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Abstract

This paper extends the application of the Local Geary c statistic to a multivariate context.

The statistic is conceptualized as a weighted distance in multivariate attribute space between

an observation and its geographical neighbors. Inference is based on a conditional permutation

approach. The interpretation of significant univariate Local Geary statistics is clarified and the

differences with a multivariate case outlined. An empirical illustration uses Guerry’s classic

data on moral statistics in 1830s France.
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1 Introduction

An important and growing component of geographical analysis is a focus on the local, reflected

in new methods to deal with local spatial autocorrelation and local spatial heterogeneity (for

general overviews, see, e.g., Unwin 1996, Fotheringham 1997, Unwin and Unwin 1998, Fother-

ingham and Brunsdon 1999, Boots 2002, Boots and Okabe 2007, Lloyd 2010). Specifically,

considerable interest has been devoted to local indicators of spatial association (LISA) since

the original LISA framework was outlined in Anselin (1995, 1996), building upon the initial

work by Getis and Ord (1992, 1996), and Ord and Getis (1995). Since the local statistics form

the basis for a hypothesis test for (local) spatial randomness, they are strictly speaking outside

the scope of exploratory data analysis (EDA) as outlined by, among others, Tukey (1977) and

Good (1983), and its spatial counterparts (ESDA). Narrowly defined, EDA and ESDA are fo-

cused on generating hypotheses, not testing them. Nevertheless, the local statistics are often

considered to be an important part of an exploratory strategy (see, e.g. Sokal et al. 1998b).

This is the spirit in which they are considered here.

The idea of a local test for spatial autocorrelation has been extended in multiple directions,

such as applications to categorical data (Boots 2003, 2006), points on networks (Yamada and

Thill 2007), the construction of optimal spatial weights (Getis and Aldstadt 2004, Aldstadt and

Getis 2006), as well as space-time and income mobility (Rey 2016). Considerable attention has

been paid to problems of statistical inference, both exact and asymptotic, as well as more fun-

damental issues of multiple comparisons and correlated tests. For example, Sokal et al. (1998a)

examined the properties of asymptotic approximations based on analytical moments, whereas

Tiefelsdorf (2002) developed a saddlepoint approximation to exact inference. The multiple

comparison problem was discussed in general by de Castro and Singer (2006), and investiga-

tions into inference in the presence of global spatial autocorrelation are reported by Ord and

Getis (2001) and Rogerson (2015). More technical issues have been considered as well, such as

power calculations (Bivand et al. 2009), the design of optimal spatial weights (Rogerson 2010,

Rogerson and Kedron 2012), and conceptual and computational issues pertaining to random-

ization inference (Lee 2009, Hardisty and Klippel 2010). In addition, the Local Moran test and

the Getis-Ord local G statistics have been implemented in both commercial and open source

spatial analytical software, such as GeoDa (Anselin et al. 2006), spdep and other packages in

1



R (Bivand 2006, Bivand et al. 2013), the PySAL Python library for spatial analysis (Rey and

Anselin 2007), ESRI’s ArGIS Spatial Analyst, and the online spatial analytical functionality

in Carto (https://carto.com/blog/cluster-outlier-intro).

Most of the discussion of local spatial autocorrelation has been situated in a univariate

context. The treatment of spatial autocorrelation in a multivariate setting has focused on

global statistics, specifically Moran’s I. This started with the work by Wartenberg (1985) that

extended the notion of principal components to include spatial autocorrelation. This line of

thinking was further generalized by Dray et al. (2008) into the concept of MULTISPATI, which

adds a matrix of spatially lagged variables to the statistical triplet used in co-inertia analysis

(see also Dray and Jombart 2011). A different approach was taken in Lee (2001) specifically for

a bivariate case, where a distinction is made between the correlative and the spatial association

between two variables.

The current paper has two objectives. One is a closer examination of the univariate Local

Geary statistic. This test was also proposed as part of the general LISA framework in Anselin

(1995), but it has received less attention to date than its counterpart the Local Moran statistic,

or the Getis-Ord local statistics. Nevertheless, it forms an interesting alternative to these

statistics, since it is not limited to linear associations, as it is based on a squared difference.

