration
4.2. Supported Git LFS modes
4.3. Full configuration file example
5. Gitea integration
5.1. Configuration file example
6. LFS server
6.1. Configuration file example
6.2. git-1fs-authenticate
6.3. Running git-a-svn behind Nginx reverse proxy
7. LDAP (Lightweight Directory Access Protocol)
7.1. Supported LDAP bind methods
7.1.1. ANONYMOUS
7.1.2. CRAM-MD5
7.1.3. DIGEST-MD5
7.1.4. EXTERNAL
7.1.5. PLAIN
7.1.6. Simple
8. Logging
8.1. Loggers available in git-as-svn
9. Path-based authorization
9.1. Getting Started with Path-Based Access Control
9.2. Access Control Groups
9.3. Advanced Access Control Features
10. SVN Properties

© 9 9 o R R W W W W N R R R

N DN NN DN DN DN DNDDNDNDNDNDDNDDNDN = = = = =
© 00 J U1 U1 = b W DN N N DN PR =B O 0 0 OO0 O = = O

10.1. .gitignore file 29

10.2. gitattributes file 29
10.3. .tgitconfig file. 30
10.4. Commit failed: Invalid svn propertieson file 31
11. EmMpty dir€Ctories. 32
12, AIternatiVeSo 34
12.1. GitHub Subversion SUPPOTt. o 34
12.2. SUDGIt . . o 35
12.3. Subversion repository and git-SVIL. 35
13, SVUNHSSH . 36
13.1. Rationale.o 36
13.2. How does SVN+SSH WOrk?. 36
13.3. Abetter git-aS-SVN-SVNSEIVE 37
13.4. GitLab & git-aS-SVN-SVIISEIVEt 37
13.5. GItea. 48
14. Internal implementation details 54
14.1. Where Subversion data is stored? 54
14.2. OricaHue XpaHeHUsI HHQOPMAITAU B XPAHMIIHIIIE oooottt ittt 54
14.3. JI1d 4ero HyKHO XPAHMIIMIIIC o ottt ittt e 54
14.3.1. PopmaT XpaHeHUSI UHOOPMAITAM O PEBUBUSIX - oo oot et 54
COEPIKUMOR KOMMITA . - . -« oottt it ittt e e 55
ReVISION O 55

14.4. How does commit WOTK? 55
15. Changelog. 56
40,0 . 56
30,0 56
2.0, 56
2.0, T 56
2.0, 56
2.0 56
2.0 56
2.0, 56
2.0 56
2.0 L 57
2.8 L 57
28,0 57
720 57
2.6.0 57

2. 5.0 57
240 e 57

2. 58
2.0 58
2.0.0 58
1 30,0 58
130,00 . o 58
1200 . 58
L8 L 39
1280 . 39
1270 39
126, L 39
1 26,0 . 59
L2 39
L2 L 39
1250 . 59
L 2. 3 60
L2 60
L2 L 60
L 2.0 60
L 23, d 60
1 23,0 . 60
1220 . 60
O 61
0 R 61
L LT 61
O 61
L 2L S 61
D 61
O 0 61
L 2L e 61
L 2L L 61
L 20 . 62
1 20,5 62
L 20,4 62
1 20,3 62
1202 62
L 20,0 62
1 20,0 . 62
L 00,3 62
1002 63

L L8O . 63
L L0 63
L 06,0 . 63
L 0G0 . 63
L L0 64
L L300 . 64
L L0 . 64
0 64
0 64
L 00, d 64
L 00,0 . 64
10,0 65
0 0 65
L 8.0 . 65
0 T 65
L 65
R 65
L 65
L 65
LT e 66
L 66
L7 0 66
L6, 66
LB, 66
16,0 . 66
15,0 67
LA 0 67
130 67
12,0 67
T R 67
0 67
0 67
0 67
0 R 68
0 68
T 68
O 68
0 68
L L0 68

1.0.06-alpha . .. 69

1.0.05-alpha . . . 69
1.0.14-alpha . . . 69
1.0.03-alpha . .. 69
1.0.02-alpha . .. 69
100 0-alpha . .o 70
1.0.10-alpha 70
1.0.9-alpha . ..o 70
1.0.8-alpha . ..o 70
1.0.7-alpha . .o 70
1.0.6-alpha . ..o 70
1.0.5-alpha . .. 71
1.04-alpha . ..o 71
1.0.3-alpha . .. 71
1.0.2-alpha . .o 71
1.0 1-alpha . oo 71

1.0.0-alpha . ..o 71

Chapter 1. About project

1.1. What is it?

git-as-svn (https://github.com/git-as-svn/git-as-svn) emulates Subversion repository on top of Git
repository.

It allows you to work with Git repositories using any tool compatible with Subversion 1.8+: console
svn, TortoiseSVN, SvnKit, SmartSVN, etc.

1.2. Features

This implementation allows the majority of Subversion-users to work without thinking about what
they actually use Git-repository.

* Nearly all Subversion commands:

o

)

o

)

svn checkout, update, switch, diff
svn commit

svn copy, move "

svn cat, Is

svn lock, unlock

svnsync

Path-based authorization

* Transparent mapping of .gitattributes/.gitignore to Subversion properties

Git LFS, including locks

Git submodules !

* LDAP user authentication

GitLab integration

Gitea integration

1.3. What is project goal?

The project is designed to allow you to work with the same repository as Git, Subversion and style.

Git style
The basic idea is that the developer works in the local branch. His changes do not affect the work
of other developers, but nonetheless they can be tested on CI farm, review by another developer
and etc.

This allows each developer to work independently, as best he can. He can change and saving
intermediate versions of documents, taking full advantage of the version control system
(including access to the change history) even without network connection to the server.

https://github.com/git-as-svn/git-as-svn

Unfortunately, this approach does not work with not mergeable documents (for example, binary
files).

Subversion style

The use of a centralized version control system is more convenient in the case of documents do
not support the merge (for example, with binary files) due to the presence of the locking
mechanism and a simpler and shorter publication cycle changes.

The need to combine Git and Subversion style work with one repository arises from the fact that
different employees in the same project are working from fundamentally different data. If you
overdo, you Git programmers, and artists like Subversion.

1.4. Why do we need it?

This project was born out of division teams working on another project into two camps:

* People who have tasted the Git and do not want to use Subversion (eg programmers);

* People who do not get from Git practical use and do not want to work with him, but love
Subversion (eg designers).

To divide the project into two repository desire was not for various reasons.

At this point, saw the project http://git.q42.co.uk/git_svn_server.git with Proof-of-concept
implementation svn server for git repository. After this realization svn server on top of git and
didn’t seem completely crazy idea (now it’s just a crazy idea) and started this project.

[1] Operations are supported,but copy/move information is not explicitly saved to repository. Instead,it is auto-calculated from Git
commits

[2] Git submodule data is only available in read-only mode.

http://git.q42.co.uk/git_svn_server.git

Chapter 2. Installation

o Subversion versions prior to 1.8 are not supported because git-as-svn relies on
inherited properties Subversion feature.

2.1. .gitattributes

By default, Git uses native line ending for text files and determines whether file is text or not using
heuristics that do not match Subversion behavior.

In order to fix this discrepancy, add the following to your .gitattributes file:

gitattributes

* -text

This will force Git to store files as-is unless end-of-line conversion is explicitly configured for them.
See gitattributes documentation for additional info.

2.2. Installation on Debian/Ubuntu

You can install git-as-svn on Debian/Ubuntu using the following commands:

Set up repository
curl -1sLf 'https://dl.cloudsmith.io/public/git-as-svn/git-as-svn/setup.deb.sh' | sudo
-E bash

Install git-as-svn
sudo apt-get install git-as-svn

You only need this if you plan to use git-as-svn builtin Git-LFS server
sudo apt-get install git-as-svn-1fs

2.2.1. git-as-svn package
This package contains the git-as-svn.

After you install git-as-svn is run in daemon mode and is available on the svn-protocol on port 3690.
The daemon runs as git user.

To access the server, you can use the user:
Login: test
Password: test

You can check configuration with command like:

https://subversion.apache.org/docs/release-notes/1.8.html#iprops
https://git-scm.com/docs/gitattributes

svn ls --username test --password test svn://localhost/example/master

Used directories

This package by default is configured to use the following directories:

/etc/git-as-svn

This directory contains git-as-svn configuration files.

/usr/share/doc/git-as-svn

This directory contains git-as-svn documentation.

[var/git/lfs

This directory contains Git Large File Storage files.
It must be writable by user git.

[var/git/repositories

This directory is used by default to store the Git-repositories.
It must be writable by user git.

/var/log/git-as-svn

This directory is used to record log files.
It must be writable by user git.
See logging documentation on log configuration.

/var/cache/git-as-svn

This directory is used to store the git-as-svn cache.
It must be writable by user git.

The loss of the contents of this directory is not critical for operation and does not entail the loss
of user data.

2.2.2. git-as-svn-Ifs package

This package contains the git-1fs-authenticate script required for git-as-svn builtin LFS server

2.3. Manual download

To try git-as-svn you need:

1. Install Java 21 or later;
2. Download archive from site https://github.com/git-as-svn/git-as-svn/releases/latest;

3. After unpacking the archive change working path to the uncompressed directory and run the

https://github.com/git-as-svn/git-as-svn/releases/latest

command:

bin/git-as-svn -c doc/examples/config.yml

This will start git-as-svn server with following configuration:
1. The server is accessible via svn-protocol on port 3690.

You can check server with command like:

svn ls svn://localhost/example/master

2. To access the server, you can use the user:
Login: test
Password: test

3. Cache and repository will be created in build directory:
o example.git — repository directory, accessible via svn-protocol;

o git-as-svn.mapdb* — cache files for expensive computed data.

Chapter 3. Command-line parameters

git-as-svn supports the following command-line parameters:

-7 | -h | --help

print help for command-line parameters.

-c¢ <file> | --config <file>

use an alternative configuration file instead of a default file.

-t

test the configuration file: git-as-svn checks the configuration for correct syntax.

o -t doesn’t perform full git-as-svn initialization, so it is still possible that git-as-svn
will fail to startup due to invalid configuration even though -t passed successfully.

-T

same as -t, but additionally dump configuration files to standard output.

-v | --version

print git-as-svn version.

Chapter 4. GitLab integration

git-as-svn supports integration with GitLab >=10.2.
This includes:

» User authentication against GitLab

» Access control depending on user permissions in GitLab

» Usage of GitLab LFS server for transparent handling of LFS files for svn users
* Automatic discovery of new repositories created in GitLab

* Running GitLab repository hooks if any installed

4.1. Configuration

o This chapter assumes that GitLab is installed using standard Omnibus installation
to /opt/gitlab.

git-as-svn uses direct file access to Git repositories, so it needs to run from the same user as GitLab
(normally, git). If you’re installing both git-as-svn and Gitlab from Debian packages, no additional
actions are required.

1. Create GitLab Personal Access token for git-as-svn. Token needs to have following scopes: api,
sudo, read_repository, read_user,write_repository. Do not add read_api scope to token.

2. Change userDB to !gitlabUsers. This will tell git-as-svn to authenticate users against GitLab
server:

userDB: !gitlabUsers {

Users can either authenticate using their GitlLab login+password or login+access
token

Possible values: Password, AccessToken

Default: Password

i

authentication: Password

}

3. Configure builtin git-as-svn webserver:

https://gitlab.com/
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

shared:
- lweb

git-

as-svn base url. Leave empty for autodetect.

Default: empty

i

baseUrl: http://localhost:8123/

listen:
- Thttp

#

The network interface where git-as-svn web server binds to as an IP

address or a hostname. If 0.0.0.0, then bind to all interfaces.

#
#
#

T+ = = =

#
over HTTP

T B HF = =

#
#

Default: localhost

host: localhost

Port where git-as-svn web server listens on.

