Communication Systems Group, Prof. Dr. Burkhard Stiller

MASTER THESIS

University of
Zurich™

7

Design and Implementation of a
Scalable loT-based Blockchain

Kirsat Aydinli
Zurich, Switzerland
Student ID: 13-926-910

Supervisor: Sina Rafati
Date of Submission: March 1, 2019

University of Zurich
Department of Informatics (IFI)
BinzmuUhlestrasse 14, CH-8050 Zurich, Switzerland —

Master Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

0.1 Einleitung

Blockchains und das Internet der Dinge (engl. Internet of Things, IoT) haben das Po-
tential, ein Konstrukt zu bilden, um grosse Datenmengen dezentralisiert und sicher zu
speichern. Um dies zu erreichen, miissen Blockchains der fehlenden Skalierbarkeit gerecht
werden.

0.2 Ziele

Das Hauptziel dieser Arbeit ist der Entwurf und die Implementierung einer skalierba-
ren Blockchain, welche sich die Technik des Sharding zu Nutze macht, um eintreffende
Transaktionen parallel zu validieren und zu speichern. Im Spezifischen bedeutet dies, dass
Transaktionen von einer distinkten Menge von Teilnehmern validiert und gespeichert wer-
den. Im Gegensatz hierzu werden bei tranditionellen Blockchains die Daten von allen Teil-
nehmern verarbeitet mit dem Nachteil, dass sich mit der Zeit die Speicheranforderungen
an die Knoten erhdhen. Dies kann unter Anderem dazu fiithren, dass gewisse Knoten vom
Netzwerk ausgeschlossen werden. Die Blockchain in dieser Thesis mildert diesen Effekt
dadurch, dass die Knoten nur einen Bruchteil aller Transaktionen verarbeiten.

0.3 Resultate

In Bezug auf die funktionalen Anforderungen kann festgehalten werden, dass die ent-
wickelte Blockchain die Grundfunktionen des Sharding erfolgreich umgesetzt hat.

Um die nicht-funktionalen Eigenschaften respektive die Performance zu evaluieren, wur-
den drei Test Umgebungen aufgebaut. Besonderes Augenmerk wurde auf die Metrik 'Va-
lidierte Transactionen pro Sekunde’ (TPS) gelegt.

Im ersten Setting wurde Bazo getestet mit einem Validator und einem Shard und je drei
Testlaufen. Das Ergebnis hat sich vielversprechend herausgestellt mit einer durchschnitt-
lichen TPS von 52,6 Tx/sec, wobei das Maximum bei 55,2 Tx/sec lag. Die genauen Mes-
sungen kénnen der Tabelle 5.1 im Kapitel Evaluation entnommen werden.

Der zweite Teil der Evaluation richtete sich gegen Bazo mit zwei Validatoren und zwei

1

Shards, wieder mit je drei Testlaufen. Hierbei ging die Erwartung voraus, dass sich die
TPS erhohen sollte aufgrund von zwei parallel laufenden Shards. Erstaunlicherweise hat
sich herausgestellt, dass sich die TPS etwas vermindert hat im Gegensatz zum Beispiel mit
einem Shard. Hierbei lag die durchschnittliche TPS bei 44,8 Tx/sec mit einem Maxialwert
von 48,8 Tx/sec. Eine genauere Analyse der Messungen von jedem der zwei Validatoren
hat gezeigt, dass die Synchronisation der Shards auf jeder Blockhohe eine nicht vernach-
lassigbare Verzogerung nach sich zieht. Wahrend der Synchronisationsphase findet kein
"Mining’ statt, sondern die Teilnehmer synchronisieren unter sich den globalen State der
Blockchain. Bezogen auf jeden einzelnen Validator fiihrte dies zu einer erheblich geringe-
ren TPS als im Falle von einem Shard. Fiir die detaillierte Auswertung wird der Leser auf
Tabelle 5.2 im Kapitel Evaluation verwiesen.

Ein letzter Testlauf wurde mit drei Validatoren und drei Shards durchgefiihrt. Hierbei
hat sich gezeigt, dass die TPS Performance gestiegen ist mit einem Durchschnittswert
von 58,3 Tx/sec und einer Maximalperformance von 59,5 Tx/sec. Somit konnte dargelegt
werden, dass Sharding eine erhchte Skalierbarkeit begiinstigt.

0.4 Weitere Arbeiten

Bazo weist in seiner jetzigen Form einige Limitation auf, welche eine erfolgreiche Nutzung
in Produktion erschweren. Zum einen funktioniert die Blockchain nur addquat mit einem
Validator pro Shard und zum Anderen besteht noch keine Massnahme, um Bazo von Aus-
fillen von Validatoren zu erholen. Des Weiteren gestaltet sich eine 51% Attacke durch das
Sharding einfacher als in einer Blockchain ohne Sharding. Um diesen Schwichen gerecht
zu werden, gibt es folgende Verbesserungspotentiale:

e Der Synchronisationsmechanismus vom State (Account Informationen) ist noch nicht
in der Lage mit eine Fork (gleichzeitiges Generieren von mehreren Blocken im glei-
chen Shard) umzugehen. Hier bedarf es eines Mechanismus, der im Falle eines Forks
die Synchronisation von invaliden Blocken zuriickstellt.

e Ein weiteres Problem tritt auf, wenn ein Fork in einem Shard im letzten Block vor
dem néchsten Epochenblock auftritt. In so einem Fall wiirde der néchste Epochen-
block generiert werden, ohne dass die notigen Blocke zuriickgerollt wurden. Dies
fithrt zu einer Verfilschung im State. Hierbei miisste ein Fork ebenfalls richtig er-
kannt und die Generierung des néichsten Epochenblocks entsprechend aufgeschoben
werden.

e In einer Blockchain mit Sharding gestaltet sich ein 51% Attackszenario einfacher
als in einer Blockchain ohne Sharding, da hierbei nicht mehr 51% der Assets beno-
tigt werden, sondern ein Bruchteil davon in einer bestimmten Epoche. Um dieser
erleichterten Attacke vorzubeugen, konnte man die Zuweisung der Validatoren zu
den einzelnen Shards verbessern, in dem man die Knoten auf jeder Blockhéhe einem
anderen Shard zuweist.

e Des Weiteren koénnte die Evaluation ausgeweitet werden durch Tests mit mehr als
drei Shards, um herauszufinden, ob sich der Trend einer erhéhten TPS weiterent-
wickelt.

Abstract

This master’s thesis documents the design, implementation and evaluation of the sharding
enabled Bazo blockchain. The decision to leverage sharding as the layer 1 scalability tech-
nique was the result of reviewing recent literature with respect to mainstream approaches
to scale blockchains.

The system supports sharded environments with one validator per shard. In case of
multiple shards, the validators validate and store only a fraction of the whole incoming
transaction load, and as such of the whole blockchain. Received transactions from the
clients are assigned to shards based on their public address. The single shard chains syn-
chronize the global state at every block height to make sure that the shards grow at the
same pace. In order to do so, the new data type state transition was introduced which is
emitted after every block creation from each shard. The state transition includes every-
thing needed for the other shards to update their local state. Furthermore, the blockchain
runs in fixed lengths of X blocks called epochs. After each epoch, the validators are
randomly re-assigned to the single shards. The system was evaluated through unit tests
sending up to 950 transactions per second to the blockchain. The set-up with one valida-
tor and one shard achieved a peak transaction validation rate of 55,2 Tx/sec.

In a similar set-up, Bazo was testet with two validators and two shards. Surprisingly,
the overall TPS value decreased slightly with a peak of 48,8 Tx/sec. In this case, the
main performance bottleneck turned out to lie in the synchronisation overhead of the two
shards. Furthermore, the tests were extended to incorporate three valudators and three
shards. Hereby, it was observed that the TPS capacity increased to a maximum of 59,5
Tx/sec, demonstrating that sharding has a positive influence on the scalability of Bazo.
Although the current system exhibits evident limitations and downsides, it nevertheless
showed to be a first feasible step towards making Bazo more scalable while incorporate
the promising technique of sharding.

iii

v

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Sina Rafati, for the con-
tinuous support of my master’s thesis. His patience, motivation and profound knowledge
in the field of blockchain technology is inspiring. Furthermore I would like to thank Dr.
Thomas Bocek for his valuable advice and guidance in the weekly meetings.

Besides my supervisors I would also like to offer my sincere thanks to Prof. Dr. Burkhard
Stiller, the head of the Communication Systems Research Group, for giving me the op-
portunity to work on such an interesting and currently relevant topic.

vi

Contents

[Abstract]

[Acknowledgments|

2 Background and Related Work|

vil

i

iii

viii CONTENTS

[2.6.3 RapidChain| 11

6.4 qal . . 12

2.6.5 QuarkChain|o 12

3 Designl 15
[3.1 Key Assumptions| 15
[3.2 Entity Management|{. oo 16
[3.3 Network Sharding| 17
3.4 POCHS| L 17
3.5 Number Of Shardsl oo 18
3.6 TLeader Formationl 19
[3.7 Epoch Finality And Validator Assignment| 20
[3.8 Transaction Sharding and Processingl 22
[3.9 Block Height and State Synchronisation| 23

[4 Implementation| 27
M1 Transactiond 27
1.1.1 Stake Transaction (StakeTx)[. 27

.1.2 System Parameters (ConfigI'x)| 28

{.1.3 Funds Transactions (FundsTx)[. 28

B2 BIocks . . . o o o 28
2.1 OShard Blocklo 28

[4.2.2 Epoch Blockl.o 30

M3 State Transitionlo 31
5__Evaluationl 33
[b.1 Set-Up of the Testcase|o oo 33
[H.2 1 Validator - 1 Shard| oL 34
b.3 2 Validators - 2 Shardslo Lo 36

CONTENTS

6 Future Work

[7 Summary and Conclusions|

ALl fions

[List of Figures|

[List of Tables|

AT ation Ciidelines

[A.1 Validator Application|.

(A.1.1 Key Handlingl

[A.2 Client Application]

[A.3 Complete Example with 3 Shards|

[A.3.1 Generate Node Directories and Keys|

[A.3.2 'lranster Funds and Enable Staking|

[B__Contents of the CDI

1X

39

41

49

49

51

55
25
26
57
57
o8
59
59
60

63

CONTENTS

Chapter 1

Introduction

Two rapidly accelerating and emerging research areas in computer science with respect
to secure and fast data storage are IoT (Internet of Things) and blockchains.

A blockchain is best described as a distributed ledger which is maintained concurrently
by multiple peers and provides the possibility for users to insert data in it. Furthermore,
sophisticated consensus mechanisms are employed among the peers to validate data input
and store them on the blockchain. For this reason, such a system is especially appropriate
for securely storing data and mitigating tampering approaches.

On the other hand, IoT denotes the primitive of several (usually many) devices communi-
cating with each other while being connected to the Internet. This setting is particularly
useful in application scenarios where automated data exchange is crucial.

Blockchains might be perceived as the missing link to settle scalability and redundant
trust in the IoT industry. Leveraging blockchain techniques for [oT data offers a promis-
ing way to automatically store it in a tamper resistent and distributed system. This way,
setting up a complex and centralized I'T Infrastructure with the need of permanent main-
tenance can be omitted. This decentralized approach would eliminate any single point
of failure. In addition, the cryptographic algorithms which are inherent to blockchains
would make stored data more private.

