
Debin: Predicting Debug Information in Stripped Binaries
Jingxuan He

ETH Zurich, Switzerland
hej@student.ethz.ch

Pesho Ivanov
ETH Zurich, Switzerland

pesho@inf.ethz.ch

Petar Tsankov
ETH Zurich, Switzerland
ptsankov@inf.ethz.ch

Veselin Raychev
DeepCode AG, Switzerland

veselin@deepcode.ai

Martin Vechev
ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

ABSTRACT

We present a novel approach for predicting debug information
in stripped binaries. Using machine learning, we first train prob-
abilistic models on thousands of non-stripped binaries and then
use these models to predict properties of meaningful elements in
unseen stripped binaries. Our focus is on recovering symbol names,
types and locations, which are critical source-level information
wiped off during compilation and stripping.

Our learning approach is able to distinguish and extract key
elements such as register-allocated and memory-allocated variables
usually not evident in the stripped binary. To predict names and
types of extracted elements, we use scalable structured prediction
algorithms in probabilistic graphical models with an extensive set
of features which capture key characteristics of binary code.

Based on this approach, we implemented an automated tool,
called Debin, which handles ELF binaries on three of the most
popular architectures: x86, x64 and ARM. Given a stripped binary,
Debin outputs a binary augmented with the predicted debug infor-
mation. Our experimental results indicate that Debin is practically
useful: for x64, it predicts symbol names and types with 68.8% pre-
cision and 68.3% recall. We also show that Debin is helpful for
the task of inspecting real-world malware – it revealed suspicious
library usage and behaviors such as DNS resolver reader.

CCS CONCEPTS

• Security and privacy → Systems security; • Software and

its engineering→ Software reverse engineering;

KEYWORDS

Binary Code; Security; Debug Information; Machine Learning

ACM Reference Format:

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin
Vechev. 2018. Debin: Predicting Debug Information in Stripped Binaries. In
2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3243734.3243866

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243866

1 INTRODUCTION

Compilers generate valuable debug information utilized by vari-
ous tools in order to support debugging, inspection and security
analysis of binaries, including decompilation [3, 18, 29] and bug
finding [24, 40]. A stripped binary, however, only contains low-
level information such as instructions and register uses which is
problematic when trying to inspect the behavior of the binary. Un-
fortunately, debug information of commercial off-the-shelf (COTS)
binaries is often stripped for optimization purposes (e.g., size reduc-
tion). More severely, vulnerable and malicious binaries are often
intentionally stripped to resist security analysis.

Current techniques aiming to recover stripped information such
as types (e.g., [38]) or variables (e.g., [23]) are often limited to cus-
tom, manually created rules based on domain specific knowledge
of the toolchain that generated the binary. To avoid reliance on a
potentially brittle set of manually created rules and automate the
process, recent years have witnessed an increased interest in new
methods and tools that leverage machine learning models trained
on large, freely available code repositories (e.g., GitHub). Exam-
ples include programming language translation [32], statistical
program synthesis [42, 43], identifier name prediction for Android
and JavaScript [10, 15, 44, 53], and more recently, function signa-
ture prediction and similarity in binaries [20, 22, 55]. The initial
success of these statistical approaches motivates the following basic
question: can machine learning models trained on large codebases
successfully recover stripped binary debug information?

Difficulties in predicting binary debug information. Creat-
ing machine learning models to recover binary debug information
with sufficient accuracy is more challenging than predicting facts at
the source-level or at the level of a typed intermediate representa-
tion (e.g., as done by [15, 44]). A key reason is that it is hard to find
insightful features and suitable probabilistic models that capture
important behaviors of the stripped binary yet work well across
a range of hardware architectures and compiler options typically
used to generate real-world binaries. Indeed, as debug information
associating high-level information (e.g., program variables) with
low-level elements (e.g., registers) is stripped, it is not immediately
obvious how to recover this structured mapping.

Debin: predicting debug information. We address the chal-
lenge of predicting debug information, focusing on symbol names,
types and locations in stripped binaries. Concretely, we built a
prediction system, called Debin1, which takes as input a stripped

1Debin is publicly available at https://debin.ai.

https://doi.org/10.1145/3243734.3243866
https://doi.org/10.1145/3243734.3243866
https://debin.ai

1 int sub_80534BA () {

2 ...

3 if (dword_8063320 <= 0) {

4 v0 = sub_8053DB1 ("/etc/resolv.conf", 'r');

5 if (v0 || (v0 =

6 sub_8053DB1 ("/etc/config/resolv.conf", 'r')))

7 { ... }
8 ...

(a) Decompiled code from the original malware

1 int rfc1035_init_resolv () {

2 ...

3 if (num_entries <= 0) {

4 v1 = fopen64 ("/etc/resolv.conf", 'r');

5 if (v1 || (v1 =

6 fopen64 ("/etc/config/resolv.conf", 'r')))

7 { ... } // code to read and manipulate DNS settings
8 ...

(b) Decompiled code using debug information predicted by Debin.

Figure 1: Debin predicts meaningful names for a DNS resolver reader function from a real-world malware.

binary and outputs a new binary with the rebuilt debug infor-
mation. Debin supports ELF binaries on three popular architec-
tures (x86, x64 and ARM) and can predict debug information with
high precision and recall across these architectures. To the best of
our knowledge, Debin is the first system to successfully handle
such comprehensive debug information, especially symbol names
which can range over tens of thousands of labels and are hard to
recover. We provide a detailed comparison of Debin with existing
approaches in term of capabilities in Section 6.

The key technical idea behind Debin is to learn and combine two
complementary probabilistic models: (i) an Extremely randomized
Tree (ET) classification model [28] used to recover and extract
program variables. Finding these variables works bymaking a series
of independent predictions for which a high accuracy algorithm
such as ET is desired, and (ii) a linear probabilistic graphical model
that makes joint predictions on the properties (e.g., names, types) of
the extracted variables and other program elements. In contrast to
ET, here, once the variables are discovered, predicting their names
or types should be done jointly so to produce consistent final results.

Security Applications of Debin. Debin can be used to enhance
practical security-related tasks such as decompilation and mal-
ware inspection. As an example, in Figure 1(a), we show a decom-
piled code snippet of malware2 downloaded from VirusShare [9],
generated by the popular Hex-Rays decompiler in IDA Pro [3].
Given the binary of the malware as input, Debin produces the cor-
responding code (decompiled here) in Figure 1(b) as output. We
observe that Debin suggests the name fopen64 for the function
sub_8053DB1, indicating that the malware opens and reads file
"/etc/resolv.conf". This behavior is suspicious because the
file stores DNS resolver configurations. Further, Debin predicts the
name rfc1035_init_resolv, meaning that this function initial-
izes DNS resolvers. The usefulness of these name predictions can
be assessed by inspecting the implementation of the function body.
Indeed, as we further investigated the malware, we found that it
can intercept DNS queries and perform DNS hijacking according
to remote commands from a Command and Control (C&C) server.

We also found another malware3 where Debin reveals the same
behavior. In general, we find that the predicted names make ma-
licious behavior more explicit and identifiable. In Section 5.4, we
elaborate on our experiments involving the use of Debin for ana-
lyzing malware and show another example where Debin correctly

2SHA1: 64bd5ba88d7e7104dc1a5586171e83825815362d.
3SHA1: 5ab78c427e1901adf38ade73b8414340f86b6227.

predicts the names of statically linked functions (helpful to iden-
tify dangerous I/O operations such as opening sensitive files and
sending packets over the network). Beyond malware, a number of
other analysis tasks can also benefit from the debug information
predicted by Debin. Such tasks include bug detection [24, 40], code
clone search [39, 47] and programmer de-anonymization [19].

Main Contributions. The main contributions of our work are:

• A new machine learning approach for inferring debug informa-
tion of stripped binaries based on a combination of a decision-
tree-based classification algorithm (Section 3.1) and structured
prediction with probabilistic graphical models (Section 3.2).
• An extensive set of feature functions (Section 4.4) capturing
key semantic relationships between binary code elements (Sec-
tion 4.2). These are used for instantiating the probabilistic models
and improving the overall prediction accuracy.
• Debin, a system that uses the above probabilistic models trained
on a large dataset of non-stripped binaries in order to recover
high-level program variables and predict debug information of
new, unseen stripped binaries (Section 4).
• A thorough evaluation of Debin on a wide range of tasks and
architectures.We show that Debin consistently achieves accurate
results on the x86, x64 and ARM platforms (Section 5.3). We
also demonstrate that Debin is helpful for the task of malware
inspection (Section 5.4).

2 OVERVIEW

In this section, we provide an informal overview of our method on
an illustrative example. Figure 2(a) shows a snippet of assembly
code from a stripped binary which computes the sum of the first n
natural numbers. Only low-level information such as instructions
and register usage is present in the binary code.