Default: 8123

port: 8123

HTTP idle timeout milliseconds. If not a single byte is sent or received

connection, git-as-svn closes it.
-1 = Use Jetty default

@ = Disable timeout

Default: -1

idleTimeout: -1

Tells git-as-svn to handle X-Forwarded-* headers.
Enable this if git-as-svn web server is running behind reverse HTTP proxy

(like nginx)

#
#
#

Default: false

forwarded: false

4. Configure GitLab URL and token:

shared:
- lgitlab

GitlLab base URL. This must match GitLab EXTERNAL_URL.
#f Default: http://localhost/

#

url: <GitLab URL>

GitLab access token. Note that git-as-svn requires sudo access.
token: <Gitlab Access Token>

5. Configure git-as-svn to use GitLab as repository list source:

repositoryMapping: !gitlabMapping

Filesystem location where GitLab stores repositories
Note that git-as-svn requires write access

Default: /var/opt/gitlab/git-data/repositories/

#

path: /var/opt/gitlab/qit-data/repositories/

Common settings for all repositories exposed to svn://
#
template:
pusher: !pushEmbedded
This tells git-as-svn where GitLab commit hooks are located
hooksPath: /opt/gitlab/embedded/service/gitaly-ruby/git-hooks

6. o Restart git-as-svn after changing its config. If your OS uses Systemd, this can be
done via sudo systemctl restart git-as-svn.

7. Add git-as-svn:<branch> topics to whatever repositories you want to add to git-as-svn via
"Settings — General — Topics" in GitLab project settings. For example, add git-as-svn:master to
expose master branch. If you want to expose more than one branch, add multiple git-as-
svn:<branch> topics separated by commas.

4.2. Supported Git LFS modes

1. git-as-svn uses GitLab LFS API for write operations and direct disk access for read operations.
This is recommended option.

1fsMode: !filelfs
Directory where GitlLab stores LFS ojects
path: /var/opt/gitlab/gitlab-rails/shared/1fs-objects

2. git-as-svn uses GitLab LFS API for all LFS operations. This mode is slower than !filelfs.

1fsMode: !httpLfs {}
3. git-as-svn doesn’t use LFS at all

1fsMode: null

4.3. Full configuration file example

/etc/git-as-svn/git-as-svn.conf

lconfig:

Specifies IP to listen to for svn:// connections

Default: 0.0.0.0

#

host: 0.0.0.0

Specifies port number to listen to for svn:// connections

Default: 3690

#

port: 3690

Subversion realm name. Subversion uses this for credentials caching
Default: git-as-svn realm

#

realm: git-as-svn realm

Traffic compression level. Supported values: LZ4, Z1ib, None

Default: LZ4

#

compressionLevel: LZ4

If enabled, git-as-svn indexed repositories in parallel during startup
This results in higher memory usage so may require adjustments to JVM memory options
Default: true

#

parallellndexing: true

Sets cache location
cacheConfig: !persistentCache
path: /var/cache/git-as-svn/git-as-svn.mapdb

Tells git-as-svn to use GitLab API for repository list
repositoryMapping: !gitlabMapping

Filesystem location where GitLab stores repositories
Note that git-as-svn requires write access

10

You normally do not need to change it

Default: /var/opt/gitlab/git-data/repositories/
#

path: /var/opt/gitlab/git-data/repositories/

Common settings for all repositories exposed to svn://
#
template:
renameDetection: true
emptyDirs: Disabled
#f format: Latest
pusher: !pushEmbedded
This tells git-as-svn where GitLab commit hooks are located
hooksPath: /opt/gitlab/embedded/service/gitaly-ruby/git-hooks

Tells git-as-svn to authenticate users against GitlLab
userDB: !gitlabUsers {

Users can either authenticate using their GitlLab login+password or login+access
token

Possible values: Password, AccessToken

Default: Password

#

authentication: Password

}

shared:

git-as-svn builtin web server

It is used for GitlLab system hook for repository creation/deletion notifications
Also, git-as-svn builtin LFS server is served through it

- lweb

git-as-svn base url. Leave empty for autodetect.
Default: empty

#

baseUrl: http://localhost:8123/

listen:
- Thttp {

The network interface where git-as-svn web server binds to as an IP address
or 3 hostname. If 0.0.0.0, then bind to all interfaces.

#f Default: localhost

#

host: localhost

Port where git-as-svn web server listens on.
Default: 8123

#

port: 8123

11

12

#

over HTTP

T+ = = = =

#
#

HTTP idle timeout milliseconds. If not a single byte is sent or received
connection, git-as-svn closes it.

-1 = Use Jetty default

0 = Disable timeout

Default: -1

idleTimeout: -1

Tells git-as-svn to handle X-Forwarded-* headers.
Enable this if git-as-svn web server is running behind reverse HTTP proxy

(like nginx)

#
#
#

}

Default: false

forwarded: false

Configures GitLab access for git-as-svn
- lgitlab

GitLab base URL
Default: http://localhost/

i

url: http://localhost/

Tells git-as-svn to use GitLab for LFS objects and file locking
Default: !httpLfs {}

i

1fsMode: !filelfs
Directory where GitlLab stores LFS ojects
path: /var/opt/gitlab/gitlab-rails/shared/1fs-objects

GitLab access token
Note that git-as-svn requires sudo access
token: <GitlLab Access Token>

T T B T FE R T T T T =

T+ =

Path to Gitaly socket file

You

normally do not need to change it

Default: /var/opt/gitlab/gitaly/gitaly.socket

gitalySocket: /var/opt/gitlab/gitaly/gitaly.socket

Gitaly secret token
This must match gitaly_token in /etc/gitlab/gitlab.rb

You

normally do not need to change it

Default: secret token

gitalyToken: secret token

Path to Gitaly binaries dir

You

normally do not need to change it

Default: /opt/gitlab/embedded/bin

#
gitalyBinDir: /opt/gitlab/embedded/bin

Value for GL_PROTOCOL hooks environment variable

See https://docs.gitlab.com/ee/administration/server_hooks.html#environment-
variables-available-to-server-hooks

Possible values: HTTP, SSH, Web

Default: Web

i

glProtocol: Web

13

Chapter 5. Gitea integration

git-as-svn supports integration with Gitea >=v1.7.2.
This includes:

» User authentication against Gitea

» Access control depending on user permissions in Gitea

» Usage of Gitea LFS server for transparent handling of LFS files for svn users
* Automatic discovery of new repositories created in Gitea

* Running Gitea repository hooks if any installed

o git-as-svn requires Sudo Gitea token

o git-as-svn uses direct file access to Git repositories, so it needs to run from the
same user as Gitea

5.1. Configuration file example

/etc/git-as-svn/git-as-svn.conf

Iconfig:

Specifies IP to listen to for svn:// connections

Default: 0.0.0.0

#

host: 0.0.0.0

Specifies port number to listen to for svn:// connections
Default: 3690

#

port: 3690

Subversion realm name. Subversion uses this for credentials caching
Default: git-as-svn realm

#

realm: git-as-svn realm

Traffic compression level. Supported values: LZ4, Z1ib, None
Default: LZ4

=+ HF = =

compressionLevel: LZ4

If enabled, git-as-svn indexed repositories in parallel during startup
This results in higher memory usage so may require adjustments to JVM memory options
Default: true

= FF = =

14

https://gitea.io

parallellndexing: true

Sets cache location
cacheConfig: !persistentCache
path: /var/cache/git-as-svn/git-as-svn.mapdb

Tells git-as-svn to use Gitea API for repository list
repositoryMapping: !giteaMapping

Filesystem location where Gitea stores repositories
Note that git-as-svn requires write access

path: /data/git/repositories

Common settings for all repositories exposed to svn://

#

template:

branches:

- master

renameDetection: true
emptyDirs: Disabled

format: Latest

Tells git-as-svn to use Gitea API for user authentication
userDB: !giteaUsers {}

shared:
Configures Gitea API for git-as-svn
- lgitea

URL where your Gitea instance API is available
url: http://localhost:3000/api/v1

Tells git-as-svn to store Git-LFS objects through Gitea LFS API
Note that this needs to be in sync with Gitea LFS_START_SERVER config option
1fs: false

Gitea access token

Note that git-as-svn requires Gitea Sudo permission in order to authenticate
users

token: 90c68b84fb04e3b4c2ea3fc42aba2193144bcd7d

15

Chapter 6. LFS server

git-as-svn has built-in Git Large File Storage server

6.1. Configuration file example

16

https://git-lfs.github.com/

/etc/git-as-svn/git-as-svn.conf

shared:

git-as-svn builtin web server

It is
Also,
- lweb

git-

used for GitlLab system hook for repository creation/deletion notifications
git-as-svn builtin LFS server is served through it

as-svn base url. Leave empty for autodetect.

Default: empty

#

baseUrl: http://localhost:8123/

listen:
- Thttp {

#

The network interface where git-as-svn web server binds to as an IP address

or 3 hostname. If 0.0.0.0, then bind to all interfaces.

#
#
#

T+ = =

#
over HTTP
#

=+ B = =

#
#

Default: localhost

host: localhost

Port where git-as-svn web server listens on.

Default: 8123

port: 8123

HTTP idle timeout milliseconds. If not a single byte is sent or received

connection, git-as-svn closes it.
-1 = Use Jetty default

@ = Disable timeout

Default: -1

idleTimeout: -1

Tells git-as-svn to handle X-Forwarded-* headers.
Enable this if git-as-svn web server is running behind reverse HTTP proxy

(like nginx)

#
#
#

}

Default: false

forwarded: false

Git LFS server

- ocallfs
Secret token for git-1fs-authenticate script
secretToken:

path:

/var/git/1fs

17

6.2. git-Ifs-authenticate

Script git-1fs-authenticate (provided by git-as-svn-Ifs package) is used by git-Ifs to obtain
credentials for HTTP access to Git LFS server for Git-users working with Git repository by SSH
(https://github.com/github/git-1fs/blob/master/docs/api/README.md).

To check the settings of the script can be run locally on the server the following command:

Set environment variable defined in configuration file
export GL_ID=key-1

Check access to repository

sudo su git -c¢ "git-1fs-authenticate example download"

Or on the client the following command:
ssh git@remote -C "git-1fs-authenticate example download"

The output should look something like this:

{
"href": "https://api.github.com/1fs/qgit-as-svn/git-as-svn",
"header": {
"Authorization": "Bearer SOME-SECRET-TOKEN"
H
"expires_at": "2016-02-19T718:56:597"
}

6.3. Running git-a-svn behind Nginx reverse proxy
« Add git-as-svn upstream server:
Jetc/nginx/nginx.conf
upstream gitsvn {
server localhost:8123 fail_timeout=5s;

keepalive 100;
}

e Add resource redirection:

18

https://github.com/github/git-lfs/blob/master/docs/api/README.md

/etc/nginx/nginx.conf

location ~ A.*\.git/info/1fs/ {

proxy_read_timeout 300;
proxy_connect_timeout 300;
proxy_redirect off;

proxy_http_version 1.1;

proxy_set_header Connection s

proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Frame-Options SAMEORIGIN;

proxy_pass http://gitsvn;

Also you need to set baseUrl parameter in !web section of git-as-svn configuration file to external
URL accessible to LFS users.

19

Chapter 7. LDAP (Lightweight Directory
Access Protocol)

git-as-svn supports LDAP for user authentication. Refer to your LDAP server documentation to find
out what configuration is appropriate in your case.

o Internally, git-as-svn uses UnboundID LDAP SDK for Java for all LDAP
communication.

20

https://ldap.com/unboundid-ldap-sdk-for-java/

/etc/git-as-svn/git-as-svn.conf

Authenticates a user by binding to the directory with the DN of the entry for that
user and the password

presented by the user. If this simple bind succeeds the user is considered to be
authenticated.

userDB: !ldapUsers

LDAP server URL

It usually specifies the domain name of the directory server to connect to,

and optionally the port number and distinguished name (DN) of the required root
naming context.