Specifically, the interpretation and visualization of this statistic are discussed in some detail,

with the emphasis on its use as a data exploratory tool in the spirit of unsupervised (machine)

learning and spatial data mining, rather than as a statistical test in a strict sense. The second

and main goal is to extend the univariate case to a multivariate setting, and to introduce a

Local Geary statistic for multivariate spatial autocorrelation. The statistic is outlined and its

inference and interpretation are discussed in detail, again with an emphasis on its use in data

exploration, rather than as a strict test statistic. The new statistics are illustrated with a local

take on the analysis by Dray and Jombart (2011) of global multivariate spatial autocorrelation

based on the classic data set with “moral statistics of France,” attributed to an 1833 essay by

André-Michel Guerry. The paper closes with some concluding remarks.
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2 Local Geary c Revisited

As is well-known in the spatial analysis literature, Geary (1954) introduced a global measure

of spatial autocorrelation as:

c =
(n− 1)

∑
i

∑
j wij(xi − xj)

2

2S0

∑
i(xi − x̄)2

, (1)

where xi is an observation on the variable of interest at location i, x̄ is its mean, n is the total

number of observations, and wij are the elements of the familiar spatial weights matrix, which

embodies a prior notion of the neighbor structure of the observations.1 The term S0 corresponds

to the sum of all the weights (
∑

i

∑
j wij). The Geary c statistic can equivalently be expressed

as a ratio of two sums of squares, i.e., the squared difference between observations at i and j

in the numerator, and the sum of squared deviations from the mean in the denominator:

c =

∑
i

∑
j wij(xi − xj)

2/2S0∑
i(xi − x̄)2/(n− 1)

. (2)

Clearly, the denominator is an unbiased estimator for the variance. The numerator on the

other hand is a rescaled sum of weighted squared differences. The factor 2 is included to center

the expected value of the statistic under the null hypothesis of no spatial autocorrelation to

the value of 1 (not zero). Statistics smaller than one, indicating a small difference between an

observation and its neighbors, suggest positive spatial autocorrelation. Statistics larger than

one suggest negative spatial autocorrelation (large differences between an observation and its

neighbors).2

Geary’s c statistic is reminiscent of the pairwise squared deviation measure that underlies

the empirical semi-variogram in geostatistics (for example, see the overarching framework that

includes a range of cross-product statistics outlined in Getis 1991). However, there are two im-

portant differences. First, in the semi-variogram, all pairwise differences are considered, which

results in n(n−1)/2 estimates. In Geary’s c statistic, the difference between an observation and

its neighbors is summarized as a weighted average for each location (roughly nk̄ comparisons,

with k̄ as the average number of neighbors) and yields a single statistic. Second, whereas in

the semi-variogram the squared difference measure is sorted by the distance that separates the

1By convention, wii = 0, so that self-neighbors are excluded.
2While this may seem somewhat counterintuitive at first, this is easily remedied by subtracting 1 from the statistic

and changing its sign.
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observation pairs, in Geary’s c, the neighbors are pre-defined through the spatial weights. In

sum, the semi-variogram focuses on all pairs of observations, but Geary’s c provides a single

measure for each individual observation. Both approaches take the same perspective in the

sense that small values of the statistic suggest similarity, or positive spatial autocorrelation,

with large values of the statistic suggesting the reverse. In addition, since the statistic is based

on a squared difference, it is not constrained to linear forms of association.

A local version of Geary’s c was outlined in Anselin (1995) as:

ci =
∑
j

wij(xi − xj)
2. (3)

Since the squared deviations cancel out the mean, it is irrelevant whether the variable is ex-

pressed on the original scale, or in standardized form, although in a multivariate setting, the

latter is the preferred practice. Also, a number of variants of this statistic can be defined, de-

pending on which of the scaling constants are included. For example, an alternative form, also

given in Anselin (1995) and further investigated by Sokal et al. (1998a) includes a consistent

estimate for the variance as a scaling factor:

ci = (1/m2)
∑
j

wij(xi − xj)
2, (4)

where m2 =
∑

i(xi − x̄)2/n.3

The inclusion of the scaling factor only results in a monotone transformation of the value

in Equation 3, so it is easier to keep the simplest formulation. This expression is also the only

aspect of the global Geary c that changes with each observation i, since both the denominator

(the variance) and S0 are constants.