Given the stripped binary in Figure 2(a), Debin outputs a new
binary augmented with the predicted debug information, shown in
Figure 2(f). There, we can see that high-level information is recov-
ered, such as names and types of register-allocated and memory-
allocated variables. Note that Debin also recovers the mapping
from program variables to their locations in the assembly code as
registers and memory offsets, marked with different colors. This
predicted debug information makes it much easier to inspect and
understand how the binary works. We now illustrate the key steps
of Debin on the task of predicting debug information for the code
in Figure 2(a).

...

80483f2: mov 4(%esp), %ecx

80483f6: mov $0, %eax

80483fb: mov $1, %edx

8048400: add %edx, %eax

8048402: add $1, %edx

8048405: cmp %ecx, %edx

8048407: jne 8048400

8048409: repz ret

...

(a) Stripped binary code.

1 sub_80483f2():

2 ECX.1 = mem[ESP + 4]

3 EAX.1 = 0

4 EDX.1 = 1

5 EAX.2 = phi(EAX.1, EAX.3)

6 EDX.2 = phi(EDX.1, EDX.3)

7 EAX.3 = EAX.2 + EDX.2

8 EDX.3 = EDX.2 + 1

9 if (EDX.3 != ECX.1) goto 5

10 v.1 = mem[ESP]

11 ESP.1 = ESP + 4

12 return v.1

(b) Lifted BAP-IR (simplified).

Unknown elements
(e.g., register-allocated variables):

EDX.2 EDX.3 ECX.1

Known elements (e.g., temporary
registers, constants, instructions):

EDX.1 0 1 mov

(c) Unknown and known elements with

variable recovery classification.

<sum> start :

80483f2: mov 4(%esp) , %ecx

80483f6: mov $0, %eax

80483fb: mov $1, %edx

8048400: add %edx , %eax

8048402: add $1, %edx

8048405: cmp %ecx , %edx

8048407: jne 8048400

8048409: repz ret

<sum> end

color name type

yellow sum int
cyan res int

purple n unsigned int
orange i unsigned int

(f) Output binary with debug information.

ni

i

1

[1 EDX.3 EDX.2] weight

[1 i i] 0.8
[1 i j] 0.6
[1 p p] 0.3

EDX.2 EDX.3 weight

p p 0.4
i i 0.3

EDX.3 ECX.1 weight

i n 0.5
p s 0.3
a b 0.1

cond-NE-EDX-ECX

dep-EDX-EDX

(e) Prediction result of MAP inference.

ECX.1EDX.3

EDX.2

1

cond-NE-EDX-ECX

dep-EDX-EDX

(d) Dependency graph with factors.

Figure 2: An overview of the steps for rebuilding debug information of the binary in Figure (a). Figure (f) shows the prediction

results. The bottom table lists predicted names and types. The colors signify the mapping from a variable or a function to its

locations in assembly code.

Lift Assembly into BAP-IR. Debin first lifts the assembly code
to BAP-IR, the intermediate representation of the Binary Analysis
Platform (BAP) [17]. The BAP-IR for our example is shown in Fig-
ure 2(b). BAP-IR captures semantics of instructions in a higher-level
and uniform syntax across different architectures, which provides
crucial insights for later steps. For example, it recovers control flow
instructions as the if statement at line 9 of Figure 2(b). More details
on BAP-IR as used in Debin are described in Section 4.1.

Extract Unknown and Known Elements with Variable Re-

coveryClassification. Next, Debin analyzes the obtainedBAP-IR,
extracting two sets of program elements. The first set of program el-
ements are unknown elements, marked by red color in Figure 2(c).
Debin needs to predict properties of unknown elements whose in-
formation is lost during stripping. Registers that store variable val-
ues are one example of unknown nodes. The second set of program
elements are those whose property is already present in the binary
code and Debin does not need to infer this information. These

elements are marked with blue color. Examples of known nodes
are constants and instructions.

For certain kinds of elements, it is easy to determine whether
they are unknown or known with fixed rules. For instance, the con-
stants 0 and 1, and the instruction mov, are known and are marked
with blue in Figure 2(c). However, such rules cannot always deter-
mine if a registers or a memory offset stores a variable. In general,
variables in source code can be mapped to registers or memory
offsets in binary code, but not every register and memory offset cor-
responds to a variable in the source as memory and registers may be
allocated by the compiler only for temporary use. For example, the
memory offset mem[ESP] at line 10 of Figure 2(b) temporarily holds
the return address of the function, but mem[ESP+4] at line 2 stores
the variable n. Compilers leverage sophisticated techniques for al-
locating machine resources, a process that is generally irreversible
and often differs among different compilers and versions. There-
fore, manually constructing rules for finding register-allocated and
memory-allocated variables is difficult.

Debin infers properties of registers and memory offsets allo-
cated for variables since they capture crucial debug information
such as variable names. For temporarily allocated registers and
memory offsets, Debin treats these as known nodes and does not
predict their name or type. We formalize the challenge of recov-
ering variables as a binary classification problem. Debin trains a
classifier from millions of registers and memory offsets that are
labeled whether they represent variables. Then, this classifier is
used to recover source-level variables from low-level registers and
memory offsets. In our example, EDX.2, EDX.3 and EAX.3 are rec-
ognized as register-allocated variables and their nodes are marked
with unknown. Unlike these, EDX.1 is not recovered as a variable
so it is marked as known. The variable recovery classification model
is based on Extremely randomized Trees [28], a variant of Random
Forests [16]. We discuss this model in more detail in Section 3.1.

Build Dependency Graph. In the next step, Debin builds an
undirected dependency graph where nodes are extracted code el-
ements in BAP-IR and edges represent the relationships between
these code elements. In Figure 2(d), we depict a partial dependency
graph for our example.

Two kinds of relationships are built upon program elements
extracted in prior steps. The first are pairwise relationships which
link two nodes. Note that there could be multiple relationships
between two nodes with different labels. For instance, EDX.3 and
EDX.2 are connected by the edge dep-EDX-EDX to formally express
their dependency relationship by the statement EDX.3=EDX.2+1.
Similarly, the cond-NE-EDX-ECX relationship between EDX.3 and
ECX.1 indicates their values are compared by a “not equal” con-
ditional expression. Note that these two relationships are both
encoded with the register location (EDX and ECX) of the connected
nodes in order to capture how compilers allocate and manipulate
registers.

The second kind of relationship is a factor relationship. Factor
relationships enhance the expressiveness of our model because
they can connect multiple nodes. For instance, the grey diamond
in Figure 2(d) involves the constant node 1 as well as two reg-
ister variables EDX.3 and EDX.2 (because they are all operands
of the statement EDX.3=EDX.2+1). In fact, this BAP-IR statement
corresponds to the ++i statement in the original C source code.
Factor relationship are helpful for capturing patterns such as the
one above.

In general, relationships in dependency graphs originate from
the semantic behaviors of the binary code elements extracted by
our analysis. Extracted elements and relationships are formally
defined in Section 4. The dependency graph represents a Condi-
tional Random Field (CRF) [37], a probabilistic graphical model that
captures relationships between nodes and enables joint predictions
over them. We elaborate on the details of this model in Section 3.2.

Probabilistic Prediction. In this step, Debin assigns a property
value to every unknown node. Debin performs what is known
as Maximum a Posterior (MAP) inference over the dependency
graph – it jointly predicts a globally optimal assignment for all
unknown nodes, based on the structure of the graph. Next, we il-
lustrate how the prediction works on our example. In Figure 2(e),
we show the same graph as in Figure 2(d), but with the predicted

names for all unknown nodes and with three additional tables asso-
ciated with the three relationships. Each table is a mapping from a
possible assignment of the nodes connected by the relationship to
a weight value. The weight values are learned a-priori during the
training phase (discussed in Section 3.2) and intuitively represent
the likelihood of an assignment. The goal of the MAP inference
algorithm is to find a globally optimal assignment that maximizes
the summation of weights.

For the top-most table, the assignment of i and n results in a
score of 0.5, which is the highest score locally in this table. Similarly,
a locally optimal assignment of i and i is achieved for the bottom-
most table. However, for the table in the middle, Debin does not
select the most likely assignment because the only feasible choice is
i and i according to the other two assignments. Hence, the overall
MAP assignment will have the (highest) score of 1.6. Note that
if the assignment of p and p was selected from the middle table,
the selection from the other two tables will result in a total score
of only 1.0. The final MAP inference results for all names in our
example are shown in Figure 2(e).

Output Debug Information. Debin encodes all predicted prop-
erties along with the recorded location information in the format of
DWARF [8] debug information (a standard adopted by many com-
pilers, debuggers and security analysis tools) and outputs a binary
augmented with debug information. For simplicity, we visualize the
recovered debug information for our example in Figure 2(f). First,
Debin predicts names and types of functions and variables, as listed
in the table. Second, the boundary of function sum is recovered as
shown by yellow color, thanks to the ByteWeight [14] plugin of
BAP. Finally, the location of every variable in the assembly code
is also rebuilt, as indicated by the one-to-many colored mapping
from variables to registers and memory offsets. For example, vari-
able n, colored purple , has type int and is located in memory
offset 4(%esp) at address 80483f2 and in register %ecx at address
8048405.