For secure connections, use ldaps://

#

connectionUrl: 1ldap://localhost:389/ou=groups,dc=mycompany,dc=com

Optional LDAP SSL certificate for secure LDAP connections
#
ldapCertPem: /path/to/1ldap.pem

Pattern specifying the LDAP search filter to use after substitution of the
username.
#

searchFilter: (&(objectClass=person)(objectClass=user))

=

LDAP bind configuration

dE e

[see next documentation section]

LDAP attribute, containing user login.
Default: sAMAccountName

Sz dE sER gER

loginAttribute: sAMAccountName

LDAP attribute, containing user name.
Default: name

= FF = =

nameAttribute: name

LDAP attribute, containing user email.
Default: mail

B

emailAttribute: mail

7.1. Supported LDAP bind methods

7.1.1. ANONYMOUS

Performs SASL ANONYMOUS bind as described in RFC 4505.

21

http://www.ietf.org/rfc/rfc4505.txt

o This is default bind type.

userDB: !ldapUsers
bind: !ANONYMOUS {}

7.1.2. CRAM-MD5

Performs SASL CRAM-MDS5 bind as described in draft-ietf-sasl-crammd5.

userDB: !ldapUsers
bind: !CRAMMDS
authenticationID: <required>
password: <required>

7.1.3. DIGEST-MD5

Performs SASL DIGEST-MD5 bind as described in RFC 2831.

userDB: !ldapUsers
bind: !'DIGESTMD5
authenticationID: <required>
authorizationID: <optional>
password: <required>
realm: <optional>

7.1.4. EXTERNAL
Performs SASL EXTERNAL bind as described in RFC 4422.
userDB: !ldapUsers

bind: 'EXTERNAL
authenticationID: <optional>

7.1.5. PLAIN

Performs SASL PLAIN bind as described in RFC 4616.

userDB: !ldapUsers
bind: !PLAIN
authenticationID: <required>
authorizationID: <optional>
password: <required>

22

https://tools.ietf.org/html/draft-ietf-sasl-crammd5-10
http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4616.txt

7.1.6. Simple

Performs LDAPv3 simple bind operation.

userDB: !ldapUsers
bind: !Simple
bindDn: <optional>
password: <optional>

23

Chapter 8. Logging

git-as-svn uses Apache Log4] 2 for logging. Configuration file is located in /etc/git-as-
svn/log4j2.xml. Please, refer to Log4j 2 documentation on this file format and available options.

By default, all messages with INFO priority and higher are logged to /var/log/git-as-svn/git-as-
svn.log and rotated at startup and per each 10 MB. Also, all messages with ERROR priority and
higher are logged to /var/log/git-as-svn/git-as-svn.error.log with same rotation policy.

For example, if you want to increase logging verbosity by switching to DEBUG logging, you need to
change <Root level="info">to <Root level="debug">in /etc/git-as-svn/log4j2.xml

8.1. Loggers available in git-as-svn

git - messages related to operations with Git repositories
gitea - messages related to communication with Gitea
gitlab - messages related to communication with GitLab
1dap - messages related to LDAP user authentication

1fs - messages related to Git LFS, including both internal and external LFS server if any of them
is configured

misc - few unsorted messages, mostly related to startup/shutdown procedures
svn - messages related to incoming SVN connections

web - messages related to builtin HTTP server

Additionally, git-as-svn uses some third-party libraries, most notable are JGit and Jetty, that can also
log various stuff. Please, refer to their appropriate documentation on available loggers for these
projects.

24

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/manual/configuration.html
https://gitea.io/
https://gitea.io/

Chapter 9. Path-based authorization

0 This feature is currently only supported for repositoryMapping: !listMapping

git-as-svn supports path-based authorization that allows granting (or denying) permissions to users,
very similar to Subversion path-based authorization feature. Typically this is done over the entire
repository: a user can read the repository (or not), and they can write to the repository (or not).

It’s also possible, however, to define finer-grained access rules. One set of users may have
permission to write to a certain directory in the repository, but not others; another directory might
not even be readable by all but a few special people. It’s even possible to restrict access on a per file
basis.

9.1. Getting Started with Path-Based Access Control

Here’s a simple example demonstrating a piece of the access configuration which grants read
access Sally, and read/write access to Harry, for the path /path/to/directory/ (and all its children) in
the repository calc:

git-as-svn.conf

repositoryMapping: !listMapping

repositories:
calc:
access:
/path/to/directory:
harry: rw
sally: r

Permissions are inherited from a path’s parent directory. That means we can specify a subdirectory
with a different access policy for Sally. Let’s continue our previous example, and grant Sally write
access to a child of the directory that she’s otherwise permitted only to read:

git-as-svn.conf

repositoryMapping: !listMapping

repositories:
calc:
access:

/path/to/directory:
harry: rw
sally: r

/path/to/directory/subdirectory:
sally: rw

Now Sally can write to subdirectory, but can still only read other parts. Harry, meanwhile,
continues to have complete read/write access to the whole directory.

25

http://svnbook.red-bean.com/nightly/en/svn.serverconfig.pathbasedauthz.html

It’s also possible to explicitly deny permission to someone via inheritance rules, by using empty
string or none:

git-as-svn.conf

repositoryMapping: !listMapping

repositories:
calc:
access:

/path/to/directory:
harry: rw
sally: r

/path/to/directory/secret:
harry: none

In this example, Harry has read/write access to the entire directory, but has absolutely no access at
all to the secret subdirectory within it.

The thing to remember is that the most specific path always matches first. The
o server tries to match the path itself, and then the parent of the path, then the
parent of that, and so on. The net effect is that mentioning a specific path in the
access file will always override any permissions inherited from parent directories.

By default, nobody has any access to any repository at all. If you want to give at least read
permission to all users at the roots of the repositories. You can do this by using the asterisk variable
(*), which means "all users":

git-as-svn.conf
repositoryMapping: !listMapping
repositories:

calc:
access:

Note that while all of the previous examples use directories, that’s only because defining access
rules on directories is the most common case. You may similarly restrict access on file paths, too.

git-as-svn.conf

repositoryMapping: !listMapping

repositories:
calc:
access:
/README .md:
harry: rw
sally: r

26

You may also specify grant or restrict access only to specific branches.

git-as-svn.conf

repositoryMapping: !listMapping

repositories:
calc:
access:
/README .md:
harry: r
master:/README.md:
harry: rw

In this example, Harry has read access to file on all branches but has read/write access on master
branch.

9.2. Access Control Groups

git-as-svn also allows you to define whole groups of users. To do this, describe your groups within
groups section of git-as-svn.conf :

git-as-svn.conf

repositoryMapping: !listMapping
groups:

calc-developers:
- harry
- sally
- joe

paint-developers:
- frank
- sally
- jane

Groups can be granted access control just like users. Distinguish them with an "at sign" (@) prefix:

git-as-svn.conf

repositoryMapping: !listMapping
repositories:
calc:
access:
/:
'@calc-developers': rw
paint:
access:
/:
"jane': r
'@paint-developers': rw

27

Another important fact is that group permissions are not overridden by individual user
permissions. Rather, the combination of all matching permissions is granted. In the prior example,
Jane is a member of the paint-developers group, which has read/write access. Combined with the
jane = r rule, this still gives Jane read/write access. Permissions for group members can only be
extended beyond the permissions the group already has. Restricting users who are part of a group
to less than their group’s permissions is impossible.

Groups can also be defined to contain other groups:
git-as-svn.conf

repositoryMapping: !listMapping
groups:
calc-developers:
- harry
- sally
- joe
paint-developers:
- frank
- sally
- jane
everyone:
- '@calc-developers'
- '@paint-developers'

o User needs read/write access to / path of master branch in order to be able to
download/upload files from git-as-svn internal LFS server.

9.3. Advanced Access Control Features

git-as-svn also supports some "magic" tokens for helping you to make rule assignments based on the
user’s authentication class. One such token is the $authenticated token. Use this token where you
would otherwise specify a username or group name in your authorization rules to declare the
permissions granted to any user who has authenticated with any username at all. You may also use
$authenticated:Local/$authenticated:GitLab/$authenticated:Gitea/$authenticated:LDAP to refer to
users authenticated against specific user database. Similarly employed is the $anonymous token,
except that it matches everyone who has not authenticated with a username.

git-as-svn.conf

repositoryMapping: !listMapping
repositories:
calendar:
access:
/:
"$anonymous': r
'$authenticated': rw

28

Chapter 10. SVN Properties

git-as-svn has limited support for Subversion Properties.

o Proper operation of this feature requires Subversion client version 1.8 or later.

10.1. .gitignore file

git-as-svn transparently builds svn:ignore and svn:global-ignores Subversion Properties based on
.gitignore files in Git repository.

For example:
.gitignore

*.class
*/build

Results in:

$ svn pl -v <repo>
Properties on '<repo>':
svn:global-ignores
*.class

$ svn pl -v <repo>/foo/
Properties on '<repo>/foo/":
svn:ignore
build

o Negated path masks (!/path/) are not supported

10.2. .gitattributes file

git-as-svn transparently builds svn:eol-style, svn:mime-type and svn:auto-props Subversion
Properties based on .gitattributes files in Git repository.

For example:

.gitattributes

*.txt text
*.xml eol=1f
*.bin binary

Add property to the directory svn:auto-props with the contents:

29

http://svnbook.red-bean.com/en/1.7/svn.ref.properties.html::

$ svn pl -v <repo>
Properties on '<repo>':
svn:auto-props
*.txt = svn:eol-style=native
*.xml = svn:eol-style=LF
*.bin = svn:mime-type=application/octet-stream

Additionally, individual files that match .gitattributes entries, will get corresponding Subversion
Properties:

$ svn pl -v <repo>/native.txt
Properties on '<repo>/native.txt':
svn:eol-style
native

$ svn pl -v '<repo>/unix.xml':
Properties on '<repo>/unix.xml':
svn:eol-style
LF

$ svn pl -v '<repo>/binary.bin':
svn:mime-type
application/octet-stream

10.3. .tgitconfig file

Please, refer to TortoiseGit documentation on exact syntax of .tgitconfig file
Example:
.tgitconfig
[bugtraq]
logregex = #(\\d+)

url = https://qithub.com/git-as-svn/git-as-svn/issues/%BUGID%
warnifnoissue = false

git-as-svn converts this to:

30

https://tortoisegit.org/docs/tortoisegit/tgit-dug-settings.html#tgit-dug-settings-git

$ svn pl -v <repo>
Properties on '<repo>':
bugtraqg:logregex
#(\\d+)
bugtraq:url
https://qgithub.com/git-as-svn/git-as-svn/issues/%BUGID%
bugtraq:warnifnoissue
false

10.4. Commit failed: Invalid svn properties on file

If you get "Commit failed: Invalid svn properties on file" error when trying to commit a new file via
git-as-svn, you need:
1. Decide if this file is text or binary

o If text, go to .gitattributes and add text entry for your file extension. You may optionally
want to specify EOL behavior.

o If binary, go to .gitattributes and add -text entry for your file extension
Commit .gitattributes
svn up in working copy root
svn revert <new file> (this will undo effect of svn add)

svn add <new file>again

S T

Finally, svn commit

31

https://git-scm.com/docs/gitattributes#_code_eol_code

Chapter 11. Empty directories

ﬁ This feature is not fully SVN-compatible. Please, make sure you understand
possible consequences of enabling it.

Unlike Subversion, Git doesn’t directly support empty directories. However, this is an often-
requested feature, so git-as-svn provides somewhat working emulation.

It has three modes of operation:

emptyDirs: Disabled

Default, the safest mode. git-as-svn rejects commits that try to create empty directories.

emptyDirs: AutoCreateKeepFile

When user tries to commit empty directory, git-as-svn automatically creates .keep file in it.

Note that if user makes a commit from a working copy, .keep file will not appear in it. This
limitation originates from Subversion commit protocol. It expects that items will be put in the
repository exactly in the same state as user sent them. So, if user commits empty directory, they
expect the directory to be also empty on the server.

