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TOPIC. Cumulants. Just as the generating function M of a ran-
dom variable X “generates” its moments, the logarithm of M gen-
erates a sequence of numbers called the cumulants of X. Cumulants
are of interest for a variety of reasons, an especially important one
being the fact that the jth cumulant of a sum of independent random
variables is simply the sum of the jth cumulants of the summands.

Definitions and examples. To begin with, suppose that X is a
real random variable whose real moment generating function M(u) =
E(euX) is finite for all u’s in an open interval about 0. Since M(0) =
1 6= 0 and since the composition of two functions which have power
series expansions itself has a power series expansion, we may write

(log M)(u) =
∑∞

n=0

κnun

n!
(1)

for all u in some (possibly smaller) open interval about 0. The num-
bers κ1, κ2, . . . in this expansion are called the cumulants (for a
reason that will be explained subsequently). Notice that

κn = (log M)(n)(0) (2)

all n; in particular κ0 = log(M(0)) = log(1) = 0. (1) implies (see
Theorem 12.4) that for all z in some open ball about 0 in C

(log G)(z) =
∑∞

n=1

κnzn

n!
; (3)

here G(z) = E(ezX) is the complex generating function and “log”
denotes the principal branch of the complex logarithm function. In
particular the characteristic function φ(t) = E(eitX) of X satisfies

K(t) := log(φ(t)) =
∑∞

n=1

κnintn

n!
(4)

for all t in some open interval about 0 in R, and

κn = K(n)(0)/in (5)

for all n ∈ N. Since the functions log M , log G, and K = log φ gener-
ate the cumulants, they are called cumulant generating functions
(CGFs). (Some properties of cumulants and their generating func-
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tions were developed in the exercises in Section 11. None of those
results are used here. Moreover there is a change in notation — in
Section 11 K(t) denoted log

(
M(t)

)
, whereas here K(t) is log

(
φ(t)

)
.)

Formula (5) is used to define the first n cumulants of X when X

is only known to have an nth moment, i.e., when E(|X|n) < ∞. In
this situation φ is n-times continuously differentiable and close to 1
in an open interval about 0 ∈ R, and so K = log(φ) is defined and
n-times continuously differentiable in that interval. Consequently the
jth cumulant

κj := K(j)(0)/ij (6)

exists for j = 1, . . . , n, and

K(t) =
∑n

j=1

ijκjt
j

j!
+ o(tn) as t → 0. (7)

The following observation is useful for recognizing the cumulants.
If X has a nth moment and λ1, . . . , λn are numbers such that

K(t) =
∑n

j=1

ijλjt
j

j!
+ o(tn) as t → 0, (81)

then (see Exercise 1)

κj = λj for j = 1, . . . , n . (82)

Example 1. (A) Suppose X ∼ N(µ, σ2). Then

φ(t) = eiµte−σ2t2/2 and K(t) = log(φ(t)) = iµt− σ2t2

2
for t near 0. X has infinitely many cumulants since its moment gen-
erating function is finite in a neighborhood of 0 (actually, finite ev-
erywhere); formula (5) gives

κ1 = µ, κ2 = σ2, κ3 = κ4 = · · · = 0. (9)

Since the first and second cumulants of any random variables are its
mean and variance (see (19) and (20)), the normal distribution has
the simplest possible cumulants.
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(B) Suppose X ∼ Gamma(r). Then

φ(t) =
( 1

1− it

)r

and

K(t) =−r log(1− it) = r
∑∞

n=1

(it)n

n
= r

∑∞
n=1

(n−1)! (it)n

n!

for t near 0. X has cumulants of all orders. By the uniqueness of the
coefficients in the power series

∑∞
n=1 κnintn/n!, we get

κn = r(n− 1)! for n ≥ 1. (10)

(C) Suppose that X ∼ Poisson(λ). Then

φ(t) = eλ(eit−1) and K(t) = λ(eit − 1) =
∑∞

n=1

λintn

n!

for t near 0. Evidently

κ1 = κ2 = κ3 = · · · = λ. (11)

(D) Suppose that X has an unnormalized t-distribution with 3 degrees
of freedom; its density has the form

c

(1 + x2)2.