Scope and Limitations. We focus on inferring names and types
of variables and functions. Additionally, Debin reconstructs pro-
gram variables based on the predicted names and maps them to
low-level locations in registers and memory offsets. We do not con-
sider debug information such as line numbers as it is only applicable
when source code is actually available. In terms of finer prediction
granularity, while we handle 17 different types, an interesting item
for future work would be predicting the contents of struct and
union types.

We note that Debin learns patterns of compiler behavior from
training samples to make predictions. When input binaries are not
entirely compiler-generated, e.g., the binary is obfuscated or gen-
erated from human-written assembly, the accuracy of Debin may
be lower. For example, Popov et al. [41] introduce a method that
modifies program control flow and inserts traps to impair disassem-
bly, which can affect an important preliminary step of Debin (and
other binary analyzers). Those issues are beyond the scope of this
paper. An interesting future direction would be to train and test
Debin with obfuscated samples and study how Debin generalizes
upon these. Finally, while our tool already supports ELF binaries

on x86, x64 and ARM, it can be extended to other binary formats
and operating systems such as the Windows PE format.

3 PROBABILISTIC MODELS

In this section, we introduce the probabilistic models used by Debin.
We first discuss our variable recovery techniques based on Ex-
tremely randomized Trees classification and then present the Condi-
tional Random Field model used for structured prediction of binary
code properties.

3.1 Variable Recovery

We consider the problem of predicting whether a low-level register
or a memory offset maps to a variable at the source-level. This vari-
able can be either a local variable, a global variable or a function
argument (we do not classify the particular kind). We formulate
this prediction problem as a binary classification task for regis-
ters and memory offsets. Every register or memory offset can be
represented by a feature vector where every feature is extracted
from the stripped binary. The binary classification model takes the
feature vector as input and outputs a boolean value that signifies
whether the input register or memory offset is a variable. We will
later discuss how the feature vector is constructed in Section 4.3.
We leverage Extremely randomized Trees (ET), an ensemble of De-
cision Trees, as our binary classification model. In the following,
we first introduce Decision Trees, followed by the ET model.

Decision Tree. A Decision Tree is a tree-based model that takes a
feature vector as input and outputs a classification label. Each non-
leaf node of the tree contains a test on one feature value from the
feature vector and splits further the testing space according to the
test result. Each leaf node represents a label. The input propagates
from the root to a leaf node of the tree, where the final classification
decision is made. Typical decision tree training algorithms build
the tree from the root to the leaves by selecting features and values
that split the data into subtrees such that a given measure (e.g.,
information gain [28]) is maximized.

Extremely Randomized Trees. The Extremely randomized Trees
(ET) is a tree ensemble learningmodel proposed by Geurts et al. [28].
Here, at training time, a large number of decision trees are con-
structed. At testing time, the ET model outputs the most commonly
predicted label from the decision trees constructed at training time.

Next, we outline several technical details of the ET learning
algorithm. At every step of splitting the training data into sub-
trees, a feature from a random subset of S features in the feature
vector is selected (this step is similar to the popular Random Forests
learning algorithm [16]). ET differs from Random Forests mainly
in two aspects. First, ET learning utilizes the complete training
set instead of sub-samples to build each decision tree. Second and
most importantly, for each of the S features, a split value is selected
randomly by the ET algorithm. Then, the split maximizing the
information gain is selected among the S random splits from the
prior step. These randomization and ensemble techniques make
ET a powerful tool for classification. Further, randomized selection
of the split value reduces computation time and model variance,
making classification fast and stable.

The outcome of this step is a mapping where every register
and memory offset is assigned an unknown label if the classifier
predicted that the element is mapped to a variable, and a known label
otherwise.

3.2 Binary Code Properties Prediction

Given the variable mapping computed above, our goal now is to
assign the most likely name or type to each unknown node. This is
achieved through structured prediction using a model known as
Conditional Random Fields (CRFs).

We formalize the relevant elements in a binary as a vector of
random variablesV = (v1, . . . , v |V |). The assignment of every ran-
dom variable inV ranges over a set Labels that contains all possible
names and types seen during training. Without loss of general-
ity, we further define the vectors of unknown and known elements
as U = (v1, . . . , v |U |) and K = (v |U |+1, . . . , v |V |), respectively.
Then, to find the most likely propertiesUopt for the unknown nodes,
we perform a Maximum a Posteriori (MAP) query on the CRF prob-
abilistic model P over the random variablesU (discussed later) as
follows:

Uopt = argmax
U ′∈ Ω

P (U = U ′ | K = K ′)

where Ω ⊆ Labels |U | denotes the set of possible assignments
of properties to unknown elements, U ′ is an assignment to the
unknown elements andK ′ ∈ Labels |K | is an assignment to known el-
ements, which is fixed. Note that in this conditional probability,
the unknown elements are predicted jointly, which means that they
may influence each other. After the query, the values of unknown el-
ements are changed according to the most likely assignment while
the known elements remain fixed. To perform the MAP query, a
trained CRF model is required. We discuss the details of CRFs,
MAP Inference and the training algorithms in the remainder of this
section.

Dependency Graph. A dependency graph for the input program
is an undirected factor graphG = (V , E, F) whereV is the vector of
random variables that represent program elements, E ⊆ V ×V ×Rels
is the set of edges where an edge e = (vm , vn , rel) denotes a
particular pairwise relationship named rel between two program
elements vm and vn (we assumem < n), and F is a set of factors
where each factor connects one or multiple program elements.
Figure 2(d) shows an example of a dependency graph.

Feature Functions. In our work, there are two kinds of feature
functions: pairwise feature functions and factor feature functions.

For pairwise feature functions, we first define helper functions
ψi : Labels × Labels × Rels → R. After assigning two values to the
two nodes linked by edge e = (vm , vn , rel), we can apply ψi on
this edge, obtain a real number. The returned value can be viewed
as a strength measure on the presence of certain nodes-relationship
triplets. We define the ψi function templates with respect to dif-
ferent pairwise relationships defined later in Section 4.4. Then, in
the training phase, our model can instantiate the templates with
observed edges to obtain multiple differentψi functions.

Given a dependency factor graph G = (V , E, F) and an assign-
ment to all program elements (U ′, K ′), the pairwise feature function

fi is defined as follows (via the ith helper functionψi):

fi (U
′, K ′) =

∑
(vm, vn, r el)∈E

ψi ((U
′, K ′)m , (U

′, K ′)n , rel)

where (U ′, K ′)m means themth element of vector (U ′, K ′). The
pairwise feature function fi applies functionψi on all edges of the
graphG and computes a summation of the return values. Intuitively,
it can be viewed as examining the overall effect of the functionψi
on the entire graph.

We apply the concept of a factor feature function from Factor
Graphs [27] in our CRF model. For factor feature functions, we de-
fine other helper functions φ j : Labels+ → R. Intuitively, the func-
tion φ j takes as input a set of assigned values to nodes connected
by a factor and returns a real value that captures how good the
assignment is. Further, given the dependency graphG = (V , E, F)
and its assignment, we define a factor feature function fj :

fj (U
′,K ′) =

∑
I ∈F

φ j ((U
′, K ′)I)

where I is a set containing the indices of program elements of a
factor and (U ′, K ′)I returns the ordered list of values in (U ′, K ′)
indexed by I . The factor feature function iterates through all the
factors in the graph and also computes an overall influence.

Score Functions. Every feature function is associated with a
weightwl , which is computed by the learning algorithm. Based on
the weights and feature functions defined above, we can score a
predicted assignment by:

score(U ′,K ′) =
n∑
l

wl fl (U
′, K ′)

where fl is either a pairwise feature function or a factor feature
function and n is the total number of features.

Conditional Random Field. A Conditional Random Field (CRF)
is a probabilistic graphical model for representing a conditional
probability distribution. In our case, the definition of the distribution
is as follows:

P (U = U ′ | K = K ′) =
1

Z (K ′)
exp(score(U ′, K ′))

=
1

Z (K ′)
exp(

n∑
l

wl fl (U
′, K ′))

where Z (K ′) =
∑
U ′′∈Ω exp(score(U ′′, K ′)) is a constant which

ensures the probabilities of all assignments sum to 1.

MAP Inference. As mentioned earlier, to find the most likely
assignment to program elements, we maximize the function:

Uopt = argmax
U ′∈ Ω

P (U = U ′ | K = K ′)

In the setting of CRF, this function can be rewritten as:

Uopt = argmax
U ′∈ Ω

1
Z (K ′)

exp(score(U ′, K ′))

Because Z (K ′) is a constant, we can omit it and work with the
following function instead:

Uopt = argmax
U ′∈ Ω

score(U ′, K ′)

Indeed, for a MAP inference query, our goal is to find the optimal
Uopt that leads to the highest score computed according to the
definition above.