1.1 Motivation

The Internet of Things (IoT) is growing at a fast pace. According to Gartner Research,
the TIoT will be including approximately 26 billion device units installed until 2020 [41].
Even though this growth is a potential sign for the unlimited use cases of IoT, a massive
adoption of thereof still faces crucial challenges. One of the most important obstacles
is that many IoT solutions are still expensive due to costs related to the deployment of
centralized server farms.

Application areas in which blockchain technologies and IoT are involved are sensing, data
storage, timestamping services, smart living applications, intelligent transportation sys-
tems, wearables, supply chain management, mobile crowd sensing, cyber law and security
in mission-critical scenarios [20].

2 CHAPTER 1. INTRODUCTION

For instance, in terms of agriculture IoT, blockchains can be employed for tracability and
monitoring purposes. In [40], an automated and decentralized pollution monitoring sys-
tem is presented which basically saves IoT sensor data in the Ethereum blockchain.

When operating a blockchain in an IoT setting, especially for purposes of data stor-
age, several requirements need to be addressed. The most important ones are known as
high data sizes, great number of [oT nodes and data privacy.

Existing cryptocurrencies are known to have scalability issues, i.e., the number of transac-
tions they are capable of processing per second is limited. As the number of applications
leveraging public cryptocurrencies grow, the demand for processing high transaction rates
with a comparatively low latency is increasing [63].

The Communications Systems Group (CSG) at the University of Zurich has recently
been developing the Bazo blockchain from scratch [58] [4]. Although it already encom-
passes state-of-the-practice building blocks of a blockchain (e.g. transaction management,
storage of data in blocks, consensus mechanisms), it is not designed for the purpose of
[oT related use cases.

Especially the lack of Bazo’s scalability makes it infeasable to use in an IoT environment.
Imporving the scalability of Bazo will be the the main purpose of the thesis at hand.

1.2 Description of Work

This thesis covers the design and implementation of a scalable [oT enabled Blokchain for
the purpose of storing loT data while taking into account the aforementioned require-
ments.

Furthermore, the newly developed blockchain will be evaluated in order to assess the ad-
vantages compared to the current implementation of Bazo. During the evaluation phase,
critical performance metrics will be examined. The most important metrics include block
generation time, transaction validation rate, transaction issuance rate and average num-
ber of transactions in a block.

The technical goal of the thesis is to adapt the Bazo blockchain to incorporate the most
applicable scalability methodology which was determined after thorough review of recent
literature and assessment of its fit for Bazo.

1.3 Bazo Blockchain

The Bazo cryptocurrency [[]is a blockchain developed in 2017 from scratch at the Univer-
sity of Zurich mainly for research purposes. Unlike Bitcoin which employs an Unspent
Transacion Output (UTXO) model, Bazo is a blockchain in which accounts are first-class
citizens. This means that the union of all accounts make up the state of the network.

The initial development of Bazo employed Proof of Work (PoW) as the consensus mech-
anism [58]. Due to high energy consumption of the PoW consensus and the need of

Thttps://github.com/bazo-blockchain

1.4. THESIS OUTLINE 3

increasing security of the blockchain, Bazo was adapted in 2018 to incorporate Proof of
Stake (PoS) as the main consensus mechanism [4].

Based on the current implementation of Bazo, the main contribution of this thesis is an
improvement of thereof with respect to its scalability.

1.4 Thesis Outline

The thesis at hand is structured into 7 main parts as follows: Section 2 familiarizes the
reader with various approaches on how to scale blockchains. Chapter 3 and 4, as an
elaboration of the practical parts, presents the proposal of the thesis including an outline
of the chosen design and the implementation of the adjusted Bazo. An evaluation of the
developed system is conducted in section 5. Further improvement potentials and future
work are outlined in chapter 6. The paper concludes with section 7 which is devoted to a
summary and conclusion part.

CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

The following chapter sheds light on different ways of improving the scalability of a given
blockchain. The need for scalability becomes more important the more nodes are con-
nected to the system and issue transactions at a high rate. The techniques which will
be discussed in this chapter are depicted from recent literature. As such, they do not
constitute the complete set of available scalability methods. Since blockchain scalability
is a highly dynamic research area, new scalability proposals will be released on a regular
time basis. For the sake of simplicity, only the methods mentioned in this chapter will be
examined within the scope of this work.

2.1 Blocksize Increase

Probably the most straightforward and simplest approach of enhancing the scalability of
a blockchain is to increase its blocksize. This way, more transaction fit into a single block
in general, thus the achieved throughput of transaction per block interval would increases
[31].

Despite its simplicity, this approach comes hand in hand with several drawbacks. A di-
rect implication of the increase of the blocksize is a hardfork of the underlying blockchain.
This would result in a split of the community as it happened with Bitcoin [56].

Due to the fact that traditional blockchains require every node to store the full history of
the ledger in order to become part of the network, an increase of the blocksize would lead
to an increased storage requirement of a full node. Depending on how much the storage
requirement increases, nodes which are not capable of fulfilling these would be ruled out
of the network in the long run.

This would mean that larger blocks would make full nodes more expensive to operate.
This in turn would lead to some few centralized entities having enough power to be part
of the mining/validator network. As a result of the reduced decentralization, users of the
blockchain would need to put more trust into protocol[37].

6 CHAPTER 2. BACKGROUND AND RELATED WORK

The enourmous storage demand of Bitcoin when increasing the blocksize without any
limitations can be made more clear when attempting to reach the throughput peak of
VISA with roughly 47000 transactions per second during holidays in 2013. In case Bitcoin
would use an average of 300 Bytes per transaction and assuming unlimited blocksize, an
equivalent capacity to VISAs peak transaction volume would result in nearly 8 Gigabytes
per Bitcoin block, every ten minutes on average. Extrapolated to one year, that would
result in over 400 Terabytes of data [50].

2.2 1I0TA

In the effort of developing a novel, scalable blockchain - especially for the application
of ToT use cases - the IOTA Foundation H has released the eponymous crypotocurrency
IOTA. In contrast to mainstream blockchains, IOTA employs a different data structure
under the hood.

The distributed ledger technique of IOTA is based on a Directed Acyclic Graph (DAG)
for storing transactions rather than that of cryptographically connected blocks as it is
applied in mainstream cryptocurrencies. The DAG of IOTA is referred to as the Tangle
[51]. An exemplary representation is shown in Figure 2.1. Whereas nodes in typical
cryptocurrencies would represent a collection of transactions bundled as a block, the nodes
in the Tangle represent single transactions. Any edge between two transaction denotes
a validation path, e.g. A = B means that transaction A validates transaction B. An
edge of the form A = ... = ... = ... = F would mean that transaction A indirectly
approves transaction F. Transactions without any confirmations yet are called tips. In
Figure 2.1, they correspond to the grey nodes in the rightmost part of the Tangle.

Figure 2.1: The Tangle - Grey Nodes: Tips - Time Progresses From
Left To Right [51]

In order to issue a transaction to the Tangle, a user has to perform following tasks [51]:

e confirm two previous transactions

e perform a little PoW by solving a cryptographic puzzle similar to the handling in
Bitcoin, but which is generally a lot easier to obtain

Thttps://www.iota.org/

2.3. SHARDING 7

All tokens of IOTA were generated when issuing the genesis transaction. No new tokens
will be created in the future. Furthermore, IOTA does not employ a mining or validation
mechanism as it is known from mainstream blockchains, e.g. Bitcoin or Ethereum. There-
fore, there are no transaction fees in the traditional sense. The ’fee’ to participate in the
network is solely the accomplishment of the two aforementioned tasks. This characteristic
enables to operate IOTA basically fee-free which is considered crucial in the context of
micropayments. In establishing true micropayments, growing transaction fees are a major
obstacle [32].

An additional entity which is part of IOTA is the Coordinator which is a special node
contributing computing power and security measures to the network. He is responsible for
periodically assigning a confidence level of 100% to transaction which have been residing
in the Tangle long enough. Besides that, the Coordinator performs regular snapshots of
the Tangle to keep the storage requirements minimized. In such an activity, he removes
all events and accounts from the Tangle which have a non-positive balance. The notion
of the centrally operated and closed source Coordinator might pose some threats to the
decentralized nature of the cryptocurrency. IOTA intends to turn off the Coordinator
once the network has grown strong enough to sustain itself [32].

In terms of scalability, IOTA does not exhibit an artificial thereshold or limit of transac-
tions that can be verified within a certain time interval. In fact, every added transaction
validtes two transaction, thus the scalability increases linearly with every new transaction
in the Tangle. [511 [7, 32, [52].

2.3 Sharding

The idea of sharding has its origin from database management theory. Hereby, sharding
denotes the horizontal partitioning of a database among multiple physical data stores
holding its own distinct subset of the data. This split of a large collection across several
servers enables the distributed management in terms of CRUD operations of a single ta-
ble, thereby improving the scalability [64].

When distirbuting data across server clusters, a key has to be chosen for chunk ranges.
This key is referred to as shard key and can consist of any combination of fields. Since
the shard key determines how the data is distributed, choosing a proper key is crucial for
the handling of the workload of the application [I1].

Sharding in the context of blockchain research is perceived as one of the most effec-
tive scalability technique in recent literature. As a layer 1 scalability method (e.g. as
opposed to blocksize increase), its application has a direct impact on the scalability of the
underlying blockchain.

Hereby, sharding is referred to as the artificial division the workload of the blockchain,
i.e. transaction processing, into single shards in such a way that the transactions can be
validated and stored in parallel.

When applying sharding to a blockchain, there are several challenges one needs to be
aware of. First, it needs to be ensured that the same transaction does not get assigned
to several shard. This would lead to redundant work. To avoid this pitfall, an adequate
shard key has to be determined. In most cases, the sender address of a transaction serves

8 CHAPTER 2. BACKGROUND AND RELATED WORK

as an appropriate shard key. Given that the number of shards remains the same, a trans-
action from a user will always be processed by one particular shard.

Another important point that needs to be taken care of when using sharding is to deter-
mine the right number of shards. With regards to this decision, it might be advisable to
partition the network into shards based on the number of validators or miners, respec-
tively.

Conceptually, it might be reasonable to have as many shards as possible to make the
most out of sharding and parallel transaction processing. But having many shards also
increases the communication and coordination effort among the shards. Apparently, there
is a trade-off between the number of shards and the entailed synchronisation overhead.

N

] o] [) o Shard 1

@ () ())) Shard 2

Transaction ‘ . ‘ . ‘ Shard 3

Pool

- J

Figure 2.2: Exemplary Representation Of Sharding

Figure 2.2 outlines how transactions might be partitioned into distinct shards. Circles of
a particular colour represent transactions from a specific sender. It can be seen that, for
instance, transactions from the blue node are only processed in shard 3.

With regard to the scalability potential of sharding, it can be stated that this methodology
is able enhance the scalability by its very design of enabling concurrent data validation
and storage. However, due to the induced coordination work, the shards are not expected
to grow at the same pace as in a setting without sharding.

2.4 Off-Chain state channels

This approach on improving the scalability of a blockchain builds on the assumption that,
in case only two parties care about recurring transactions, the rest of the network actu-
ally does not need to be aware of those transaction having ever occurred. From a privacy
perspective, it is preferable to have only the bare minimum of information stored on the
blockchain.