X has only two moments, and thus only two cumulants. It turns out
(see Exercise 13.11) that φ(t) = e−|t|(1 + |t|) for all t ∈ R. Thus

K(t) = −|t|+ log
(
1 + |t|)

= −|t|+
(
|t| − |t|2

2
+
|t|3
3

+ · · ·
)

(for |t| < 1)

= − t2

2
+ o(t2) = 0

it

1!
+ 1

i2t2

2!
+ o(t2) = κ1

it

1!
+ κ2

i2t2

2!
+ o(t2)

as t → 0. (82) gives

κ1 = 0 and κ2 = 1. (12)

κ3, κ4, . . . are undefined. •
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Properties of cumulants. This section develops some useful prop-
erties of cumulants. The nth moment of cX is cn times the nth moment
of X; this scaling property is shared by the cumulants.

Theorem 1 (Homogeneity). Suppose X is a random variable with

an nth cumulant. Then for any c ∈ R, cX has an nth cumulant and

κn(cX) = cnκn(X). (13)

Proof For t near 0 we have

φcX(t) = E(eitcX) = φX(ct)
=⇒ KcX(t) = KX(ct)

=⇒ K
(n)
cX (t) = cnK

(n)
X (ct)

=⇒ κn(cX) = K
(n)
cX (0)/in = cnK

(n)
X (0)/in = cnκn(X).

The nth moment of X + b is a linear combination of the first
n moments of X (with what coefficients?). The situation regarding
cumulants is much simpler:

Theorem 2 (Semi-invariance). Suppose X is a random variable

with an nth cumulant. Then for any b ∈ R, X + b has an nth cumulant
and

κn(X + b) =
{

κn(X) + b, if n = 1,

κn(X), if n > 1.
(14)

Proof For t near 0 we have

φX+b(t) = E(eit(X+b)) = eitbE(eitX) = eitbφX(t)
=⇒ KX+b(t) = itb + KX(t)

=⇒ K
(n)
X+b(t) = dn

dtn itb + K
(n)
X (t)

=⇒ (14) holds.
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Here is the reason for the name “cumulants”; note that (16) is
much simpler than the corresponding relation for moments.

Theorem 3 (Cumulants accumulate). Suppose X and Y are in-

dependent random variables, each having an nth cumulant. Then
S := X + Y has an nth cumulant, and

κn(S) = κn(X) + κn(Y ). (15)

Proof φS(t) = φX(t)φY (t), so KS(t) = KX(t) + KY (t).

Now we investigate the relationship between moments and cumu-
lants. We first consider moments about 0, which we write as

αj := E(Xj) (16)

for j = 0, 1, 2, . . . . Note that α0 = 1.

Theorem 4 (The cumulant/moment connection). Suppose X
is a random variable with n moments α1, . . . , αn. Then X has n
cumulants κ1, . . . , κn, and

αr+1 =
∑r

j=0

(r

j

)
αjκr+1−j for r = 0, . . . , n− 1. (17)

Proof For j = 0, . . . , n we have

αj = φ(j)(0)/ij and κj = K(j)(0)/ij

where φ(t) = E(eitX) and K(t) = log(φ(t)), or, equivalently, φ(t) =
eK(t), for all t near 0. Differentiating this last identity gives

φ′(t) = eK(t)K ′(t) = φ(t)K ′(t) (18)

and evaluating this at t = 0 gives

iα1 = 1(iκ1) =⇒ α1 = κ1 =⇒ (17) holds for r = 0.