In practice, computing this query with exact search is NP-hard
and thus computationally prohibitive. To solve this problem, we
leverage a scalable greedy algorithm, available in the open source
Nice2Predict framework [5]. This algorithm works by selecting a
candidate assignment for every node from a top-K beam and itera-
tively changing the assignments until the score stops improving.

Learning CRFModel. Let D = {(U (i) , K (i))}ti=1 be a set of t pro-
grams used for training, in which the ground truth assignmentsU (i)

and K (i) are given. For Debin, D is a set of non-stripped binaries.
During learning, our goal is to automatically compute the optimal
weights w = {wl }

n
l=1 for feature functions from the patterns in the

training set. For training, we aim to compute the optimal weights
wopt that produce the highest likelihood considering all training
binaries (mathematically via the product below) specified as:

wopt = argmax
w

t∏
i
P (U = U (i) | K = K (i))

Intuitively, maximizing this likelihood is to find the best weights
wopt that lead to correct prediction for all training samples.

However, computing the exact likelihood as defined above is
very expensive because for each program we need to compute
the expensive Z constant which in turn requires iterating over
all possible joint assignments of all candidate labels (this set is
generally large as we need to consider all possible names and types).
Instead, we employ pseudo likelihood estimation to approximate
the precise likelihood:

P (U = U (i) | K = K (i))

with ∏
j
P (Uj = U

(i)
j | neiдhb (Uj),K

(i))

where Uj is the jth element of vector U and neiдhb (Uj) represents
the neighbors ofUj .

The pseudo likelihood decomposes the expensive computation of
the exact likelihood into multiplication of easier-to-compute proba-
bility for every local assignment. The main benefit stems from the
fact that we now consider one node at a time, where for each node
we compute theZ constant (for that node) by iterating only over the
possible labels of that node. To further speed up the learning phase,
we adopt a parallelized implementation of the algorithm [5]. For
more details on pseudo likelihood estimation, please see [51]. We
remark that while the (approximate) computation of the Z constant
is needed for this training method, as mentioned earlier, it is not
required for MAP inference.

4 STRUCTURED PREDICTIONWITH DEBIN

In this section, we describe how Debin instantiates the CRF model
described in Section 3 in order to perform structured prediction for
binaries.

To build a CRF from a program, we follow several steps: we first
transform the binary code by lifting it into the BAP-IR intermediate
representation, then we extract the relevant program elements,
determine known and unknown elements (using the predictions of

the ET model), and lastly we relate the program elements through
feature functions.

For a given binary, we first construct one dependency graph
and then perform MAP inference over that entire graph. The MAP
inference predicts jointly the names and the types in this graph.

4.1 Intermediate Representation

The first step of Debin is to analyze the input binary and lift it into
BAP-IR, the intermediate representation of the BAP binary analysis
platform. A simplified example of BAP-IR was already shown in
Figure 2(b). There are several advantages to employing BAP and
its IR:

(1) BAP-IR provides a uniform syntax for binary code across var-
ious architectures, making Debin a cross-platform tool (cur-
rently supports x86, x64 and ARM) and easily extensible to
other architectures supported by BAP.

(2) During the lifting process, BAP can recognize function bound-
aries of stripped binaries via its ByteWeight component [14].
This component is important for the follow-up analysis steps as
well as obtaining various code elements (defined in Section 4.2).

(3) While preserving semantics of raw instructions, BAP-IR ex-
plicitly shows operations on machine states, which are more
meaningful and higher-level. This is particularly useful in pro-
viding more insightful relationships than raw instructions.

(4) Registers, flags and other machine variables are transformed
into a Static Single Assignment (SSA) form, where each variable
is assigned once and has version numbers. It enables Debin to
determine which register accesses touch the same variable. This
is useful as registers accessed with the same version number
can be merged into a single node, saving time and space during
prediction.

(5) Kim et al. [35] investigated a wide range of IRs for binary anal-
ysis. BAP-IR stands out as the most suitable choice for being
explicit, self-contained and robust in lifting binary instructions.
It also helps in making Debin robust under different compiler
options and hardware architectures.

4.2 Binary Code Elements

Debin extracts different kinds of program elements from BAP-IR in
order to build a dependency graph. Each of the following program
elements becomes a node in the graph:

Functions. There are two types of functions in binaries: library
and user-defined. For example, sum in Figure 2 is user-defined
while printf is a function from the C language standard library.
For every function, we introduce a node for representing its name.

Register Variables. A register in assembly code may correspond
to a variable in the source code. In BAP-IR with SSA format, every
register exists as a tuple (register name, SSA version). We introduce
a node for every register tuple that can be mapped to a variable to
represent its variable name. The EDX.2 node in Figure 2(d) is an
example of such a node. Note that (as discussed earlier in Section 2)
there are also registers that do not correspond to a variable. We
discuss this case later in Section 4.3.

Memory Offset Variables. BAP-IR explicitly captures memory
accesses (e.g., mem[ESP+4] at line 2 of Figure 2(b)). As with regis-
ters, memory offsets may also correspond to variables. We extract
memory offset variables in BAP-IR and introduce nodes for these
in order to capture variable names. The handling of the case when
a memory access is not a variable is discussed in Section 4.3.

Types. We also introduce a type node for each unknown function
and variable. In Debin, we define 17 possible types that the pre-
diction can work with (in C language style): struct, union, enum,
array, pointer, void, bool, char, short, int, long and long
long (both signed and unsigned for the last five).

Flags. Flags represent machine status that indicates overflow, ef-
fect of arithmetic carry, or the result of a conditional operation.
BAP-IR explicitly represents flags as variables whose name denotes
the functionality (e.g., carry flag is named CF). We introduce a node
for every flag involved in operations of BAP-IR.

Instructions. We also introduce a node for every instruction in
the binary. Examples include mov, add and jne in Figure 2(a).

Constants. We introduce nodes for integer and string constants.
String constants are extracted from .rodata section in binaries.

Locations. Location nodes record the locations of variables in a
register (e.g., ECX) or a memory offset (e.g., mem[ESP+4]). Together
with variable nodes, they reveal how compilers allocate machine
resources for variables.

Unary Operators. We introduce nodes for different unary opera-
tors. Those operations on registers and memory offsets are espe-
cially helpful for predicting types (e.g., unsigned and signed cast
operators contribute to predicting a variable’s signedness).

4.3 Known and Unknown Elements

To determine which of the above elements are known (should not
be predicted) or unknown (to be predicted), we rely on both fixed
rules and the learning-based approach (ET model). We assign fixed
values for the known nodes while the values of unknown nodes are
to be predicted by the MAP inference:

• Dynamically linked library function nodes are known and are
assigned their names because calls on them are done on the
basis of their names, which are present even in a stripped binary.
User-defined and statically linked function nodes are marked as
unknown because their names do not exist after stripping.
• Flag, instruction, unary operator, constant and location nodes do
not carry high-level information and are thus known. We assign
a flag name, an instruction name and a unary operator name to
the three kinds of nodes respectively, integer or string values
to constant nodes, and names of registers or memory offsets to
locations nodes.
• Register and memory offset nodes are known and assigned a
special value (?), if they are dummy variables created by BAP
or used for function prologue, function epilogue and argument
passing. Those nodes correspond to temporary use and do not
carry meaningful debug information, hence we do not aim to
make predictions involving these.

Relationship Template Condition for adding an edge

Function Relationships

Element
used in
Function

(f, v, func-loc(v)) variable v is accessed inside the scope of function f
(f, a, arg-loc(a)) variable a is an argument of function f by calling conventions
(f, c, func-str) string constant c is accessed inside the scope of function f
(f, s, func-stack) stack location s is allocated for function f

Function Call (f1, f2, call) function f2 is called by function f1
Variable Relationships

Instruction (v, insn, insn-loc(v)) there is an instruction insn (e.g., add) that operates on variable v
Location (v, l, locates-at) variable v locates at location l (e.g., memory offset mem[RSP+16])
Locality (v1, v2, local-loc(v1)) variable v1 and v2 are locally allocated (e.g., EDX.2 and EDX.3)
Dependency (v1, v2, dep-loc(v1)-loc(v2)) variable v1 is dependent on variable v2

Operation
(v, op, unary-loc(v)) unary operation op (e.g. unsigned and low cast) on variable v
(n1, n2, op-loc(n1)-loc(n2)) binary operation op (e.g., +, left shift « and etc.) on node n1 and n2
(v1, v2, phi-loc(v1)) there is a ϕ expression in BAP-IR: v1 = ϕ (... v2, ...)

Conditional (v, op, cond-unary) there is a conditional expression op (v) (e.g., not(EAX.2))
(n1, n2, cond-op-loc(n1)-loc(n2)) there is a conditional expression n1 op n2 (e.g. EDX.3!=ECX.1)

Argument (f, a, call-arg-loc(a)) there is a call f (..., a, ...) with argument a
Type Relationships

Operation
(t, op, t-unary-loc(t)) unary operation op on type t
(t1, t2, t-op-loc(t1)-loc(t2)) binary operation op on type t1 and t2
(t1, t2, t-phi-loc(t1)) there is a ϕ expression: t1 = ϕ (... t2, ...)