Bidirectional state channels, often referred to as micropayment channels, create a relation-
ship between two peers of the blockchain network to perpetually update balances. The
main idea behind this application is that every party deposits some coins on the channel
[65]. This initial balance is stored as a transaction on the main blockchain. Once the
payment channel is initialized, any coin transfer between the two peers, i.e. any balance

2.4. OFF-CHAIN STATE CHANNELS 9

adjustment, requires to be signed (2-of-2) by both parties. On terminating the payment
channel, the final balance is also stored as a transaction on the blockchain. To put it dif-
ferently, every intermediary coin exchange and balance adjustment can be discarded since
it is not stored on the blockchain. This special characteristic of the payment channels
allows a practically unlimited transaction rate per second. [50, [40].

A sample outline of such a two-way interaction channel is shown in Figure 2.3. As it
can be seen, Alice and Bob have set up channel between them whereby Alice has initially
deposited 5 coins. During the first balance distribution, Alice transferred 4 coins to Bob
while in the second transaction Bob received another staked coin from Alice. From the
three transactions of Figure 2.3, only the first and last one are actually stored on the
blockchain.

Blockchain Transactions

' Deposit(A,B): 5| : / Alice: 3 |
| Alice: 5 < ! : [Deposit(a,B): 5 5
' Alice:; 5 @ : : «ALICE \ Bob: 2 .

i o ALICE

_________________________________ | «” BOB 5
OPEN CHANNEL CLOSE CHANMNEL
b - ...f
" \.\ . . = 5 }‘ rd

Off-chain N X Alice Alica Alice v ”
Payments N K
2
Bob | | Bob | | Bob |,

Figure 2.3: Paymentchannel Between Alice And Bob [40]

Even though this technique offers an apparent solution to scalability issues, i.e. reducing
the load on the blockchain and improving transaction throughput, its employment con-
ceals a couple of drawbacks.

First of all, due to the very design of payment channels, they are not applicable in sit-
uations where the corresponding group of users is open. This would esspecially cover
environments where anyone can join at will without any permissions [13].

Another challenge of this approach are the locked up funds. Assets which are exchanged
on a payment channel are locked up for the lifetime of the channel. Due to this prop-
erty, payment channels might be perceived inappropriate in some use cases. To be able
to spend the coins, the payment channel has to be terminated which results in issuing
the final transaction on the blockchain [8]. The two on-chain transactions and security
deposits of a state channel make them inefficient for one-time transactions [65]
Furthermore, micropayment channels may quickly lead to a complicated network infras-
tructure. The need to set up a paymnet channel with every peer of the network does not
solve the scalability issue per se. In such cases, a network of payment channels needs to

10 CHAPTER 2. BACKGROUND AND RELATED WORK

be built over which assets can be transferred to the designated receiver. For instance, if
party A does not have a direct communication with party D, but has a channel to C' and
at the same time C has one with D, then node A can take advantage of this situation and
transfer assets to D via C' [50].

Because coins can only be transferred over a channel to a maximum amount which is held
by the security deposit of the payment channel, it has to be made sure that every single
channel on such a network of channels, e.g. channels A—C and C'— D ,is holding at least
that amount of assets. In case any peer on this route would terminate its corresponding
channel, a new route would need to be determined which leads to the peer of interest.
This in turn requires sophisticated routing mechanisms.

The fact that intermediary transactions are not stored on the blockchain, but discarded,
can be inconvenient in scenarios where the very intention is to store all transactions on
the blockchain. For instance when using a blockchain as data storage, the user may be
generally reluctant to the usage of payment channels because of this behaviour.

2.5 Scalability Methods Assessment

After taking into account the advantages and drawbacks of each scalability technique and
assessing their applicability for improving Bazo, sharding has been chosen as the layer 1
scalability enhancement.

The approach of increasing the blocksize constitutes only a temporary solution with com-
paratively negative impacts on the long run as pointed out with the artificial example of
Bitcoin.

Employing micropayment channels has several disadvantages in the setting of our IoT
oriented blockchain. The fact that the funds are locked up in the channel makes this
approach infeasible for our case since Bazo will be highly depending on permanent fund
accessibility to issue transactions. Furthermore, the side effect of this approach that in-
termediary transactions get discarded is also against our very objective of storing lots of
[oT data on the blockchain.

With respect to IOTA, we can argue that its architecture diverges too much from the
design of Bazo which would require a complex architecture transition. In addition, the
centralized nature of the Coordinator used in IOTA poses a great obstacle for our fully
decentralized setting.

2.6. RELATED WORK 11

2.6 Related Work

This section is dedicated to frameworks released in recent literature which propose scalable
cryptocurrencies employing the technique of sharding.

2.6.1 Elastico

Elastico is the first sharding-based crpytocurrency for permissionless, open blockchains
which partitions the network into committees each of which is processing a disjoint set of
transactions. The number of operated committees grows linearly in the total computa-
tional power of the network. Furthermore, the algorithm of Elastico proceeds in epochs.
The evaluation of Elastico shows that it scales up the agreement throughput near linearly
with the overall computational power and tolerates byzantine adversaries which control
up to 1/4 computation capacity [39].

2.6.2 OmniLedger

The scale-out distributed ledger of OmniLedger uses a bias-resistent public-randomness
protocol for choosing large, statistically representative shards that process transactions.
Furthermore, it employs parallel intra-shard transaction processing and ledger pruning via
collectively signed state blocks. State blocks are similar to stable checkpoints summarizing
the entire state of a shard’s ledger. At the beginning of each epoch, all validators get
assigned to a shard based on the epoch randomness and bootstrap their states from the
corresponding shard’s most recent state block.

Its evaluation demonstrates that the throughput scales linearly in the number of active
validators while keeping the confirmation time of transactions under two seconds [30].

2.6.3 RapidChain

The blockchain protocol proposed by [68] is resilient to Byzantine faults from up to a
1/3 fraction of its participants and achieves comparatively high throughputs via block
pipelining. By using an efficienet cross-shard transaction verification technique, Rapid-
Chain avoids gossiping transactions to the entire network.

As with most of the sharded blockchains, the partitioning of RapidChain requires each
node to store only 1/k of the entire blockchain where k& denotes the number of commit-
tees. The empirical evaluations reveal a processing and confirmation capacity of more
than 7'300 tx/sec while ensuring a confirmation latency of approximately 8.7 seconds har-
nessing a network of 4000 nodes.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6.4 Zilliqa

Yet another blockchain leveraging the technique of sharding is Zilliga, being under research
and development for 2 years, with the aim to rival traditional centralized payment methods
such as VISA or MasterCard. Similarly to Ethereum and Bazo, Zilliga is an account-based
system. Furthermore, the blockchain relies on creating and updating a directory service
committee which is tasked to coordinate the sharding process and assign the nodes to the
shards. Incoming transactions are sharded according to the sending accounts[62].

In contrast to other blockchains employing PoW consensus, Zilliga only utilized PoW
to establish identities and prevent sybil attacks. In terms of scalability, Zilliga’s design
allows its transaction rates to roughly double with every few hundred added nodes. With
respect to the fraction of malicious nodes, Zilliqa assumes this fraction to be less then 1/4
of the complete network. Furthermore, Zilliga employs a special-purpose smart contract
language leveraging the underlying architecture and following a dataflow programming
style to provide a large scale and highly efficient computation platform [63].

2.6.5 QuarkChain

QuarkChain represents a two-layered blockchain, employing elastic sharding on the first
layer and having a root chain as the second layer that confirms the blocks from the
first layer without processing transactions. Interestingly, the root chain is guaranteed to
hold 50 % of the total hashing power of the network. Thus, an advisory would need a
minimum of 50 % - 50 % = 25 % of the hashing power to initiate an attack. Besides that,
the allocation of the hash power on the root chain is configurable, e.g. 25 % or 75 %.
The blockchain supports cross-shard transactions at any time with a confirmation latency
in the order of minutes. With respect to the consensus mechanism, the root chain uses
PoW, similar to Bitcoin and Ethereum. In case of forks, the shorter chain will be deemed
invalid [22].

Table 2.1: Comparison Of Sharding Protocols

Protocol | # Nodes | Resiliency | Throughput

Latency | Shard Size

[Tx/sec] [sec]

| |
| Elastico | 1600 | t<mn/4 | 40 | 800 | 100 |
| | 1800 | t<mn/4 | 500 14 | 600 |
Omniledger ™ e00 | t<n/4 | 300 | 63 | 600 |
| | 1800 | t<mn/3 | 4220 85 | 200 |
(RapidChain g0 <z | 70 | s7 | 20
| Zilliga. | 3600 | t<mn/4 | 2828 | - | 600 |
| Quarkchain | 6450 | - | 10000 | >60 | 25 |

2.6. RELATED WORK 13

Table 2.1 summarizes the 5 Prototypes from this section with respect to their evaluations.
In terms of the overall throughput, Quarkchain appears to have achieved the best perfor-
mance with roughly 10’000 Tx/sec.

RapidChain has demonstrated resiliency against up to 1/3 of the nodes which is higher
than all other prototypes. Also with respect to confirmation latency, RapidChain demon-
strated the best figures.

The shard sizes of the test runs are in the order of hundreds except for QuarChain which
has operated a comparatively small shard size.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Design

In this chapter, a detailed description of the modified Bazo protocol and the underlying
blockchain is undergone whereas each chapter depicts one specific design aspect.

3.1 Key Assumptions

To keep the complexity at a reasonable level, following assumptions were made:

One validator per shard Currently, the system does only support one validator per
shard. The main reason is that multiple validators per shard can lead to forks of a
shard chain. The state synchronisation among shards in Bazo operates on a block
level with the assumption that per block height there should be only one block per
shard. If forks occur within a shard, i.e. there is more than one block from a shard
at some block height, the state synchronisation will not work appropriately. State
and block height synchronisation is explained in detail in the subsequent chapters.
This assumptions was not made initially at the beginning of the development of the
thesis. The general approach was to support multiple validators per shard. This gets
also evident in the following sections of the thesis where mechanisms are described
as if multiple validators per shard are allowed. But due to technical complexities
and time limitations, Bazo could only reach a state of working properly with one
validator per shard.

Validators need to be running In order for a validator in some shard to continously
create blocks, he needs to wait for validators of the other shards to create blocks as
well in a synchronized manner. If a validator goes offline or crashes, then his shard
will stop mining blocks. In such a case, the other validators will not be able to receive
blocks from this particular shard, thus not be able to perform the synchronisation.

15

16 CHAPTER 3. DESIGN

3.2 Entity Management

Bazo consists of three entities: users, validators and leaders. A user interacts with Bazo’s
infrastructure through issuing transactions in order to transfer funds or execute smart
contracts. A validator is a node who takes part in the overall validation process of Bazo.
While validators and users might issue transactions, users do not participate in the con-
sensus protocol. For this reason, users only store the block headers whereas validators
store the whole blocks of their assigned shard. The sphere of responsibility of a validator
can be compared to that of a miner in the Bitcoin protocol.