Differentiating (18) r times gives (see Exercise 3)

φ(r+1)(t) =
∑r

j=0

(r

j

)
φ(j)(t) (K ′)r−j(t)

and evaluating this at t = 0 shows that (17) holds for 1 ≤ r < n.
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(17): αr+1 =
∑r

j=0

(
r
j

)
αjκr+1−j for r = 0, . . . , n− 1.

Writing out (17) for r = 0, . . . , 3 produces

α1 = κ1,

α2 = κ2 + α1κ1,
(19)

α3 = κ3 + 2α1κ2 + α2κ1,

α4 = κ4 + 3α1κ3 + 3α2κ2 + α3κ1.

These recursive formulas can be used to calculate the α’s efficiently
from the κ’s, and vice versa. When X has mean 0, that is, when
α1 = 0 = κ1, αj becomes

µj := E
(
(X − E(X))j

)

and formulas (19) simplify to

µ2 = κ2,

µ3 = κ3,

µ4 = κ4 + 3κ2
2,

κ2 = µ2,

κ3 = µ3

κ4 = µ4 − 3µ2
2.

(20)

Since the central moments µ2, µ3, . . . and the cumulants κ2, κ3, . . .
are unaffected by adding a constant to X, these formulas are valid
even when E(X) 6= 0. Note that µ2 is simply the variance of X.

Example 2. The following display exhibits the moment/cumulant
connection for some important distributions:

X∼N(ν, τ2)

κ1 =ν,

κ2 = τ2,

κ3 =0,

κ4 =0,

α1 =ν,

µ2 = τ2,

µ3 =0,

µ4 =3τ4,

X∼Gamma(r)

κ1 = r,

κ2 = r,

κ3 =2r,

κ4 =6r,

α1 = r,

µ2 = r

µ3 =2r,

µ4 =6r+3r2,

X∼Poisson(λ)

κ1 =λ,

κ2 =λ,

κ3 =λ,

κ4 =λ,

α1 =λ,

µ2 =λ,

µ3 =λ,

µ4 =λ+3λ2.
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More on the cumulant/moment connection. Equations (19)
express α1, . . . , α4 recursively in terms of κ1, . . . , κ4. By carrying
out the recursions one finds that

α1 = κ1,

α2 = κ2 + κ2
1,

α3 = κ3 + 3κ2κ1 + κ3
1,

α4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1.

Note that the formula for α4 is a linear combination of products of κj ’s
and that, including multiplicities, the subscripts j on the κj ’s in those
products form the following lists:

[4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1] .

These are all the possible lists of nonincreasing positive integers which
add to 4; they’re called the additive partitions of 4. In what follows
I am going to show that for any n ∈ N, αn is a sum of the form∑

π cπκπ where π ranges over the additive partitions of n, cπ is a
certain number depending on π, and κπ =

∏
j∈π κj .

We need some notation. For a positive integer n let

Pn be the collection of all additive partitions of n. (21)

By definition an element π of Pn has the form

π = [ j1, . . . , j1︸ ︷︷ ︸
m1 times

, j2, . . . , j2︸ ︷︷ ︸
m2 times

, . . . , jk, . . . , jk︸ ︷︷ ︸
mk times

] (221)

for some number k, the ji’s and mi’s being positive integers satisfying
j1 > j2 > · · · > jk and n =

∑k
i=1miji. Shorthand for (221) is

π = [ jm1
1 , jm2

2 , . . . , j
mk
k ]; (222)

note that in (222) the notation j
mi
i means “replicate ji a total of

mi times”, not “raise ji to the mth
i power”. For example [41, 22, 13]

denotes the partition [4, 2, 2, 1, 1, 1] of n = 11; this partition has 6 el-
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(22): π = [ jm1
1 , jm2

2 , . . . , j
mk
k ] := [ j1, . . . , j1︸ ︷︷ ︸

m1 times

, j2, . . . , j2︸ ︷︷ ︸
m2 times

, . . . , jk, . . . , jk︸ ︷︷ ︸
mk times

].

ements, of which only 3 (namely 4, 2, and 1) are distinct. In general
the partition (22) has a total of

νπ := m1 + m2 + · · ·+ mk (23)

elements, of which kπ := k (namely, j1, j2, . . . , jk) are distinct. The
quantities

cπ :=
n!