Conditional (t, op, t-cond-unary) there is a unary conditional expression op (t)
(t1, t2, t-cond-op-loc(t1)-loc(t2))) there is a binary conditional expression t1 op t2

Argument (f, t, t-call-arg-loc(t)) call f (..., t, ...) with an argument of type t

Name & Type (v, t, type-loc(v)) variable v is of type t
(f, t, func-type) function f is of type t

Table 1: Pairwise relationships for linking code elements in Debin. The first column provides a short description of each rela-

tionship and the second column defines the relationship template. Helper function loc is used to encode location information

in relationships. Given an input node, the function returns its location (e.g., the register or the memory offset, or whether it

is a constant). We add a relationship edge to the dependency graph if the condition defined in the third column holds.

• For other register and memory offset nodes, we leverage our ET
model discussed in Section 3.1 to determine whether they are
known or unknown. To invoke that algorithm, for every target
node, we encode features similar to those defined later in Ta-
ble 1 (treated as strings) and use a one-hot encoding of these
strings to construct a feature vector for the node. We provide this
vector as input to the algorithm which then classifies the node
as known or unknown. For unknown nodes, their values will be
predicted during MAP inference. For known nodes, we assign the
value (?).
• Type nodes of unknown functions are unknown. Type nodes of
unknown variable registers and memory offsets are unknown and
type nodes of non-variables are known and are assigned (?).

4.4 Relationships between Elements

We now describe the relationships that connect program elements
and enable structured prediction on the resulting dependency graph.

We define all pairwise relationships in Table 1. The pairwise rela-
tionships are of the form (a, b, rel) specified by the second column,
meaning that node a is connected to node b by the relationship
named rel. A relationship is added to the dependency graph as
an edge when the condition defined in the third column holds. For
example, the edge (foo, bar, call) is added only when function
foo calls function bar. To encode location information of variables
in relationships, we define a function loc, which takes a node as
input and outputs the location of the node (e.g., the register or the
memory offset, or whether it is a constant).

Function Relationships. This set of relationships captures how
functions interact with other binary code elements. First, a function
node is connected to register-allocated and memory-allocated vari-
ables that appear inside its scope. This relationship encodes the way
functions manipulate registers and memory offsets to modify vari-
ables. For the example in Figure 2, the function node representing

sum should be connected to nodes EDX.2, ECX.1 and etc. Second,
we relate function nodes and their register-based or offset-based
arguments, which are determined by the calling convention of the
specific platform. Third, we link function nodes with two categories
of known elements, string constants and stack locations. These two
relationships are helpful in recovering the patterns for functions
to deal with strings and allocate stack resources. Finally, we also
incorporate function call relationships.

Variable Relationships. We leverage a comprehensive list of
relationships for register and memory offset variables. Those re-
lationships provide useful syntactic and semantic patterns of how
variables are allocated and manipulated.

Instruction relationships capture how instructions operate with
variables. For instance, a relationship (ECX.1, cmp, insn-ECX) can
be built for our example in Figure 2. Moreover, locality of relation-
ships is captured through our analysis. Two register variables are
locally allocated when they have the same register name and the dif-
ference between their SSA versions is 1. The idea here is that locally
allocated registers are possibly from neighboring instructions and
thus allocated for the same variable. Two memory offset variables
are locally allocated when they can be determined to be aligned next
to each other. We link those memory offsets also because they may
be allocated for the same variable, especially for variables of a larger
structure. For example, apart from the dep-EDX-EDX relationship,
we also add the loc-EDX edge between nodes EDX.2 and EDX.3 in
Figure 2(d) (not graphically shown in the figure). In addition, depen-
dency, operation and conditional relationships formalize behaviors
of various BAP-IR statements. Finally, we determine arguments of
a function call through calling conventions of each architecture and
connect the called function and its arguments. This relationship is
helpful for predicting both function names and variable names.

Type Relationships. Type relationships are helpful in discover-
ing how binaries handle types. First, operation, conditional and
argument relationships are also introduced for types because these
three sets of relationships are effective for both variable names and
types. For example, variables accessed in conditional expressions
are likely to be of type bool and the type of function arguments
should comply with signatures of the called function. Furthermore,
type nodes are also connected to their corresponding name nodes.

FactorRelationships. Apart from pairwise relationships, we also
define three factor relationships. The first one connects all nodes
that appear in the same ϕ expression of BAP-IR. The second one
further explores the behavior of function calls, linking function
node of a call and its arguments. Third, we relate together elements
that are accessed in the same statement. These factor relationships
can link more than two elements and thus capture semantic be-
haviors of binary code that are not expressible with only pairwise
relationships.

4.5 Feature Functions

Recall that in Section 3.2, we defined feature functions in the general
sense. We now provide the feature functions used by Debin and
illustrate how these feature functions are obtained from the tem-
plates during training.

Let D = {(V (i) , E (i) , F (i))}ti=1 be a set of graphs extracted from
non-stripped binaries. Nodes in these graphs are filled with ground
truth values. For each edge (vm , vn , rel) ∈

⋃t
i=1 E

(i) , we generate
pairwise feature functionsψi as follows:

ψi (A, A
′, Rel) =




1 if A = am , A
′ = an , Rel = rel

0 otherwise

where am and an are assignments to vm and vn , respectively. Fur-
thermore, for each factor Lk ∈

⋃t
i=1 F

(i) , we define a factor feature
function as follows:

φ j (L) =



1 if L = Lk
0 otherwise

where L ∈ Labels+ is the ordered list of values (names/types) as-
signed to the nodes connected by a factor.

Intuitively, the feature functions defined above serve as indica-
tors for the relationship and node assignment patterns discovered
from the training set. We instantiate the feature templates with
ground truth assignments, obtaining a large number of feature func-
tions. The weights associated with every feature function are then
learned in the training phase. The combination of feature indicator
functions and weights is then used by the MAP inference.

5 IMPLEMENTATION AND EVALUATION

In this section, we present the implementation details of Debin 4.
Thenwe discuss our extensive evaluation of the system: we evaluate
Debin’s accuracy on predicting debug information and illustrate
use cases where Debin can be leveraged for practical security anal-
ysis.

5.1 Implementation

Debin extracts dependency graphs (defined in Section 4) from
BAP-IR. We developed a plugin for the BAP platform in order to ob-
tain BAP-IR for the input binaries. Variable recovery classification
is implemented using the machine learning package scikit-learn [7].
To annotate the correct values for the training graphs, we parse
DWARF [8] debug information from non-stripped binaries using
the pyelftools package [6]. After obtaining the MAP inference re-
sult using the Nice2Predict [5] framework, program variables are
reconstructed according to the predicted names and are associated
via a one-to-many mapping to their locations in registers or mem-
ory offsets. We format all of the rebuilt information according to
the DWARF standard and utilize the ELFIO library [2] to produce
the final output binary. All our experiments were conducted on a
server with 512GB of memory and 2 AMD EPYC 7601 CPUs (64
cores in total, running at 2.2 GHz).

5.2 Evaluation Setup

Now we describe our dataset and metrics for evaluating Debin’s
prediction accuracy.

Dataset. Currently, Debin supports ELF binaries on x86, x64 and
ARM architectures. For each architecture, we collected 3000 non-
stripped binary executables and shared libraries as our dataset. The
9000 binaries (3000 for each of the three architectures) are from
4Available at https://debin.ai

https://debin.ai

Arch Instructions Functions Variables Known

x86 9363 80 744 87
x64 7796 72 851 79
ARM 10416 86 787 94

Average 9192 79 794 87

Table 2: Statistics on averaged number of instructions,

unknown function nodes, unknown variable nodes, and

known name nodes for our dataset. The values of the

known name nodes are extracted from the .dynsym section.

There is no known type node in the dependency graphs.

830 Linux Debug Symbol Packages [1], which include popular ones
such as coreutils, dpkg and gcc. The source code of these binaries
is written in the C language and the binaries are built with the
default compilation settings for each package. Therefore, multiple
optimization levels (e.g., -O0 to -O3) and other different compiler
options can be involved, which leads to a rich variety in the dataset.
Statistics of the dataset are shown in Table 2. Further, to learn the
feature functions and weights described in Section 4, we randomly
select 2700 binaries as the training set for each architecture. The
remaining 300 binaries are left as a benchmark for testing the
prediction accuracy of Debin.

Metrics. Debin consists of two prediction phases. First, Debin uses
a binary classifier based on the ET model to recover variables in
registers and memory offsets. We measure this step using accuracy:

Accuracy =
|TP | + |TN |
|P | + |N |

where TP is the true positives (i.e., registers and memory offsets
that are predicted to be variables and can actually be mapped to
variables), TN is the true negatives (i.e., registers and memory
offsets that are predicted not to be variables and actually do not
represent variables), P is the positive samples (i.e., registers and
memory offsets that can be mapped to variables), and N is the
negative samples (i.e., non-variable registers and memory offsets).

