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TOPIC. Cumulants. Just as the generating function M of a ran-
dom variable X “generates” its moments, the logarithm of M gen-
erates a sequence of numbers called the cumulants of X. Cumulants
are of interest for a variety of reasons, an especially important one
being the fact that the j® cumulant of a sum of independent random
variables is simply the sum of the j** cumulants of the summands.

Definitions and examples. To begin with, suppose that X is a
real random variable whose real moment generating function M (u) =
E(e"X) is finite for all u’s in an open interval about 0. Since M (0) =
1 # 0 and since the composition of two functions which have power
series expansions itself has a power series expansion, we may write

(log M)(u) =Y (1)

for all u in some (possibly smaller) open interval about 0. The num-

©  Kuu"
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bers K1, K2, ... in this expansion are called the cumulants (for a
reason that will be explained subsequently). Notice that
kn = (log M)™(0) (2)

all n; in particular ko = log(M(0)) = log(1) = 0. (1) implies (see
Theorem 12.4) that for all z in some open ball about 0 in C

(logG)(z) =) ; (3)

here G(z) = E(e*X) is the complex generating function and “log”
denotes the principal branch of the complex logarithm function. In
particular the characteristic function ¢(t) = E(e?¥) of X satisfies

K(t) := log(¢(t)) = >
for all £ in some open interval about 0 in R, and
kn = K(0)/i" (5)

for all n € N. Since the functions log M, log G, and K = log ¢ gener-
ate the cumulants, they are called cumulant generating functions
(CGFs). (Some properties of cumulants and their generating func-
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tions were developed in the exercises in Section 11. None of those
results are used here. Moreover there is a change in notation — in
Section 11 K (t) denoted log(M (t)), whereas here K(t) is log(¢(t)).)

Formula (5) is used to define the first n cumulants of X when X
is only known to have an n*® moment, i.e., when E(|X|") < co. In
this situation ¢ is n-times continuously differentiable and close to 1
in an open interval about 0 € R, and so K = log(¢) is defined and
n-times continuously differentiable in that interval. Consequently the

4t cumulant
Ky = K9(0)/i (6)
exists for j =1, ..., n, and
N PRt n
K(t) = ijl i +o(t") ast — 0. (7)
The following observation is useful for recognizing the cumulants.
If X has a n'® moment and A, ..., )\, are numbers such that
n 1,] )‘j tJ n
K(t) = ijl 7 +o(t") ast — 0, (81)
then (see Exercise 1)
kj=A; forj=1,...,n. (82)
Example 1. (A) Suppose X ~ N(u,0?). Then
) 2t2
o(t) = e~ t2 and  K(t) = log(d(t)) = ipt — UT

for ¢ near 0. X has infinitely many cumulants since its moment gen-
erating function is finite in a neighborhood of 0 (actually, finite ev-
erywhere); formula (5) gives

Ki=p, ke =02, kg=rfy=---=0. (9)
Since the first and second cumulants of any random variables are its
mean and variance (see (19) and (20)), the normal distribution has
the simplest possible cumulants.
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(B) Suppose X ~ Gamma(r). Then
1
o(t) = (

1—1at
) 00 (it
K(t):—rlog(l—zt):rznzl - —rzn . oy (n= D"

for ¢ near 0. X has cumulants of all orders. By the uniqueness of the
coefficients in the power series > | k,i"t"/n!, we get

Kn =71(n—1)! for n > 1. (10)

>T and

(C) Suppose that X ~ Poisson(\). Then

o(t) = eA(eit_1) and K(t) = )\(eit 1) = Z

oo A"t

n=1 n!

for t near 0. Evidently
I€1:I€2:I€3:"-:)\. (11)

(D) Suppose that X has an unnormalized t-distribution with 3 degrees
of freedom; its density has the form

c
(1+22)2.