(j1!)m1(j2!)m2 · · · (jk!)mk

1
m1! m2! · · · mk!

(24)

dπ := cπ × (−1)νπ−1(νπ − 1)! (25)

play an important role in what follows, as do the products

απ :=
∏

j∈π
αj and κπ :=

∏
j∈π

κj . (26)

Theorem 5. For a random variable having moments α1, . . . , αn and
cumulants κ1, . . . , κn,

αn =
∑

π
cπκπ and κn =

∑
π

dπαπ ; (27)

the sums here are taken over the elements π = [ jm1
1 , jm2

2 , . . . , j
mk
k ]

of Pn and cπ, dπ, απ, and κπ are defined by (24)–(26) above.

Example 3. One of the additive partitions of 11 is π = [41, 22, 13] =
[ jm1

1 , jm2
2 , jm3

3 ] for j1 = 4, j2 = 2, j3 = 1, m1 = 1, m2 = 2, m3 = 3.
According to (27), the contribution this π makes to α11 is cπκπ where

κπ := κ4κ
2
2κ

3
1 and cπ :=

11!
4! (2!)2 (1!)3

1
1! 2! 3!

= 34650 .

Moreover since νπ = 1 + 2 + 3 = 6, the contribution π makes to κ11

is dπαπ where

απ = α4α
2
2α

3
1 and dπ = cπ (−1)5 5! = −4158000 . •
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(23): νπ :=
∑kπ

i=1 mi (24): cπ := n!/
∏kπ

i=1

(
(ji!)mimi!

)

As we will see, Theorem 5 is a special case of the formula given
below for the nth derivative of the composition of two functions. The
formula applies to real or complex valued functions of a real or com-
plex variable. For example, one of the functions may be a charac-
teristic function, which is (in general) a complex-valued function of a
real variable, and the other may be the complex logarithm function.
Recall that a function is said to have an nth derivative at a point
if the function is (n−1)-times differentiable in an open neighborhood
of the point and the (n− 1)st derivative is differentiable at the point.

Theorem 6 (Faà di Bruno’s formula). Let n be a positive integer
and let f and g be two functions such that: the composite function
h := g(f) is defined in an open neighborhood of a point x; f has an

nth derivative at x; and g has an nth derivative at y := f(x). Then h

has an nth derivative at x given by the formula

h(n)(x) =
∑

π∈Pn
cπ g(νπ)(y)

[∏
j∈π

f (j)(x)
]

(28)

where cπ and νπ are defined by (24) and (23) respectively, f (j)(x) is

the jth derivative of f at x, and g(ν)(y) is the νth derivative of g at y.

Example 4. For the additive partition [21, 11] of n = 3 one has
νπ = 1 + 1 = 2 and cπ = 3!/[(211!)(111!)] = 3. According to Faà di
Bruno’s formula, the third derivative of h = g(f) should contain the
term 3g′′

(
f(x)

)
f ′(x)f ′′(x). This can be verified by direct calculation:

h′= g′(f)f ′,

h′′= g′′(f)(f ′)2 + g′(f)f ′′,

h′′′=
[
g′′′(f) (f ′)3 + 2g′′(f)f ′f ′′

]
+

[
g′′(f)f ′f ′′ + g′(f)f ′′′

]

= g′′′(f)(f ′)3 + 3g′′(f)f ′f ′′ + g′(f)f ′′′. •
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h = g(f) (28): h(n)(x) =
∑

π∈Pn
cπ g(νπ)

(
f(x)

)[∏
j∈π f (j)(x)

]