Furthermore, a validator can become a leader who has the right to append the next block
to the corresponding shardchain. The leader gets elected through fulfilling a Proof-of-
Stake condition for a specific block height, i.e. leaders within a shard change block-wise
whereby validators may only become leaders for their assigned shard. As pointed out
in the aforementioned assumptions, Bazo can currently only deal with one validator per
shard. This means, that in the current setting, every validator is also the leader of the
corresponding shard. The concept of the leader becomes more important in case multiple
validators per shard would be allowed.

In addition, each entity in Bazo possesses a private-public key-pair in order to digitally
sign transactions. Bazo employs elliptic curve digital signature algorithm (ECDSA) as
the primary signing algorithm. For the remainder of this paper, the ECDSA key-pair is
referret to as the users wallet keys (pkwai, Skwarr)-

Figure 3.1 shows how a sharded split of the network might look like whereby it is parti-
tioned into shards 7 to N. While users always remain in their shard based on their address
pkwan, validators regularly get assigned to a shard in a random fashion.

In case a user wants to join the set of thevalidators, it has to create an additional private-
public key-pair using RSA and publish a StakeTX transaction and publish the public key.
This key-pair does not correspond to the key-pair used to sign transactions. In the paper
at hand, the key-pair generated using RSA is referred to as the users commitment keys

(pkcomma Skcomm) .

Shard 1 Shard 2 Shard 3 Shard N
Users Users Users Users
Validators Validators Validators Validatars

Figure 3.1: Overview Of The Entities In Bazo

3.3. NETWORK SHARDING 17

3.3 Network Sharding

The Bazo network is divided into several subgroups called shards. Each shard has its own
blockchain storage referred to as the shard chain. Note that the partitioning of the net-
work is done on the basis of the validators, not the users. Dividing the network according
to the number of users would not guarantee that every shard has a validator, leading to
omission of transaction validation. For this reason, network partitioning and determining
the required number of shards is based on the number of active validators in the network.

Transactions issued by users into Bazo are collected by all validators in a transaction
pool, but validators only verify transactions based on the pk,.; of the transaction sender.
For instance, validator V of shard S is responsible for user U and validates transactions
where U is the sender of the transaction. Thus, user U is assigned to shard S.

The responsibility of a validator is restricted to the maintenance of his shardchain. Main-
tenance is defined as validating blocks and storing the full history of the shardchain.
Unlike validators, users do not store the shar chain, but only their issued transactions.

3.4 Epochs

As in the case of most sharded blockchains, the protocol proceeds in some fixed length of
blocks which are called epochs. Epochs have a predefined length, length,,. For instance,
assuming epoch e exhibits length., = 100 and the block height of the first epoch block
is 0, then this epoch would and at block height 701, thus consisting of 100 intermediary
blocks. This would result in the first shard block of epoch e + 1 to start at height 102,
and so on.

At the end of each epoch, there is a finalization procedure during which the next epoch
block is created and the number of new shards, NofShards, is determined based on the
current number of validators in the network. Furthermore, the validators are randomly
assigned to the single shards.

Figure 3.2 shows an exemplary excerpt of the Bazo network demonstrating how epochs
work. The blockchain starts with eb!, i.e. the epoch block at height I and then gets
divided into three shards with shard blocks sb7~5 where the subscripts 1 — 3 denote the
shard ID and the superscripts 2 — 5 represent the block height. The epoch in Figure 3.2
has a length length,, of 4 blocks, i.e. epoch block eb' is followed by 4 shard blocks, before
the next epoch block eb® is created.

18 CHAPTER 3. DESIGN

sbi? [« sby® |« sbit 1« sb® sby7 [@enmnnanaaaes
eb! < sb? [« sby® [« sby? 1« sby® [« ebb < P SR
sbs? |« sbs® [« sbg* [« sbs® sbg” [€-mmmmmeeee

Figure 3.2: Exemplary Epoch Representation With Epoch Length
lengthe, = 4 And 3 Shards

3.5 Number Of Shards

The number of shards has an evident impact on the overall scalability of the network. As
the validator network grows and the users issue more and more transactions, it is crucial
to lighten the computational and storage requirements for each validator.

With respect to this decision, following cases can be distinguished:

e Employing only a single shard resembles the state of Bazo without any sharding

e Having a too small number of shards scales only sub-linearly as the number of
validators increase, and as such leveraging the technique of sharding not to its full
extent

e Too many shards increase the communication overhead between the shards to syn-
chronize the block height and the global state.

Bazo divides the validator set into shards based on the system parameter
VALIDATORS_PER_SHARD which is of Integer type. Due to the restriction of only
supporting one valiadtor per shard, the default value of this parameter is set to 1. Once
Bazo gets further improved to account for multiple validators per shard, this parameter
can be set arbitrarily.

As such, VALIDATORS_-PER_SHARD denotes the maximum number of validators per
shard. Setting this factor to 3 would mean that at most 3 validators can share the same
shard. Putting it differently, for every 3 validators, a new shard will be generated. For
example, considering VALIDATORS_-PER_SHARD = 3 and the network consisting of
exactly 3 validators, then there will be one shard. If another validator joins, the number
of shards will increase to 2, until there are 7 valiadtors at which point another shard will
be created. Therefore, the number of shards is evaluated according to:

NofValidators

NofShards = VALIDATORS PER.SHARD

3.6. LEADER FORMATION 19

The dynamic adjustment of the number of shards is further illustrated in Figure 3.3.
Starting off with 3 shards in the first epoch, the second epoch consists of 5 shards and
the last one has only two.

[PR I PR
N N S M
I P [l T 1 [l— 1]
N PR [PR I P
R N N N N
I N N E N S N I D N
[PR I PO
N A S A

Figure 3.3: Dynamic Load-Balancing

3.6 Leader Formation

Users of Bazo intending to join the set of validators have to issue a StakeTX transaction
containing the public commitment key pk.omm. As explained previously, in the current
setting of the blockchain, every validator is also the leader of a certain shard. Nevertheless,
Bazo includes a leader formation process for the situation of having multiple validators
per shard which is explained in this section. Assuming to have several validators in each
shard, solely taking part in the validator set does not guarantee a user the right to append
a certain shard block. For appending the next shardblock, a validator has to become the
leader of the shard. The leader election process is identical to fulfilling the PoS condition
introduced in [4] which was later adjusted due to a security vulnerability in [6].

Every validator participates non-interactively in solving the PoS condition. As opposed
to PoW, a validator is limited to exactly 1 H/s (hash per second) by including a Timeln-
Seconds factor in the PoS condition:

SHA3-512([ProofprevBiocks) - ProofLocal - BlockHeight - TimelnSeconds)
Coins

< Target
(3.2)

where

Proofroca = RSA(Skcomm, SHA3-512(BlockHeight)). (3.3)

20 CHAPTER 3. DESIGN

The PoS condition consists of following parameters:

List of the Previous Proofs(Proofpespiocks) By including a list of the previous proofs
of a particular shard, a stake grinding attack becomes infeasible.

Local Proof(Proofrec) All parameters are the same for each validator in the network
except the local proof. The local proof individualizes the PoS condition to each
validator and therefore, a validator with a low amount of coins also has the possibility
to append a block to the blockchain.

Height of the Block(BlockHeight) The height of a block is characterized by the num-
ber of previously added blocks in the blockchain plus one.

Amount of Coins(Coins) By dividing up the number of coins that the leader possesses,
the election process becomes proportional to the stake. Without this division ev-
ery economically acting node would create new accounts that possess exactly the
minimum staking in order to maximize its staking reward.

Difficulty of the PoS Condition(7T'arget) The difficulty in the PoS protocol can be
adjusted with this global variable in order to determine the speed of the blockchain.
As the number of validators in-/decreases the difficulty is adjusted accordingly. The
Target is recalculated and adjusted based on the measured average block interval

53).

If a validator falls below Target, he becomes the leader of his shard for a particular block
height and thus, has the right to append the next block to the shardchain. The probability
of a validator being elected to append the next block is in proportion to the stake he or she
has. For example, a validator with 50 coins has a 5 times higher chance than a validator
with 10 coins. A validator is only competing in fulfilling the PoS with the other validators
assigned to the same shard.

3.7 Epoch Finality And Validator Assignment

En epoch ends after a predefined number of blocks, i.e. in case length,, blocks have been
mined in every shard since the last epoch block. After length., blocks in each shard,
validators agree on an epoch block by taking part in the following PoS which is a slight
adaption of the PoS condition from (3.2):

SHA3-512(Proofroca - BlockHeight - TimelInSeconds)
Coins

< Target (3.4)

This PoS omits the factor Proofp,evpiocks due to it being different for all validators be-
casue they are mining in different shards. The definitions of the variables in (3.4) are
exactly the same as in (3.2)).

3.7. EPOCH FINALITY AND VALIDATOR ASSIGNMENT 21

Note that the PoS condition in (3.4]) is evaluated by all the validators accross the network
in order to come up with the next epoch block. As opposed to mining an epoch block,
mining a shard block through fulfilling is only competed for with the validators in
the same shard.

Furthermore, each epoch block contains the global state of the network which serves as a
checkpoint for validators joining after a certain epoch. This way, a newly joining validator
is not required to download the whole Bazo history starting from the genesis block.

The validator assignment in Bazo is carried out by the node who 'wins’ the PoS in ([3.4))
and has the right to append the next epoch block. Assigning the validators to the shards
works as follows:

e The single shards become an ID starting from 1 up to NofShards,e.g. if NofShards
= 4, then we will have shards with the IDs 1, 2, 3 and 4.

e The node in charge with the validator assignment loops through every shard index
at a time and randomly selects a validator from the vaildator set and assigns this
validator to the shard. Once the validator is assigned to a shard, he gets marked to
have been assigned already by using a boolean flag. This prevents a re-assignment
in subsequent iterations.

e In order to uniformly assign all validators to all shards, at each shard index, only
one validator is assigned to that shard.

e The shard IDs are iterated as long as all validator have been assigned to a shard

This mechanics ensures following properties: (1) every shard has at least one validator,
(2) validators are assigned in a truly random fashion without the chance of choosing in
which shard they want to participate and (3) uniform distribution of validators among
the shards to avoid having too much validators concentrating/pooling in a single shard.
Once the validator assignment has been completed, the node undergoing this task will
internally create a mapping data structure [64] byte - int whereas [64]byte denotes the
validator address and int represents the shard ID the validator belongs to. This mapping
is included in the epoch block and then broadcasted to the whole network such that every
validator is aware of which shard he belongs to.

Validators who have the intention to participate in Bazo, have to wait until the next epoch
block is mined and the next epoch begins. This will ease the validator assignment to the
shards at the end of each epoch.

In such a case, the StakeTx transaction of the user who wants to join the validator set is
only evaluated in the last block before the next epoch block. This way, the user will be
registered in the state as a validator right before the next epoch block.

22 CHAPTER 3. DESIGN

3.8 Transaction Sharding and Processing

This section explains how transactions are assigned to the single shards and processed in
Bazo. Every validator locally maintains a pool of transactions from the network in which
every incoming transaction is stored. When a validator successfully competes in the local
PoS of his shard and becomes a leader, he performs following steps:

1. The leader retrieves transactions from his local transaction pool with
s = pkyay mod NofShards, (3.5)

where

s represents the assigned shard of the leader
pkwan is the wallet adderss of the transaction sender
mod is the mathematical modulo operator

NofShards refers to the total number of shards the network is partitioned into

2. For each transaction, the leader verifies the signature of the transaction using the
public key pk,q of the transaction sender. If the signature is valid, continue. Oth-
erwise, the transaction contains an invalid signature and the algorithm stops.