X has only two moments, and thus only two cumulants. It turns out
(see Exercise 13.11) that ¢(t) = e~1!I(1 + |t|) for all t € R. Thus

K(t) = —|t| +log(1 + [t])

L1
:—\t\—l—(|t|——+?+ ) (for Jt < 1)
t2 2t2 7/2t2
=——+o(t2)_0 +1—+o(t2)_m +m2—+o(t2)
2 1! 2!
ast — 0. (82) gives
k1 =0 and k9 = 1. (12)
K3, K4, ... are undefined. °
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Properties of cumulants. This section develops some useful prop-
erties of cumulants. The n'" moment of X is ¢” times the n'" moment
of X; this scaling property is shared by the cumulants.

Theorem 1 (Homogeneity). Suppose X is a random variable with

th th

an n'" cumulant. Then for any ¢ € R, ¢X has an n'" cumulant and

Fn(cX) = "kn(X). (13)
Proof For ¢t near 0 we have

Pex (1) = E(e"Y) = ¢x(ct)
= ch(t) = Kx(ct)

= kn(cX) = KW(0)/i" = "K{(0) /i = ¢"kn(X). "

The n'" moment of X + b is a linear combination of the first
n moments of X (with what coefficients?). The situation regarding
cumulants is much simpler:

Theorem 2 (Semi-invariance). Suppose X is a random variable
with an n'® cumulant. Then for any b € R, X + b has an n'"
and

cumulant

kn(X)+0b, ifn=1,

kn(X), ifn > 1. (14)

nn(X—l—b):{

Proof For t near 0 we have
dx+p(t) = E(eit(X-i-b)) — eith(ez‘tX) _ eitb¢X(t)
— Kx1(t) = itb + Kx(t)
— K\, (1) = &rith+ K (1)

= (14) holds. i
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Here is the reason for the name “cumulants”; note that (16) is
much simpler than the corresponding relation for moments.

Theorem 3 (Cumulants accumulate). Suppose X and Y are in-
dependent random variables, each having an n** cumulant. Then
S := X +Y has an n'* cumulant, and

En(S) = kn(X) + kn(Y). (15)
Proof ¢s(t) = ox (t)¢y (1), so Ks(t) = Kx (t) + Ky (). n

Now we investigate the relationship between moments and cumu-
lants. We first consider moments about 0, which we write as

aj = E(X7) (16)
for j=0,1, 2, ... . Note that ag = 1.
Theorem 4 (The cumulant/moment connection). Suppose X
is a random variable with n moments o1, ..., a,. Then X has n
cumulants k1, ..., k,, and

ror

Oyl sz:()(j)ajmﬂ_j forr=0,...,n—1. (17)

Proof For j =0, ..., n we have

0y = 6O/ and ;= KD (0)/i

where ¢(t) = E(e!*X) and K(t) = log(¢(t)), or, equivalently, ¢(t) =
eK® for all t near 0. Differentiating this last identity gives

¢'(t) = "K' () = o(1) K (1) (18)
and evaluating this at ¢ = 0 gives
iy = 1(ik1) = aq = k1 = (17) holds for r = 0.
Differentiating (18) r times gives (see Exercise 3)
D =S (7)) W 1\r=3
w0 =3, () oV (')

and evaluating this at ¢ = 0 shows that (17) holds for 1 <r <n. 1
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(17): apy1 = Z;ZO(;)ajmﬂ,j forr=0,...,n—1.

Writing out (17) for » =0, ..., 3 produces

a1 = ki,
Q2 = K2 + (iK1,
(19)
a3 = K3 + 2a1 Ko + Qokq,

a4 = K4 + 3o k3 + 3asks + k.
These recursive formulas can be used to calculate the a’s efficiently
from the «’s, and vice versa. When X has mean 0, that is, when
a1 =0 = K1, a; becomes

ny = B((X - B(X)))

and formulas (19) simplify to

U2 = Ka, Ko = [2,
K3 = K3, K3 = 13 (20)
[ta = K4 + 3K3, Ka = g — 343,

Since the central moments ps, ps, ... and the cumulants ko, K3, ...

are unaffected by adding a constant to X, these formulas are valid
even when F(X) # 0. Note that ps is simply the variance of X.