Example 5. Let X be a random variable with characteristic function
φ, cumulant generating function K = log(φ), moments α1, . . . , αn and
cumulants κ1 . . . κn. inαn is h(n)(x) for x = 0 and h(t) = φ(t) =
eK(t) = g

(
f(t)

)
with f(t) = K(t) and g(z) = ez. (28) applies because

K is defined in a neighborhood of t. Since f (j)(x) = ijκj and g(ν)(z) =
ez equals 1 at z = y = f(x) = 0, Faà di Bruno’s formula (28) implies

inαn =
∑

π∈Pn
cπ

[∏
j∈π

ijκj

]
= in

∑
π∈Pn

cπκπ;

dividing through by in gives the LHS of (27). Similarly, the RHS of
(27) follows by applying (28) for x = 0 to K(t) = g

(
φ(t)

)
with g(z) =

log(z) and using g(ν)(z) = (−1)ν−1(ν − 1)!/zν = (−1)ν−1(ν − 1)! for
z = y = φ(0) = 1. •

Proof of Theorem 6. The method used in Example 4 shows that
h has an nth derivative at x, so that by Taylor’s theorem

h(ξ) =
∑n

j=0

h(j)(x)
j!

(ξ − x)j + o
(|ξ − x|n)

as ξ → x.

I am going to show that

h(ξ) =
∑n

j=0

Hj

j!
(ξ − x)j + o

(|ξ − x|n))
as ξ → x

for certain numbers H0, H1, . . . , Hn, with Hn being defined by the
RHS of (28). This implies h(j)(x) = Hj for j = 0, . . . , n, and in
particular that h(n)(x) = Hn, as (28) asserts.
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h = g(f) (28): h(n)(x) =
∑

π∈Pn
cπ g(νπ)

(
f(x)

)[∏
j∈π f (j)(x)

]

Since f has an nth derivative at x, Taylor’s theorem implies that

f(ξ) =
∑n

j=0

fj

j!
(ξ − x)j + o

(|ξ − x|n)
as ξ → x (29)

for fj = f (j)(x). Similarly, since g has an nth derivative at y = f(x),

g(η) =
∑n

ν=0

gν

ν!
(η − y)ν + o

(|η − y|n)
as η → y (30)

for gν = g(ν)(y). Thus

h(ξ) = g
(
f(ξ)

)
=

∑n

ν=0

gν

ν!
(
f(ξ)− f(x)

)ν + o
(|f(ξ)− f(x)|n)

=
∑n

ν=0

gν

ν!

(∑n

i=1

fi

i!
(ξ − x)i + o

(|ξ − x|n))ν

+ o
(|ξ − x|n)

=
∑n

ν=0

gν

ν!

(∑n

i=1

fi

i!
(ξ − x)i

)ν

+ o
(|ξ − x|n)

=
∑n

j=0

Hj

j!
(ξ − x)j + o

(|ξ − x|n)
(31)

as ξ → x, where

Hn = n!
∑n

ν=1

gν

ν!

[∑
i1,i2,...,iν≥1

i1+i2+···+iν=n

fi1fi2 · · · fiν

i1! i2! · · · iν !

]

= n!
n∑

ν=1

gν

ν!

[ ∑

[ j
m1
1 ,...,j

mk
k

]∈Pn
m1+···+mk=ν

fm1
j1

· · · fmk
jk

(j1!)m1 · · · (jk!)mk

ν!
m1! · · ·mk!

]
. (32)

The last step uses the fact that the number of ν-tuples i1, i2, . . . , iν
which contain m1 j1’s, m2 j2’s, . . . , and mk jk’s (for distinct j1, . . . , jk)
is given by the multinomial coefficient

(
ν

m1···mk

)
= ν!

m1!···mk! . This
completes the proof of (28).