Second, structured prediction with the CRF model is employed to
predict properties (i.e., names and types) for recovered variables and
other elements. To measure the prediction quality of Debin after
this step, we track the following sets:
• Given Nodes (GN): the set of elements with debug information
(name or type) before stripping it. The set GN is formed of the
set P defined above in addition to elements which are functions
(these are not included in the set P).
• Nodes with Predictions (NP): the set of unknown elements deter-
mined by our fixed rules and variable recovery classification (via
the ET algorithm). These are nodes for which the CRF model
makes predictions.
• Correct Predictions (CP): the set of elements for which the CRF
model predicted the correct value (name or type). Here, correct
means that the predicted value is exactly equal to the values
given in the debug information. Note that assigning a value to a
non-variable will be counted as an incorrect prediction (defined
below).

Arch Precision Recall F1

x86
Name 62.6 62.5 62.5
Type 63.7 63.7 63.7
Overall 63.1 63.1 63.1

x64
Name 63.5 63.1 63.3
Type 74.1 73.4 73.8
Overall 68.8 68.3 68.6

ARM
Name 61.6 61.3 61.5
Type 66.8 68.0 67.4
Overall 64.2 64.7 64.5

Table 3: Evaluation of Debin using structured prediction.

With a perfect classifier, the set NP would ideally be the same as
the set GN. However, because the classifier is not perfect and may
introduce both false negatives and false positives, meaning the set
NP may end up being non-comparable to (or even larger than) GN.
The set CP is a subset of both NP and GN. To capture the quality of
the prediction, we use the following measures:

Precision =
|CP |
|NP |

; Recall =
|CP |
|GN |

; F1 =
2 × Precision × Recall
Precision + Recall

Intuitively, precision is the ratio of cases where the predicted value
is equal to the given value, among all of the predicted nodes (marked
as unknown by our rules and ET classifier). Recall refers to the pro-
portion of correct predictions over the set of nodes that originally
had debug information (i.e., the set GN). F1 score is a harmonic
average of precision and recall, examining the overall prediction
quality of Debin.

5.3 Evaluation on Prediction Accuracy

To objectively measure the accuracy of our probabilistic models, we
assume function scope information is given for every binary. How-
ever, in general, Debin can also leverage the built-inByteWeight com-
ponent in BAP whose accuracy for recovering function boundaries
is around 93% [14].

Evaluation on Variable Recovery. First, we briefly discuss the
accuracy of variable recovery by the ET algorithm. For x86, the
accuracy is 87.1%, for x64 - 88.9% and for ARM - 90.6%. The high
accuracy in this step ensures that Debin can effectively recover
register-allocated andmemory-allocated variables for later property
prediction. It also filters out temporarily allocated registers and
memory offsets and thus reduces noise.

Evaluation on Structured Prediction. Table 3 summarizes the
evaluation results of Debin after structured prediction. We report
results for name prediction, type prediction and overall (name+type)
prediction, measured by precision, recall and F1. Overall, the results
show that Debin predicts a considerable amount (recall over 63%)
of debug information with high precision (over 63%) across three
architectures and achieves a good trade-off between precision and
recall. These results indicate that our feature functions generalize
well over x86, x64 and ARM architectures.

2% 5% 10% 25% 50% 100%
10
20
30
40
50
60
70
80

Training size (fraction of full training set)

F 1
sc
or
e

x86 x64 ARM
Name
Type

Figure 3: F1 score of name and type prediction with differ-

ent fractions of training set used for learning theCRFmodel.

For every fraction from 2% to 50%, we repeated 5 times down-

sampling of the training set and running experiments to ob-

tain scores. We finally report the averaged results.

For name prediction, Debin consistently achieves high accuracy
(F1 is 62.4% on average). This result shows that Debin often predicts
names identical to their original values. Indeed, programmers typi-
cally use similar names for variables (e.g., variables that represent
loop counters) or reuse functions (e.g., that open a file). For this
reason, the set of names observed in our training set contains most
of the names that appear in the testing set. We recall that the names
in our training set are used to instantiate the feature functions, and
this enables Debin to often recover the original names of variables
and functions (since Debin makes predictions according to these
feature functions). Later in this section, we provide examples of
name prediction outputs and illustrate how those names can be
employed for inspecting binary behaviors.

Further, Debin can also infer types accurately. The accuracy for
type prediction on x64 (F1 is 73.8%) is higher than on x86 (F1 is
63.7%) and ARM (F1 is 67.4%). This is likely because types on x64 (a
64-bit architecture) are generally more distinguishable in terms of
their bitwise sizes than on the other two 32-bit architectures. For
instance, on x64, the sizes of pointer type and int type are 64
bits and 32 bits, respectively, while on x86 and ARM they are both
32 bits. Our feature functions for types capture size differences and
thus achieve a higher accuracy on x64. On x86, the type prediction
accuracy is lower. A possible explanation is that x86 has fewer
register-allocated variables whose types can be effectively inferred
by operation relationships (e.g., x64 and ARM use registers for
argument passing while x86 uses the stack).

Here we remark that our measurement is a lower bound on the
capability of Debin since we test for unambiguously exact equiva-
lence. First, assigning a name or a type to a non-variable is always
counted as a mis-classification in our metric. However, the useful-
ness of the predictions may not be affected if the assigned names
and types comply with program semantics. Moreover, predicting a
different name for a register-allocated or memory-allocated vari-
able is also treated as an incorrect prediction in our measurements.
However, it is possible the predicted names are semantically close
to the real names. For instance, in our x64 testing set, we found
four cases where variable named buf is assigned the value buffer.

Name Ratio Precision Recall F1

i 2.42 52.7 77.1 62.6
s 1.72 65.1 66.1 65.6
p 1.24 47.6 63.6 54.5

self 0.92 65.2 55.3 60.0
cp 0.79 69.5 77.4 73.2

Table 4: Statistics on 5 of the most frequent names in the

test set. Column 2 shows a distribution ratio of every name

among all names in the test set.

Name Times Precision Recall F1

ip 697 58.3 71.7 64.4
device 124 52.4 61.3 56.5
passwd 81 70.0 51.9 59.6
socket 69 91.5 62.3 74.1

encrypted 5 50.0 60.0 54.5

Table 5: Statistics on 5 of themost sensitive names in the test

set. Column 2 shows the appearance times of each.

Finally, certain types have more proximity (e.g., signed types and
their unsigned counterparts) than others (e.g., struct with int).

Another intriguing question is how training set size for the CRF
model affects inference accuracy. To investigate this point, we kept
the ET model fixed and randomly sampled 2%, 5%, 10%, 25% and
50% of binaries from the full training set to train the CRF model for
each architecture. Then, we evaluated the trained models on the
same test set and report the F1 scores. The results are plotted in
Figure 3. We can see that as the size of the training set increases, the
accuracy also increases for both name and type prediction among
the three architectures. Since name prediction is more difficult than
type prediction, it is more data-hungry as its F1 scores grow more
rapidly with increasing training samples.

Name Prediction Outputs. Now we present more details con-
cerning the name prediction task. Table 4 shows five of the most
frequent names over three architectures. Debin predicts upon these
with an average F1 score of 63.2%. Even though these names are fre-
quent, they are useful when finding common programming pattern
of binary code. For example, i is often used as a loop index and
with it, reverse engineers can quickly identify loops and their condi-
tionals. Also, some of the simple names (e.g., s and p) may suggest
variable types and thus operation patterns upon them. For example,
variable with a predicted name s is likely to be of string type and
involved in string operations. This is helpful for understanding
semantics of binaries.

Apart from frequent names, we list five representative sensitive
names in Table 5. Variables predicted with these names typically
store critical security-related information such as IP addresses (ip),
device information (device), encryption (encrypted) and internet
connections (socket). For real-world applications, we can search

1 \\ snippet 1

2 if (sub_806D9F0 (args) >= 0) {

3 ...

4 sub_80522B0 (args);

5 ...
6 }
7
8 \\ snippet 2
9 ...

10 v2 = sub_818BFF1 ("/proc/net/tcp", 0, v45, a1);

11 if (v2 == -1) return 0;
12 ...

(a) Decompiled snippets for original malwares

1 \\ snippet 1

2 if (setsockopt (args) >= 0) {

3 ...

4 sendto (args);

5 ...
6 }
7
8 \\ snippet 2
9 ...

10 v2 = open ("/proc/net/tcp", 0, v23, a1);

11 if (v2 == -1) return 0;
12 ...

(b) Decompiled snippets for outputs of Debin.

Figure 4: Debin predicts the statically linked library functions setsockopt, sendto and open. Identifying such functions helps

in finding potentially unsecure I/O operations.

for such sensitive names in the output of Debin and quickly de-
cide where security issues may be located. We demonstrate the
usefulness of searching for sensitive names in Section 5.4.