The only safe way to commit empty directories is when user doesn’t have a working copy but
instead operates on remote repository URL directly.

Safe

$ svn mkdir svn://server/repo/dir

Also safe

$ svn co svn://server/repo

$ cd repo

$ svn svn://server/repo/dir

$ svn up # User gets directory and .keep file from server

Unsafe

$ svn co svn://server/repo

$ cd repo

$ mkdir dir

$ svn add dir

$ svn commit # Now user doesn't have .keep file but server does
$ svn up # User still doesn't have .keep file

This discrepancy only affects the user who commits empty directory. Other users will happily
receive both directory and .keep file when they do svn up.

32

emptyDirs: AutoCreateAndDeleteKeepFile
Same as emptyDirs: AutoCreateKeepFile plus git-as-svn will automatically delete .keep file
whenever directory becomes non-empty.

This mode allows even more scenarios that would lead to discrepancy between client and server
understanding of repository structure.

So. You was warned. If your working copy becomes corrupt up to the point when you have to re-
checkout it from the server due to messing with empty directories, you chose this.

33

Chapter 12. Alternatives

| Server |
| S S |
I
l Git LFS !
| :
| i
| i
- P
| i
| i
| i
I i
| i
| i
| i
: git — as — svn |
| Se— !

Y Y

svn Git

The problem of combining Git and Subversion work style with a version control system can be
solved in different ways.

12.1. GitHub Subversion support

GitHub |
- -
Git LFS

svn svn Git

Website: https://help.github.com/en/articles/support-for-subversion-clients
This is probably the closest analogue.

The main problem of this implementation is inseparable from GitHub. Also, all of a sudden, this
implementation does not support Git LFS.

In the case of GitHub it is also not clear where the stored mapping between Subversion-revision

34

https://help.github.com/en/articles/support-for-subversion-clients

and Git-commit. This can be a problem when restoring repositories after emergency situations.

12.2. SubGit

- e —-
“——— .
SubGit Git LFS??7?
vn sV Git G

Website: https://subgit.com

b=

it

n

Quite an interesting implementation which supports master-master replication with Git and
Subversion repositories. Thereby providing synchronization of repositories is not clear.

12.3. Subversion repository and git-svn

< ---»
< ---»

svn git — svn git — svn

This method allows you to use Git with Subversion repository, but using a shared Git repository
between multiple developers very difficult.

At the same time, the developer has to use a specific command-line tool for working with the
repository.

35

https://subgit.com

Chapter 13. SVN+SSH

13.1. Rationale

The SVN protocol is totally unencrypted, and due to the way git-as-svn has to proxy authentication
through to git servers, almost all authentication happens in plaintext.

Clearly this is undesirable, not only is potentially private code exposed over the svn protocol, but so
are passwords and usernames.

Traditionally SVN has two ways of preventing this:

e Use HTTPS

e Use svn+ssh

The HTTP protocol is substantially different from the SVN protocol and is currently unimplemented
in git-as-svn

Thus leaving the svn+ssh mechanism.

13.2. How does SVN+SSH work?

Normally when a client calls svn <command> svn://host/path, for an appropriate <command>, the
subversion client will open a connection to the host server on port 3690. After an initial handshake
as per the SVN protocol the server will ask the client to authenticate.

If possible the client will attempt to perform its actions anonymously, and if necessary the server
will then ask for reauthentication.

If a client calls svn <command> svn+ssh//username@host/path, the subversion client will internally ask
ssh to open connection using something equivalent to: ssh username@host "svnserve -t".

If ssh succesfully connects, the SSH will run svnserve -t on the host, which will then proceed with
the SVN protocol handshake over its stdin and stdout, and the client will use the stdin and stdout of
the ssh connection.

When the server asks the client to authenticate, the server will offer the EXTERNAL authentication
mechanism. (Possibly with the ANONYMOUS mechanism.)

If the client uses EXTERNAL mechanism, the server sets the user to be either the currently logged in
user from the ssh, (or an optional tunnel-user parameter.)

Securing the svnserve -t call and protecting against semi-malicious uses of the --tunnel-user option
or even the calling of other commands in cases of multiple users for a single repository requires
some thought.

nmn

Often this is protected through the use of a suitable command="" parameter in the authorized_keys

file, coupled with other options. e.g.

36

command="/usr/bin/svnserve -t --tunnel-user username",no-port-forwarding,no-X11-forwarding,no-
agent-forwarding,no-pty ssh-rsa -

Of note, in this example the command provided by the client is ignored but it could be checked and
managed as appropriately. In fact these techniques are used in the authorized_keys files of most git
servers.

This provides a simple first way to handle svn+ssh, if we set command="nc localhost 3690" then
whenever we connect by ssh we will be passed directly to the git-as-svn server. The downside being
that the client will be asked to authenticate.

13.3. A better git-as-svn-svnserve

Handling the EXTERNAL authentication mechanism properly without creating a new port to listen on
and a new adjusted SVN protocol is not possible.

However there is another way:

We can stand in the middle of the SVN protocol stream, catch the authentication handshake, proxy
it before stepping back and letting the client and server talk to each other.

We can create a new authentication mechanism on the git-as-svn server that requires a secret
token known only by us, to allow us to pass in the external username (or other identifier) as the
user authentication using sshKeyUsers to proxy the UserDB

We can then use git-as-svn-svnserve-tunnel SECRET EXTERNAL_USERNAME as a replacement for
svnserve -t ornc localhost 3690 in the command="" option in authorized_keys.

Of course we need to keep the authorized_keys file up-to-date

13.4. GitLab & git-as-svn-svnserve

There are two ways that Gitlab manages ssh access.

» Updating the git user’s authorized_keys every time a SSH key is changed.

e The use of an SSH AuthorizedKeysCommand
First, let’s look at the authorized_keys case.
Gitlab will update the authorized_keys file over time.

If you set the option: gitlab_shell['auth_file'] in the gitlab.rb configuration file to a different
location, you can catch changes to this file, and change the command="" option to something that will
check whether we are trying to perform svn and handle it if so.

The suggested config, at least for Gitlab docker and assuming that git-as-svn has been installed in
/opt/git-as-svnis:

37

Jetc/gitlab/gitlab.rb

gitlab_shell['auth_file'] = "/var/opt/gitlab/.ssh/authorized_keys"
gitlab_shell['auth_file'] = "/var/opt/qitlab/ssh-shadow/authorized_keys"

/etc/git-as-svn/git-as-svn.conf

Iconfig:

Specifies IP to listen to for svn:// connections

Default: 0.0.0.0

#

host: 0.0.0.0

Specifies port number to listen to for svn:// connections

Default: 3690

#

port: 3690

Subversion realm name. Subversion uses this for credentials caching
Default: git-as-svn realm

#

realm: git-as-svn realm

Traffic compression level. Supported values: LZ4, Z1ib, None

Default: LZ4

#

compressionLevel: LZ4

If enabled, git-as-svn indexed repositories in parallel during startup
This results in higher memory usage so may require adjustments to JVM memory options
Default: true

#

parallellndexing: true

Sets cache location
cacheConfig: !persistentCache
path: /var/cache/git-as-svn/git-as-svn.mapdb

Tells git-as-svn to use GitLab API for repository list
repositoryMapping: !gitlabMapping

Filesystem location where GitlLab stores repositories
Note that git-as-svn requires write access

Default: /var/opt/gitlab/git-data/repositories/

#

path: /var/opt/gitlab/git-data/repositories/

Uncomment following to only handle repositories with specified tags (add them to
repositories via Settings -> General -> Tags in Gitlab)

38

#
repositoryTags:
- git-as-svn

Common settings for all repositories exposed to svn://
template:
renameDetection: true
emptyDirs: Disabled
format: Latest
pusher: !pushEmbedded
This tells git-as-svn where GitLab commit hooks are located
hooksPath: /opt/gitlab/embedded/service/gitaly-ruby/git-hooks

#f Use GitLab user database
userDB:
IsshKeyUsers
userDB: !gitlabUsers {
Users can either authenticate using their GitlLab login+password or login+access
token
Possible values: Password, AccessToken
Default: Password
i
authentication: Password

}
sshKeysToken: CHANGE_THIS_TO_SOMETHING_SECRET

shared:

git-as-svn builtin web server

It is used for GitlLab system hook for repository creation/deletion notifications
Also, git-as-svn builtin LFS server is served through it

- lweb

git-as-svn base url. Leave empty for autodetect.
Default: empty

#

baseUrl: http://localhost:8123/

listen:
- Thttp {

The network interface where git-as-svn web server binds to as an IP address
or 3 hostname. If 0.0.0.0, then bind to all interfaces.

Default: localhost

#

host: localhost

Port where git-as-svn web server listens on.
Default: 8123

#

port: 8123

39

40

HTTP idle timeout milliseconds. If not a single byte is sent or received

over HTTP connection, git-as-svn closes it.

(like

-1 = Use Jetty default
@ = Disable timeout
Default: -1

T+ T = =

idleTimeout: -1

Tells git-as-svn to handle X-Forwarded-* headers.

Enable this if git-as-svn web server is running behind reverse HTTP proxy
nginx)

Default: false

#

forwarded: false

}

Configures GitlLab access for git-as-svn
- lgitlab

#
i
#
#

#
i
#

GitLab base URL
Default: http://localhost/

url: http://localhost/

Tells git-as-svn to use GitlLab for LFS objects and file locking
Default: !httpLfs {}

1fsMode: !filelfs

#

Directory where GitlLab stores LFS ojects
path: /var/opt/gitlab/gitlab-rails/shared/1fs-objects

GitLab access token. Note that git-as-svn requires sudo access.

token: <GitLab Access Token>

T T B T FE R T T T T =

T+ =

Path to Gitaly socket file
You normally do not need to change it
Default: /var/opt/gitlab/gitaly/gitaly.socket

gitalySocket: /var/opt/gitlab/gitaly/gitaly.socket

Gitaly secret token

This must match gitaly_token in /etc/gitlab/gitlab.rb
You normally do not need to change it

Default: secret token

gitalyToken: secret token
Path to Gitaly binaries dir

You normally do not need to change it
Default: /opt/gitlab/embedded/bin

#
gitalyBinDir: /opt/gitlab/embedded/bin

Value for GL_PROTOCOL hooks environment variable

See https://docs.gitlab.com/ee/administration/server_hooks.html#environment-
variables-available-to-server-hooks

Possible values: HTTP, SSH, Web

Default: Web

i

glProtocol: Web

Manage authorized_keys if your Gitlab instance creates this file
- IsshKeys
shadowSSHDirectory: /var/opt/gitlab/ssh-shadow
realSSHDirectory: /var/opt/gitlab/.ssh
originalAppPath: /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell
svnservePath: /opt/git-as-svn/bin/git-as-svn-svnserve
If your gitlab instance is using AuthorizedKeysCommand
look at tools/git-as-svn-authorized-keys-command

/opt/git-as-svn/bin/git-as-svn-svnserve

#!/bin/bash

Uy S S S R S S Y
git-as-svn-svnserve

#

Shadow the default gitlab/gitea shell and allow svnserve
HEEEEE RS SRR

HHUBHEHU SR RS H ARG AR ARG H AR UG H ARG GRS BB H BB AR AR ARG H ARG H SR Y

For Gitlab Docker:

HHUSH RS R ARG H ARG H USRS RS RS S HSH R SH R HS i

SHADOW_SHELL_PATH="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell"”
TUNNEL_PATH="/opt/git-as-svn/bin/git-as-svn-svnserve-tunnel"

KEY="¢1"

REAL_SHELL_PATH="$SHADOW_SHELL_PATH"

BSR4
For Gitea Docker:

B EEHHE i
SHADOW_SHELL_PATH="/app/gitea/gitea"
TUNNEL_PATH="/app/git-as-svn/git-as-svn-svnserve-tunnel"
KEY="8$2"

SUBCOMMAND="$1"

REAL_SHELL_PATH="$SHADOW_SHELL PATH"

if ["$SUBCOMMAND" != "serv"]; then
exec -a "$REAL_SHELL_PATH" "$SHADOW_SHELL PATH" "$@"
fi

41

LEEEEEEEEE RS EEEEEEE R R R R R R

Other options:

LEEEEEEE RS R R

For either, you can move the shadowed binary to something like
/app/gitea/gitea.shadow and rename this script to /app/gitea/gitea.

