TOPIC. Cumulants. Just as the generating function M of a random variable X "generates" its moments, the logarithm of M generates a sequence of numbers called the cumulants of X. Cumulants are of interest for a variety of reasons, an especially important one being the fact that the j^{th} cumulant of a sum of independent random variables is simply the sum of the j^{th} cumulants of the summands.

Definitions and examples. To begin with, suppose that X is a real random variable whose real moment generating function $M(u) = E(e^{uX})$ is finite for all u's in an open interval about 0. Since $M(0) = 1 \neq 0$ and since the composition of two functions which have power series expansions itself has a power series expansion, we may write

$$(\log M)(u) = \sum_{n=0}^{\infty} \frac{\kappa_n u^n}{n!} \tag{1}$$

for all u in some (possibly smaller) open interval about 0. The numbers $\kappa_1, \kappa_2, \ldots$ in this expansion are called the *cumulants* (for a reason that will be explained subsequently). Notice that

$$\kappa_n = (\log M)^{(n)}(0) \tag{2}$$

all *n*; in particular $\kappa_0 = \log(M(0)) = \log(1) = 0$. (1) implies (see Theorem 12.4) that for all *z* in some open ball about 0 in \mathbb{C}

$$(\log G)(z) = \sum_{n=1}^{\infty} \frac{\kappa_n z^n}{n!};$$
(3)

here $G(z) = E(e^{zX})$ is the complex generating function and "log" denotes the principal branch of the complex logarithm function. In particular the characteristic function $\phi(t) = E(e^{itX})$ of X satisfies

$$K(t) := \log(\phi(t)) = \sum_{n=1}^{\infty} \frac{\kappa_n i^n t^n}{n!}$$

$$\tag{4}$$

for all t in some open interval about 0 in \mathbb{R} , and

$$\kappa_n = K^{(n)}(0)/i^n \tag{5}$$

for all $n \in \mathbb{N}$. Since the functions $\log M$, $\log G$, and $K = \log \phi$ generate the cumulants, they are called **cumulant generating functions** (**CGFs**). (Some properties of cumulants and their generating func-

tions were developed in the exercises in Section 11. None of those results are used here. Moreover there is a change in notation — in Section 11 K(t) denoted $\log(M(t))$, whereas here K(t) is $\log(\phi(t))$.)

Formula (5) is used to define the first n cumulants of X when X is only known to have an n^{th} moment, i.e., when $E(|X|^n) < \infty$. In this situation ϕ is n-times continuously differentiable and close to 1 in an open interval about $0 \in \mathbb{R}$, and so $K = \log(\phi)$ is defined and n-times continuously differentiable in that interval. Consequently the j^{th} cumulant

$$\kappa_j := K^{(j)}(0)/i^j \tag{6}$$

exists for $j = 1, \ldots, n$, and

$$K(t) = \sum_{j=1}^{n} \frac{i^{j} \kappa_{j} t^{j}}{j!} + o(t^{n}) \text{ as } t \to 0.$$
(7)

The following observation is useful for recognizing the cumulants. If X has a n^{th} moment and $\lambda_1, \ldots, \lambda_n$ are numbers such that

$$K(t) = \sum_{j=1}^{n} \frac{i^{j} \lambda_{j} t^{j}}{j!} + o(t^{n}) \text{ as } t \to 0,$$
(81)

then (see Exercise 1)

$$\kappa_j = \lambda_j \text{ for } j = 1, \dots, n.$$
(82)

Example 1. (A) Suppose $X \sim N(\mu, \sigma^2)$. Then

$$\phi(t) = e^{i\mu t} e^{-\sigma^2 t^2/2}$$
 and $K(t) = \log(\phi(t)) = i\mu t - \frac{\sigma^2 t^2}{2}$

for t near 0. X has infinitely many cumulants since its moment generating function is finite in a neighborhood of 0 (actually, finite everywhere); formula (5) gives

$$\kappa_1 = \mu, \ \kappa_2 = \sigma^2, \ \kappa_3 = \kappa_4 = \dots = 0.$$
(9)

Since the first and second cumulants of any random variables are its mean and variance (see (19) and (20)), the normal distribution has the simplest possible cumulants.