Example 2. The following display exhibits the moment/cumulant
connection for some important distributions:

X ~N(v,7%) X ~ Gamma(r) X ~ Poisson(\)
K1=V, Q1=U, K1=r1, Q=T, KL=\, a1=A,
HQZTQa ,U2=TQ, Ka=T, H2=T Ko =A, fl2=A,
k3=0, p3=0, K3 =21, U3 =2r, K3=M\, H3=A\,

ke =0, /L4:3T4, kg =06, ,u4:67"—|—37“2, Ka= A, ,U,4:)\+3A2

18 -6



More on the cumulant/moment connection. Equations (19)
express agq, ..., aq recursively in terms of k1, ..., k4. By carrying
out the recursions one finds that

a1 = Ky,

oy = Ky + K7,

a3 = K3 + 3Kkaky + /ﬁ;?,

o4 = K4 +4K3Kk1 + 3%3 + 6&211% + fﬁl.
Note that the formula for a4 is a linear combination of products of ;s

and that, including multiplicities, the subscripts j on the x;’s in those
products form the following lists:

4], [3,1], [2,2], [2,1,1], and [1,1,1,1].

These are all the possible lists of nonincreasing positive integers which
add to 4; they’re called the additive partitions of 4. In what follows
I am going to show that for any n € N, «, is a sum of the form
> . Crky Where m ranges over the additive partitions of n, ¢, is a
certain number depending on 7, and Kk, = HjeT Kj.

We need some notation. For a positive integer n let

P., be the collection of all additive partitions of n. (21)

By definition an element 7 of P,, has the form

7T:[jh"‘7j17j27"‘7j27"'7jk'7"'7j/€] (221)
—_— —— ——
m1 times mo times my times

for some number k, the j;’s and m;’s being positive integers satisfying
j1>j2 > - >jr and n = 3% m,j;. Shorthand for (22;) is

m=[0" g s (222)

note that in (223) the notation j.'* means “replicate j; a total of
m; times”, not “raise j; to the m!" power”. For example [4},22 13]
denotes the partition [4,2,2,1,1, 1] of n = 11; this partition has 6 el-
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(22):m = [ 1" 9 2 e G B = (1 e s 1y J2se e 2s o ooy Ty k-
—_— — —

m1 times mo times my times

ements, of which only 3 (namely 4, 2, and 1) are distinct. In general
the partition (22) has a total of

Upi=mi+ma~+---+my (23)
elements, of which k, := k (namely, j1, jo, ..., ji) are distinct. The
quantities

n! 1
Cr = . - 24
(Fa)™ (go2h)m2 - - (Jrh)™e mylma! - my! (24)
dr = cx x (=1)"" (v, — 1)! (25)

play an important role in what follows, as do the products

Oy i= I_Ij€7r a;j and Ky = 1_[]4E7r Kj. (26)

Theorem 5. For a random variable having moments oy, . . ., o, and
cumulants K1, ..., Kn,
oy = E crkys and kK, = E drog; (27)
™ ™
the sums here are taken over the elements © = [j1"% j5'% ..., jo *]

of P,, and ¢y, dr, o, and k. are defined by (24)—(26) above.

Example 3. One of the additive partitions of 11 is 7 = [4!,22,13] =
(31,52, 5 %) for j1 =4, jo =2, js =1, my =1, my = 2, mg = 3.
According to (27), the contribution this m makes to a11 is ¢z K, where

) 11!

Kyp i= 114&2/{;’ and c;:

= — 34650 .
41 (202 (11)3 112131

Moreover since v, = 1+ 2 4+ 3 = 6, the contribution m makes to x11
is droa where

ar = agaia® and  dp = cp (—1)° 5! = —4158000. o

18 - 8



19:39 01/11/2001

(23): vy = Zf”l m; (24): ¢r :==nl/ Hle ((F:h)™im,!)