3. Through retrieving the account information of the user from the global state, the
validator checks whether the user has enough coins to accomplish the transactions.
If this is the case, continue. In case the user has not enough coins, the transaction
is deemed invalid and the algorithm stops.

4. Once the block is full, i.e. has reached the maximum amount of transactions that
fit into a block, or, all transactions dedicated to the shard of the leader have been
processed, the leader follows the standard block creation procedure which includes
among others generating the Merkle root hash, creation of the Bloom filter and

hashing the block

Once the procedure from above has been completed, the block is sent to the network for
distribution. Upon receiving block b, validators of the shard s verify the block. If b is
valid, the block is appended to the corresponding shardchain. In case the block is deemed
invalid, the leader who proposed b gets slashed and the validators wait for another block
of the same height.

3.9. BLOCK HEIGHT AND STATE SYNCHRONISATION 23

3.9 Block Height and State Synchronisation

To make sure that all shard chains grow at the same pace, the blocks at some height
h need to be synchronized among all shards. From a single shard’s point of view, this
implies to only continue creating the block for height h + 1 if the validators can be sure
that the other shards have validated and stored the block at height h.

[H HH] [(H H H]
[H] [H H H]
] [HHHH]
[[(H HHH]

(&) Without Synchronisation (2) With Synchronisation

Figure 3.4: Due To Network Latency And The Speed Of The PoS,
Shard Chains Might Diverge, Resulting In Different Block Heights

To operate appropriately, Bazo is synchronizing the shard chains at every height for two
reasons:

e State Synchronisation: In order to keep the capability of issuing transactions
to any user of the network, i.e. conducting cross-shard transactions, the validators
at every block height need to be aware of the global state, i.e. the global account
information of the nodes in the network.

e Epoch Block Insertion: Due to the reason that every epoch block is chained to
the last blocks of each shard, every shard needs to be at the same height before the
insertion of the next epoch block.

Within the scope of synchronizing the block heights among shards to determine if it is safe
to start creating the next shard block, the validators also synchronize the global state.

For this reason, a special data type, the state transition, has been introduced whose de-
tailed structure is outlined in the implementation chapter. The state transition is created
for every block mined and keeps track of how the account information changed based
on the transactions in a block. In fact, every transaction basically represents a specific
transition to the global state. The state transition for a block basically summarizes the
cumulative changes in the accounts such as balance, transaction count and staking height.

The advantage of this approach is that every validator only has to apply one state tran-
sition per shard at a given block height. Figure 3.5 demonstrate how a sample state

24 CHAPTER 3. DESIGN

transition might be generated. The state transition in the colored rectangle shows how
the account characteristics changed during the creation of the block.

When validators receive state transitions from other shards, they process them one by one,
thereby iterating through every account and applying the changes to their local account
information, and as such synchronizing the global state.

(A) (B)

Account A - 100 Coins Account A - 90 Coins

Account B - 150 Coins Account B - 200 Coins

Block Mining and

State Validation

Account C - 50 Coins Account C - 20 Coins

Account D - 200 Coins Account D - 310 Coins

(C)

Account A - (- 10) Coins
Account B - (+ 50) Coins
Account C - (- 30) Coins

Account D - (+ 110) Coins

Figure 3.5: (A) - State Before Mining The Block; (B) - State After
Validating Block And Applying The Transactions To The State; (C) -
Generated State Transition To Be Distributed To The Network

When validators receive state transitions from the network, they have to perform at least
one comparison operation to determine if it belongs to their shard or not. Furthermore,
every state transition contains the block height for which it was created. Hence, validators
can keep track of the number of state transitions received at block height h. If the number
equals NofShards, they can be assured that the shard chains grow equally fast. Informally,
the following algorithm is performed by every validator that receives state transitions from
the network:

1. Compare the shard identifier of the state transition with my own shard. If it belongs
to another shard, continue.

2. If Height(state transition) > Height(last epoch block), where Height returns the
height for the input, then continue. This means that the state transition is from
the current epoch. If not, the state transition does not correspond to the current
epoch, the algorithm stops.

3. With the hash of the state transition, check whether the received one has already
been saved. This is done through comparing the state transition with the local

3.9. BLOCK HEIGHT AND STATE SYNCHRONISATION 25

stash. The stash keeps track of the last 50 distinct state transitions fetched from
the network. If the state transition has not been processed yet, store it in the stash.
Otherwise the algorithm stops.

The aforementioned procedure is a continuously running routine in the background. Syn-
chronisation of the state is not done yet at this step, i.e. whenever a state transition is
received. The reason for this is that in order to properly process the state transitions,
the validator needs to know exactly at which blockheight he is. That is why the syn-
chronisation is done after the creation of a block and before the creation of the next
block.

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
sby? e sby® 1 sby* 1 sb,® ! sby7 [eneeneeees
1 1 1 1
1 1 1 1
1 1 1 1
[1 1
[1 1 1
1 [1 1
1 le 2l 1! 3l 1! 4l 1 5l 1! 6 le 7 leeoeaaaae .
eb! <€ Sb2 < 1 Sb2 < 1 Sb2 < 1 Sb2 < 1 eb® <€ Sb2 <
1 1 1 [
1 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
R sbg® sbgt le— sbg® B
1 1 1
1 1 1
1 1 1
1 1 1

Figure 3.6: Point In Time When State Synchronisation Is Performed

The synchronisation points are highlighted in Figure 3.6. Whenever a validator reaches
those stages, he performs following steps in order to synchronise his local state with the
other shards:

1. Check the local stash of received state transitions and retrieve all of them which
correspond to the height of my last block. If at this point, I already have received
all state transitions from the other shards, then process each of them one by one.
Processing a state transition consists of following sub-steps

e Every state transition contains the relative change of the accounts, e.g. how
much coins have been spent or received or by how much has the transaction
counter been increased. As a validator, I iterate through all accounts and apply
the adjustments to my local state. If an unknown account is encountered, then
add it to my local state.

e In addition, a state transition contains the hashes of the transactions which
were validated during that block. To avoid starvation in my local transac-
tion pool, I delete all transactions which were validated by the received state
transition.

26 CHAPTER 3. DESIGN

2. If state transitions from some shards for this block height have not been received
yet, request them from the network. Wait for a maximum of 5 seconds to receive the
response. If no response arrived for that particular shard, then continue to request
the state transition from the next missing shard.

3. Repeat the last step until all state transitions from all shards have been received for
the block height of my last block.

There are other ways to synchronize the global state at every block height among shards,
such as processing - without validating and storing - the transactions from the other
shards based on the transaction information contained in the received blocks. Recall that
every validator stores incoming transactions in a transaction pool. It would be possible,
for a given block, to retrieve the contained transaction hashes and pick them up from the
mempool and apply them to the local state of a given validator.

This method has some evident drawbacks. Validators in a given shard would be required
to process all transactions from other shards in order to be aware of the balance updates
undergone in the other shards. This behaviour is against the very idea of sharding that
the nodes should process a distinct set of transactions.

In addition, processing the other transactions from the mempool would not be enough to
account for all account and balance updates of the other shards. The validators would
also need to collect the transaction fees and block rewards from the other blocks, thus
requiring not only to process their transactions, but also their blocks, e.g. to determine
the benefiriary of all the fees.

With the technique of distirbuting state transitions, validators can account for any kind
of balance updates, be it through receiving coins or through the collection of transaction
fees.

Chapter 4

Implementation

This sections explains how the existing Bazo infrastructe is revised and extended on a
technical level. Parts of the descriptions are taken from the previous publications [58, 4, [6]
and updated where necessary

4.1 Transactions

4.1.1 Stake Transaction (StakeTx)

A node in Bazo with the intention to join the validator set can issue a stake transaction.
Before issuing the StakeTx, the user has to generate a RSA key-pair, i.e. the commit-
ment key-pair. Once this step is done, a stake transaction can be issued by including
the commitment key pkeomm in the transaction. The StakeTx consists of the following
parameters:

Fee A fee that has to be paid for the validator

IsStaking A boolean value that indicates whether the node wants to join or leave the
set of validators.

Account The hash of the public key of the issuer

Commitment Key Included commitment key pk.omm. Note that this key belongs to a
different key-pair than the one of the wallet of the user.

Signature The signature serves the purpose of authentication. The node digitally signs
the transaction with its private key skyqu

27

28 CHAPTER 4. IMPLEMENTATION

4.1.2 System Parameters (ConfigTx)

System parameters can be adjusted with this type of transaction without the need of a
hard fork. The transaction must be signed by a root account in order to be accepted.
Parameters to change are for example minimum staking amount, minimum waiting time,
accepted time difference, slashing window size, validators per shard or the epoch length.

4.1.3 Funds Transactions (FundsTx)

Users can transfer funds from one account to another by issuing a FundsTx. In fact,
transferring funds is the process of subtracting an amount of coins from the senders
account and adding the same amount of coins to the receivers account. A FundsTX can
be sent by validators and users.

A funds transaction has the following structure:

Amount The amount of Bazo coins to be transferred between accounts.

Fee A fee that has to be paid for the validator.

Transaction Counter The account nonce of the sender’s account, prevents replay at-
tacks.

From The public address pk,.; of the sender.
To The public address pk,q; of the receiver.

Signature The signature serves the purpose of authentication. The node digitally signs
the transaction with its private key skyqu

4.2 Blocks

Sharding introduces two new block types, namely epoch blocks and a slightly alternation
of the existing block structure, i.e. shard blocks.

4.2.1 Shard Block

A shard block is almost identical to the existing block structure in Bazo. Formally, a
shard block consists of the following properties:

ShardID The shard identifier of a block. This parameter is being set by the validator of
a certain shard when creating the block

Hash The block hash acts as a unique identifier of blocks within the blockchain

4.2. BLOCKS 29

Previous Hash This value is equal to the identifier of the previous block in the corre-
sponding shardchain.

Number of Bloom filter Elements The number of elements that are in the bloom
filter.

Bloomfilter The bloom filter can be queried with pk,.; whether the block contains a
transaction of pk,q; or not. With a false-positive rate of about 10%, the size of the
bloom filter is linearly increased or decreased to meet this target.

Time in Seconds (Nonce) The number of seconds a validator needed to fulfill the PoS
condition.

Timestamp Refers to the block creation time (seconds elapsed since January 1, 1970
UTC).

Merkle Root The value of the merkle tree’s root node. Note that the transactions, i.e.,
the leaves of the Merkle tree, are ordered ascending before generating the Merkle
root.

Beneficiary The address hash of the account that receives fee payments and the block
reward.

Commitment Proof This property stores a signed message of the Height that this block
was created. In particular, RS A(skcomm, SH A3 —512(BlockHeight)) where skeomm
represents the private key that corresponds to the public commitment key pkcomm
that was set in the initial StakeTx of the node. Other validators can use pkcomm t0
verify the proof.

Staking Proof The proof that the creator, i.e., the leader of this particular block is
eligible to create it.

Height The height of a block refers to the number of previously appended blocks to the
blockchain plus one.