18 - 2

(B) Suppose $X \sim \text{Gamma}(r)$. Then

$$\begin{split} \phi(t) &= \left(\frac{1}{1-it}\right)^r \quad \text{and} \\ K(t) &= -r\log(1-it) = r\sum\nolimits_{n=1}^\infty \frac{(it)^n}{n} = r\sum\nolimits_{n=1}^\infty \frac{(n-1)!\,(it)^n}{n!} \end{split}$$

for t near 0. X has cumulants of all orders. By the uniqueness of the coefficients in the power series $\sum_{n=1}^{\infty} \kappa_n i^n t^n / n!$, we get

$$\kappa_n = r(n-1)! \text{ for } n \ge 1.$$
(10)

(C) Suppose that $X \sim \text{Poisson}(\lambda)$. Then

$$\phi(t) = e^{\lambda(e^{it}-1)}$$
 and $K(t) = \lambda(e^{it}-1) = \sum_{n=1}^{\infty} \frac{\lambda i^n t^n}{n!}$

for t near 0. Evidently

$$\kappa_1 = \kappa_2 = \kappa_3 = \dots = \lambda. \tag{11}$$

(D) Suppose that X has an unnormalized t-distribution with 3 degrees of freedom; its density has the form

$$\frac{c}{(1+x^2)^2}.$$

X has only two moments, and thus only two cumulants. It turns out (see Exercise 13.11) that $\phi(t) = e^{-|t|}(1+|t|)$ for all $t \in \mathbb{R}$. Thus

$$K(t) = -|t| + \log(1+|t|)$$

= $-|t| + \left(|t| - \frac{|t|^2}{2} + \frac{|t|^3}{3} + \cdots\right) \quad \text{(for } |t| < 1)$
= $-\frac{t^2}{2} + o(t^2) = 0\frac{it}{1!} + 1\frac{i^2t^2}{2!} + o(t^2) = \kappa_1\frac{it}{1!} + \kappa_2\frac{i^2t^2}{2!} + o(t^2)$

as $t \to 0$. (8₂) gives

$$\kappa_1 = 0 \quad \text{and} \quad \kappa_2 = 1. \tag{12}$$

 $\kappa_3, \kappa_4, \ldots$ are undefined.

18 - 3

Properties of cumulants. This section develops some useful properties of cumulants. The n^{th} moment of cX is c^n times the n^{th} moment of X; this scaling property is shared by the cumulants.

Theorem 1 (Homogeneity). Suppose X is a random variable with an n^{th} cumulant. Then for any $c \in \mathbb{R}$, cX has an n^{th} cumulant and

$$\kappa_n(cX) = c^n \kappa_n(X). \tag{13}$$

Proof For t near 0 we have

$$\phi_{cX}(t) = E(e^{itcX}) = \phi_X(ct)$$

$$\Longrightarrow K_{cX}(t) = K_X(ct)$$

$$\Longrightarrow K_{cX}^{(n)}(t) = c^n K_X^{(n)}(ct)$$

$$\Longrightarrow \kappa_n(cX) = K_{cX}^{(n)}(0)/i^n = c^n K_X^{(n)}(0)/i^n = c^n \kappa_n(X).$$

The n^{th} moment of X + b is a linear combination of the first n moments of X (with what coefficients?). The situation regarding cumulants is much simpler:

Theorem 2 (Semi-invariance). Suppose X is a random variable with an n^{th} cumulant. Then for any $b \in \mathbb{R}$, X + b has an n^{th} cumulant and

$$\kappa_n(X+b) = \begin{cases} \kappa_n(X) + b, & \text{if } n = 1, \\ \kappa_n(X), & \text{if } n > 1. \end{cases}$$
(14)

Proof For t near 0 we have

$$\phi_{X+b}(t) = E(e^{it(X+b)}) = e^{itb}E(e^{itX}) = e^{itb}\phi_X(t)$$
$$\implies K_{X+b}(t) = itb + K_X(t)$$
$$\implies K_{X+b}^{(n)}(t) = \frac{d^n}{dt^n}itb + K_X^{(n)}(t)$$
$$\implies (14) \text{ holds.}$$

Here is the reason for the name "cumulants"; note that (16) is much simpler than the corresponding relation for moments.