If you follow his approach you do not need to rewrite the
authorized_keys file, but may still need to process it.

You would need to set the REAL_SHELL_PATH to point to this file
and restore the shadowing on updates to the application
HEEEEEEE SRR R R s
SECRET="CHANGE _THIS_TO_SOMETHING_SECRET"

T o H = O o = R

SSH_ORIGINAL_COMMANDS=($SSH_ORIGINAL_COMMAND)

if [-n "$SSH_ORIGINAL_COMMAND"] && ["${SSH_ORIGINAL_COMMANDS[@]}" = "svnserve"] ;

then
TUNNEL TO OUR SVNSERVER WITH MAGIC AUTHENTICATION
exec "$TUNNEL_PATH" "$SECRET" "$KEY"

else
exec -a "$REAL_SHELL_PATH" "$SHADOW_SHELL_PATH" "$@"

fi

/opt/git-as-svn/bin/git-as-svn-svnserve-tunnel

42

#!/bin/bash

BUSHSHH SRR RS RS R R HS SRS RS H R RS S SRR SRS Y
git-as-svn-svnserve-tunnel

#

Use a bit of bash hackery to implement svnserve -t by

pushing stdin to the svn port (3690) but hijack the

authentication phase to pass in the ssh key id

BUSSERHHHHH BB RHH R RS E AR IR R RS R IR BRI H R B R B S

SECRET="$1"
KEY:"$2"
FAKE _AUTH="(success ((EXTERNAL) 16:Git-as-svn Realm))"

function failed {
echo "$0: Unable to connect to svn service! Is it running?" 1>&2
exit

}

trap failed err

OUR_PID=$$

function finish {
pkill -P $OUR_PID
exec 3>&- 3<&-

trap finish EXIT
exec 3<>/dev/tcp/localhost/3690
trap finish err

function read bracket {
BEEN_IN=false
NBRACK=0

while ! $BEEN_IN || [$NBRACK != @ 1; do
IFS= read -n1 -r -d "' FROM
case $FROM in
(")
NBRACK=$(($NBRACK + 1))
BEEN_IN=true

DY)
NBRACK=$ (($NBRACK - 1))
')
break
esac
echo -ne "$FROM"
done
IFS= read -n1 -r -d "' FROM
echo -ne "$FROM"
if ["X$FROM" = "X" 1; then
exec 0<&-
exit
fi
}

Send server capabilities to client
read_bracket <&3 >&1

Send client capabilities to server
read_bracket <&0 >&3

Get the server authentication
AUTH_LIST_FROM_SERV=$(read_bracket <&3)

Send the server our information
AUTHBODY=$(echo -ne "\@$SECRET\OSKEY" | baseb4)
AUTHBODY _LENGTH=${#AUTHBODY}

echo "(KEY-AUTHENTICATOR ($AUTHBODY_LENGTH:$AUTHBODY))" >&3

if ! { command >&3; } 2>/dev/null; then
exit
fi

send the fake auth list to the client

43

echo "$FAKE_AUTH" >&1

if ! { command >&1; } 2>/dev/null; then
exit

fi

throwaway the client's response
read _bracket <&@ > /dev/null

THEN PRETEND THAT THE REST OF IT WENT THAT WAY

(
cat <&3 >&1 &

CAT _PID=$!
function on_exit {
kill $CAT_PID

}
trap on_exit EXIT
wait
kill $OUR_PID
) &

cat <&@ >&3
pkill -P $OUR_PID
In the second case, if we proxy the AuthorizedKeysCommand, and just replace the command="" option as

above then we have a working solution.

We have two main options, we can keep the same user, e.g. git for both subversion and git, or we
could create another user.

The first option requires that we proxy the original app and replace it with our own. The second is
similar but we leave the original response alone for git, just replacing it for svn

The first option is described below.

/assets/sshd_config

AuthorizedKeysCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-
authorized-keys-check git %u %k

AuthorizedKeysCommandUser git

AuthorizedKeysCommand /opt/git-as-svn/bin/git-as-svn-authorized-keys-command git %u %k
AuthorizedKeysCommandUser git

44

/opt/git-as-svn/bin/git-as-svn-authorized-keys-command
#!/bin/bash

SEEEEEEE SRR R
git-as-svn-authorized-keys_command

#

Shadow the default ssh AuthorizedKeysComand and adjust its
output to replace the original command with our svnserve
LEEEEEEE SRR R R R R R

Uy R S Y S S S S Y

For Gitlab Docker:

HHHH SR RS RS RS R R R R S S S R R S S Y
ORIGINAL_AUTHORIZED_COMMAND="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-
shell-authorized-keys-check"
ORIGINAL_APP_PATH="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell"
SVN_SERVE_PATH="/opt/git-as-svn/bin/git-as-svn-svnserve"

LEEEEEEE R R R R R R
Gitea does not have AuthorizedKeysCommand at present

HUBHHH SRR

exec -a "$ORIGINAL_AUTHORIZED_COMMAND" "$ORIGINAL_AUTHORIZED_COMMAND" "$@" | sed -e
's|command="""$0RIGINAL_APP_PATH"'|command="""$SVN_SERVE_PATH"'|'

/etc/git-as-svn/git-as-svn.conf
Iconfig:

Specifies IP to listen to for svn:// connections
Default: 0.0.0.0

B -

host: 0.0.0.0

Specifies port number to listen to for svn:// connections
Default: 3690

= o = =

port: 3690

Subversion realm name. Subversion uses this for credentials caching
Default: git-as-svn realm

== H = =

realm: git-as-svn realm

Traffic compression level. Supported values: LZ4, Z1ib, None
Default: LZ4

B

compressionLevel: LZ4

45

46

If enabled, git-as-svn indexed repositories in parallel during startup
This results in higher memory usage so may require adjustments to JVM memory options
Default: true

#

parallellndexing: true

Sets cache location
cacheConfig: !persistentCache
path: /var/cache/git-as-svn/git-as-svn.mapdb

Tells git-as-svn to use GitLab API for repository list
repositoryMapping: !gitlabMapping

Filesystem location where GitlLab stores repositories
Note that git-as-svn requires write access

You normally do not need to change it

Default: /var/opt/gitlab/git-data/repositories/

T T T T T

path: /var/opt/gitlab/qit-data/repositories/

Common settings for all repositories exposed to svn://
#
template:
renameDetection: true
emptyDirs: Disabled
format: Latest
pusher: !pushEmbedded
This tells git-as-svn where GitLab commit hooks are located
hooksPath: /opt/gitlab/embedded/service/gitaly-ruby/git-hooks

Tells git-as-svn to authenticate users against GitlLab
userDB: !gitlabUsers {

Users can either authenticate using their GitlLab login+password or login+access
token

Possible values: Password, AccessToken

Default: Password

#

authentication: Password

}
shared:

git-as-svn builtin web server

It is used for GitlLab system hook for repository creation/deletion notifications
Also, git-as-svn builtin LFS server is served through it

- lweb

git-as-svn base url. Leave empty for autodetect.
Default: empty

#

baseUrl: http://localhost:8123/

listen:
- Thttp {

The network interface where git-as-svn web server binds to as an IP address
or 3 hostname. If 0.0.0.0, then bind to all interfaces.

#f Default: localhost

#

host: localhost

Port where git-as-svn web server listens on.
Default: 8123

Eo

port: 8123

HTTP idle timeout milliseconds. If not a single byte is sent or received
over HTTP connection, git-as-svn closes it.

-1 = Use Jetty default
0 = Disable timeout
Default: -1

== HF = =

idleTimeout: -1

Tells git-as-svn to handle X-Forwarded-* headers.

Enable this if git-as-svn web server is running behind reverse HTTP proxy
(like nginx)

Default: false

#

forwarded: false

}

Configures GitLab access for git-as-svn
- lgitlab

GitLab base URL

Default: http://localhost/
#

url: http://localhost/

Tells git-as-svn to use GitLab for LFS objects and file locking
Default: !httplLfs {}
i
1fsMode: !filelfs
Directory where GitlLab stores LFS ojects
path: /var/opt/gitlab/gitlab-rails/shared/1fs-objects

GitLab access token
Note that git-as-svn requires sudo access

token: <GitLab Access Token>

Path to Gitaly socket file

47

You normally do not need to change it
Default: /var/opt/gitlab/gitaly/gitaly.socket

T = T

gitalySocket: /var/opt/gitlab/gitaly/gitaly.socket

Gitaly secret token

This must match gitaly_token in /etc/gitlab/gitlab.rb
You normally do not need to change it

Default: secret token

T FF B T =

gitalyToken: secret token

Path to Gitaly binaries dir
You normally do not need to change it
Default: /opt/gitlab/embedded/bin

T T T T

gitalyBinDir: /opt/gitlab/embedded/bin

Value for GL_PROTOCOL hooks environment variable

See https://docs.gitlab.com/ee/administration/server_hooks.html#environment-
variables-available-to-server-hooks

Possible values: HTTP, SSH, Web

Default: Web

#

glProtocol: Web

» /opt/git-as-svn/bin/git-as-svn-svnserve and /opt/git-as-svn/bin/git-as-svn-svnserve-tunnel
same as above.

13.5. Gitea

There are two ways that Gitea manages ssh access.

* If Gitea is deferring to an external SSHD. It will update the git user’s authorized_keys every time
a SSH key is changed.

* If Gitea is using its own internal SSHD. It will run the gitea serv command each time.

e The use of an SSH AuthorizedKeysCommand in Gitea v1.7.0+
First, let’s look at the authorized_keys case.
Gitea will update the authorized_keys file over time.

If you set the option: SSH_ROOT_PATH in the [server] of the gitea app.ini to a shadow location you can
catch changes to this file, and change the command="" option to something that will check whether
we are trying to perform svn and handle it if so.

