
PolyJuS: A Squeak/Smalltalk-based Polyglot Notebook System
for the GraalVM

Fabio Niephaus
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

fabio.niephaus@hpi.uni-potsdam.de

Eva Krebs
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

eva.krebs@student.hpi.uni-potsdam.de

Christian Flach
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

christian.flach@student.hpi.uni-potsdam.de

Jens Lincke
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

jens.lincke@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de

ABSTRACT
Jupyter notebooks are used by data scientists to publish their re-
search in an executable format. These notebooks are usually limited
to a single programming language. Current polyglot notebooks ex-
tend this concept by allowing multiple languages per notebook, but
this comes at the cost of having to externalize and to import data
across languages. Our approach for polyglot notebooks is able to
provide a more direct programming experience by executing note-
books on top of a polyglot execution environment, allowing each
code cell to directly access foreign data structures and to call for-
eign functions and methods. We implemented this approach using
GraalSqueak, a Squeak/Smalltalk implementation for the GraalVM.
To prototype the programming experience and experiment with
further polyglot tool support, we build a Squeak/Smalltalk-based
notebook UI that is compatible with the Jupyter notebook file for-
mat. We evaluate PolyJuS by demonstrating an example polyglot
notebook and discuss advantages and limitations of our approach.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Mathematics of computing →
Exploratory data analysis.

KEYWORDS
Polyglot Programming, Notebooks, GraalVM, GraalSqueak
ACM Reference Format:
FabioNiephaus, Eva Krebs, Christian Flach, Jens Lincke, and Robert Hirschfeld.
2019. PolyJuS: A Squeak/Smalltalk-based Polyglot Notebook System for the
GraalVM. In Companion of the 3rd International Conference on Art, Science,
and Engineering of Programming (Programming ’19), April 1–4, 2019, Genova,
Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3328433.
3328434

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Programming ’19, April 1–4, 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6257-3/19/04. . . $15.00
https://doi.org/10.1145/3328433.3328434

1 INTRODUCTION
Reproducible computational workflows in the form of Jupyter note-
books [3] have become an important tool of the scientific commu-
nity. These notebooks combine text, program code, and compu-
tation results into one document. Since the scientific community
uses many different programming languages, especially in fields
such as data analysis and machine learning, one can choose from a
broad list of languages to use in a notebook. The Jupyter project,
for example, started with support for Julia, Python, and R and today
supports over 60 additional languages.

But this freedom of choosing a language is limited. Since only
one language can be used per notebook, it is hard for scientists to
use code written in another programming language. To overcome
this limitation, polyglot notebooks [9] allow code cells to be written
in different languages. This way, scientists can choose the most
appropriate libraries and frameworks per use case. Current poly-
glot notebook systems, however, come at a cost: each code cell has
to import and export data and intermediate results because each
cell is executed in its own language-specific execution environ-
ment (notebook kernel). Serialization can be trivial for simple data
structures, but may also require significant programming effort for
more advanced use cases. Scenarios that require the modification
of the same object graphs from different languages are usually not
supported.

To solve this problem, a system is needed that is capable of rep-
resenting and executing code written in different languages. More
importantly, such a system should make the interaction between
languages as directly and effortlessly as possible. A notebook back-
end powered by a system like this allows code cells of a notebook
not only to exchange data with each other, but also to re-use be-
havior and actually work on the same objects in memory.

In this paper, we present an approach for combining a notebook
system with a polyglot runtime environment with focus on the pro-
gramming experience. Based on this, we have implemented PolyJuS,
a Squeak/Smalltalk-based notebook system that also demonstrates
how tools for live object exploration can further advance the note-
book concept. We discuss advantages and limitations of our ap-
proach, compare it with related work, and give an outlook for
future work.

1

https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1145/3328433.3328434
https://doi.org/10.1145/3328433.3328434

Programming ’19, April 1–4, 2019, Genova, Italy F. Niephaus, E. Krebs, C. Flach, R. Hirschfeld, J. Lincke

Python
code cell

Python
code cell

Python
code cell

Standard Notebook
with Single Kernel

(e.g. IPython [8])

1.

2.

3.

Python code cell

Ruby code cell

R code cell

Polyglot Notebook
with Separate Kernels

(e.g. Script of Scripts [7])

A

B

C object references files or DB

files or DB

D result
(table, png)

result
(table, png)

import data

export data

import data

export data

import data

export dataexport data

import data

data (files or DB)

E

Python
code cell

Ruby
code cell

R
code cell

Polyglot Notebook
with Polyglot Kernel

1.