The analytical moments for the Local Geary ci were given in Sokal et al. (1998a, p. 353),

using the expression in Equation 4 (see also the extensive discussion in Boots 2002). More

specifically, the expected value for the Local Geary under a randomization approach is shown

to be:

E[ci] = 2nwi/(n− 1), (5)

where wi is the sum of the weights in row i, i.e.,
∑

j wij . Some straightforward algebraic

3Note how this is a consistent estimator for the variance, but not an unbiased one. The unbiased estimator used

in the expression for the global Geary c divides the sum of squared deviations by n− 1.
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manipulations yield the expected value of the expression in Equation 3 as:

E[ci] = 2nwim2/(n− 1). (6)

In the case of row-standardized weights, wi = 1. Futhermore, with standardized zi, E[m2] =

(n− 1)/n. Substituting these results in the expression for the expected value yields:

E[ci] = 2n(n− 1)/[(n− 1)n] (7)

= 2 (8)

With expressions for the expected value and the variance in hand an asymptotic approxi-

mation can be developed, as shown in Sokal et al. (1998a). However, these same authors also

cautioned that asymptotic inference based on these moments tends to fail. Instead, the ap-

proach taken in practice is to use conditional permutation, as outlined in Anselin (1995). This

consists of creating a reference distribution for each individual location by randomly permuting

the remaining values (i.e., all observations except the value at location i) and recomputing the

statistic each time. Inference can then be based on a pseudo p-value of a one-sided test com-

puted from the number of replicated statistics that are more extreme (either larger or smaller)

than the observed local statistic. As is well known, the resulting pseudo p-values should be

interpreted with caution, since they suffer from multiple comparisons, the potential biasing

effect of global autocorrelation, and other such complicating factors (see, among others, the

reviews in Sokal et al. 1998b, Ord and Getis 2001, de Castro and Singer 2006, Rogerson 2015,

as well as the discussion below).

Finally, note that, similar to all local statistics, the hypothesis test associated with the

Local Geary statistic is a diffuse test. The null hypothesis is that of spatial randomness. More

precisely, this means that locally, i.e., focused on a given observation, any organization of values

in the surrounding neighbors is equally likely. Differences from such randomness are detected

by using the weighted squared difference as a criterion. However, unlike what is the case for

a focused test (such as the Likelihood Ratio test used in a regression context), there is no

specified alternative. Different local statistics use different criteria to detect deviations from

the null, such as a squared difference for the Local Geary, a cross-product for the Local Moran,

or a sum in the Getis-Ord statistics. These different criteria will have more power against

specific alternatives, but also have power against all others. In other words, while the rejection
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of the null suggests the absence of (local) spatial randomness, it cannot suggest the presence

of a particular form of association. Hence, the main purpose of these statistics is in a data

exploration sense (see also the argument in Sokal et al. 1998b).

2.1 Inference and Interpretation

The pseudo p-value obtained from the conditional permutation procedure has to be interpreted

with caution, since it is unlikely to correctly reflect the actual Type I error. In addition to being

only an approximation to the actual p-value, it is also affected by the multiple comparisons

inherent in any local analysis that considers many (all) locations in the data set in turn. The

textbook correction for multiple comparison consists of a Bonferroni or Sidak bound (see, for

example, the discussion in Boots 2002). Both consider a target overall p-value, sometimes

referred to as the family wide error rate, or FWER, i.e., the probability of making even one

false rejection (see, for example Efron and Hastie 2016, Chapter 15, for a detailed technical

discussion).

With a target p-value of α and k comparisons, the Bonferroni bound for each individual

test would be α/k. The corresponding Sidak bound would be 1 − (1 − α)1/k. In the context

of LISA statistics, the practical question is what value k should take. The total number of

observations is likely too conservative, and some measure of overlap between the locations

and their neighbors could be considered, as suggested in Getis and Ord (2000), although its

implementation in practice is not straightforward. An alternative approach was suggested in

de Castro and Singer (2006), based on the false discovery rate (FDR) proposed by Benjamini

and Hochberg (1995) (see also Efron 2010, Efron and Hastie 2016, for an extensive technical

treatment).

The FDR is obtained in two steps. First, the pseudo p-values p(i) are ranked from smallest

to largest. The observation imax is selected as the largest value of i for which p(i) ≤ (i/N)α

(with N as the total number of observations). All observations with i ≤ imax are taken to reject

the null hypothesis. However, as Efron and Hastie (2016, Footnote 6, on p. 276) caution, “the

classic term significant for a non-null identification doesn’t seem quite right for FDR control

... and we will use interesting instead.”