The suggested config, at least for Gitea docker, and assuming that git-as-svn has been installed in
/app/git-as-svn is:

48

/data/gitea/conf/app.ini

[server]

SSH_ROOT_PATH=/data/git/ssh-shadow

/app/git-as-svn/config.yaml

lconfig:

T+ FF = = == HF = = = O = =

=+ HF = =

= o = = =

#

Specifies IP to listen to for svn:// connections
Default: 0.0.0.0

host: 0.0.0.0

Specifies port number to listen to for svn:// connections
Default: 3690

port: 3690

Subversion realm name. Subversion uses this for credentials caching
Default: git-as-svn realm

realm: git-as-svn realm

Traffic compression level. Supported values: LZ4, Z1ib, None
Default: LZ4

compressionLevel: LZ4

If enabled, git-as-svn indexed repositories in parallel during startup

This results in higher memory usage so may require adjustments to JVM memory options
Default: true

parallelIndexing: true

Sets cache location

cacheConfig: !persistentCache

#

path: /var/cache/git-as-svn/git-as-svn.mapdb

Tells git-as-svn to use Gitea API for repository list

repositoryMapping: !giteaMapping

Filesystem location where Gitea stores repositories
Note that git-as-svn requires write access
path: /data/git/repositories

Common settings for all repositories exposed to svn://

49

Sz dEr smR o dEr g dER dE

template:
branches:

- master
renameDetection: true
emptyDirs: Disabled
format: Latest

userDB:
IsshKeyUsers

#

Tells git-as-svn to use Gitea API for user authentication

userDB: !gitealUsers {}
sshKeysToken: CHANGE_THIS_TO_SOMETHING_SECRET

shared:

#

Configures Gitea API for git-as-svn
lgitea

URL where your Gitea instance API is running
url: http://localhost:3000/api/v1

Tells git-as-svn to store Git-LFS objects through Gitea LFS API
Note that this needs to be in sync with Gitea LFS_START_SERVER config option
1fs: false

Gitea access token
Note that git-as-svn requires Gitea Sudo permission in order to authenticate

users

E=

token: 90c68b84fb04e364c2ea3fc42a6a32193144bc07d

IsshKeys

shadowSSHDirectory: /data/git/ssh-shadow
realSSHDirectory: /data/qit/.ssh

originalAppPath: /app/gitea/gitea

svnservePath: /app/gitea/git-as-svn-svnserve

If your gitea instance is using AuthorizedKeysCommand
look at tools/git-as-svn-authorized-keys-command

You don't need sshKeys in that case

/app/git-as-svn/bin/git-as-svn-svnserve

50

#!/bin/bash

LEEEEEE SRR R R R
git-as-svn-svnserve

#

Shadow the default gitlab/gitea shell and allow svnserve
HEEEEE RS S E R s

RS R R R R R R

For Gitlab Docker:

HEEEEE RS SRR s

SHADOW_SHELL_PATH="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell"”
TUNNEL_PATH="/opt/git-as-svn/bin/git-as-svn-svnserve-tunnel"

KEY="¢1"

REAL_SHELL_PATH="$SHADOW_SHELL_PATH"

HHUBHUHB R RS EH ARG RS H ARG H ARG H ARG H ARG H UG H RS H ARG H SRS Y
For Gitea Docker:

HHUSH SSRGS R S S S S S R i
SHADOW_SHELL_PATH="/app/gitea/qgitea"
TUNNEL_PATH="/app/git-as-svn/git-as-svn-svnserve-tunnel"
KEY="¢2"

SUBCOMMAND="$1"

REAL_SHELL_PATH="$SHADOW_SHELL_PATH"

if ["$SUBCOMMAND" != "serv"]; then
exec -a "$REAL_SHELL_PATH"™ "$SHADOW_SHELL_PATH" "$@"
fi

BESHERHHHH RS R R AR R RSB RH SRR R R SRR B S

Other options:

BESHERHHHH SR RS R R ERRHHHH GG ERRHHH RS GRRHHHH BB S

For either, you can move the shadowed binary to something like
/app/gitea/gitea.shadow and rename this script to /app/gitea/gitea.

If you follow his approach you do not need to rewrite the
authorized_keys file, but may still need to process it.

You would need to set the REAL_SHELL_PATH to point to this file
and restore the shadowing on updates to the application
LEEEEEEE SRR R R RS s
SECRET="CHANGE_THIS_TO_SOMETHING_SECRET"

= o FF o o O = =

SSH_ORIGINAL_COMMANDS=($SSH_ORIGINAL_COMMAND)

if [-n "$SSH_ORIGINAL_COMMAND"] && ["${SSH_ORIGINAL_COMMANDS[@]}" = "svnserve"] ;
then
TUNNEL TO OUR SVNSERVER WITH MAGIC AUTHENTICATION
exec "$TUNNEL PATH"™ "$SECRET" "$KEY"
else
exec -a "$REAL_SHELL_PATH" "$SHADOW_SHELL_PATH" "$@"
fi

» /app/git-as-svn/bin/git-as-svn-svnserve-tunnel should be the same as in the gitlab case.
For the second case, we need to shadow the gitea binary
So we would need to move the original gitea from /app/gitea/gitea to /app/gitea/gitea.shadow

And either create /app/gitea/gitea as a symbolic link or just copy the below /app/git-as-

31

svn/bin/git-as-svn-svnserve as it.
/app/git-as-svn/bin/git-as-svn-svnserve
#!/bin/bash

HEEEEE RS s s
git-as-svn-svnserve

#

Shadow the default gitlab/gitea shell and allow svnserve
LEEEEEEEE R R R R R s

HHUSH SSRGS S S S S S S R i

For Gitlab Docker:

U R S Y S S S S R Y

SHADOW_SHELL_PATH="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell"
TUNNEL_PATH="/opt/git-as-svn/bin/git-as-svn-svnserve-tunnel"

KEY="¢1"

REAL_SHELL_PATH="$SHADOW_SHELL_PATH"

HHUBHEHUSH RS SH ARG AR UG HEHUSHEH RS RSB G HU BB AR UG R ARG H GRS H SR Y
For Gitea Docker:

HHUBHUHB SRR B H ARG AR AR AR R ARG H SRR H ARG H AR RS H RS H SRS H
SHADOW_SHELL_PATH="/app/gitea/gitea"
TUNNEL_PATH="/app/git-as-svn/git-as-svn-svnserve-tunnel"
KEY="8$2"

SUBCOMMAND="$1"

REAL_SHELL_PATH="$SHADOW_SHELL_PATH"

if ["$SUBCOMMAND" != "serv"]; then
exec -a "$REAL _SHELL PATH" "$SHADOW SHELL PATH" "$@"
fi

BESHERHHH SRR RS R RIS RS R R R B

Other options:

BESHERHHHH SRR SRR R RSB R R RS R RIS H R B S

For either, you can move the shadowed binary to something like
/app/gitea/gitea.shadow and rename this script to /app/gitea/gitea.

If you follow his approach you do not need to rewrite the
authorized_keys file, but may still need to process it.

You would need to set the REAL_SHELL_PATH to point to this file
and restore the shadowing on updates to the application

BHEH G S G S S S
SECRET="CHANGE_THIS_TO_SOMETHING_SECRET"

= o T o o o o =

SSH_ORIGINAL_COMMANDS=($SSH_ORIGINAL_COMMAND)

if [-n "$SSH_ORIGINAL_COMMAND" 1 && ["${SSH_ORIGINAL_COMMANDS[@]}" = "svnserve"] ;
then

52

TUNNEL TO OUR SVNSERVER WITH MAGIC AUTHENTICATION
exec "$TUNNEL_PATH" "$SECRET" "$KEY"

else
exec -a "$REAL_SHELL_PATH" "$SHADOW_SHELL_PATH" "$@"

fi

/app/git-as-svn/bin/git-as-svn-svnserve-tunnel should be the same as in the gitlab case.

Managing the AuthorizedKeysCommand is similar to that in the Gitlab case.

33

Chapter 14. Internal implementation details

14.1. Where Subversion data is stored?

To represent Subversion repository need to store information about how Subversion-revision
number corresponds to which Git-commit. We can’t compute this information every time on
startup, because first git push --force change revision order. This information stored persistent in
git reference refs/git-as-svn/*. In particular because it does not require a separate backup
Subversion data. Because of this separate backup Subversion data is not necessary.

Also part of the data necessary for the Subversion repository, is very expensive to get based on Git
repository.

For example:

¢ the revision number with the previous change file;
 information about where the file was copied;

e MDS5 file hash.

In order not to find out their every startup, the data is cached in files. The loss of the cache is not
critical for the operation and backup does not make sense.

File locking information is currently stored in the cache file.

14.2. Onucanue XxpaHeHUuss HHGOPMAaILMU B
XpaHUINIIe

14.3. /111 yero Hy>KHO XpaHHUIHIIE

XpaHI/IJII/IH_Ie OJAaHHBIX O PeBU3UAX HYKHO [JIA:

» CoxpaHeHUs HHPOpMAIMU 06 CIIHCKe H3MeHEHHBIX GaijoB (B Svn 04YeHb YacTO HYKHO
BBISICHATD, B KaKOH M3 IpeAbIAYIINX PEBU3UH ToMeHsIcT daiin);

» CoxpaHeHHUs UHGOpPMAIIUU O TOM, K KaKOM PeBU3NH/BeTKE OTHOCUTCI KOMMMUT;

+ CoxpaHeHUs UeHTUPUKATOPA SVN-PEIIO3UTOPHUS.

Taxk >xe M0604YHBIM 3 PEeKTOM CIYKUT GOpMHUpPOBaHUe iepeBa ¢ svn layout-om 11 60s1ee IIpoCTOM
pab6oTsl svn update/switch/log/diff u T.11.

14.3.1. PopMmaT XpaHeHUs1 UHGOpPMAaIUU O PeBU3HIX
Jl11 XpaHeHUss MTHPOPMAaIlUU O peBU3UIX UCII0JIL3yeTCs CChlIKa refs/git-as-svn/vl.

JTa CChUIKa COOEPKUT B cebe Ha60p KOMMMHTOB, BBICTPO€HHBIX B II€IIOJYKY IIO IIEPBOMY
poaurTeIIr0. HOpHﬂKOBLIfI HOMEp KOMMHTa OT HadaJla COOTBETBYET HOMEPY PEBU3UHU B SVN.

54

Co/:[epmnMoe KOMMHTAa

JlaHHBIe CaMOIr0 KOMMUTA:

¢ IlepBbIl POAUTEIIL BCETZA CChIIAETCS Ha IPEebIAYIITUI KOMMMUT;

° KOMMEHTapI/Iﬁ KOMMHMHTa 6ep9TCH W3 OPHUTHHAJIbBHOTO KOMMMTA. HNMeHHO 3TOT KOMMeHTapI/Iﬁ
BBIBOJHTCA B SVIl 10g;

* ABTOp KOMMHUTA 6epeTcs U3 OpUTHHAIbHOTO0 KOMMUTA;
/lepeBo KOMMUTA:

* svn (tree) - JepeBo, KOTOPOoe COOTBETCBYET Svil layout-y JAHHOI'O KOMMHMTaA,

¢ commit.ref (commit) - cChITKa Ha OpUTHHAJIBHBIM KOMMHUT (1T KOMMUTOB, KOTOPBIE CBSI3aHBI C
yIaJeHHueM/CO3JaHHUEM BETOK MOYKET OTCYTCTBOBATh);

Revision 0

PeBu3us 0 HECKOJIBKO OT/IMYAETCA OT OCTaJIbHBIX KOMMHTOB.
B oTsinure OT OCTaJIbHBIX KOMMUTOB:

» OHa BceIyja COZIep>KUT IIyToe IepeBo SVI;

* B Helt s1exuT Qaiiy uuid ¢ uIeHTUGUKATOPOM PEeIl03SUTOPHSL.

14.4. How does commit work?

One of the most important parts of the system — to save the changes.
In general, the following algorithm:
1. At the moment the command svn commit client sends to the server of your changes. The server

remembers them. At this point comes the first check the relevance of customer data.

2. The server takes the branch HEAD and begins to create new commit on the basis of client
received delta. At this moment there is yet another check of the relevance of customer data.

3. Validating svn properties for changed data.

4. The server tries to push the new commit in the current branch of the same repository via
console Git client. Next, the result of a push:

o if commits pushed successfully — loading the latest changes from git commits and rejoice;
o if push is not fast forward — load the latest changes from git commits and go to step 2;

o if push declined by hooks — inform the client;

o on another error — inform the client;

Thus, through the use console Git client for push, we avoid the race condition pouring directly
change Git repository, and get the native hooks as a nice bonus.