Training and Prediction Speed. The training phase for name
and type prediction lasts about five hours for each architecture:
around four hours to train two ET classification models (one for
registers and another for memory offsets), and one hour to train
the CRF model with the pseudo likelihood learning algorithm. We
used 60 threads to run the learning algorithms. The average predic-
tion time for every binary (with one thread) is about two minutes
where around 80% is spent on variable recovery, and 20% is spent
on running our analysis to construct the dependency graph and
perform MAP inference over this graph. A possible future work
item would be to increase the efficiency of the variable recovery
module.

5.4 Malware Inspection

We now discuss how Debin can be helpful for the task of inspecting
behaviors of malicious binaries. Using VirusShare [9], we then
search for around 180 categories of Linux malwares defined by
Symantec [52] and tried to download the latest 10 fully stripped
ELF x86 malwares for each category. Since there are usually less
than 10 qualified malwares for most categories, our test dataset
consists of 35 binaries over 13 categories ranging from 5.0KB to
1.7MB. We provide the malware binaries as input to Debin, whose
models are trained on benign binaries as already discussed above,
and search for security-related names in the outputs. Note that we
cannot report Debin’s accuracy on malwares because they are all
stripped and contain no debug information. The original malwares
and output binaries of Debin are further decompiled into Pseudo
C code with the popular Hex-Rays decompiler in IDA Pro [3]. We
then manually insepct the decompiled outputs. An example for
how Debin reveals a DNS resolver reader was already shown in
Section 1. We next report another use case where Debin can be
helpful in identifying suspicious statically linked library functions.

Identifying Suspicious Statically Linked Library Uses. Mali-
cious binaries are often compiled statically and stripped to hide
library function uses. In our malware dataset, 26 out of 35 sam-
ples are statically built. While library usages are a crucial part

for identifying malicious behaviors, it would be tedious and time-
consuming for analysts to manually inspect assembly code and
rename them. During our inspection, we found that Debin can be
helpful with finding potentially harmful library uses (as it automat-
ically renames them). In Figure 4, we show code snippets where
Debin renames suspicious library calls for two malware exam-
ples (one5 of category Linux.Xorddos and another6 of category
Linux.Mirai). In the first snippet, Debin recovers setsockopt
and sendto, which indicates potential leakage of sensitive data. In
the second snippet, Debin reveals sensitive behavior of opening the
file "/proc/net/tcp", which stores active IPv4 TCP connections.

Apart from our examples, Debin can also recover other library
calls, such as string manipulations. Library function renaming can
greatly reduce efforts for security analysts to examine malware.
Debin is able to rename these library functions likely due to their
existence (either statically or dynamically linked) in the training
set.

Limitations. With our probabilistic models, Debin learns pat-
terns of binary code from our training binaries, which we assume
are benign. However, malicious binaries often exhibit more complex
behaviors than benign ones. For example, we found samples in our
malware dataset that use customized string encoding. Obfuscation
techniques such as control flow flattening may also be performed to
hinder analysis. Debin may make less accurate predictions on ob-
fuscated binaries. Security analysts could combine de-obfuscation
methods with Debin to tackle these issues.

6 RELATEDWORK

We survey some of the works that are most closely related to ours.

Comparison with Existing Approaches. In Table 6, we com-
pare Debin with several existing approaches in terms of capabilities.
For variable recovery, DIVINE [13], TIE [38] and SecondWrite [23]
employ a static analysis algorithm called Value Set Analysis [12],
while Debin, to our best knowledge, is the first to use a learning-
based classifier. For type recovery, TIE and SecondWrite adopt
constraint-based type inference. Eklavya learns a Recurrent Neu-
ral Network to predict 7 types for function arguments, while Debin
5SHA1: 3f1f4ba2434d0ad07838ebc694ad4a4cf8c9641a.
6SHA1: 5ab78c427e1901adf38ade73b8414340f86b6227.

Approach

Variable Type Name Learning Architectures

Recovery Recovery Prediction Based Supported

DIVINE [13] ✓ ✗ ✗ ✗ x86
TIE [38] ✓ ✓ ✗ ✗ x86

SecondWrite [23] ✓ ✓ ✗ ✗ x86
Eklavya [20] ✗ partial1 ✗ ✓ x86, x64

Debin ✓ ✓ ✓ ✓ x86, x64, ARM
1 Eklavya only predicts 7 types for function arguments.

Table 6: Comparison of Debin against existing approaches

for recovering variable or type information from binaries.

is capable of predicting 17 types for both function arguments and
variables. Moreover, Debin is also the first system capable of re-
covering names, a desirable functionality for decompilation and
important for malware inspection. We remark that it is difficult to
compare Debin and those works quantitatively because they have
different prediction granularity, benchmarks and measurements.

Binary Analysis. To perform binary analysis, usually the first
step is to choose an analysis platform that translates assembly
code into a corresponding IR (thereby abstracting the semantics of
various instruction sets). Potential open source candidates for per-
forming this task are BAP [17], Mcsema [4] and angr.io [50]. They
lift binary code into BAP-IR, LLVM-IR and VEX-IR, respectively.
A recent framework, rev.ng [25], can recover control flow graphs
and function boundaries for binaries over multiple architectures.
Kim et al. [35] tested a wide range of binary analysis frameworks
on different tasks. For Debin, we currently choose BAP-IR for the
advantages discussed in Section 4.1. An interesting future work
item is to experiment with our learning-based techniques using
other frameworks.

There is a wide range of literature on extracting semantic infor-
mation from binaries. Apart from the ones discussed above, IDA
FLIRT [3] and UNSTRIP [30] identify library functions by gener-
ating fingerprints for them. However, their approaches are not
capable of suggesting names for other functions.

Machine Learning for Binaries. Machine learning methods
have been adopted for different binary analysis tasks. Several works
focus on function identification [14, 49, 54], which is the basis for
many further analysis steps. We adopt ByteWeight [14] in our sys-
tem since it is publicly available in BAP [17]. Chua et al. [20] train
a Recurrent Neural Network to predict function argument counts
and types. Statistical language models [33, 34] have been employed
to predict types in binaries, but with rather different focus on object
types and class hierarchy reconstruction.

Apart from recovering source-level information from binaries,
there are also several works that predict other valuable character-
istics. Rosenblum et al. [46] focus on toolchain provenance. Their
work predicts compiler family and version, optimization level and
programming language with high accuracy. Caliskan et al. [19]
build an effective set of features and utilizes a random forest classi-
fier to predict programmer identity.

There are other works that utilize machine learning to classify
malware [11, 36, 48] and research that adopts statistical methods to

calculate binary similarity [21, 22, 55]. Those tasks are complemen-
tary to the problem addressed in this work and can benefit from
the recovered names and types.

ProbabilisticModels forCode. In recent years, the development
of large codebases has triggered studies of probabilistic models for
software related tasks such as code summarization [26], method
and class name suggestions [10], code completion [45], program
synthesis [42, 43] and programming language translation [32].

From this set of works, the ones most related to us are [44] and
[15]. Their tools also leverage structured prediction algorithms
with Nice2Predict [5] so to infer types and names for Javascript
and Android programs, respectively. Our work differs from these
approaches in that it works on lower-level binary code, which is
inherently a more difficult task. Therefore, we need to first perform
variable recovery that classifies the program elements used for
structured prediction, while these works use a fixed set of rules.
We also support more expressive feature functions, i.e., not only
pairwise kinds but also richer factors relating multiple elements.
Further, these methods only work on a single high-level language
(e.g., Java, JavaScript). In the context of binary analysis however,
our probabilistic models work on low-level code across multiple
architectures and compilation settings, in turn dictating a more
general and richer classes of features. Finally, our work utilizes
one model to jointly predict names and types while [44] uses two
separate models (one to predict names and another to predict types).
The work of [15] only uses one model to predict names for Android.

A Statistical Machine Translation model is employed to suggest
identifier names for Javascript [53] and decompiled code [31].While
the latter is close to our work, its model only achieved around 25%
accuracy. Further, their method relies on decompilation, which al-
ready suffers from great information loss. Our prediction directly
works on binary code, achieves higher accuracy and shows success-
ful cases on decompilation tasks.

7 CONCLUSION

We presented a novel approach for predicting debug information
in stripped binaries. The key idea is to formalize the problem as
a machine learning task and to leverage a combination of two
complementary probabilistic models: an Extremely Randomized
Trees classifier and structured prediction with Conditional Random
Fields. To instantiate the idea, we introduced a comprehensive set of
features suitable for the task of predicting binary debug information,
and used this set to train our probabilistic models on a large number
of non-stripped binaries.

The resulting system, called Debin, uses these probabilistic mod-
els to recover debug information of new, unseen binaries. Our ex-
tensive experimental evaluation of Debin indicates the approach is
accurate enough to correctly infer large portions of stripped debug
information and is helpful for practical security analysis.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their con-
structive feedback and Rong Jian for the helpful discussions on
malware inspection.