Even with these caveats in mind, the interpretation of a “significant” (or, rather, “interest-
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ing”) Local Geary statistic is arguably not as intuitive as that of the other commonly used local

statistics, such as the Getis-Ord Gi and G∗
i statistics and the Local Moran. For the former, a

positive and significant value indicates a hot spot or cluster of high values, whereas a negative

and significant value suggests a cold spot, or cluster of low values (Getis and Ord 1992, 1996,

Ord and Getis 1995). The interpretation of the Local Moran is facilitated in conjunction with

the quadrants of the Moran scatter plot and suggests spatial clusters (high-high, and low-low)

as well as spatial outliers (high-low, and low-high) (Anselin 1995, 1996)

A significant ci statistic that is less than its expected value under the null hypothesis (either

the analytical value, or the average of the empirical reference distribution in a permutation

approach) suggests a clustering of similar values. Unlike what is the case for the Moran scatter

plot, there is no unambiguous differentiation of the type of association. This follows from

the fact that the local Moran is a cross-product statistic, which naturally aligns with a linear

fit (regression line) of points in a Moran scatter plot. The ci statistic is based on squared

differences, irrespective of whether these are differences between high values or low values. So,

while the Local Moran focuses on linear associations, the Local Geary is not constrained by

this, and can detect associations of a non-linear form as well. In sum, a small squared difference

suggests similarity, but cannot divulge the type of similarity.

Similar neighbors could thus have either similar high values (the counterpart of high-high

in the Local Moran case), or similar low values (the counterpart of low-low in the Local Moran

case). However, they could also result from two data points that span the mean (e.g., one

above the mean and one below), but that are very close together in value. So, unlike the Local

Moran case where there is a clear categorization of the results, this is not the case for the Local

Geary statistic.

Nevertheless, it is still possible to categorize the type of association in some instances. This

is accomplished by locating the pairs xi,
∑

j wijxj in the Moran scatterplot. Those pairs that

correspond with a significant small value of ci and that fall clearly in the high-high or low-low

quadrants can be classified as such. For those pairs where that is not the case (e.g., falling in

a low-high quadrant), there is no corresponding classification, and this case has to be referred

to as other.

There is no counterpart to this classification for negative spatial autocorrelation as indicated
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by a significant value for ci. In this instance, the Local Geary statistic simply indicates a

large (larger than under spatial randomness) difference between neighboring values, without

suggesting a particular high-low or low-high pattern. Due to the use of a squared difference as

the criterion for attribute similarity, such a distinction is not possible.

3 A Multivariate Extension

3.1 A Multivariate Local Geary Statistic

The Local Geary ci is a univariate statistic. In essence, it measures the squared distance in

attribute space (i.e., along a line for the univariate case) between the value at a geographic

location and that at each neighboring location (in geographic space), and summarizes this in the

form of a weighted sum.4 In practice, since the spatial weights are typically row-standardized,

this boils down to a weighted average of the squared distances in attribute space between an

observation and its geographic neighbors (as defined by a spatial weights matrix).

This concept can be extended in a straightforward manner to a multivariate context. For

example, consider two variables, z1 and z2. Following standard practice in multivariate clus-

tering analysis, these variables have been standardized such that the mean of the transformed

variable is zero and its variance is one. The squared distance d2ij in two-dimensional attribute

space between the values at observation i and its geographic neighbor j is:

d2ij = (z1,i − z1,j)
2 + (z2,i − z2,j)

2 (9)

A weighted average of this expression incorporating the squared distance in two-dimensional

attribute space between location i and all its geographic neighbors is then:

∑
j

wijd
2
ij =

∑
j

wij [(z1,i − z1,j)
2 + (z2,i − z2,j)

2]

=
∑
j

wij(z1,i − z1,j)
2 +

∑
j

wij(z2,i − z2,j)
2

= c1,i + c2,i (10)

4Note that the squared distance is used to keep the similarity with the original formulation of Geary’s c, but

instead the distance, i.e., the square root of this expression, could be used equivalently.
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In other words, the concept of a Local Geary statistic is additive in the attribute dimension.