Theorem 3 (Cumulants accumulate). Suppose X and Y are independent random variables, each having an n^{th} cumulant. Then S := X + Y has an n^{th} cumulant, and

$$\kappa_n(S) = \kappa_n(X) + \kappa_n(Y). \tag{15}$$

Proof $\phi_S(t) = \phi_X(t)\phi_Y(t)$, so $K_S(t) = K_X(t) + K_Y(t)$.

Now we investigate the relationship between moments and cumulants. We first consider moments about 0, which we write as

$$\alpha_j := E(X^j) \tag{16}$$

for j = 0, 1, 2, Note that $\alpha_0 = 1$.

Theorem 4 (The cumulant/moment connection). Suppose X is a random variable with n moments $\alpha_1, \ldots, \alpha_n$. Then X has n cumulants $\kappa_1, \ldots, \kappa_n$, and

$$\alpha_{r+1} = \sum_{j=0}^{r} \binom{r}{j} \alpha_j \kappa_{r+1-j} \text{ for } r = 0, \dots, n-1.$$
 (17)

Proof For $j = 0, \ldots, n$ we have

$$\alpha_j = \phi^{(j)}(0)/i^j$$
 and $\kappa_j = K^{(j)}(0)/i^j$

where $\phi(t) = E(e^{itX})$ and $K(t) = \log(\phi(t))$, or, equivalently, $\phi(t) = e^{K(t)}$, for all t near 0. Differentiating this last identity gives

$$\phi'(t) = e^{K(t)}K'(t) = \phi(t)K'(t)$$
(18)

and evaluating this at t = 0 gives

$$i\alpha_1 = 1(i\kappa_1) \Longrightarrow \alpha_1 = \kappa_1 \Longrightarrow (17)$$
 holds for $r = 0$.

Differentiating (18) r times gives (see Exercise 3)

$$\phi^{(r+1)}(t) = \sum_{j=0}^{r} {r \choose j} \phi^{(j)}(t) \ (K')^{r-j}(t)$$

and evaluating this at t = 0 shows that (17) holds for $1 \le r < n$.

18 - 5

(17):
$$\alpha_{r+1} = \sum_{j=0}^{r} {r \choose j} \alpha_j \kappa_{r+1-j}$$
 for $r = 0, ..., n-1$.

 $(\rightarrow -)$

Writing out (17) for
$$r = 0, ..., 3$$
 produces
 $\alpha_1 = \kappa_1,$
 $\alpha_2 = \kappa_2 + \alpha_1 \kappa_1,$
 $\alpha_3 = \kappa_3 + 2\alpha_1 \kappa_2 + \alpha_2 \kappa_1,$
 $\alpha_4 = \kappa_4 + 3\alpha_1 \kappa_3 + 3\alpha_2 \kappa_2 + \alpha_3 \kappa_1.$
(19)

These recursive formulas can be used to calculate the α 's efficiently from the κ 's, and vice versa. When X has mean 0, that is, when $\alpha_1 = 0 = \kappa_1, \ \alpha_j$ becomes

$$\mu_j := E\big((X - E(X))^j\big)$$

and formulas (19) simplify to

.....

$$\mu_{2} = \kappa_{2}, \qquad \kappa_{2} = \mu_{2}, \mu_{3} = \kappa_{3}, \qquad \kappa_{3} = \mu_{3}$$
(20)
$$\mu_{4} = \kappa_{4} + 3\kappa_{2}^{2}, \qquad \kappa_{4} = \mu_{4} - 3\mu_{2}^{2}.$$

Since the central moments μ_2, μ_3, \ldots and the cumulants $\kappa_2, \kappa_3, \ldots$ are unaffected by adding a constant to X, these formulas are valid even when $E(X) \neq 0$. Note that μ_2 is simply the variance of X.