As we will see, Theorem 5 is a special case of the formula given
below for the n'* derivative of the composition of two functions. The
formula applies to real or complex valued functions of a real or com-
plex variable. For example, one of the functions may be a charac-
teristic function, which is (in general) a complex-valued function of a
real variable, and the other may be the complex logarithm function.
Recall that a function is said to have an nt® derivative at a point
if the function is (n — 1)-times differentiable in an open neighborhood
of the point and the (n — 1)%* derivative is differentiable at the point.

Theorem 6 (Faa di Bruno’s formula). Let n be a positive integer
and let f and g be two functions such that: the composite function
h := g(f) is defined in an open neighborhood of a point x; f has an
nt" derivative at x; and g has an n'"* derivative at y := f(x). Then h
has an n*" derivative at = given by the formula

K@) =Y g )| V@) (28)

where ¢, and v, are defined by (24) and (23) respectively, fU)(x) is
the j*" derivative of f at x, and g®*)(y) is the v derivative of g at y.

Example 4. For the additive partition [2!,1!] of n = 3 one has
ve =1+4+1=2and ¢, = 3!/[(2'1!)(111!)] = 3. According to Faa di
Bruno’s formula, the third derivative of h = g(f) should contain the
term 3¢g” (f(z)) f'(z) f"(x). This can be verified by direct calculation:

=g(Nf"
- g () +9(DSf
= D 2057 DT D]
= DU 3D+ DI .

18 -9

h=g(f) (28): KW (2) = 32 e, er g (f(2)) [[Tjer [ ()]

Example 5. Let X be a random variable with characteristic function
¢, cumulant generating function K = log(¢), moments ay, ..., a, and
cumulants ;... k. i"a, is K (z) for z = 0 and h(t) = ¢(t) =
eK® = g(f(t)) with f(t) = K(t) and g(z) = e*. (28) applies because
K is defined in a neighborhood of t. Since fU)(z) = i’x; and g*)(2) =
e” equals 1 at z =y = f(z) = 0, Faa di Bruno’s formula (28) implies

“n _ ] _ .
"oy, = E c “ | 7 Iﬁl} =1 E Cak
" TE€Pn jen 7 T€Pp

dividing through by i" gives the LHS of (27). Similarly, the RHS of
(27) follows by applying (28) for z = 0 to K (t) = g(¢(t)) with g(z) =
log(z) and using ¢ (2) = (=1)"" (v — )!/2¥ = (=1)*" (v — 1)! for
z=y=¢0) =1 o

Proof of Theorem 6. The method used in Example 4 shows that
h has an n' derivative at z, so that by Taylor’s theorem

w0 (s |
h(§) = ijo " j!( )(5 —z)) +o(l¢ —z|") as & — =

I am going to show that
o) =3 e _wy o —am) ase —a
j=0 j!

for certain numbers Hy, Hy, ..., H,, with H, being defined by the
RHS of (28). This implies h9)(z) = H; for j = 0,...,n, and in
particular that h("™ (z) = H,, as (28) asserts.
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h=g(f) (28): W (@) = 32 e, er 90 (f(2)) [[Tjer [V (2)]

Since f has an n'" derivative at z, Taylor’s theorem implies that

O =3 T —ap o(lg —al") sz (20)
for f; = f(z). Similarly, since g has an n® derivative at y = f(z),

g = Zm—y) +o(ln—yl") asn—y (30)
for g, = g (y). Thus

hE) = g(f©) = 32" T (1(6) - £@)" +o(IF() — fla)|")

v=0 vl
=Y (S ey ol o)) ol )
N ZZ:O % (Zj 1 %( f”)Z)V +o(|§ —2|")
= Z::o Ij{(f —2)? +o(|€ — z|") (31)

as £ — x, where

"'Z [Z filfiQII'f’iui|
Hn = v=1 p! L =L S N PN I
i1+ig+tiy=n 0¢1-02: v
n mi mg
—y & 3 Fnt T V! (32)
- — vl (i)™ - (D)™ male - mg! D
V= []1 9 "]k: k] Pn
mi+-+mp=v

The last step uses the fact that the number of v-tuples iq,io,...,17,
which contain my j1’s, ma jo’s, . .., and my ji’s (for distinct jq, ..., ji)
is given by the multinomial coefHClent (m1 mG) = Tl
completes the proof of (28).