In general then, for k attributes, a multivariate Local Geary can be defined as:

ck,i =

k∑
v=1

cv,i, (11)

with cv,i as the Local Geary statistic for variable v. This measure corresponds to a weighted

average of the squared distances in multidimensional attribute space between the values ob-

served at a given geographic location i and those at its geographic neighbors. As an alternative

to the simple sum in Equation (11), the average could be taken, which would keep the scale of

the multivariate measure in line with the univariate measures:

ck,i =

k∑
v=1

cv,i/k. (12)

The expected value of the multivariate statistic under the randomization null hypothesis

follows as a direct extension of the univariate case given above. For the expression in Equa-

tion (12), this remains E[ck,i] = 2, and for the unscaled version E[ck,i] = 2k. However, unlike

the univariate case, the derivation of the variance of the multivariate counterpart is quite

complex, and not analytically tractactable, since the general variance-covariance among the

variables needs to be accounted for (in addition to their spatial correlation). Given the poor

results of an asymptotic approximation reported in the literature for the univariate case, the

more practical way to obtain inference should again be based on conditional permutation.

The expression in Equation (10) can be generalized in a number of ways. As mentioned,

other distance measures can be applied, such as a Manhattan distance (absolute differences),

or, in general, any Minkowski distance metric. In addition, different weights could be applied to

each individual variable, for example, by means of using the inverse variance matrix as a weight.

However, since the main objective of such weighting is to compensate for different variances

among the variables, this becomes unnecessary when the variables have been standardized,

which is best practice in multivariate analysis.

In a univariate LISA analysis applied to several variables (in turn), it is quite common to

employ a range of different spatial weights, each appropriate for one or more variables (e.g.,

with weights based on geographical distance bands). In a multivariate setting, the core concept

is to compare geographical neighbors with neighbors in multi-attribute space, so the former

requires a single definition of spatial weights, just as the notion of neighbors in multi-attribute
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space requires a single distance metric. Nevertheless, a sensitivity analysis of the results with

respect to the choice of the spatial weights remains recommended practice in any empirical

application.

3.2 Inference and Interpretation

A conditional permutation approach consists of holding the tuple of values observed at i fixed,

and computing the statistic form permutations of the remaining tuples over the other locations.

This results in an empirical reference distribution that represents a computational approach

at obtaining the distribution of the statistic under the null. The resulting pseudo p-value

corresponds to the fraction of statistics in the empirical reference distribution that are equal

to or more extreme than the observed statistic.

Such an approach suffers from the same problem of multiple comparisons mentioned for

the univariate case (see Section 2.1). In addition, there is a further complication. When

comparing the results for k univariate Local Geary statistics, the multiple comparisons need to

be accounted for. For example, for each univariate test, the target p-value of α would typically

be adjusted to α/k (with k variables, each with a univariate test), as a Bonferroni bound.

Since the multivariate statistic is in essence a sum of the statistics for the univariate cases, this

would suggest a similar approach by dividing the target p-value by the number of variables

(k). Alternatively, and preferable, a FDR strategy can be pursued. The extent to which this

actually compensates for the two dimensions of multiple comparison (multiple variables and

multiple observations) remains to be further investigated.

As in the univariate case, the resulting pseudo p-values should only be taken as providing

some indication of interesting locations in a data exploration exercise, and they should not be

interpreted in a strict sense. In practice, some sensitivity analysis is therefore in order.

The interpretation of a location with a “significant” statistic (in the limited sense outlined

above) is more complex than in the univariate case. Since multiple variables are involved, the

notion of a hot spot or cold spot is not necessarily meaningful. In low-dimensional comparisons,

such as in a bivariate case, it is possible to construct cross-classification of whether each indi-

vidual variable is above or below the mean relative to its neighbors, but for higher dimensions,

this quickly becomes unwieldy, resulting in many cells with zero elements. In an interactive
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exploration environment such as GeoDa (Anselin et al. 2006), it is possible to combine a cluster

map of the locations of significant multivariate Geary with a brushing and linking operation on

the respective quadrants of the univariate Moran scatter plots, yielding some insight into the

combinations involved. Overall, however, the statistic indicates a combination of the notion of

distance in multi-attribute space with that of geographic neighbors. This is the essence of any

spatial autocorrelation statistic. It is also the trade-off encountered in spatially constrained

multivariate clustering methods (for a recent discussion, see, for example Grubesic et al. 2014).

Finally, it is important to keep in mind that, even though the multivariate statistic is the

sum of the univariate statistics, it is not so that significant locations for the univariate case

necessarily translate into significant locations for the multivariate case. In fact, an important

motivation for the use of the multivariate statistic is that it focuses on a combination of the

distances along the different variable dimensions, rather than taking each as being orthogonal.