Example 2. The following display exhibits the moment/cumulant connection for some important distributions:

$$\begin{split} X &\sim N(\nu, \tau^2) & X \sim \operatorname{Gamma}(r) & X \sim \operatorname{Poisson}(\lambda) \\ \kappa_1 &= \nu, \quad \alpha_1 = \nu, \quad \kappa_1 = r, \quad \alpha_1 = r, \quad \kappa_1 = \lambda, \quad \alpha_1 = \lambda, \\ \kappa_2 &= \tau^2, \quad \mu_2 = \tau^2, \quad \kappa_2 = r, \quad \mu_2 = r & \kappa_2 = \lambda, \quad \mu_2 = \lambda, \\ \kappa_3 &= 0, \quad \mu_3 = 0, \quad \kappa_3 = 2r, \quad \mu_3 = 2r, \quad \kappa_3 = \lambda, \quad \mu_3 = \lambda, \\ \kappa_4 &= 0, \quad \mu_4 = 3\tau^4, \quad \kappa_4 = 6r, \quad \mu_4 = 6r + 3r^2, \quad \kappa_4 = \lambda, \quad \mu_4 = \lambda + 3\lambda^2. \end{split}$$

More on the cumulant/moment connection. Equations (19) express $\alpha_1, \ldots, \alpha_4$ recursively in terms of $\kappa_1, \ldots, \kappa_4$. By carrying out the recursions one finds that

$$\begin{aligned}
\alpha_1 &= \kappa_1, \\
\alpha_2 &= \kappa_2 + \kappa_1^2, \\
\alpha_3 &= \kappa_3 + 3\kappa_2\kappa_1 + \kappa_1^3, \\
\alpha_4 &= \kappa_4 + 4\kappa_3\kappa_1 + 3\kappa_2^2 + 6\kappa_2\kappa_1^2 + \kappa_1^4.
\end{aligned}$$

Note that the formula for α_4 is a linear combination of products of κ_j 's and that, including multiplicities, the subscripts j on the κ_j 's in those products form the following lists:

$$[4], [3,1], [2,2], [2,1,1], \text{ and } [1,1,1,1].$$

These are all the possible lists of nonincreasing positive integers which add to 4; they're called the **additive partitions** of 4. In what follows I am going to show that for any $n \in \mathbb{N}$, α_n is a sum of the form $\sum_{\pi} c_{\pi} \kappa_{\pi}$ where π ranges over the additive partitions of n, c_{π} is a certain number depending on π , and $\kappa_{\pi} = \prod_{j \in \pi} \kappa_j$.

We need some notation. For a positive integer n let

 \mathcal{P}_n be the collection of all additive partitions of n. (21)

By definition an element π of \mathcal{P}_n has the form

$$\pi = [\underbrace{j_1, \dots, j_1}_{m_1 \text{ times}}, \underbrace{j_2, \dots, j_2}_{m_2 \text{ times}}, \dots, \underbrace{j_k, \dots, j_k}_{m_k \text{ times}}]$$
(221)

for some number k, the j_i 's and m_i 's being positive integers satisfying $j_1 > j_2 > \cdots > j_k$ and $n = \sum_{i=1}^k m_i j_i$. Shorthand for (22₁) is

$$\pi = [j_1^{m_1}, j_2^{m_2}, \dots, j_k^{m_k}]; \tag{22}_2$$

note that in (22_2) the notation $j_i^{m_i}$ means "replicate j_i a total of m_i times", not "raise j_i to the m_i^{th} power". For example $[4^1, 2^2, 1^3]$ denotes the partition [4, 2, 2, 1, 1, 1] of n = 11; this partition has 6 el-

$$18 - 7$$

(22):
$$\pi = [j_1^{m_1}, j_2^{m_2}, \dots, j_k^{m_k}] := [\underbrace{j_1, \dots, j_1}_{m_1 \text{ times}}, \underbrace{j_2, \dots, j_2}_{m_2 \text{ times}}, \dots, \underbrace{j_k, \dots, j_k}_{m_k \text{ times}}].$$