It is worth noting that (29) and (30) for arbitrary f;’s and g¢,’s
imply (31) with H,, given by (32). This result doesn’t require f and
g to be differentiable,
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Exercise 1. Show that if ag, ..., a, and by, ..., b, are complex
numbers such that

n n .
J — ) n
zj_oajt ) o bt +o(t")

as t — 0 through R, then a; = b; for j = 0, ..., n. [Hint: use
induction on j.] ©

Exercise 2. (a) Suppose X and Y are independent random variables,
each having an n*" moment. As in Theorem 3, put S = X + Y.
Express «,(5) in terms of o;(X) and «;(Y) for j =0, ..., n. (b)
Suppose b € R and X has an n'® moment. Express a, (X + b) in

terms of a;j(X) for j =0, ..., n. o

Exercise 3. Let (a,b) be an open subinterval of R and let f and g
be complex-valued functions defined on (a,b). Show that if f and g
are n-times differentiable, then so is h := fg and

i@ =3" (7)) 1900 (33)

for each ¢ € (a,b). [Hint: use induction on n). o

The next four exercises deal with the cumulants of a random
variable U uniformly distributed over the interval [—1/2,1/2].

Exercise 4. Let U be as above. Show that U has CGF

K(t) :=log(E(e')) = 10g<sinil/(;/2)> (34)
for all real ¢. (sinh(z) := (e — e™%)/2; take sinh(0)/0 := 1.) o

Exercise 5. Let K be as in (34). Show that

1 1 1
K()=>—>4—
®) 2 t—i_exp(t)—l7
for ¢ # 0, while K'(0) = 0. o
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Let By, By, ... be the so-called Bernoulli numbers, i.e., the
coefficients in the power series expansion
ey B (35)
exp(t) -1 4—=k=0 k! ’

in particular

1 1 1
B0:17 Bl:_77 32:77 B4*_77
2 6 30
B — 1 1 5 691 (36)
6 = 5> Be = —— B _ _-
27 P8 T Ty P T ge P12 o0
while By = B; = -+ = By; = 0. (See Abramowitz and Stegun

page 804, or do “help (bernoulli)” in Maple.) Formula (35) holds
for |t| < 2T,

Exercise 6. Let U and the Bernoulli numbers be as above. By
integrating K'(s) from 0 to t, show that

0o k
K0 =3, T @)

for [t| < 27, and hence that the k*® cumulant of U is By, /k, for k > 2;
in particular all cumulants of odd order equal zero, while

1 1
K2 = 75 R4 = =755 ke = 555>
12 12 9252
0 g (38) ©
1 1 691
Ky = ——— K10 = —— Kig = ———.
8 2407 "7 132’ 12 32760

' Optional: prove this. Use the fact that if f is a complex valued
function which is defined and differentiable in the disk D := {z :
|z — 29| < r}, then f is infinitely differentiable in D and f(z) =
S o F™(20)(2 — 20)"/n! for all z € D.
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Exercise 7. Let U be as above. Confirm the values of ks, ..., K12
in (38) by computing the first 12 central moments of U and using
the formulas for cumulants in terms of moments; use Maple or the
equivalent to do the arithmetic. o

Exercise 8. Confirm Faa di Bruno’s formula by computing the fifth
derivative of h = g(f) and checking the result against the RHS of ().o

Exercise 9. For integers 1 < m < n let p,,, be the number of
additive partitions of n for which the largest element is m, and let p,
be the total number of additive partitions of n. Show that

1, if m=n,
Pn.om = min(m,n—m) .
' —m.i, if .
ijl Pnomj, ifm<n
and that
n
Pn = Zm:l Pn,m-
Use these relations to compute p,, for n =1,...,10. o
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