REFERENCES

[1] 2018. Debug Symbol Packages. https://wiki.ubuntu.com/Debug%20Symbol%
20Packages

[2] 2018. ELFIO. http://elfio.sourceforge.net/.
[3] 2018. IDA Pro. https://www.hex-rays.com/.
[4] 2018. Mcsema. https://github.com/trailofbits/mcsema.
[5] 2018. Nice2Predict. http://nice2predict.org/.
[6] 2018. pyelftools. https://github.com/eliben/pyelftools.
[7] 2018. scikit-learn. http://scikit-learn.org.
[8] 2018. The DWARF Debugging Standard. http://dwarfstd.org/.
[9] 2018. VirusShare. https://virusshare.com/.
[10] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015.

Suggesting accurate method and class names. In Proceedings of Foundations of
Software Engineering (ESEC/FSE). pages 38–49.

[11] Ben Athiwaratkun and Jack W. Stokes. 2017. Malware classification with LSTM
and GRU language models and a character-level CNN. In Proceedings of Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). pages
2482–2486.

[12] Gogul Balakrishnan and Thomas W. Reps. 2004. Analyzing Memory Accesses in
x86 Executables. In Proceedings of Compiler Construction (CC). pages 5–23.

[13] Gogul Balakrishnan and Thomas W. Reps. 2007. DIVINE: DIscovering Vari-
ables IN Executables. In Proceedings of Verification, Model Checking, and Abstract
Interpretation (VMCAI). pages 1–28.

[14] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In
Proceedings of USENIX Security Symposium. pages 845–860.

[15] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016.
Statistical Deobfuscation of Android Applications. In Proceedings of Computer
and Communications Security (CCS). pages 343–355.

[16] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.

BAP: A Binary Analysis Platform. In Proceedings of Computer Aided Verification
(CAV). pages 463–469.

[18] David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. 2013.
Native x86 Decompilation Using Semantics-Preserving Structural Analysis and
Iterative Control-Flow Structuring. In Proceedings of USENIX Security Symposium.
pages 353–368.

[19] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck,
Rachel Greenstadt, and Arvind Narayanan. 2018. When Coding Style Survives
Compilation: De-anonymizing Programmers from Executable Binaries. In Pro-
ceedings of Network and Distributed System Security Symposium (NDSS).

[20] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural
Nets Can Learn Function Type Signatures FromBinaries. In Proceedings of USENIX
Security Symposium. pages 99–116.

[21] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical similarity of
binaries. In Proceedings of Programming Language Design and Implementation
(PLDI). pages 266–280.

[22] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of binaries
through re-optimization. In Proceedings of Programming Language Design and
Implementation (PLDI). pages 79–94.

[23] Khaled Elwazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. 2013. Scalable variable and data type detection in a binary rewriter. In
Proceedings of Programming Language Design and Implementation (PLDI). pages
51–60.

[24] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In Proceedings
of Network and Distributed System Security Symposium (NDSS).

[25] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017. rev.ng: a
unified binary analysis framework to recover CFGs and function boundaries. In
Proceedings of Compiler Construction (CC). pages 131–141.

[26] Jaroslav M. Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Al-
lamanis, Mirella Lapata, and Charles A. Sutton. 2017. Autofolding for Source
Code Summarization. IEEE Transactions on Software Engineering 43, 12 (2017),
1095–1109.

[27] Brendan Frey, Frank Kschischang, Hans-Andrea Loeliger, and NiclasWiberg. 1997.
Factor graphs and algorithms. In Proceedings of the Annual Allerton Conference
on Communication Control and Computing. pages 666–680.

[28] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized
trees. Machine Learning 63, 1 (2006), 3–42.

[29] Ilfak Guilfanov. 2008. Decompilers and beyond. In Black Hat USA.
[30] Emily R. Jacobson, Nathan E. Rosenblum, and Barton P. Miller. 2011. Labeling

library functions in stripped binaries. In Proceedings of workshop on Program
analysis for software tools (PASTE). pages 1–8.

[31] Alan Jaffe. 2017. Suggesting meaningful variable names for decompiled code: a
machin translation approach. In Proceedings of Foundations of Software Engineer-
ing (ESEC/FSE). pages 1050–1052.

[32] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-Based
Statistical Translation of Programming Languages. In Proceedings of International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward!). pages 173–184.

[33] Omer Katz, Ran El-Yaniv, and Eran Yahav. 2016. Estimating types in binaries
using predictive modeling. In Proceedings of Principles of Programming Languages
(POPL). pages 313–326.

[34] Omer Katz, Noam Rinetzky, and Eran Yahav. 2018. Statistical Reconstruction of
Class Hierarchies in Binaries. In Proceedings of Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). pages 363–376.

[35] Soomin Kim, Markus Faerevaag, Minkyu Jung, SeungIl Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. 2017. Testing intermediate representations for
binary analysis. In Proceedings of Automated Software Engineering (ASE). pages
353–364.

[36] Bojan Kolosnjaji, Ghadir Eraisha, George D. Webster, Apostolis Zarras, and Clau-
dia Eckert. 2017. Empowering convolutional networks for malware classification
and analysis. In Proceedings of International Joint Conference on Neural Networks
(IJCNN). pages 3838–3845.

[37] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Con-
ditional Random Fields: Probabilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of International Conference on Machine Learning
(ICML). pages 282–289.

[38] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
Reverse Engineering of Types in Binary Programs. In Proceedings of Network and
Distributed System Security Symposium (NDSS).

[39] Beng Heng Ng and Atul Prakash. 2013. Expose: Discovering Potential Binary
Code Re-use. In Proceedings of Computer Software and Applications Conference
(COMPSAC). pages 492–501.

[40] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging semantic signatures for bug search in binary programs.
In Proceedings of Annual Computer Security Applications Conference (ACSAC).
pages 406–415.

[41] Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. 2007. Binary Obfus-
cation Using Signals. In Proceedings of USENIX Security Symposium.

[42] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2017. Program Synthesis for
Character Level Language Modeling. In Procceedings of International Conference
on Learning Representations (ICLR).

[43] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning
programs from noisy data. In Proceedings of Principles of Programming Languages
(POPL). pages 761–774.

[44] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of Principles of Programming Languages
(POPL). pages 111–124.

[45] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In Proceedings of Programming Language Design and
Implementation (PLDI). pages 419–428.

[46] Nathan E. Rosenblum, Barton P. Miller, and Xiaojin Zhu. 2011. Recovering the
toolchain provenance of binary code. In Proceedings of International Symposium
on Software Testing and Analysis (ISSTA). pages 100–110.

[47] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel J. Quinlan, and
Zhendong Su. 2009. Detecting code clones in binary executables. In Proceedings of
International Symposium on Software Testing and Analysis (ISSTA). pages 117–128.

[48] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo. 2001. Data
Mining Methods for Detection of New Malicious Executables. In Proceedings of
IEEE Symposium on Security and Privacy (S&P). pages 38–49.

[49] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks. In Proceedings of USENIX Security
Symposium. pages 611–626.

[50] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of IEEE Symposium on Security and Privacy
(S&P). pages 138–157.

[51] Charles Sutton and Andrew McCallum. 2012. An Introduction to Conditional
Random Fields. Foundations and Trends in Machine Learning 4, 4 (2012), 267–373.

[52] Symantec Coporation. 2018. A-Z Listing of Threats & Risks. https://www.
symantec.com/security-center/a-z.

[53] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar T. Devanbu. 2017. Re-
covering clear, natural identifiers from obfuscated JS names. In Proceedings of
Foundations of Software Engineering (ESEC/FSE). pages 683–693.

[54] Shuai Wang, Pei Wang, and Dinghao Wu. 2017. Semantics-Aware Machine Learn-
ing for Function Recognition in Binary Code. In Proceedings of IEEE International
Conference on Software Maintenance and Evolution (ICSME). pages 388–398.

[55] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of Computer and Communications Security (CCS).
pages 363–376.

https://wiki.ubuntu.com/Debug%20Symbol%20Packages
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
http://elfio.sourceforge.net/
https://www.hex-rays.com/
https://github.com/trailofbits/mcsema
http://nice2predict.org/
https://github.com/eliben/pyelftools
http://scikit-learn.org
http://dwarfstd.org/
https://virusshare.com/
https://www.symantec.com/security-center/a-z
https://www.symantec.com/security-center/a-z

	Abstract
	1 Introduction
	2 Overview
	3 Probabilistic Models
	3.1 Variable Recovery
	3.2 Binary Code Properties Prediction

	4 Structured Prediction with Debin
	4.1 Intermediate Representation
	4.2 Binary Code Elements
	4.3 Known and Unknown Elements
	4.4 Relationships between Elements
	4.5 Feature Functions

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation Setup
	5.3 Evaluation on Prediction Accuracy
	5.4 Malware Inspection

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