ements, of which only 3 (namely 4, 2, and 1) are distinct. In general the partition (22) has a total of

$$\nu_{\pi} := m_1 + m_2 + \dots + m_k \tag{23}$$

elements, of which $k_{\pi} := k$ (namely, j_1, j_2, \ldots, j_k) are distinct. The quantities

$$c_{\pi} := \frac{n!}{(j_1!)^{m_1} (j_2!)^{m_2} \cdots (j_k!)^{m_k}} \frac{1}{m_1! \, m_2! \cdots m_k!} \tag{24}$$

$$d_{\pi} := c_{\pi} \times (-1)^{\nu_{\pi} - 1} (\nu_{\pi} - 1)!$$
(25)

play an important role in what follows, as do the products

$$\alpha_{\pi} := \prod_{j \in \pi} \alpha_j \quad \text{and} \quad \kappa_{\pi} := \prod_{j \in \pi} \kappa_j \,. \tag{26}$$

Theorem 5. For a random variable having moments $\alpha_1, \ldots, \alpha_n$ and cumulants $\kappa_1, \ldots, \kappa_n$,

$$\alpha_n = \sum_{\pi} c_{\pi} \kappa_{\pi} \quad \text{and} \quad \kappa_n = \sum_{\pi} d_{\pi} \alpha_{\pi};$$
(27)

the sums here are taken over the elements $\pi = [j_1^{m_1}, j_2^{m_2}, \dots, j_k^{m_k}]$ of \mathcal{P}_n and $c_{\pi}, d_{\pi}, \alpha_{\pi}$, and κ_{π} are defined by (24)–(26) above.

Example 3. One of the additive partitions of 11 is $\pi = [4^1, 2^2, 1^3] = [j_1^{m_1}, j_2^{m_2}, j_3^{m_3}]$ for $j_1 = 4, j_2 = 2, j_3 = 1, m_1 = 1, m_2 = 2, m_3 = 3$. According to (27), the contribution this π makes to α_{11} is $c_{\pi}\kappa_{\pi}$ where

$$\kappa_{\pi} := \kappa_4 \kappa_2^2 \kappa_1^3 \quad \text{and} \quad c_{\pi} := \frac{11!}{4! \, (2!)^2 \, (1!)^3} \frac{1}{1! \, 2! \, 3!} = 34650 \, .$$

Moreover since $\nu_{\pi} = 1 + 2 + 3 = 6$, the contribution π makes to κ_{11} is $d_{\pi}\alpha_{\pi}$ where

$$\alpha_{\pi} = \alpha_4 \alpha_2^2 \alpha_1^3$$
 and $d_{\pi} = c_{\pi} (-1)^5 5! = -4158000.$

(23):
$$\nu_{\pi} := \sum_{i=1}^{k_{\pi}} m_i$$
 (24): $c_{\pi} := n! / \prod_{i=1}^{k_{\pi}} ((j_i!)^{m_i} m_i!)$

As we will see, Theorem 5 is a special case of the formula given below for the n^{th} derivative of the composition of two functions. The formula applies to real or complex valued functions of a real or complex variable. For example, one of the functions may be a characteristic function, which is (in general) a complex-valued function of a real variable, and the other may be the complex logarithm function. Recall that a function is said to **have an** n^{th} **derivative at a point** if the function is (n-1)-times differentiable in an open neighborhood of the point and the $(n-1)^{\text{st}}$ derivative is differentiable at the point.

Theorem 6 (Faà di Bruno's formula). Let n be a positive integer and let f and g be two functions such that: the composite function h := g(f) is defined in an open neighborhood of a point x; f has an n^{th} derivative at x; and g has an n^{th} derivative at y := f(x). Then hhas an n^{th} derivative at x given by the formula

$$h^{(n)}(x) = \sum_{\pi \in \mathcal{P}_n} c_{\pi} g^{(\nu_{\pi})}(y) \Big[\prod_{j \in \pi} f^{(j)}(x) \Big]$$
(28)

where c_{π} and ν_{π} are defined by (24) and (23) respectively, $f^{(j)}(x)$ is the j^{th} derivative of f at x, and $g^{(\nu)}(y)$ is the ν^{th} derivative of g at y.