2.

3.

F cross references
through bindings

result
(table, png)

export data

import data

data (files or DB)

Po
ly

gl
ot

 A
PI

PolyJuS

1.

2.

3.

lo
gi

ca
l e

xe
cu

tio
n

or
de

r

data (files or DB)

Figure 1: From Standard Notebooks to Polyglot Notebooks.

2 BACKGROUND
In this section, we introduce different notebook systems as well as
polyglot runtime environments.

The Jupyter Project. Jupyter notebooks evolved from IPython [7],
an interactive Python command shell. These notebooks can consist
of code and text cells. A user can choose to evaluate code cells on a
language runtime (kernel), which often runs on a remote, high spec
server to allow computationally intensive workloads. As shown in
Figure 1, code cells A are executed B in one session sharing a
common mutable state C . Inspired by Literate Programming [4],
code cells can be annotated with text cells that can contain further
instructions, explanations, or discussions of intermediate results,
which in turn are often visualized in form of a table or a plot D .
Notebooks can be saved in a JSON-based file format1 and shared
with others. Since source code, text cells, and output cells can be
persisted in this format, it is possible to view a shared notebook
without having access to a compatible kernel.

Polyglot Notebooks. Sharing data between code cells of a polyglot
notebook through data serialization is relatively straightforward
when each cell is a functional projection and the overall program
structure is a data flow as shown in Figure 1 E . But when the
overall program structure does not fit a functional paradigm, it gets
more complicated. Once data is represented in an object-oriented
programming system such as Python or Smalltalk, exporting an
arbitrary object structure into a form that can be read from an-
other system becomes hard. This might be manageable when the
programmer has full control over the code and can design such

1https://nbformat.readthedocs.io

requirements in the first place, but it becomes nearly impossible
when the runtime data (objects) that the user is interested in is
produced by external code written in a different language (e.g. a
library, code from stackoverflow.com, or from a fellow researcher).

When programmers want to express parts of their program be-
havior in two or more different programming languages (polyglot
programming), the different parts have to communicate and share
data. They have to be executed in separate systems that can only
exchange data by sending messages via Remote Procedure Calls
(rpcs) or by passing data through external means (e.g. pipes and
files). Both cases require the programs to be very explicit and to
make use of external data formats (e.g. JSON, XML, a database, etc.)
when handing data from one language to another.

Polyglot Runtime Environments. Polyglot runtime environments,
such as GraalVM [10] or Squimera [6], support the execution of
multiple programming languages and provide means for seamless
language interoperability. For this, these runtimes usually expose
some kind of polyglot Application Programming Interface (api)
that can be used to invoke code from other languages. Moreover,
they often provide tools, such a debugger, as well as a Just-in-
time compiler (jit) (to increase runtime performance) that all work
across language boundaries. Additionally, such an environment
manages data and objects in the same operating system level process
which makes it possible to directly share them across different
languages. Common language integration techniques such as rpcs
or Foreign Function Interfaces (ffis), on the other hand, are usually
boundaries for tools, often impose overhead in terms of runtime
performance, and more importantly require additional work on the
user side for sharing data structures between languages.

2

https://nbformat.readthedocs.io

PolyJuS: A Squeak/Smalltalk-based Polyglot Notebook System for the GraalVM Programming ’19, April 1–4, 2019, Genova, Italy

Python
code cell

R
code cell

Python R ...

Polyglot Notebook UI
(Web browser)

1.

2.

Python
code cell

Python
code cell

Python Kernel
(Server)

Notebook UI
(Web browser)

1.

2.

Standard Notebook with Single Kernel (e.g. IPython [8])

Polyglot Kernel
(Server)

Python
code cell

R
code cell

Python Kernel
(Server)

Polyglot Notebook UI
(Web browser)

1.

2.
R Kernel
(Server)

Polyglot Notebook with Separate Kernels (e.g. SoS [7])

files

DB

Polyglot Notebook with Polyglot Kernel (Future Work)

Python R ...

GraalSqueak
Polyglot Language Runtime

(GraalVM)
Python

code cell

R
code cell

Polyglot Notebook UI
(Morphic)

1.

2.

PolyJuS Integrated UI and Polyglot Language Runtime

Smalltalk Tool Support

Figure 2: Different notebook system architectures.