Slashed Address A validator can submit a slashing proof when appending a block, i.e.,
it holds the address of the misbehaving node that must be punished.

Two Conflicting Block Hashes These two properties exhibit the block hashes where
the same node has appended a block on two competing chains within the slashing
window size.

Number of ContractTx/FundsTxs/StakeTx/ConfigTxs Corresponds to the num-
ber of transactions of each type that are included in the block.

Hash Data ContractTx/FundsTxs/StakeTx/ConfigTxs The hashes of all trans-
actions included in this block in sequential order.

30 CHAPTER 4. IMPLEMENTATION

4.2.2 Epoch Block

Epoch blocks are created once every shard has mined length, intermediary shard blocks.
Both block types are created interactively by fulfilling PoS conditions among the valida-
tors. While validators participate in the PoS against other shard members in creating the
next shard block, the PoS in case of the epoch block is conducted by all validators of the
network.

The epoch block consists of following fields:

Hash The block hash acts as a unique identifier of blocks within the blockchain.

Previous Shard Hashes This array is equal to the identifiers of the previous blocks in
every shard.For instance, the epoch block of height 70 would include the hashes of
all shard blocks at height 9.

Timestamp Refers to the block creation time (seconds elapsed since January 1, 1970
UTC).

Height The height of a block refers to the number of previously appended blocks to the
blockchain plus one.

Commitment Proof This property stores a signed message of the Height that this block
was created. In particular, RS A(Skcomm, SH A3 —512(BlockHeight)) where skeomm
represents the private key that corresponds to the public commitment key pkcomm
that was set in the initial StakeTx of the node. Other validators can use pkeomm to
verify the proof.

Global State Represents the global state of Bazo at the time when the epoch block was
created. Technically speaking, it is a mapping of the form [64]byte - Account
whereas [64]byte represents the public address of the account and Account stores
the actual account information of a node. The benefit of including the global state
in each epoch block is that new validators joining Bazo can refer to this state once
they start validating in a perticular shard. Thus, new validators do not have to
download the whole blockchain history and validate the transactions to create their
version of the global state.

Validator-Shard Mapping Defines which validator is assigned to which shard. This
property is being set by the node who has the right to append this epoch block.
Once the epoch block is distributed to the network, each validator participating in
the next epoch can refer to this property in order to figure out in which shard they
will be validating transactions. This property is of type [64]byte - int whereby
[64]byte represents the public address of the account and int defines the assigned
shard.

NofShards Stands for the number of shards the network is partitioned into.

4.3. STATE TRANSITION 31

4.3 State Transition

State transitions keep track of the overall relative change of account information such as
balance, transaction count or staking height. They are generated for every mined block
and consumed by validators from the other shards in order to apply the state transition
and update their local state.

A State Transition consist of following fields:

Relative State Change This parameter contains all accounts from the state and their
relative changes in balance, transaction count and staking height. It is a map of
the form [64]byte - Account where [64]byte is the public key of the account
and Account represents the single adjustments of the account information of the
address.

Height The height at which the state transition was created. This property is needed
in the synchronisation procedure to filter the stash of state transitions and only
retrieve those with the height of interest.

Shard ID The identifier of the shard in which the state transition was created. This field
is utilized in the synchronisation step as well to check which shards have already
been processed and which ones are still missing.

Hash Data ContractTx/FundsTxs/StakeTx/ConfigTxs The hashes of all trans-
actions included in this state transition in sequential order. While processing a
state transition, the validator can hereby delete already validated transactions form
the local transaction pool to avoid unnecessary starvation of thereof.

32

CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

Testing Bazo by means of issuing transactions at a high rate turned out to be rather
difficult due to a couple of reasons. First of all, it has to be made sure that transactions
are sent to the network at a higher rate than the actual capacity of the network being
able to handle and validate those transactions.

For instance, assuming Bazo - for a given block interval and block size - is capable of achiev-
ing a validation rate of 40 transactions per second (TPS), then, testing the blockchain
through sending 10 transactions per second is technically not enough to leverage the 40
TPS of Bazo. This scenario would lead to partially filled blocks.

In order to properly stress the network, transactions need to be issued at a (much) higher
rate than actually validated.

5.1 Set-Up of the Testcase

To overcome the aforementioned obstacle, sending transactions directly from the client
application proved to be inefficient. The peak transaction sending rate with this approach
was between 10 to 15. As a result, the tests exhibited TPS values of less than 10.

For this reason, a test environment has been set-up which does not issue transactions
directly from the client application, but initiates them through unit tests in the miner
application. The test scenarios can be found in the file ..\miner\sharding test.go of
the miner application.

Using this approach, transactions can be sent to the network from artificial wallets and
there is no need to open up a port for every node as it would be required when issuing
transactions from the client application.

To run the unit tests, 20 nodes have been set up with corresponding wallet keys. A single
test run consist of following two stages:

1. In the first step, the bootstrapping node (being a root account) transfers enough
coins to the 20 wallets which were created initially. This makes sure that the wallets
can continue sending valid transactions even under high transaction rates and for a
long period of time.

33

34 CHAPTER 5. EVALUATION

2. During the second phase of the unit test, the 20 wallets - having enough assets - each
transfer 1 coin per transaction to the bootstrapping node in a continuous fashion.
This is achieved through spawning 20 concurrent go routines, each having the task
of transferring funds from a dedicated wallet to the root account.

Furthermore, the configured block size is 20’000 Bytes and the epochs have a length of 9
blocks, i.e. every 10th block is an epoch block.

For every test run, the validators have to be up and running in the first place because the
go routines in the unit test will be issuing transactions by writing to the respective ports
of the validators.

Using this technique, it is possible to send transactions to the network at a remarkably
higher rate than in the case of doing so through the client application. The subsequent
section presents the performance metrics and measures for different test scenarios.

5.2 1 Validator - 1 Shard

While running the unit test for this scenario, all of the 20 go routines were continuously
sending transactions to the root account. Every transaction is being written to the port
of the validator, e.g. 127.0.0.1:8000. The maximum achievable transaction sending rate
with this technique is around 900 to 1000 transactions per second which is clearly better
than the 10-15 transactions per second reached utilizing the client application.

Creating go routines running in parallel under the hood seem to be the key of issuing
many transactions per second to the blockchain.

As a logical consequence, increasing the number of running go routines during the unit
test should yield a higher transaction sending rate. But surprisingly, it does actually not
matter if the unit test consists of much more than 20 go routines. A couple of test runs
have shown, that there appears to be a network bottleneck in Windows which limits the
maximum port write operations to around 1000 writes per second. Even when creating
up to 500 concurrent go routines, the unit test struggles to send more than 950 to 1000
transactions per second to the network.

Because there does not seem to be an evident difference in the transaction rates, the
unit tests only leverage 20 go routines to keep the complexity and CPU usage at a mini-
mum.

5.2. 1 VALIDATOR - 1 SHARD 35

Table 5.1 summarizes the test runs with one validator and one shard. The rightmost col-
umn presents the most important performance metric, namely the transaction validation
rate per second.

Table 5.1: Testruns With One Validator And One Shard

Testrun | Transactions Total Total Transaction | Sync Avg Avg TPS
sent per Transactions | Blocks Validation Time Block #Transactions | Overall
Second Validated Mined Duration [sec] Duration | in Block [Tx/sec]
[sec] [sec]
Runl | 803,3 | 33740 | 62 | 611 | 0 | 98 | s442 | 55,2 |
Run2 | 941,2 | 73413 | 134 | 1435 | 0 | 107 | 5478 | 51,2 |
Run3 | 876,4 | 67483 | 113 | 1311 | 0 | 116 | 5972 | 51,4 |

The columns have following definitions:

Testrun The test identifier of each run

Transactions sent per Second The average rate at which transactions were sent to
Bazo from the unit test.

Total Transactions Validated Total number of received and validated transactions
during the test run

Total Blocks Mined Total number of created blocks during the time period between
the first receipt of transactions and the mining of the last block which contains
transactions

Transaction Validation Duration The time period between the first receipt of trans-
actions until the creation of the last block which contains transactions.

Sync Time Total synchronisation time of the validator. The synchronisation duration is
measured for each block separately and defined as the number of seconds needed to
wait after having mined a block and being allowed to start mining the next block.
Thus, during synchronisation, no mining is undergone. This metric sums up the
synchronisation time of every block mined during the test run.

Avg Block Duration Average block creating interval in seconds. This measure also
includes the synchronisation time and is defined as

Transaction Validation Duration

Total Blocks Mined (5.1)

Avg # Transactions in Block Average number of transactions contained in one block,

defined as
Total Transactions Validated

Total Blocks Mined

TPS Overall Number of validated transactions per second accross the test run, defined
as

(5.2)

Total Transactions Validated (5.3)

Transaction Validation Duration

36 CHAPTER 5. EVALUATION

Taking a closer look at Table 5.1 reveals that the TPS is actually quite high averaging
52,6 transactions per second with a peak TPS of 55,2 Tx/sec. In addition, the blocks are
well-filled. Due to the block size restriction configured for the tests, a block can have a
maximum of 607 transactions per block. During every test run of Table 5.1, all (interme-
diary) blocks were filled to the maximum except for the first and last block. During the
creation of the first block, the transaction stream might not have reached 607 transactions
yet and the last block usually only contains the remaining transactions.

In this set-up with one validator and one shard, the synchronisation time always equals 0
seconds because there is no need for it, since there is only one shard. The maximum rate
at which the network was stressed is 941,2 transactions per second which is in accordance
to the experienced maximum reachable port connections of 900 - 1000 per second.

5.3 2 Validators - 2 Shards

As explained in the design chapter, incoming transactions are sharded based on the public
address of the sender. From the 20 nodes created for the unit test, transactions from 12
wallets were assigned to shard 1 and those of the remaining 8 wallets to shard 2.
Running tests with two validators and two shards has posed some non-trivial obstacles to
the Bazo architecture and the way how transactions are received and propagated in the
network.

In an initial run with the same set-up as in the case with one node and one shard, i.e.
sending transactions only to the bootstrapping node at 127.0.0.1:8000, the test runs
were not really successful.

The reason for this is the way how incoming transactions are handled with multiple valida-
tors. When the bootstrapping node receives the transactions, he immediately broadcasts
them to the other validators. Executing the same unit test with two validators revealed
an uncommon behaviour of Bazo. Under the incoming transaction load at a high rate
(approx. 900 - 1000 Tx/sec), the bootstrapping node was not always able to forward all
transactions to the second validator. In other words, the second validator did not receive
all the transactions which the first node received.

To make this problem more evident, recap that every transaction has a transaction counter
which needs to be incremented for every transaction. Moreover, assume that the second
validator (who might be missing some transactions) is responsible for incoming transac-
tions of the address of Walletl. In case the validator is missing the first transaction of
Wallet1, i.e. the one with the transaction counter 0, all subsequent transactions from
that address will be invalid for the validator, because the transaction with the counter
1 can only be validated if the one with the counter 0 has been approved. In turn, the
transaction with the counter 2 will only be validated if the one with the counter 1 has
been validated and so on.

In such a worst case scenario, the transactions from Wallet1 can only be validated through
the bootstrapping node who has received the initial transaction with the counter 0. For
this to happen, the bootstrapping node needs to be assigned to the shard which is respon-
sible for Wallet1. Under certain circumstances, that validator has to wait for a couple
of epochs to be assigned to the shard of Wallet1.

