
© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Thoth
Cairo/Starknet bytecode analyzer

1



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Patrick Ventuzelo (@Pat_Ventuzelo)
● Founder & CEO of FuzzingLabs | Senior Security Researcher

○ Fuzzing and vulnerability research
○ Development of security tools

● Training/Online courses
○ Rust Security Audit & Fuzzing
○ Go Security Audit & Fuzzing
○ WebAssembly Reversing & Analysis
○ Ethereum/Solidity Security (WIP)
○ Cairo Security (WIP)

● Blockchain security since 2016
○ EthCC speaker (x3), Devcon speaker
○ Creator of Octopus 
○ Public research about EVM reversing & Tx analysis
○ Lead developer of Beaconfuzz, eth2 differential fuzzer
○ Fuzzing and audits of dozen of L1/L2 implementations

2

https://twitter.com/Pat_Ventuzelo
https://github.com/FuzzingLabs/octopus
https://github.com/sigp/beacon-fuzz


© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Compilation - Cairo code into JSON artifact
 

3



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Compilation - Cairo code into JSON artifact
 

4



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Compilation - Cairo code into JSON artifact
 

5



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Compilation - Cairo code into JSON artifact
 

6



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Compilation - Cairo code into JSON artifact
 

7



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Why Thoth has been created?
● Problematic

○ Most contracts on the mainnet/testnet are not verified
○ Only the full JSON artifact is mandatory and stored online

● Goal
○ Analysis of closed source contract for due diligence
○ Help developers to understand compiler operations
○ Thoth is intended to be a complete tool

● Name: Thoth
○ God of the moon, sacred texts, mathematics, sciences, magic, messenger and 

recorder of the deities, master of knowledge, and patron of scribes.
○ Pronounced toss or tot

■ I know the naming pronunciation s*cks a bit…
○ Inspired by other amazing tools

■ Octopus, Slither, Mythril, etc.

● Only the bytecode is the Truth

8

https://github.com/FuzzingLabs/octopus
https://github.com/crytic/slither
https://github.com/ConsenSys/mythril


© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Disassembler

9



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Disassembler 
 

10



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Disassembler

11

● “Visual representation of the bytecode as a 
linear sequence of instructions.”

● Several data are in the JSON.

● Interesting information
○ Builtins
○ Structures
○ Events
○ Constants representation
○ Functions ID and names matching

● Example
○ thoth local cairo_array_sum.json -b



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Decompiler version 0.1.0

12



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Decompiler

13

● “A decompiler is a computer program that takes 
bytecode as input, and attempts to create a 
high-level source file that (ideally) can be 
successfully compiled.”

● Features
○ Recovery of parameters from function calls.
○ Generation of imports.

● The first version of the decompiler
○ Similar to the disassembly output.
○ AP/FP is complicated to understand for beginners.
○ Limited support of if/else blocks.



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Call Graph

14



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Call Graph

15

● “Call graph represents calling relationships between subroutines in a computer program.”

● Node represents a function.
● Edge(a, b) indicates that function a calls function b.

● Legend:
○ Colors for important functions (import, constructor, etc.)
○ Octagonal shape for entry-point.

● Example
○ thoth local cairo_array_sum.json -call -view=True



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Call Graph - Simple example (array_sum)
 

16



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Call Graph - Advanced example (dai bridge)
 

17



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Control Flow Graph (CFG)

18



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Control Flow Graph (CFG)

19

● “Control-flow graph (CFG) is a representation, using graph notation, 
of all paths that might be traversed through a program during its 
execution.”

● Representation
○ Basic block

■ Each node represents a basic block.
■ Straight-line piece of code without any jumps or jump offsets.
■ Jump offsets start a block and jump opcodes end a block.

○ Edges
■ Conditional True/False jump, Direct jump, Fallthrough.

● Usage
○ Useless for most Cairo developers.
○ Interesting but situational for auditors.
○ Critical for decompiler and analysis tools to get better results.

● Example:
○ thoth local cairo_array_sum.json -cfg -view=True



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Control Flow Graph (CFG)

20

 



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Decompiler version 0.3.0

21



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Decompiler version 0.3.0 

22

● Major decompilation improvement 
○ By leveraging on the CFG.
○ Introduction of Single Static Assignment (SSA).
○ Creation of a virtual stack of variable per basic block.

● Single Static Assignment (SSA)
○ “Static single assignment form (abbreviated SSA form/SSA) is a property 

of an intermediate representation (IR), which requires that each variable 
is assigned exactly once, and every variable is defined before it is used.”

○ Each variable is assigned once.
○ Each variable is defined before being used.
○ phi node (Φ) represents multiple potential value for a same variable 

chosen depending on the predecessor of the current block.

● Example
○ thoth local cairo_nested_if_phi_node.json -d --color



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

● Thoth version 0.3.0 

Decompiler evolution
● Thoth version 0.1.0 

23

● Original Source code



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Analyzer

24



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Analyzer

25

● The analyzer allows to detect and analyze 
particular behaviors in smart contracts.

○ Using the previously extracted information.

● Analytics
○ Interesting facts about the contract.
○ ERC detections, strings, etc.

● Optimization
○ Detection of potential bytecode 

optimization.
○ Constants propagation, unused assignment, 

unused imports, etc.

● Security
○ Detection of security vulnerabilities & flaws.
○ Integer overflow, Reentrancy, etc.



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Analyzer - example (integer_overflow)

26



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Upcoming features

27



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Integration inside Voyager

28

 



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Integration inside Voyager

29

 



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Upcoming features

30

● Create a representative logo

● Create VS code plugin

● Improve the decompiler
○ Debug info, refs, etc.

● Add more analysis scripts
○ Mainly security related.
○ ERC detections.

● Implement Data Flow Graph (DFG)
○ For variables and constants dependencies representation.

● Implement Tainting
○ Allows identifying supplied arguments propagation impact.

● Implement Symbolic execution
○ To mathematically solve the constraints to reach certain paths and detect potential optimizations of the bytecode.



© 2022 FuzzingLabs - Thoth - StarkNetCC 2022 Lisbon

Thanks for your time! Any questions?
● Contact me!

○ Twitter: @Pat_Ventuzelo
○ Mail: patrick@fuzzinglabs.com

31

https://twitter.com/Pat_Ventuzelo
mailto:patrick@fuzzinglabs.com