3 APPROACH
We propose to execute code of Jupyter-like notebooks on a polyglot
runtime environment. A suitable runtime environment must sup-
port a sharing mechanism for language interoperability purposes.
Object memory can often not be shared directly among different
programming languages due to potential name clashes for example.
Therefore, we suggest to use a dedicated namespace for sharing
objects in the form of a key-value store that is accessible from all
languages. To further improve the programming experience, the
notebook kernel can hide some of the interaction with the runtime’s
interoperability api by extending code execution requests appropri-
ately. For example, it could translate a code cell’s language selection
into the appropriate api call. Additionally, it can prepend common
import statements to code, so that the shared namespace or required
modules for polyglot programming are available automatically.

A notebook system like this allows users to select a programming
language per code cell. In contrast to existing polyglot notebook
systems such as SoS notebooks (see Figure 1 E), data and objects
can be shared across different languages with direct access from
all code cells (see Figure 1 F). This eliminates not only potential
performance overheads imposed by serialization mechanisms. It
also reduces the implementation overhead on the side of the user,
which in turn improves the programming experience.

Moreover, this experience can further be improved by live object
inspection tools, such as the tools of a Smalltalk programming envi-
ronment. These inspection tools help to shorten feedback loops as
they can give valuable insights on the current state of the kernel in-
cluding all objects. When writing polyglot code, such feedback can
be very useful to better understand and coordinate the interaction
between languages.

4 IMPLEMENTATION
We have implemented PolyJuS, a polyglot notebook system based
on Squeak/Smalltalk and its Morphic user interface (ui) frame-
work. It uses GraalSqueak [5], a Squeak/Smalltalk virtual machine
implementation for the GraalVM, as its polyglot runtime environ-
ment. Consequently, the prototype does not use any kind of client-
server architecture unlike standard Jupyter notebooks (see Figure 2).
PolyJuS has full access to GraalVM’s polyglot api through Graal-
Squeak’s PolyglotPlugin . This also includes GraalVM’s polyglot
bindings object which PolyJuS integrates as a namespace for shar-
ing objects between languages.

Figure 3 shows a screenshot of PolyJuS.Wewill discuss the actual
purpose of this notebook in more detail in the next section. The
main column on the left contains text and code cells. The language
of each cell is displayed in the cell’s title bar. It is highlighted with a
color and can be changed via the cell’s context menu. This context

3

Programming ’19, April 1–4, 2019, Genova, Italy F. Niephaus, E. Krebs, C. Flach, R. Hirschfeld, J. Lincke

Polyglot Notebook

%ggplot2

values <- data.frame(contributors = bindings["countries"])

data <- aggregate(x = values, by = list(countries = values$contributors), FUN = length)

ggplot(data, aes(x = reorder(countries, +contributors), contributors)) +

 geom bar(stat = "identity") + xlab("") + ylab("") + coord flip() +

 geom hline(aes(yintercept = mean(contributors)))

R

Finally, we can use ggplot2, a data visualization package written in R, to visualize the number of

contributors per country as a bar chart. For this, our notebook implementation supports a

`%ggplot2` magic which provides convenient access to the visualization package. We

instantiate a new`data.frame` object from the list of `countries`. Then, we aggregate this data

before passing it into the `ggplot` function. Lastly, we can further configure the plot to display

a sorted bar chart as well as a mean line.

Markdown

C2 'hexadecimal'
root 194

import pycountry

bindings["countries"] = [c.name for c in pycountry.countries

for row in bindings["rows"] if c.name in str(row[2]) or c.name in str(row[1])]

len(bindings["countries"])

Python

Then, we use the Python library `pycountry` which provides a database of all country names to

filter and transform the list of participants into a list of country names. This list is stored

in `countries`.

Markdown

2 ForeignObject[arraySize=4]
4 ForeignString["Author of Concrete Syntax with Black Box Parsers within the Research Pa
3 ForeignString["Netherlands"]
2 ForeignString["CWI, Netherlands"]
1 ForeignString["Rodin Aarssen"]

1 ForeignObject[arraySize=4]
root ForeignObject[arraySize=277]

require "nokogiri"; require "open-uri"

url = "https://2019.programming-conference.org/people-index"

doc = Nokogiri::HTML(open(url))

bindings["rows"] = doc.css("#results-table .row").map { |row| row.css("> div").map(&:content) }

Ruby

Conference Contributors per Country

We are interested in how many people per country are contributing to <Programming> 2019. First,

we download the `poeple-index` from the conference's website and extract the data from the

`#results-table` using Ruby and its powerful Nokogiri HTML parsing library. The result is stored

in the polyglot bindings as `rows`.