Example 4. For the additive partition $[2^1, 1^1]$ of n = 3 one has $\nu_{\pi} = 1 + 1 = 2$ and $c_{\pi} = 3!/[(2^11!)(1^11!)] = 3$. According to Faà di Bruno's formula, the third derivative of h = g(f) should contain the term 3g''(f(x))f'(x)f''(x). This can be verified by direct calculation:

$$\begin{split} h' &= g'(f)f', \\ h'' &= g''(f)(f')^2 + g'(f)f'', \\ h''' &= \left[g'''(f)(f')^3 + 2g''(f)f'f''\right] + \left[g''(f)f'f'' + g'(f)f'''\right] \\ &= g'''(f)(f')^3 + 3g''(f)f'f'' + g'(f)f'''. \end{split}$$

18 - 9

$$h = g(f) \qquad (28): \ h^{(n)}(x) = \sum_{\pi \in \mathcal{P}_n} c_\pi \, g^{(\nu_\pi)} \big(f(x) \big) \big[\prod_{j \in \pi} f^{(j)}(x) \big]$$

Example 5. Let X be a random variable with characteristic function ϕ , cumulant generating function $K = \log(\phi)$, moments $\alpha_1, \ldots, \alpha_n$ and cumulants $\kappa_1 \ldots \kappa_n$. $i^n \alpha_n$ is $h^{(n)}(x)$ for x = 0 and $h(t) = \phi(t) = e^{K(t)} = g(f(t))$ with f(t) = K(t) and $g(z) = e^z$. (28) applies because K is defined in a neighborhood of t. Since $f^{(j)}(x) = i^j \kappa_j$ and $g^{(\nu)}(z) = e^z$ equals 1 at z = y = f(x) = 0, Faà di Bruno's formula (28) implies

$$i^{n}\alpha_{n} = \sum_{\pi \in \mathcal{P}_{n}} c_{\pi} \left[\prod_{j \in \pi} i^{j} \kappa_{j} \right] = i^{n} \sum_{\pi \in \mathcal{P}_{n}} c_{\pi} \kappa_{\pi};$$

dividing through by i^n gives the LHS of (27). Similarly, the RHS of (27) follows by applying (28) for x = 0 to $K(t) = g(\phi(t))$ with $g(z) = \log(z)$ and using $g^{(\nu)}(z) = (-1)^{\nu-1}(\nu-1)!/z^{\nu} = (-1)^{\nu-1}(\nu-1)!$ for $z = y = \phi(0) = 1$.

Proof of Theorem 6. The method used in Example 4 shows that h has an n^{th} derivative at x, so that by Taylor's theorem

$$h(\xi) = \sum_{j=0}^{n} \frac{h^{(j)}(x)}{j!} (\xi - x)^{j} + o(|\xi - x|^{n}) \text{ as } \xi \to x.$$

I am going to show that

$$h(\xi) = \sum_{j=0}^{n} \frac{H_j}{j!} (\xi - x)^j + o(|\xi - x|^n)) \text{ as } \xi \to x$$

for certain numbers H_0, H_1, \ldots, H_n , with H_n being defined by the RHS of (28). This implies $h^{(j)}(x) = H_j$ for $j = 0, \ldots, n$, and in particular that $h^{(n)}(x) = H_n$, as (28) asserts.

$$18 - 10$$

$$h = g(f) \qquad (28): h^{(n)}(x) = \sum_{\pi \in \mathcal{P}_n} c_\pi g^{(\nu_\pi)}(f(x)) \left[\prod_{j \in \pi} f^{(j)}(x) \right]$$