5.3. 2 VALIDATORS - 2 SHARDS 37

To sum it up, transactions which do not reach the second validator can generally lead to
a comparatively low TPS value due to the fact that the blocks are not well-filled and the
network needs to evolve over a long period of time until all transactions are validated.
The first test run which exhibited this behaviour of lost transactions revealed a TPS of
8,8 Tx/sec. Obviously this value is far away form what Bazo is really able to achieve (see
Table 5.1).

To overcome these issues, following workaround has been applied: During the execution
of the unit tests, the wallets do not only send transactions to the bootstrapping node, but
also explicitly to the port of the second validator, e.g. 127.0.0.1:8001. This way, it can
be assured that the second validator also receives every transaction.

The downside of this method is that the go routines are not anymore able to send trans-
actions at the same high rate, but have to split their resources to send transactions to
two ports instead of one.

For this reason, the test runs of this section exhibit roughly half the transaction send-
ing rate of the scenario with one validator and one shard. Table 5.2 summarizes the
performance measures with two validators and two shards.

Table 5.2: Testruns With Two Validators And Two Shards

Testrun | Transactions Miner Total Total Transaction | Sync Avg Avg TPS
sent per Transactions | Blocks Validation Time Block #Transactions | Overall
Second Validated Mined Duration [sec] Duration in Block [Tx/sec]
[sec] [sec]
| | Miner A | 4000 | 8 | 157 | 60 | 19,6 | 500 | 254
Run4 | 416,7 | MinerB | 6000 | 10 | 229 | 115 | 22,9 | 600 | 262
| | Combined | 10000 | 17 | 229 | 60 | 13,4 | 5882 | 437
| | Miner A | 6000 | 1 | 205 | 170 | 1863 | 545,5 | 293
Run 5 588,2 | MinerB | 4000 7 125 60 20,8 5714 32
| | Combined | 10000 | 18 | 205 | 60 | 11,4 | 5556 | 48,8
| | Miner A | 13990 | 26 | 552 | 351 | 21,2 | 538,1 | 253
Run 6 | 5034 | MinerB | 17726 | 33 | 755 | 226 | 22,9 | 5372 | 235
| | Combined | 31716 | 59 | 755 | 226 | 12,8 | 5376 | 42

In Table 5.2, every compound of three rows represents one test run whereby the first two
rows outline the measures for each validator and the third, bold formatted row summa-
rizes the overall values for both validators for the period of the whole test.

During the tests with two validators and two shards, the obvious expectation was to
experience an increase in the overall TPS metric. Unexpectedly, analyzing the TPS per-
formance (last column in Table 5.2) revealed a slight decrease of thereof. The average
TPS value is 44,8 Tx/sec with a peak at 48,8 Tx/sec.

Taking a detailed look at the measures of each miner during the test runs, it becomes
evident that the synchronisation time, i.e. the time period during which no mining is
performed, has a non negligible effect which leads to higher block intervals and lower TPS
values for each validator. While having an average TPS of 52,6 Tx/sec in the setting
of only one shard, the TPS decreases to an average of 26,8 Tx/sec with two shards per
validator. With respect to the average number of transactions per block, it can be seen
that also in this case the blocks are well-filled.

38 CHAPTER 5. EVALUATION

5.4 3 Validators - 3 Shards

Partitioning the 20 wallets into three shards resulted 7 wallets to be assigned to shard 1,
6 wallets to be handled in shard 2 and 7 wallets to be processed by shard 3.

Following test runs have been executed similarly to the case with two shards, i.e. all
transactions were sent from the go routines to the three validators running at ports
127.0.0.1:8000, 127.0.0.1:8001 and 127.0.0.1:8002, respectively.

The test results are shown in Table 5.3. In this example, every compound of 4 rows
represents one test. The bottom row of every test run summarizes the results for all

validators.
Table 5.3: Testruns With Three Validators And Three Shards
Testrun | Transactions Miner Total Total Transaction | Sync Avg Avg TPS

sent per Transactions | Blocks Validation Time Block #Transactions | Overall

Second Validated Mined Duration [sec] Duration in Block [Tx/sec]

[sec] [sec]

| | Miner A | 4856 | 9 | 244 | 65 | 27,1 | 5395 | 199

| | Miner B | 4856 | 9 | 241 | 91| 26,7 | 539,5 | 201

Run 7 4214 | Miner C | 4197 | 9 |25 | 95| 23,8 | 4663 | 195
| | Combined | 13909 | 27 | 244 | 65 | 9 | 515,1 | 57

| | Miner A | 4482 | 9 | 207 | 105 | 23 | 498 | 217

| | Miner B | 4251 | 9 | 211 | 70 | 23,4 | 4273 | 201

Run8 386 "N | 4061 | 9 | 25 | 95 | 238 | 4512 | 189
| | Combined | 12794 | 27 | 215 | 70 | 7,9 | 4738 | 595

On close examination of the outcome, it becomes apparent that the TPS performance
has recovered from the unexpected decrease in the setting with two shards. The average
transaction validation rate amounts to 58,3 TPS with the maximum at 59,5 TPS.
Comparing the TPS performance per validator with the previous section reveals a slight
decrease from approximately 25 Tx/sec with two shards to around 20 Tx/sec with three
shards. It is noteworthy that the decrease in this case is not as severe as the decrease of
the TPS from the test with one shard to the one with two shards, i.e. roughly from 51
Tx/sec to 25 Tx/sec.

The increase of the overall TPS can be explained through the fact, that the synchronisation
time does not multiply with every joining validator. For instance, if a node needs to wait
during synchronsation 10 seconds for the other node, assuming to have two shards, than
the synchrnosation time does not necessarily double if there are three shards. In the best
case, when waiting 10 seconds for some node, the validator might synchronize himself in
the meantime with the third validator.

To put it differently, the synchronisation overhead does not necessarily double with every
added shard. It can be observed that with three shards the TPS per node decreases
slightly, but with the advantage of having another node with roughly the same TPS
capacity, thus increasing the overall TPS throughput.

As observed with the examples of one and two shards, the blocks in this case are well-filled
as well.

Chapter 6

Future Work

Bazo in its current implementation exhibits several limitations which impede a successful
operation in production. On the one hand the blockchain only works appropriately with
one validator per shard and on the other hand, there are no mechanisms to recover Bazo
from failures of a validator. Furthermore, a 51% attack in a sharded environment -
provided that there are multiple nodes per shard - is simpler to carry out. In order to do
justice to these deficiencies, following improvements may be applied:

e To account for forks within a single shard, a sophisticated state synchronisation
mechanism needs to be built which is capable of recognizing forks and rolling back
the synchronisation for blocks which are not longer in the valid chain.

e Another issue with forks in a shard arises in case those forks happen at the end of a
certain epoch and right before the creation of the next epoch block. In such cases,
the blockchain should wait until the fork is resolved, such that there is only one
validated block per shard and per block height.

e Sharding has the disadvantage that 51% attacks can be realized with actually less
than 51% of the coins due to the staking power being fractioned among the shards.
Currently, a validator is assigned to a shard for the lifetime of an epoch. In case
of multiple validators per shard, a validator within a certain shard might rule the
epoch with less than 51% of the coins and roll back blocks. To mitigate this attack
scenario, the PoS condition might be revised to lighten the effect of possessing much
more coins than the other validators of the same shard. Furthermore, a mechanisms
might be considered to avoid a validator being assigned to a shard for a whole
epoch. Making the assignment of validators per block height seems to be the most
promising counter measure.

e To account for network failures or validators leaving the blockchain due to crashes,
validators should be able to re-join Bazo and requesting the latest state from the
network, such that blockchain can continue with the work and does not need to be
launched from scratch.

39

40

CHAPTER 6. FUTURE WORK

e The evaluation has shown that the synchronisation overhead introduced a non neg-

ligible delay as soon as two shards are used. This in turn leads to a lower TPS value
which makes the split into two shards unattractive.
For this reason, the synchronisation mechanism could be revised to mitigate the
communication overhead with two shards. It may be considered to use local states
in each shard by taking advantage of self-contained proofs, thus omitting state syn-
chronisation at every block height.

e However, testing with three shards has demonstrated that the TPS has increased
again. To observe whether this trend remains with a higher number of shards, the
blockchain needs to be tested with > 3 shards.

Chapter 7

Summary and Conclusions

The purpose of this thesis was in the first place to investigate different scalability tech-
niques for blockchains through undergoing a thorough literature review. Based on the
findings of this first phase, the goal was to design a scalability protocol and implement it
for the Bazo blockchain.

As a result of the initial review of recent literature, the approach of sharding has been
identified as being most appropriate for Bazo. In a next step, the required adjustments
were designed and implemented to make Bazo incorporate sharding.

The main functional requirement of providing storage and validation sharding amongst
the validators has been fulfilled. With respect to non-functional requirements, respec-
tively, performance expectations, the sharded environment did not exhibit a contiunous
increase in the performance. In fact, the validation capacity per second (TPS) decreased
slightly when running on two shards due to the introduced communication overhead. This
has led to higher block intervals and remarkably low TPS values from a single validator
point of view.

Fortunately, extending the blockchain to three shards on the other hand has shown an
increase of the overall TPS reaching a higher capacity than in the case with one shard,
demonstrating that the technique of sharding in fact has a positive impact on the scala-
bility of the blockchain.

In brief, it has been found that Bazo has made a successful first step towards leverag-
ing the technique of sharding. Nonetheless, it is only fair to point out that there are
still non-trivial limitations of the current system. From a functional perspective, there is
the lack of support for multiple validators per shard and with respect to non-functional
properties, improving the synchronisation mechanism might mitigate the communication
overhead when operating with multiple shards.

In order to bring Bazo to a level of market readiness, there are still a couple of revisions
required.

41

42

CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

1]

R. Agrawal, P. Verma, R. Sonanis, U. Goel, A. De, S. A. Kondaveeti, and S. Shekhar.
Continuous security in iot using blockchain. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 6423-6427, April 2018.
https://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=8462513.

LoRa Alliance. What is lorawan?(2018), 2015.

Olivier Alphand, Michele Amoretti, Timothy Claeys, Simone Dall’Asta, An-
drzej Duda, Gianluigi Ferrari, Franck Rousseau, Bernard Tourancheau, Luca Vel-
tri, and Francesco Zanichelli. Iotchain: A blockchain security architecture for
the internet of things. In Wireless Communications and Networking Conference
(WCNC), 2018 IEEE, pages 1-6. IEEE, 2018. https://hal.archives-ouvertes.
fr/hal-01705455/document.

Simon Bachmann. Proof of stake for bazo, 2018.

Sujit Biswas, Kashif Sharif, Fan Li, Boubakr Nour, and Yu Wang. A scalable
blockchain framework for secure transactions in iot. IEEE Internet of Things Journal,
2018.

Roman Blum. Cryptographic sortition for proof of stake in bazo, 2018.

Quentin Bramas. The stability and the security of the tangle. 2018. https://hal.
archives-ouvertes.fr/hal-01716111/document.

Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable funding
of bitcoin micropayment channel networks. In International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems, pages 361-377. Springer,
2017. https://www.tik.ee.ethz.ch/file/a20a865ce40d40c8£942cf206a7cba96/
Scalable_Funding_ 0f_Blockchain_Micropayment_Networks.pdf.