This may provide additional insight in a spatial data exploration exercise.

4 Empirical Illustration

Recently, Dray and Jombart (2011) illustrated new concepts of multivariate global spatial

autocorrelation, based on the inclusion of spatially lagged variables, in what they refer to as

co-inertial analysis (see also Dray et al. 2008). Their empirical examples used the classic data

set with “moral statistics of France,” attributed to an 1833 essay by André-Michel Guerry. The

data set consists of a collection of observations for 86 French départements on a range of social

indicators, including crime, literacy, suicides, etc.5

To highlight the different insights gained between the global analyses in Dray and Jombart

(2011) and the Local Geary statistics, the same data set and the same six variables are con-

sidered here: Crimes Against Persons, Crimes Against Property, Literacy, Donations, Infants

Born out of Wedlock, and Suicides. All variables are expressed such that larger values are

“better.” For example, rather than expressing Crimes Against Persons as the usual crime rate

consisting of the ratio of crimes over population, the reverse is used, i.e., the ratio of population

5The data is contained in the R package Guerry, developed by Michael Friendly and Stéphane Dray, available

at https://CRAN.R-project.org/package=Guerry. It is also part of the sample data sets provided with the GeoDa

software, available at https://geodacenter.github.io/data-and-lab//Guerry/.
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Table 1: Correlations between the six variables

Cr. pers. Cr. prop. Lit. Don. Inf. Suic. Moran’s I
Crime persons 1.000 0.255 -0.021 0.134 -0.027 -0.134 0.412
Crime property 1.000 -0.363 -0.082 0.278 0.523 0.264
Literacy 1.000 -0.196 -0.412 -0.374 0.718
Donations 1.000 0.159 -0.035 0.353
Infants 1.000 0.289 0.229
Suicides 1.000 0.402

over crime. This operation is applied to the two Crime variables, to Infants Born out of Wed-

lock and to Suicides. In the analysis that follows, all variables are also standardized, such that

their mean equals zero and their variance equals one. Finally, as in Dray and Jombart (2011),

Corsica (an island) is removed from the data, which results in a final set of 85 observations.

All the analyses were carried out using the latest version of the GeoDa software (Version 1.12),

and can be replicated using the sample data set available with the software.6 Note that the

analysis is intended as a straightforward illustration of the different patterns identified by each

of the local autocorrelation methods, and not as a substantive study of the moral statistics in

1830 France.

As shown in Dray and Jombart (2011), the six variables are characterized by a high degree

of positive spatial autocorrelation, indicated by a positive and highly significant global Moran’s

I statistic (see the last column in Table 1).7 However, this spatial correlation is not matched

by a similarly strong bivariate correlation between the variables, as shown in Table 1. In fact,

none of the correlations are particularly high, with the largest value 0.523, between Property

Crime and Suicides. Literacy turns out to be negatively correlated with all the other variables.

Several of the bivariate relationships are very weak, such as the correlation between Crime

Against Persons and Literacy (−0.021) as well as with Infants Born out of Wedlock (−0.027),

and between Donations and Suicides (−0.035).

As a first step, following the approach taken in Dray and Jombart (2011), the six variables

are converted into principal components. The results are only moderately successful at cap-

6The Guerry data set is installed with the software as one of the built-in sample data sets. The Local Geary

statistic and its multivariate generalization are implemented in GeoDa since version 1.10.
7All statistics are computed using queen contiguity spatial weights and are significant at p < 0.001, based on 999

permutations.
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Table 2: Squared correlations: six variables and PC1, PC2

PC1 PC2
Crime persons 0.009 0.419
Crime property 0.562 0.009
Literacy 0.561 0.020
Donations 0.024 0.587
Infants 0.436 0.013
Suicides 0.549 0.153

turing the overall variance, with the first two components explaining only slightly over half the

variance (0.56). The squared correlations in Table 2 show how the first component is primarily

constructed from Crime against Property, Literacy, Infants and Suicides, whereas the second

component is highly correlated with Crime against persons and Donations.8 The spatial dis-

tribution of the first two components is illustrated in the choropleth maps shown in Figures 1

and 2 (computed as natural breaks maps with 6 intervals).