Since f has an n^{th} derivative at x, Taylor's theorem implies that

$$f(\xi) = \sum_{j=0}^{n} \frac{f_j}{j!} (\xi - x)^j + o(|\xi - x|^n) \text{ as } \xi \to x$$
(29)

for $f_j = f^{(j)}(x)$. Similarly, since g has an n^{th} derivative at y = f(x),

$$g(\eta) = \sum_{\nu=0}^{n} \frac{g_{\nu}}{\nu!} (\eta - y)^{\nu} + o(|\eta - y|^{n}) \text{ as } \eta \to y$$
(30)

for $g_{\nu} = g^{(\nu)}(y)$. Thus

$$h(\xi) = g(f(\xi)) = \sum_{\nu=0}^{n} \frac{g_{\nu}}{\nu!} (f(\xi) - f(x))^{\nu} + o(|f(\xi) - f(x)|^{n})$$

$$= \sum_{\nu=0}^{n} \frac{g_{\nu}}{\nu!} \left(\sum_{i=1}^{n} \frac{f_{i}}{i!} (\xi - x)^{i} + o(|\xi - x|^{n}) \right)^{\nu} + o(|\xi - x|^{n})$$

$$= \sum_{\nu=0}^{n} \frac{g_{\nu}}{\nu!} \left(\sum_{i=1}^{n} \frac{f_{i}}{i!} (\xi - x)^{i} \right)^{\nu} + o(|\xi - x|^{n})$$

$$= \sum_{j=0}^{n} \frac{H_{j}}{j!} (\xi - x)^{j} + o(|\xi - x|^{n})$$
(31)

as $\xi \to x$, where

$$H_{n} = n! \sum_{\nu=1}^{n} \frac{g_{\nu}}{\nu!} \left[\sum_{\substack{i_{1},i_{2},\dots,i_{\nu} \geq 1\\i_{1}+i_{2}+\dots+i_{\nu}=n}} \frac{f_{i_{1}}f_{i_{2}}\cdots f_{i_{\nu}}}{i_{1}!\,i_{2}!\cdots i_{\nu}!} \right]$$
$$= n! \sum_{\nu=1}^{n} \frac{g_{\nu}}{\nu!} \left[\sum_{\substack{[j_{1}^{m_{1}},\dots,j_{k}^{m_{k}}] \in \mathcal{P}_{n}\\m_{1}+\dots+m_{k}=\nu}} \frac{f_{j_{1}}^{m_{1}}\cdots f_{j_{k}}^{m_{k}}}{(j_{1}!)^{m_{1}}\cdots (j_{k}!)^{m_{k}}} \frac{\nu!}{m_{1}!\cdots m_{k}!} \right]. (32)$$

The last step uses the fact that the number of ν -tuples $i_1, i_2, \ldots, i_{\nu}$ which contain $m_1 j_1$'s, $m_2 j_2$'s, \ldots , and $m_k j_k$'s (for distinct j_1, \ldots, j_k) is given by the multinomial coefficient $\binom{\nu}{m_1 \cdots m_k} = \frac{\nu!}{m_1! \cdots m_k!}$. This completes the proof of (28).

It is worth noting that (29) and (30) for arbitrary f_j 's and g_{ν} 's imply (31) with H_n given by (32). This result doesn't require f and g to be differentiable,

18 - 11

Exercise 1. Show that if a_0, \ldots, a_n and b_0, \ldots, b_n are complex numbers such that

$$\sum_{j=0}^{n} a_j t^j = \sum_{j=0}^{n} b_j t^j + o(t^n)$$

as $t \to 0$ through \mathbb{R} , then $a_j = b_j$ for $j = 0, \ldots, n$. [Hint: use induction on j.] \diamond

Exercise 2. (a) Suppose X and Y are independent random variables, each having an n^{th} moment. As in Theorem 3, put S = X + Y. Express $\alpha_n(S)$ in terms of $\alpha_j(X)$ and $\alpha_j(Y)$ for $j = 0, \ldots, n$. (b) Suppose $b \in \mathbb{R}$ and X has an n^{th} moment. Express $\alpha_n(X + b)$ in terms of $\alpha_j(X)$ for $j = 0, \ldots, n$.