Markdown SaveLoadAdd cellRun all

68 'Germany'
67 'Germany'
66 'Germany'
65 'Germany'
64 'Germany'
63 'Germany'
62 'Germany'
61 'Germany'
60 'Germany'
59 'Germany'
58 'Germany'
57 'Germany'
56 'Germany'
55 'Germany'
54 'Germany'
53 'Germany'
52 'Germany'
51 'Germany'
50 'Germany'
49 'Germany'
48 'Germany'
47 'Germany'
46 'Germany'
45 'Germany'
44 'Germany'
43 'Germany'
42 'Germany'
41 'Germany'
40 'Germany'
39 'Colombia'
38 'Colombia'
37 'Switzerland'
36 'Switzerland'
35 'Switzerland'
34 'Switzerland'
33 'Switzerland'
32 'Switzerland'
31 'Switzerland'
30 'Switzerland'
29 'Switzerland'
28 'Switzerland'
27 'Canada'
26 'Canada'
25 'Canada'
24 'Canada'
23 'Canada'
22 'Belgium'
21 'Belgium'
20 'Belgium'
19 'Belgium'
18 'Belgium'
17 'Belgium'
16 'Belgium'
15 'Belgium'
14 'Belgium'
13 'Belgium'
12 'Belgium'
11 'Belgium'
10 'Belgium'
9 'Belgium'
8 'Belgium'
7 'Austria'
6 'Austria'
5 'Australia'
4 'Argentina'
3 'Argentina'
2 'Argentina'
1 'Albania'
append ForeignObject[memberSize=0]
remove ForeignObject[memberSize=0]
reverse ForeignObject[memberSize=0]
sort ForeignObject[memberSize=0]
copy ForeignObject[memberSize=0]
index ForeignObject[memberSize=0]
insert ForeignObject[memberSize=0]
clear ForeignObject[memberSize=0]
count ForeignObject[memberSize=0]
extend ForeignObject[memberSize=0]
pop ForeignObject[memberSize=0]

countries ForeignObject[arraySize=194, memberSize=
bindings ForeignObject[memberSize=3]

Figure 3: A polyglot notebook for visualizing the number of conference contributors per country using Ruby, Python, and R,
created using PolyJuS, and shared on GitHub at https://gist.github.com/fniephaus/d0e95ff0ac2c8c17870a07f5d1d9f898.

4

https://gist.github.com/fniephaus/d0e95ff0ac2c8c17870a07f5d1d9f898

PolyJuS: A Squeak/Smalltalk-based Polyglot Notebook System for the GraalVM Programming ’19, April 1–4, 2019, Genova, Italy

menu lists all languages supported by the underlying GraalVM as
well as cell actions for executing or removing the cell and formoving
it up and down. The Ruby library Rouge is used to provide syntax
highlighting in all cells, which was straightforward to integrate in
this polyglot environment. Intermediate results of code cells can be
inspected in an explorer-like object viewer. The result of the last
line in the red Ruby code cell, for example, is an array of arrays of
strings. If the result is an image or a morph, it is displayed instead.
This is the case in the last code cell whose output is a diagram.

The sidebar on the right contains buttons to run all code cells se-
quentially, to add a new cell, and to load and save Jupyter notebook
files. Additionally, it contains an object explorer for the polyglot
bindings object. This way, the user is able to see and inspect all
objects shared between the languages at all times.

Since our prototype is implemented in an interactive program-
ming environment, it is always possible to select code in cells, run it,
and print the result inline through Smalltalk’s printIt mechanism, or
to open additional inspection tools on objects (inspectIt and explor-
eIt). Similarly, objects such as the diagram can be cloned and moved
out of a notebook and into other Squeak/Smalltalk applications.

Moreover, our notebook implementation also improves the inter-
action with the polyglot api. In some languages, for example, the
user would normally need to import a polyglot module before using
the api. PolyJuS takes care of this if necessary. It also prepends a
language-specific import statement to each code execution request
to make the polyglot bindings object always accessible from within
all code cells. Furthermore, it also integrates ggplot2, a compre-
hensive data visualization package available in R, with a %ggplot2
magic command. When this magic command is used, PolyJuS adds
appropriate glue code to display plots directly in the notebook.