It is worth noting that (29) and (30) for arbitrary fj ’s and gν ’s
imply (31) with Hn given by (32). This result doesn’t require f and
g to be differentiable,

18 – 11

Exercise 1. Show that if a0, . . . , an and b0, . . . , bn are complex
numbers such that∑n

j=0
ajt

j =
∑n

j=0
bjt

j + o(tn)

as t → 0 through R, then aj = bj for j = 0, . . . , n. [Hint: use
induction on j.] ¦

Exercise 2. (a) Suppose X and Y are independent random variables,
each having an nth moment. As in Theorem 3, put S = X + Y .
Express αn(S) in terms of αj(X) and αj(Y ) for j = 0, . . . , n. (b)
Suppose b ∈ R and X has an nth moment. Express αn(X + b) in
terms of αj(X) for j = 0, . . . , n. ¦

Exercise 3. Let (a, b) be an open subinterval of R and let f and g
be complex-valued functions defined on (a, b). Show that if f and g
are n-times differentiable, then so is h := fg and

h(n)(t) =
∑n

j=0

(n

j

)
f (j)(t) g(n−j)(t) (33)

for each t ∈ (a, b). [Hint: use induction on n]. ¦
The next four exercises deal with the cumulants of a random

variable U uniformly distributed over the interval [−1/2, 1/2].

Exercise 4. Let U be as above. Show that U has CGF

K(t) := log
(
E(etU )

)
= log

( sinh(t/2)
t/2

)
(34)

for all real t. (sinh(x) := (ex − e−x)/2; take sinh(0)/0 := 1.) ¦

Exercise 5. Let K be as in (34). Show that

K ′(t) =
1
2
− 1

t
+

1
exp(t)− 1

,

for t 6= 0, while K ′(0) = 0. ¦
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Let B0, B1, . . . be the so-called Bernoulli numbers, i.e., the
coefficients in the power series expansion

t

exp(t)− 1
=

∑∞
k=0

Bktk

k!
; (35)

in particular

B0 = 1,

B6 =
1
42

,

B1 = −1
2
,

B8 = − 1
30

,

B2 =
1
6
,

B10 =
5
66

,

B4 = − 1
30

,

B12 = − 691
2730

(36)

while B3 = B5 = · · · = B11 = 0. (See Abramowitz and Stegun
page 804, or do “help (bernoulli)” in Maple.) Formula (35) holds
for |t| < 2π†.

Exercise 6. Let U and the Bernoulli numbers be as above. By
integrating K ′(s) from 0 to t, show that

K(t) =
∑∞

k=2

Bktk

k k!
(37)

for |t| < 2π, and hence that the kth cumulant of U is Bk/k, for k ≥ 2;
in particular all cumulants of odd order equal zero, while

κ2 =
1
12

κ8 = − 1
240

,

κ4 = − 1
120

,

κ10 =
1

132
,

κ6 =
1

252
,

κ12 = − 691
32760

.

(38) ¦

† Optional: prove this. Use the fact that if f is a complex valued
function which is defined and differentiable in the disk D := { z :
|z − z0| < r }, then f is infinitely differentiable in D and f(z) =∑∞

n=0 f (n)(z0)(z − z0)n/n! for all z ∈ D.
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Exercise 7. Let U be as above. Confirm the values of κ2, . . . , κ12

in (38) by computing the first 12 central moments of U and using
the formulas for cumulants in terms of moments; use Maple or the
equivalent to do the arithmetic. ¦

Exercise 8. Confirm Faà di Bruno’s formula by computing the fifth
derivative of h = g(f) and checking the result against the RHS of ().¦

Exercise 9. For integers 1 ≤ m ≤ n let pn,m be the number of
additive partitions of n for which the largest element is m, and let pn

be the total number of additive partitions of n. Show that

pn,m =





1, if m = n,
∑min(m,n−m)

j=1
pn−m,j , if m < n.

and that

pn =
∑n

m=1
pn,m.

Use these relations to compute pn for n = 1, . . . , 10. ¦
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