55

Chapter 15. Changelog

4.0.0

* Drop support for GitLab older than 10.2
* Migrate from java-gitlab-api to gitlab4j-api
 Fix compatibility with GitLab 16.9+

3.0.0

 Use virtual threads by default

* Require Java 21+

2.9.8

* Fix chaos in changed files in svn log

2.9.7

* Remove legacy code that could be a source of slowdown when working with LFS files

2.9.6

* More memory optimizations

2.9.5

* Add configurable cache policy for in-memory git entries

2.9.4

* Fix memory regressions

2.9.3

* More memory optimizations

2.9.2

* Fix svn up protocol error

* More memory optimizations

36

2.9.1

* Unsorted memory optimizations

2.8.1

* Do not authenticate users by access token if they enter wrong username

» Update snakeyaml to 2.2

2.8.0

* Update dependencies

» Experimental string interning feature

2.7.1

» Update dependencies

* Add option to authenticate using GitLab access tokens

2.6.0

* Update dependencies

* Fix git-as-svn not caching visibility of non-public GitLab projects

2.5.0

* Update dependencies
* Fix compatibility with GitLab >=15.2

2.4.0

* Update dependencies
» Fix compatibility with Gitea >=1.16. #530

2.3.0

* Update dependencies

* Reduce memory consumption for repositories with big .gitignore or .gitattributes. #306

2.2.0

» Add glProtocol option to configure GitLab GL_PROTOCOL server hooks environment variable

https://github.com/git-as-svn/git-as-svn/issues/530
https://github.com/git-as-svn/git-as-svn/issues/306

Update dependencies

2.1.1

Fix startup failure when format: Latest is specified in config

2.1.0

Fix SLF4] version. #484

Update dependencies

2.0.0

git-as-svn migrated from Java to Kotlin

Java 8 is no longer supported. Minimal is Java 11 now.

Update dependencies

git-as-svn no longer implicitly sets svn:eol-style=native for files by default

Starting with this release, git-as-svn introduces versioning for backward-incompatible changes.
You can control whether you opt-in for new features that require re-checkout of Subversion
working copies via format repository parameter. By default, git-as-svn uses the latest version
and thus requires re-checkout if repository was initially created with older format.

Add support for non-ASCII logins and passwords

Deploy Debian packages to Cloudsmith. #370

Repository data exported to SVN has changed. Users will need to perform re-
o checkout of their working copies after git-as-svn upgrade unless you specify
format: V4in git-as-svn.conf.

1.30.1

Pass GITALY_HOOKS_PAYLOAD environment variable to GitLab hooks to fix compatibility with
GitLab 13.7+. #367

1.30.0

Fix compatibility with GitLab 13.7+ LFS. #365

1.29.0

38

Update dependencies

https://github.com/git-as-svn/git-as-svn/issues/484
https://github.com/git-as-svn/git-as-svn/issues/370
https://github.com/git-as-svn/git-as-svn/issues/367
https://github.com/git-as-svn/git-as-svn/issues/365

1.28.1

* Fix regression bug introduced in 1.28.0 that made git-as-svn to ignore some configuration
options

1.28.0

» Experimental empty dirs support. #126

* Update dependencies

1.27.0

» Fix compatibility with GitLab 13.1+. #355

» Update dependencies

1.26.1

* Fix compatibility with GitLab 12.10+. #347

1.26.0

* Release remote LFS locks on commit unless keep-locks option is enabled
* Block commit to locked file even if user claims he doesn’t have any local version of that file

* Improve error message when commit is aborted due to lock

Update dependencies

1.25.2

» Fix file descriptor leak when useHooksDir is enabled

* Update dependencies

1.25.1

* Fix compatibility with GitLab 12.9+ in /etc/default/git-as-svn that we provide. #337

1.25.0

* Add useHooksDir option to pusher: !pushEmbedded that runs hooks/<hook_name>.d/* executable
files in addition to standard hooks/<hook_name>. Note that this feature is an extension to standard
Git behavior and is subject to change in any later git-as-svn releases.

39

https://github.com/git-as-svn/git-as-svn/issues/126
https://github.com/git-as-svn/git-as-svn/issues/355
https://github.com/git-as-svn/git-as-svn/issues/347
https://github.com/git-as-svn/git-as-svn/issues/337

1.24.3

» Fix svn unlock not actually unlocking anything if lock token was not provided

1.24.2

» Upgrade httpclient to 4.5.12. #335

* Fix get-locks cmd not properly filtering paths when using HTTP LFS server

1.241

* Downgrade httpclient to 4.5.10. #335

1.24.0

* Fix a bug that caused Git-LFS locks in GitLab to be created on behalf of administator user
instead of the user who locks file through git-as-svn

1.23.1

¢ Fix "Malformed network data" error for svn blame

1.23.0

* Drop support for nonstandard eol=cr in .gitattributes with no replacement

* Drop support for nonstandard eol=native in .gitattributes. Just add text attribute to indicate
that file has native EOLs.

» Use JGit to parse .gitattributes files.

o Repository data exported to SVN has changed. Users will need to perform re-
checkout of their working copies after git-as-svn upgrade.

1.22.0

» Systemd unit now correctly waits for git-as-svn to shut down. #275

» Update dependencies

* /usr/bin/git-as-svn no longer implicitly adds -Xmx512m JVM argument

* Several file descriptor leaks fixed

 git-as-svn no longer overrides .gitattributes settings with text/binary auto-detection

* svn:mime-type=application/octet-stream property is now added to files that have -text in
.gitattributes. #317

60

https://github.com/git-as-svn/git-as-svn/issues/335
https://github.com/git-as-svn/git-as-svn/issues/335
https://github.com/git-as-svn/git-as-svn/issues/275
https://github.com/git-as-svn/git-as-svn/issues/317

o Repository data exported to SVN has changed. Users will need to perform re-
checkout of their working copies after git-as-svn upgrade.

1.21.9

* Catastrophically speedup rename detection (~50x). #306

1.21.8

* Write empty LFS files in a compatible with Git-LFS way

* Update dependencies

1.21.7

 Fix Git LFS lock paths not handled properly, making it possible to lock same file multiple times

* Send human-readable error message when locking fails due to already existing lock

1.21.6

* Add cleanup of bogus locks created with git-as-svn versions prior to 1.21.5

1.21.5

» Multiple fixes to remote LFS locking

1.21.4

* Fix commit of files larger than 8MB

1.21.3

e Fixes to 1fsMode: !filelLfs.

1.21.2

* Fix bogus slashes in branch names for GitLab mapping

1.211

* Reduce log spam (LDAP and client disconnects)

* Log client version on connect

61

https://github.com/git-as-svn/git-as-svn/issues/306

1.21.0

* Do not write to /tmp when streaming files from remote LFS server to SVN clients. #288
» Experimental 1fsMode: !filelLfs LFS mode for GitLab

* 1fs: false replaced with 1fsMode: nullin !qgitlab section

1.20.5

* Log all exceptions when talking to SVN clients
» Fixed double buffering of client I/O

* Fix downloading of large files from remote LFS server. Broken in 1.20.4

1.20.4

* Fix multiple file descriptor leaks

1.20.3

* Fix svn blame failing with "Malformed network data" error

1.20.2

» Fix LFS files returning -1 size for remote LFS. #282

1.20.1

* Fix git 1fs unlock <path>not finding LFS lock

1.20.0

* Fix inability to unlock files through Git-LFS
* Fix lock paths having leading slash when listing locks via Git-LFS

* Now path-based authorization supports branch-specific access

1.19.3

* Add S$authenticated:Local/$authenticated:GitLab/$authenticated:Gitea/$authenticated:LDAP to
refer to users authenticated against specific user database in path-based ACL

» Fix git-Ifs failing with "Not Acceptable" error when uploading files

62

https://github.com/git-as-svn/git-as-svn/issues/288
https://github.com/git-as-svn/git-as-svn/issues/282

1.19.2

» Improve GitLab configuration defaults

1.191

 Fix path-based ACL entry search. #276

1.19.0

* Add support for LZ4 compression. Replace compressionEnabled=true/false option with
compressionLevel=LZ4/Z1ib/None. #163

 Fix severe performance loss on commit. Broken in 1.8.0

1.18.0

* Add option to expose user-defined branches for GitLab. See GitLab configuration
documentation. #188

* repositoryTags is no longer supported for !gitlabMapping

1.17.0

* Drop ability to configure custom hook names in !pushEmbedded because Git doesn’t have such
feature. Instead, add hooksPath option that works as an override to core.hooksPath Git
configuration option.

* Fix uploads of already existing files to remote LFS server.

1.16.0

Update Jetty to 9.4.19

Update Log4j to 2.12.0

Update git-lfs-java to 0.13.3

* Add support for core.hooksPath Git configuration variable. #267

1.15.0

* Now groups can be defined to contain other groups for path-based authorization
* JGit updated to 5.4.0

* UnboundID LDAP SDK updated to 4.0.11

* google-oauth-client updated to 1.30.1

* Remove hookUr1l from !gitlab section, it is now automatically determined from baseUr1 in !web
section.

63

https://github.com/git-as-svn/git-as-svn/issues/276
https://subversion.apache.org/docs/release-notes/1.10#lz4-over-the-wire
https://github.com/git-as-svn/git-as-svn/issues/163
https://github.com/git-as-svn/git-as-svn/issues/188
https://github.com/git-as-svn/git-as-svn/issues/267

1.14.0

* Experimental path-based authorization
* -t and -T command-line switches. See Command-line parameters documentation

e -s/--show-config command-line switches removed. Use -T instead.

1.13.0

* Changed LDAP bind configuration. See LDAP documentation.

* Organize logs into categories and add logging documentation.

1.12.0

* Experimental support for LFS locking API Now git-as-svn forwards locking requests to LFS
server. git-as-svn internal LFS server now supports LFS locks. Locks are now scoped to whole
repositories instead of being per-branch. All existing svn locks will expire after upgrade.

* URL scheme has changed, now it is svn://<host>/<repo>/<branch>. Use svn relocate to fix
existing SVN working copies.

* It is no longer valid to map a single repository under multiple paths. Use branches tag to expose
multiple branches of a single repository to SVN.

1.111

» lgiteaSSHKeys is no longer supported

» Fix date formatting to be compatible with git-1fs. Was broken in 1.11.0

1.11.0

* Add support for Gitea LFS server. Gitea >= 1.7.2 is required now.

» lgitlabLfs {} wasreplaced with 1fs: true parameter in !gitlab section

1.10.1

» Fix PLAIN auth not working with passwords longer than 51 character. #242

1.10.0

* File locking code cleanup. All existing svn locks will expire after upgrade.
* Implement get-file-revs command. This is expected to speed up svn blame severely. #231

* Prospective blame support added

64

https://github.com/git-lfs/git-lfs/blob/master/docs/api/locking.md
https://github.com/git-as-svn/git-as-svn/issues/242
https://github.com/git-as-svn/git-as-svn/issues/231
https://subversion.apache.org/docs/release-notes/1.9#prospective-blame

1.9.0

* Major code cleanup
» repository: !git changed to just repository: in git-as-svn.conf
* access: !acl changed to just acl: in git-as-svn.conf

* svn stat is now compatible with native svn for nonexistent paths

1.8.1

* Update dependencies: jgit-5.3.0, svnkit-1.10.0, jetty-9.4.15, java-gitea-api-1.7.4, unboundid-
ldapsdk-4.0.10 and others

1.8.0

* !1fsrenamed to !locallfs in git-as-svn.conf

» Experimental support for GitLab LFS (!gitlabLfs {}). #175, #212, #213.

1.7.6.1

» Fix broken URL construction in git-lfs-authenticate

1.7.6

« git-Ifs-authenticate no longer silently falls back to anonymous mode if it failed to obtain user
token

« git-lfs-authenticate now properly handles absolute repository paths

1.7.5

* Ensure hook stdout is closed when using embedded pusher

1.7.4

* Revert #215, causes tens of thousands of CLOSE_WAIT connections in Jetty
» Update Jetty to 9.4.14

1.7.3

* Reduce number of threads by using same thread pool for svn:// and http://. #215

» Fix compatibility with latest Gitea. #218

65

https://github.com/git-as-svn/git-as-svn/issues/175
https://github.com/git-as-svn/git-as-svn/issues/212
https://github.com/git-as-svn/git-as-svn/issues/213
https://github.com/git-as-svn/git-as-svn/issues/215
https://github.com/git-as-svn/git-as-svn/issues/215
https://github.com/git-as-svn/git-as-svn/issues/218

1.7.2

* Reduce lock contention during commit
* Log how long commit hooks take

* Do not log exception stacktraces on client-side issues during commit

1.7.1

» Revert offloading file — changed revisions cache to MapDB (#207) as an attempt to fix (or, at
least, reduce) issues with non-heap memory leaks

1.7.0

Dramatically improve memory usage by offloading file -~ changed revisions cache to MapDB

» --unsafe option no longer exists, all "unsafe" functionality was removed

« git-lfs-authenticate.cfg format has changed. Now, git-lfs-authenticate talks to git-as-svn via http
and uses shared token.