5 EXPERIENCE REPORT
In this section, we report our experience using our PolyJuS proto-
type for creating polyglot notebooks. As an example, let’s assume
we want to analyze how many people per country are contributing
to a conference, such as ‹Programming›. Given is a table of all
contributors which can be found on the conference website.

Although it would be possible to solve this task using a single pro-
gramming language, it might not be straightforward to implement
considering that the data must (a) be downloaded and extracted
from an HTML file, (b) cleansed, and (c) visualized as a chart.

Since our polyglot notebooks seamlessly integrate various pro-
gramming languages, we can always pick the language that we
believe fits best for each subtask. For this example, we may choose
to solve the task using Ruby, Python, and R. First, we download the
HTML file using Ruby and then extract the table of contributors
with nokogiri , a powerful parsing library for Ruby. The Python
library pycountry helps us to detect country names within the
extracted data. Lastly, we use R’s ggplot2 package through the
%ggplot2 magic command to visualize the result.

Figure 3 shows the notebook we created with PolyJuS including
all sources as well as explanations of its logic. The object explorer
below the Ruby code cell helped us to verify that we successfully
extracted all 277 rows from the HTML table. The output box of
the Python cell, on the other hand, helped us to understand how

many countries were detected. Initially, we only searched for coun-
try names in the country column. Extending the search to include
the affiliation column (“c .name in str (row[1])”) yielded about 50
additional data points for example. Furthermore, we were able to
inspect all shared objects using the explorer in the sidebar. The
screenshot shows the countries object, which was created when
executing the Python code cell. The explorer confirmed that this
is an actual Python list containing 194 country names ready to be
aggregated. Since other conferences use the same content man-
agement system, it was easy to compare conference contributions.
For this, we moved copies of the diagram out of the notebook and
created new ones by re-running all cells after changing the URL
to a different conference website in the Ruby cell. For sharing the
notebook with others, we saved it in the Jupyter notebook file for-
mat and uploaded it to GitHub (see caption of Figure 3), which has
support for rendering the format in the browser.

6 DISCUSSION
As shownwith our experience report, polyglot notebooks give users
a much broader choice in terms of libraries and languages they can
use, which is especially useful in the data analysis and machine
learning domains.

Our prototype uses a Squeak/Smalltalk-based ui which runs on
the same execution environment providing language interoperabil-
ity capabilities. This uncommon setup, however, may be unsuitable
for computationally intensive operations, such as distributed map-
reduce, as it can only run on a single machine. But this is not a
requirement. It would also be possible to use an existing web-based
notebook ui in combination with a remote kernel if this kernel
supports multiple programming languages.

On the other hand, the Squeak/Smalltalk environment provides
tools for live object inspection which allow users to explore inter-
mediate results as well as the state of the notebook’s kernel. In the
case of PolyJuS, this state includes the namespace of each language
as well as the shared polyglot namespace. We believe this is a useful
addition to the notebook ecosystem and helps to further reduce
feedback loops.

7 RELATEDWORK
Script of Scripts (SoS) Notebook [9] is amulti-language data analysis
environment that supports multiple connections to different Jupyter
kernels at the same time. Our approach, on the other hand, uses a
single polyglot kernel. This avoids data synchronization between
different kernels as data and objects can directly be passed to other
languages without serialization overhead.

BeakerX [8] is a collection of Jupyter language kernels for JVM
languages, Python, and JavaScript. BeakerX supports polyglot note-
books allowing different languages for cells. Similar to our approach,
the cells can communicate through accessing a shared “beakerx”
object. This sharing mechanism, however, is limited to primitive
values, arrays, and dictionaries that can be serialized to JSON. This
“Autotranslation” feature is a performance bottleneck at the mo-
ment and only supports to transfer a few megabytes of data from

5

Programming ’19, April 1–4, 2019, Genova, Italy F. Niephaus, E. Krebs, C. Flach, R. Hirschfeld, J. Lincke

each cell to another2. Our PolyJuS prototype, on the other hand,
allows exchange of all kinds of objects between languages.

Galaaz [1] is a system that integrates functions and packages
from R into the Ruby programming language, so that Ruby can
be used for scientific computing and machine learning. Similar to
our prototype, it has special support for the ggplot2 package and
is designed to run on top of GraalVM.