Figure 1: PC1 (natural breaks)

Considering the univariate case first, the cluster centers identified for the local Moran,

Getis-Ord Gi and the Local Geary statistics are shown for the first principal component (PC1)

8These results match the findings reported in Dray and Jombart (2011). In order to explain more than 90% of

the variance, five components (out of six variables!) are needed. This is a direct consequence of the low bivariate

correlations between the variables.
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Figure 2: PC2 (natural breaks)

in Figures 3 to 5.9 Note that, even though these visualizations are typically referred to as

cluster maps, they in fact only identify the core or center of a cluster. The cluster itself also

includes the neighboring locations (as defined by the spatial weights).

Figure 3: Local Moran Clusters, PC1 (0.01)

9PC1 also shows strong positive global spatial autocorrelation, as indicated by a Moran’s I coefficient of 0.551 for

queen contiguity, significant at 0.001 for 999 permutations.
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Figure 4: Local Gi Clusters, PC1 (0.01)

Figure 5: Local Geary Clusters, PC1 (0.01)

For comparison purposes, all three maps are shown for a pseudo p-value of 0.01, based

on 99999 permutations.10 As is typically the case, the results for the Local Moran and the

Local Gi statistics match almost exactly, except for the high-low spatial outlier identified in

the Local Moran cluster map. The Local Gi focuses only on hot spots and cold spots and

classifies this location as part of a low-low cluster. The Local Geary seems to be more liberal

10All random permutations are based on the same random seed so that the analysis can be replicated exactly.
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in identifying cluster centers, with 28 such locations (for a pseudo p-value of 0.01), compared

to 19 for the other local statistics. Figure 6 shows the overlap between locations identified by

the Local Moran and Local Gi on the one hand, and those indicated by the Local Geary (the

matching locations are highlighted in the Local Geary map). Of the 19 locations from Local

Moran/Gi, 12 are also significant for the Local Geary, but seven are not (the grey shaded areas

in the map). The 16 other locations deemed significant in the Local Geary cluster map are not

identified as such for the two other local measures. This is not surprising, since the statistic

use different approaches to quantify attribute similarity. Both the Local Moran and the Local

Gi statistic are heavily influenced by the weighted average of the neighbors, whereas the Local

Geary measures squared difference. There is no a priori reason why the two would give the

same results.

Figure 6: Matching Local Clusters, PC1 (0.01)

So far, cluster centers have only been reported for a pseudo p-value of 0.01. Given the

issue of multiple comparisons and the presence of strong global spatial autocorrelation, this is

arguably too liberal. To assess the effect of different target p-values, Table 3 shows the number

of significant locations for p-values of 0.01, 0.005 (the new standard as argued in Benjamin

and 72 others 2017), and 0.001, as well as for the FDR suggested rates (the FDR for Local

Moran and Local Gi with a target α of 0.01 is 0.00035; for Local Geary it is the same as the

Bonferroni bound, 0.00012). In addition to the number of significant cluster centers, the table
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Table 3: Number of significant locations by target p-value

Local Moran Local Gi Local Geary Overlap
0.01 19 19 28 12
FDR 3 3 0 0
0.005 10 10 18 6
0.001 3 3 4 0

also lists the number of overlapping locations. As is to be expected, the main effect is to shrink

the clusters to only those locations where the similarity with neighbors is extreme. At 0.001,

there are only three and four locations identified for respectively Local Moran/Gi and Local

Geary, without any overlap between the two sets.

To further illustrate the effect of changing p-values, the Local Geary clusters are shown

in Figures 7 and 8 for p-values of 0.005 and 0.001, which reduces the number of significant

locations to respectively 18 and four.

Figure 7: Local Geary Clusters, PC1 (0.005)

Moving on to the bivariate case, the Local Geary map for the second principal component

(PC2) is shown in Figure 9, again using a p-value of 0.01 for comparison purposes (based on

99999 permutations). The pattern is quite distinct from PC1, as is to be expected from a

cursory examination of the maps in Figures 1 and 2. At this p-value, 19 “significant” cluster

centers are identified.
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Figure 8: Local Geary Clusters, PC1 (0.001)

Figure 9: Local Geary Clusters, PC2 (0.01)

Comparing the results for PC1 and PC2, it turns out that only five locations are identified

as significant for both variables. These five locations show a significant similarity with their

neighbors (based on queen contiguity) for each of the two variables taken individually.