Exercise 3. Let (a, b) be an open subinterval of \mathbb{R} and let f and g be complex-valued functions defined on (a, b). Show that if f and g are *n*-times differentiable, then so is h := fg and

$$h^{(n)}(t) = \sum_{j=0}^{n} {n \choose j} f^{(j)}(t) g^{(n-j)}(t)$$
(33)

for each $t \in (a, b)$. [Hint: use induction on n].

The next four exercises deal with the cumulants of a random variable U uniformly distributed over the interval [-1/2, 1/2].

Exercise 4. Let U be as above. Show that U has CGF

$$K(t) := \log\left(E(e^{tU})\right) = \log\left(\frac{\sinh(t/2)}{t/2}\right)$$
(34)

for all real t. $(\sinh(x) := (e^x - e^{-x})/2$; take $\sinh(0)/0 := 1$.) \diamond

Exercise 5. Let K be as in (34). Show that

$$K'(t) = \frac{1}{2} - \frac{1}{t} + \frac{1}{\exp(t) - 1},$$

for $t \neq 0$, while K'(0) = 0.

 \diamond

 \diamond

Let B_0, B_1, \ldots be the so-called **Bernoulli numbers**, i.e., the coefficients in the power series expansion

$$\frac{t}{\exp(t) - 1} = \sum_{k=0}^{\infty} \frac{B_k t^k}{k!};$$
(35)

in particular

$$B_{0} = 1, \qquad B_{1} = -\frac{1}{2}, \qquad B_{2} = \frac{1}{6}, \qquad B_{4} = -\frac{1}{30}, B_{6} = \frac{1}{42}, \qquad B_{8} = -\frac{1}{30}, \qquad B_{10} = \frac{5}{66}, \qquad B_{12} = -\frac{691}{2730}$$
(36)

while $B_3 = B_5 = \cdots = B_{11} = 0$. (See Abramowitz and Stegun page 804, or do "help (bernoulli)" in Maple.) Formula (35) holds for $|t| < 2\pi^{\dagger}$.

Exercise 6. Let U and the Bernoulli numbers be as above. By integrating K'(s) from 0 to t, show that

$$K(t) = \sum_{k=2}^{\infty} \frac{B_k t^k}{k \, k!} \tag{37}$$

for $|t| < 2\pi$, and hence that the k^{th} cumulant of U is B_k/k , for $k \ge 2$; in particular all cumulants of odd order equal zero, while

$$\kappa_{2} = \frac{1}{12} \qquad \kappa_{4} = -\frac{1}{120}, \qquad \kappa_{6} = \frac{1}{252}, \qquad (38) \diamond$$
$$\kappa_{8} = -\frac{1}{240}, \qquad \kappa_{10} = \frac{1}{132}, \qquad \kappa_{12} = -\frac{691}{32760}.$$

[†] Optional: prove this. Use the fact that if f is a complex valued function which is defined and differentiable in the disk $D := \{z : |z - z_0| < r\}$, then f is infinitely differentiable in D and $f(z) = \sum_{n=0}^{\infty} f^{(n)}(z_0)(z-z_0)^n/n!$ for all $z \in D$.

Exercise 7. Let U be as above. Confirm the values of $\kappa_2, \ldots, \kappa_{12}$ in (38) by computing the first 12 central moments of U and using the formulas for cumulants in terms of moments; use Maple or the equivalent to do the arithmetic.

Exercise 8. Confirm Faà di Bruno's formula by computing the fifth derivative of h = g(f) and checking the result against the RHS of ().

Exercise 9. For integers $1 \leq m \leq n$ let $p_{n,m}$ be the number of additive partitions of n for which the largest element is m, and let p_n be the total number of additive partitions of n. Show that

$$p_{n,m} = \begin{cases} 1, & \text{if } m = n, \\ \sum_{j=1}^{\min(m,n-m)} p_{n-m,j}, & \text{if } m < n. \end{cases}$$

and that

$$p_n = \sum_{m=1}^n p_{n,m}.$$

Use these relations to compute p_n for n = 1, ..., 10.

 \diamond

18 - 14