The prototype editor Eco [2] lets developers write composed
programs using Python, HTML, and SQL. For this purpose, it uses
language boxes for code written in the different languages. Com-
pared to polyglot notebooks, these boxes can be nested while the
order of execution is predefined by the structure of a program.

8 CONCLUSION AND FUTUREWORK
We presented an approach for combining a Jupyter notebook-like
system with a polyglot runtime environment allowing users to use
multiple programming languages in the same notebook. Compared
with existing notebook systems, our PolyJuS prototype supports
language interoperability through GraalVM’s polyglot api which
allows direct exchange of objects between languages. Additionally,
it improves the polyglot programming experience through an en-
hanced interaction with the polyglot api and through live object
inspection tools known from Smalltalk.

In the future, we plan to create more notebook examples analyz-
ing larger datasets than we used in our previous example. To further
reduce the cognitive complexity when working with objects from
different languages, we want to look into ways to map commonly
used apis automatically across languages. Additionally, it would be
interesting to build a GraalVM-based Jupyter kernel that, as shown
in Figure 2, provides the same grade of language interoperability
as PolyJuS for existing web-based notebook uis.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of Oracle Labs3,
HPI’s Research School4, and the Hasso Plattner Design Thinking
Research Program5.

REFERENCES
[1] Rodrigo Botafogo. 2018. Ruby Plotting with Galaaz: An example of tightly

coupling Ruby and R in GraalVM. https://medium.com/p/520b69e21021
[2] Lukas Diekmann and Laurence Tratt. 2014. Eco: A Language Composition

Editor. In Proceedings of the 7th International Conference on Software Language
Engineering, Benoît Combemale, David J. Pearce, Olivier Barais, and Jurgen J.
Vinju (Eds.). Springer International Publishing, 82–101. https://doi.org/10.1007/
978-3-319-11245-9_5

[3] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In ELPUB. 87–90. https://doi.org/10.
3233/978-1-61499-649-1-87

[4] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (01 1984), 97–111.
https://doi.org/10.1093/comjnl/27.2.97

[5] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. GraalSqueak: A
Fast Smalltalk Bytecode Interpreter Written in an AST Interpreter Framework. In
Proceedings of the 13th Workshop on Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems (ICOOOLPS ’18). ACM, New
York, NY, USA, 30–35. https://doi.org/10.1145/3242947.3242948

2https://github.com/twosigma/beakerx/blob/1deffe1996a458ca1df5c6e72428c8171c06ce6d/
doc/groovy/GeneralAutotranslation.ipynb (accessed 2019-01-30)
3https://labs.oracle.com/
4https://hpi.de/en/research/research-school.html
5https://hpi.de/en/dtrp/

[6] Fabio Niephaus, Tim Felgentreff, Tobias Pape, Robert Hirschfeld, and Mar-
cel Taeumel. 2018. Live Multi-language Development and Runtime Envi-
ronments. The Programming Journal 2, 8 (2018). https://doi.org/10.22152/
programming-journal.org/2018/2/8

[7] Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive
Scientific Computing. Computing in Science Engineering 9, 3 (May 2007), 21–29.
https://doi.org/10.1109/MCSE.2007.53

[8] Two Sigma Open Source, LLC. 2019. BakerX. http://beakerx.com
[9] Chris Wakefield, Di Du, James Melott, John N Weinstein, Jun Ma, Yulun Chiu,

Bo Peng, Gao Wang, and Man Chong Leong. 2018. SoS Notebook: an interactive
multi-language data analysis environment. Bioinformatics 34, 21 (05 2018), 3768–
3770. https://doi.org/10.1093/bioinformatics/bty405

[10] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187–204. https://doi.org/10.
1145/2509578.2509581

6

https://medium.com/p/520b69e21021
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/3242947.3242948
https://github.com/twosigma/beakerx/blob/1deffe1996a458ca1df5c6e72428c8171c06ce6d/doc/groovy/GeneralAutotranslation.ipynb
https://github.com/twosigma/beakerx/blob/1deffe1996a458ca1df5c6e72428c8171c06ce6d/doc/groovy/GeneralAutotranslation.ipynb
https://labs.oracle.com/
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.22152/programming-journal.org/2018/2/8
https://doi.org/10.1109/MCSE.2007.53
http://beakerx.com
https://doi.org/10.1093/bioinformatics/bty405
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	5 Experience Report
	6 Discussion
	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