The bivariate Local Geary cluster map focuses on a different aspect of the local spatial

association between the two variables. Instead of considering each variable separately, the joint
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location in the attribute space is the focus of attention, i.e., points in attribute space for the

two dimensions that are close to their geographical neighbors. Unlike the case for a bivariate

Moran’s I, there is no confusion of the inter-variable correlation with the bivariate association.11

Figure 10 shows the cluster centers for the bivariate Local Geary applied to the first two

principal components, using the FDR with an α of 0.01 as the indicator of significance (the

resulting FDR is 0.00247 based on 99999 permutations). Twenty-one such locations are iden-

tified. Compared to the individual Local Geary cluster maps for each variable (using the same

p-value of 0.0025) indicates that of the 11 significant locations for PC1, six are also included as

cluster centers based on the bivariate analysis. For PC2, of the two cluster locations, one is in

common with the bivariate map (maps not shown). Note, that as pointed out earlier, there was

no overlap between the cluster centers for PC1 and PC2 when considered individually. This

suggests that the bivariate approach is able to indicate interesting locations that go beyond

what is found in the univariate analyses. These are locations where the joint profile of PC1

and PC2 is similar to that of the neighbors, but not necessarily for each individual variable.

Figure 10: Bivariate Local Geary, PC1 and PC2 (FDR)

As a final comparison, the clusters obtained from a multivariate Local Geary analysis for

all six variables are considered (i.e., the original variables, not the principal components). This

is illustrated in Figure 11. Again using the FDR (which is the same as in the bivariate case),

11In any case, the principal components are uncorrelated by construction, so this aspect can be safely ignored.
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this yields 21 cluster centers. While this is the same number as for the bivariate analysis on

the principal components, the locations are not the same, although there is substantial overlap.

Of the 21 cluster centers, 13 are shared in both analyses. In some sense, this suggests that the

analysis based on the first two principal components captures a lot of the same multivariate

spatial association as the analysis using all original variables. Much of the same patterns are

identified, with some differences at the margins. A further sensitivity analysis can be carried

out by changing the critical p-values and assessing the differences and similarity between the

two sets of maps, to “discover potentially explicable patterns” (Good 1983), or “to detect the

expected and discover the unexpected” (Thomas and Cook 2005). The interactive visualization

implemented in the GeoDa software is designed to facilitate such a data exploration.

Figure 11: Multivariate Local Geary, six variables (FDR)

Overall, the multivariate measure brings out patterns that are not obvious in its univariate

counterparts. There is little overlap in the local patterns of the six individual variables (not

shown here), but there seems to be some evidence of grouping along a multivariate dimension.

Again, this emphasizes the point that the multivariate measure of attribute similarity is not

a simple extrapolation of the univariate measures, but it involves complex trade-offs in all

attribute dimensions considered.
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5 Conclusion

The transition from a univariate setting to a multivariate context brings interesting challenges

to the construction of measures of local spatial autocorrelation. Such statistics represent a

mathematical compromise between a measure of attribute similarity and an indication of lo-

cational similarity. In one dimension, there are several candidates for attribute similarity, the

most commonly used one being the cross product (e.g., in Moran’s I). In a multivariate setting,

it seems more intuitive to use a concept related to the distance in attribute space (i.e., squared

differences) between a point (an observation) and the points that correspond to its geographic

neighbors. As is well known from the literature on contiguity constrained spatial clustering,

neighbors in attribute space are not necessarily also neighbors in geographic space.

The generalization of the Local Geary c statistic to multiple variables is a way to formalize

the combination of attribute similarity and locational similarity. It turns out that the statistic

is simply the sum of the individual local statistics for each variable. This corresponds with a

notion of the average squared distance in multivariate attribute space to the observations that

are neighbors in geographic space, as formalized in a spatial weights matrix. The combination

of the different dimensions introduces trade-offs so that the resulting clusters provide insights

that differ from the simple overlay of univariate statistics.

The problem of inference in this situation is complex, and may not have a satisfactory

solution in the traditional sense. This aspect of computation-driven statistical analysis is also

highlighted in the recent work by Efron and Hastie (2016), who suggest that the focus instead

should be on identifying “interesting” features. In this spirit, the bivariate extension of the

Local Geary in particular may provide insights that do not necessarily follow from multiple

univariate analyses. With more that two variables, the curse of dimensionality may affect the

usefulness of the approach, and it seems that resorting instead to an analysis of the main

principal components may be more fruitful. This remains to be further investigated.
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