* lapi no longer exists in git-as-svn.conf

Isocket no longer exists in git-as-svn.conf

LFS storage is no longer silently created, instead LfsFilter will error out when encounters LFS
pointer without configured LFS storage

JGit updated to 5.1.2

GitLab API updated to 4.1.0

1.6.2

* [Gitea] Support uppercase letters in usernames / repository names. #196

1.6.1

* Update dependencies. #190
* [Gitea] Fixes to directory watcher. #192

* Deploy Debian packages to Bintray. #194

1.6.0

* Java 9/10/11 compatibility

* Gitea integration added

66

https://github.com/git-as-svn/git-as-svn/issues/207
https://github.com/git-as-svn/git-as-svn/issues/196
https://github.com/git-as-svn/git-as-svn/issues/190
https://github.com/git-as-svn/git-as-svn/issues/192
https://github.com/git-as-svn/git-as-svn/issues/194
https://gitea.io

1.5.0

* Add tag-based repository filtering for GitLab integration

1.4.0

» Update JGit to 5.0.1.201806211838-r
» Update SVNKit to 1.9.3
* Reduce memory usage

* Improve indexing performance

1.3.0

» Switch to GitLab API v4. Fixes compatibility with GitLab >=11. #176

1.2.0

* x10 speedup of LDAP authentication
* Drop dependency on GSon in favor of Jackson2
* Update unboundid-ldapsdk to 4.0.3

 Fix post-receive hook failing on GitLab 10 #160

1.1.9

» Update MapDB to 3.0.5 #161

1.1.8

« Fix git-as-svn unable to find prefix-mapped repositories (broken in 1.1.2)

¢ Fix PLAIN authentication with native SVN client (broken in 1.1.4)

1.1.7

» Use OAuth2 to obtain user token. Fixes compatibility with GitLab >=10.2 #154

1.1.6

* Update various third-party libraries
* Upgrade to Gradle 4.4
 Fix GitLab repositories not becoming ready on git-as-svn startup #151

* Improve logging on git-as-svn startup

67

https://github.com/git-as-svn/git-as-svn/issues/176
https://github.com/git-as-svn/git-as-svn/issues/160
https://github.com/git-as-svn/git-as-svn/issues/161
https://github.com/git-as-svn/git-as-svn/issues/154
https://github.com/git-as-svn/git-as-svn/issues/151

1.1.5

* Fix submodules support (was broken in 1.1.3)

 Invalidate caches properly if renameDetection setting was changed

1.1.4

» Upgrade Kryo to 4.0.1 #121

* Add option to disable parallel repository indexing on startup #121

1.1.3

Fix ISO 8601 date formatting.

» Fix unexpected error message on locked file update #127.
* Increase default token expire time to one hour (3600 sec).
» Add string-suffix parameter for git-Ifs-authenticate script.

* Index repositories using multiple threads on startup #132

1.1.2

* Add reference to original commit as parent for prevent commit removing by git gc #118.
 Fix repository mapping error #122.

* Fix non ThreadSafe Kryo usage #121.

* Add support for combine multiple authenticators.

* Add support for authenticator cache.

* Fix tree conflict on Windows after renaming file with same name in another case #123.

» Use commit author instead of commiter identity in svn log.

Don’t allow almost expired tokens for LFS pointer requests.

1.1.1

» Fix "E210002: Network connection closed unexpectedly" on client update failure #114.

1.1.0

» Use by default svn:eol-style = native for text files (fix #106).

» Upload .deb package to debian repository.

68

https://github.com/git-as-svn/git-as-svn/issues/121
https://github.com/git-as-svn/git-as-svn/issues/121
https://github.com/git-as-svn/git-as-svn/issues/127
https://github.com/git-as-svn/git-as-svn/issues/132
https://github.com/git-as-svn/git-as-svn/issues/118
https://github.com/git-as-svn/git-as-svn/issues/122
https://github.com/git-as-svn/git-as-svn/issues/121
https://github.com/git-as-svn/git-as-svn/issues/123
https://github.com/git-as-svn/git-as-svn/issues/114
https://github.com/git-as-svn/git-as-svn/issues/106

1.0.17-alpha

Add PDF, EPUB manual.

Add support for anonymous authentication for public repositories.

1.0.16-alpha

Rewrite GitLab authentication #110.

Fix some permission check issues #110.

Generate token in LFS server instead pass original authentication data #105.

Ignore unknown GitLab hook data.

1.0.15-alpha

Add support for GitLab 8.2 LFS storage layout #109.

1.0.14-alpha

Add debian packaging.
Add configurable file logging.

1.0.13-alpha

Embedded git-lfs server

Git-Ifs batch API support.

Add support for LDAP users without email.
Add support for X-Forwarded-* headers.
Add HTTP-requests logging.

Change .gitignore mapping: ignored folder now mask all content as ignored.

Fix git-1fs file commuit.

Fix quote parsing for .tgitconfig file.

1.0.12-alpha

Initial git-1fs support (embedded git-1fs server).
Initial GitLab integration.

Import project list on startup.

Authentication.

Add support for embedded git push with hooks;

69

https://github.com/git-as-svn/git-as-svn/issues/110
https://github.com/git-as-svn/git-as-svn/issues/110
https://github.com/git-as-svn/git-as-svn/issues/105
https://github.com/git-as-svn/git-as-svn/issues/109

* Git-as-svn change information moved outside git repostitory #60.
* Configuration format changed.

¢ Fixed some wildcard issues.

1.0.11-alpha

* Fix URL in authentication result on default port (Jenkins error: E21005: Impossibly long
repository root from server).

* Fix bind on already used port with flag SO_REUSEADDR (thanks for @fcharlie, #70).

* Add support for custom certificate for ldaps authentication.

1.0.10-alpha

* Fix get file size performance issue (svn 1s).
* Fix update IMMEDIATES to INFINITY bug.
* Fix NPE on absent email in LDAP.

1.0.9-alpha

* Fix svn update after aborted update/checkout.
* Fix out-of-memory when update/checkout big directory.

* Show version number on startup.

1.0.8-alpha

* Support commands: svn lock/svn unlock.

* Multiple repositories support.

1.0.7-alpha

* More simple demonstration run

* synsync support

1.0.6-alpha

* Add autodetection binary files (now file has svn:mime-type = application/octet-streamifit set as
binary in .gitattributes or detected as binary).

* Expose committer email to svn.
* Fix getSize() for submodules.

» Fix temporary file lifetime.

70

https://github.com/git-as-svn/git-as-svn/issues/60
https://github.com/git-as-svn/git-as-svn/issues/70

1.0.5-alpha

* Add persistent cache support.
* Dumb locks support.

* Fix copy-from permission issue.

1.0.4-alpha

* Improve error message when commit is rejected due to wrong properties.

1.0.3-alpha

» Fix spacesin url.
* Add support get-locations.

* Add mapping binary to svn:mime-type = svn:mime-type

1.0.2-alpha

 Fix some critical bugs.

1.0.1-alpha

* Add support for more subversion commands

* Fix some bugs.

1.0.0-alpha

e First release.

71

	git-as-svn User Manual
	Table of Contents
	Chapter 1. About project
	1.1. What is it?
	1.2. Features
	1.3. What is project goal?
	1.4. Why do we need it?

	Chapter 2. Installation
	2.1. .gitattributes
	2.2. Installation on Debian/Ubuntu
	2.2.1. git-as-svn package
	Used directories

	2.2.2. git-as-svn-lfs package

	2.3. Manual download

	Chapter 3. Command-line parameters
	Chapter 4. GitLab integration
	4.1. Configuration
	4.2. Supported Git LFS modes
	4.3. Full configuration file example

	Chapter 5. Gitea integration
	5.1. Configuration file example

	Chapter 6. LFS server
	6.1. Configuration file example
	6.2. git-lfs-authenticate
	6.3. Running git-a-svn behind Nginx reverse proxy

	Chapter 7. LDAP (Lightweight Directory Access Protocol)
	7.1. Supported LDAP bind methods
	7.1.1. ANONYMOUS
	7.1.2. CRAM-MD5
	7.1.3. DIGEST-MD5
	7.1.4. EXTERNAL
	7.1.5. PLAIN
	7.1.6. Simple

	Chapter 8. Logging
	8.1. Loggers available in git-as-svn

	Chapter 9. Path-based authorization
	9.1. Getting Started with Path-Based Access Control
	9.2. Access Control Groups
	9.3. Advanced Access Control Features

	Chapter 10. SVN Properties
	10.1. .gitignore file
	10.2. .gitattributes file
	10.3. .tgitconfig file
	10.4. Commit failed: Invalid svn properties on file

	Chapter 11. Empty directories
	Chapter 12. Alternatives
	12.1. GitHub Subversion support
	12.2. SubGit
	12.3. Subversion repository and git-svn

	Chapter 13. SVN+SSH
	13.1. Rationale
	13.2. How does SVN+SSH work?
	13.3. A better git-as-svn-svnserve
	13.4. GitLab & git-as-svn-svnserve
	13.5. Gitea

	Chapter 14. Internal implementation details
	14.1. Where Subversion data is stored?
	14.2. Описание хранения информации в хранилище
	14.3. Для чего нужно хранилище
	14.3.1. Формат хранения информации о ревизиях
	Содержимое коммита
	Revision 0

	14.4. How does commit work?

	Chapter 15. Changelog
	4.0.0
	3.0.0
	2.9.8
	2.9.7
	2.9.6
	2.9.5
	2.9.4
	2.9.3
	2.9.2
	2.9.1
	2.8.1
	2.8.0
	2.7.1
	2.6.0
	2.5.0
	2.4.0
	2.3.0
	2.2.0
	2.1.1
	2.1.0
	2.0.0
	1.30.1
	1.30.0
	1.29.0
	1.28.1
	1.28.0
	1.27.0
	1.26.1
	1.26.0
	1.25.2
	1.25.1
	1.25.0
	1.24.3
	1.24.2
	1.24.1
	1.24.0
	1.23.1
	1.23.0
	1.22.0
	1.21.9
	1.21.8
	1.21.7
	1.21.6
	1.21.5
	1.21.4
	1.21.3
	1.21.2
	1.21.1
	1.21.0
	1.20.5
	1.20.4
	1.20.3
	1.20.2
	1.20.1
	1.20.0
	1.19.3
	1.19.2
	1.19.1
	1.19.0
	1.18.0
	1.17.0
	1.16.0
	1.15.0
	1.14.0
	1.13.0
	1.12.0
	1.11.1
	1.11.0
	1.10.1
	1.10.0
	1.9.0
	1.8.1
	1.8.0
	1.7.6.1
	1.7.6
	1.7.5
	1.7.4
	1.7.3
	1.7.2
	1.7.1
	1.7.0
	1.6.2
	1.6.1
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.2.0
	1.1.9
	1.1.8
	1.1.7
	1.1.6
	1.1.5
	1.1.4
	1.1.3
	1.1.2
	1.1.1
	1.1.0
	1.0.17-alpha
	1.0.16-alpha
	1.0.15-alpha
	1.0.14-alpha
	1.0.13-alpha
	1.0.12-alpha
	1.0.11-alpha
	1.0.10-alpha
	1.0.9-alpha
	1.0.8-alpha
	1.0.7-alpha
	1.0.6-alpha
	1.0.5-alpha
	1.0.4-alpha
	1.0.3-alpha
	1.0.2-alpha
	1.0.1-alpha
	1.0.0-alpha