Daniel Burkhardt, Maximilian Werling, and Heiner Lasi. Distributed ledger. In
2018 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), pages 1-9. IEEE, 2018. https://ieeexplore.ieee.org/stamp/
stamp. jsp?tp=&arnumber=8436299.

Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop
on Distributed Cryptocurrencies and Consensus Ledgers, volume 310, 2016. https:
//pdfs.semanticscholar.org/£852/c5f3fe649f8a17ded391df0796677a59927f .
pdf.

43

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462513
https://hal.archives-ouvertes.fr/hal-01705455/document
https://hal.archives-ouvertes.fr/hal-01705455/document
https://hal.archives-ouvertes.fr/hal-01716111/document
https://hal.archives-ouvertes.fr/hal-01716111/document
https://www.tik.ee.ethz.ch/file/a20a865ce40d40c8f942cf206a7cba96/Scalable_Funding_Of_Blockchain_Micropayment_Networks.pdf
https://www.tik.ee.ethz.ch/file/a20a865ce40d40c8f942cf206a7cba96/Scalable_Funding_Of_Blockchain_Micropayment_Networks.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436299
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8436299
https://pdfs.semanticscholar.org/f852/c5f3fe649f8a17ded391df0796677a59927f.pdf
https://pdfs.semanticscholar.org/f852/c5f3fe649f8a17ded391df0796677a59927f.pdf
https://pdfs.semanticscholar.org/f852/c5f3fe649f8a17ded391df0796677a59927f.pdf

44 BIBLIOGRAPHY

[11] Kristina Chodorow. Scaling MongoDB: Sharding, Cluster Setup, and Administration.
7 O’Reilly Media, Inc.”, 2011.

[12] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart contracts
for the internet of things. lece Access, 4:2292-2303, 2016. https://ieeexplore.
ieee.org/stamp/stamp. jsp?arnumber=7467408.

[13] Jeff Coleman. State channels wiki, 2016. https://github.com/ledgerlabs/
state-channels/wiki.

[14] Marco Conoscenti, Antonio Vetro, and Juan Carlos De Martin. Peer to peer for
privacy and decentralization in the internet of things. In Proceedings of the 39th
International Conference on Software Engineering Companion, pages 288-290.
IEEE Press, 2017. https://iris.polito.it/retrieve/handle/11583/2665723/
144242 /peer-to-peer_for_privacy_and_decentralization_in_the_internet_
of _things.pdf.

[15] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Towards an optimized blockchain for
iot. In Proceedings of the Second International Conference on Internet-of-Things
Design and Implementation, pages 173-178. ACM, 2017.

[16] Christopher Ehmke, Florian Wessling, and Christoph M Friedrich. Proof-of-property:
a lightweight and scalable blockchain protocol. In Proceedings of the 1st International

Workshop on Emerging Trends in Software Engineering for Blockchain, pages 48-51.
ACM, 2018.

[17] Joshua Ellul and Gordon J Pace. Alkylvm: A virtual machine for smart contract
blockchain connected internet of things. In New Technologies, Mobility and Security
(NTMS), 2018 9th IFIP International Conference on, pages 1-4. IEEE, 2018. http:
//www.cs.um.edu.mt/gordon.pace/Research/Papers/bsc2018. pdf.

[18] Nicola Fabiano. The internet of things ecosystem: The blockchain and pri-
vacy issues. the challenge for a global privacy standard. In Internet of Things
for the Global Community (IoTGC), 2017 International Conference on, pages
1-7. 1EEE, 2017. https://fardapaper.ir/mohavaha/uploads/2017/11/
The-Internet-of-Things-ecosystem-the-blockchain-and-privacy-issues.
-The-challenge-for-a-global-privacy-standard.pdf.

[19] Kai Fan, Shangyang Wang, Yanhui Ren, Kan Yang, Zheng Yan, Hui Li, and Yintang
Yang. Blockchain-based secure time protection scheme in iot. IEEFE Internet of
Things Journal, 2018.

[20] Tiago M Fernandez-Caramés and Paula Fraga-Lamas. A review on the use of
blockchain for the internet of things. IEEE Access, 2018. https://ieeexplore.
ieee.org/stamp/stamp. jsp?arnumber=8370027.

[21] Bogdan Cristian Florea. Blockchain and internet of things data provider for smart ap-
plications. In 2018 7th Mediterranean Conference on Embedded Computing (MECO),
pages 1-4. IEEE, 2018. https://fardapaper.ir/mohavaha/uploads/2018/08/
Fardapaper-Blockchain-and-Internet-of-Things-Data-Provider-for-Smart-Applications.
pdf.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7467408
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7467408
https://github.com/ledgerlabs/state-channels/wiki
https://github.com/ledgerlabs/state-channels/wiki
https://iris.polito.it/retrieve/handle/11583/2665723/144242/peer-to-peer_for_privacy_and_decentralization_in_the_internet_of_things.pdf
https://iris.polito.it/retrieve/handle/11583/2665723/144242/peer-to-peer_for_privacy_and_decentralization_in_the_internet_of_things.pdf
https://iris.polito.it/retrieve/handle/11583/2665723/144242/peer-to-peer_for_privacy_and_decentralization_in_the_internet_of_things.pdf
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/bsc2018.pdf
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/bsc2018.pdf
https://fardapaper.ir/mohavaha/uploads/2017/11/The-Internet-of-Things-ecosystem-the-blockchain-and-privacy-issues.-The-challenge-for-a-global-privacy-standard.pdf
https://fardapaper.ir/mohavaha/uploads/2017/11/The-Internet-of-Things-ecosystem-the-blockchain-and-privacy-issues.-The-challenge-for-a-global-privacy-standard.pdf
https://fardapaper.ir/mohavaha/uploads/2017/11/The-Internet-of-Things-ecosystem-the-blockchain-and-privacy-issues.-The-challenge-for-a-global-privacy-standard.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8370027
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8370027
https://fardapaper.ir/mohavaha/uploads/2018/08/Fardapaper-Blockchain-and-Internet-of-Things-Data-Provider-for-Smart-Applications.pdf
https://fardapaper.ir/mohavaha/uploads/2018/08/Fardapaper-Blockchain-and-Internet-of-Things-Data-Provider-for-Smart-Applications.pdf
https://fardapaper.ir/mohavaha/uploads/2018/08/Fardapaper-Blockchain-and-Internet-of-Things-Data-Provider-for-Smart-Applications.pdf

BIBLIOGRAPHY 45

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

[31]

[32]

[33]

QuarkChain Foundation. Quarkchain - a high-capacity peer-to-peer transactional
system, 2018.

Enrique Fynn and Fernando Pedone. Challenges and pitfalls of partitioning
blockchains. arXiw preprint arXiv:1804.07356, 2018. https://arxiv.org/pdf/
1804.07356. pdf.

Pankaj Ganguly. Selecting the right iot cloud platform. In Internet of Things
and Applications (I0TA), International Conference on, pages 316-320. IEEE, 2016.
https://ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=7562744.

Yuefei Gao and Hajime Nobuhara. A proof of stake sharding protocol for scalable
blockchains. Proceedings of the Asia-Pacific Advanced Network, 44:13-16.

Vincent Gramoli. The red belly blockchain. wnvited talk, MIT, 2017. https://
gramoli.redbellyblockchain.io/web/doc/talks/redbellyblockchain.pdf.

Concurrent Systems Research Group. The red belly blockchain experiments, 2017.
http://redbellyblockchain.io/papers/redbellyblockchain-experiments.
pdf.

Aljosha Judmayer, Nicholas Stifter, Katharina Krombholz, and Edgar Weippl. Blocks
and chains: Introduction to bitcoin, cryptocurrencies, and their consensus mecha-
nisms. Synthesis Lectures on Information Security, Privacy, € Trust, 9(1):1-123,
2017.

Kolbeinn Karlsson, Weitao Jiang, Stephen Wicker, Danny Adams, Edwin Ma,
Robbert van Renesse, and Hakim Weatherspoon. Vegvisir: A partition-tolerant
blockchain for the internet-of-things. In 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 1150-1158. IEEE, 2018.
https://www.distributed-systems.net/my-data/var/icdcs2018/686.pdf.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583-598.
IEEE, 2018. https://eprint.iacr.org/2017/406.pdf.

Nir Kshetri. Can blockchain strengthen the internet of things? IT Professional,
19(4):68-72, 2017. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
8012302.

B Kusmierz. The first glance at the simulation of the tangle: discrete model, 2017.
https://assets.ctfassets.net/r1dr6vzfxhev/2Z05XxwehymSMsgusUE6YG/
£15£4571500a64b7741963df5312c7e7/The_First_Glance_of_the_Simulation_
Tangle_-_Discrete_Model_v0.1.pdfl

Bartosz Kusmierz, Philip Staupe, and Alon Gal. Extracting tangle properties in
continuous time via large-scale simulations. Technical report, working paper, 2018.
https://assets.ctfassets.net/r1dr6vzfxhev/6406clgPcsUIIUGGYw8ksQ/
5b8£1970bd06£0c29feb066ab4fabeeb/Extracting_Tangle_Properties_in_
Continuous_Time_via_Large_Scale_Simulations_V2.pdf.

https://arxiv.org/pdf/1804.07356.pdf
https://arxiv.org/pdf/1804.07356.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7562744
https://gramoli.redbellyblockchain.io/web/doc/talks/redbellyblockchain.pdf
https://gramoli.redbellyblockchain.io/web/doc/talks/redbellyblockchain.pdf
http://redbellyblockchain.io/papers/redbellyblockchain-experiments.pdf
http://redbellyblockchain.io/papers/redbellyblockchain-experiments.pdf
https://www.distributed-systems.net/my-data/var/icdcs2018/686.pdf
https://eprint.iacr.org/2017/406.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8012302
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8012302
https://assets.ctfassets.net/r1dr6vzfxhev/2ZO5XxwehymSMsgusUE6YG/f15f4571500a64b7741963df5312c7e7/The_First_Glance_of_the_Simulation_Tangle_-_Discrete_Model_v0.1.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2ZO5XxwehymSMsgusUE6YG/f15f4571500a64b7741963df5312c7e7/The_First_Glance_of_the_Simulation_Tangle_-_Discrete_Model_v0.1.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2ZO5XxwehymSMsgusUE6YG/f15f4571500a64b7741963df5312c7e7/The_First_Glance_of_the_Simulation_Tangle_-_Discrete_Model_v0.1.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/64o6clgPcsUIIUGGYw8ksQ/5b8f1970bd06f0c29feb066a54fa6ee5/Extracting_Tangle_Properties_in_Continuous_Time_via_Large_Scale_Simulations_V2.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/64o6clgPcsUIIUGGYw8ksQ/5b8f1970bd06f0c29feb066a54fa6ee5/Extracting_Tangle_Properties_in_Continuous_Time_via_Large_Scale_Simulations_V2.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/64o6clgPcsUIIUGGYw8ksQ/5b8f1970bd06f0c29feb066a54fa6ee5/Extracting_Tangle_Properties_in_Continuous_Time_via_Large_Scale_Simulations_V2.pdf

46

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

BIBLIOGRAPHY

Alexandru Lavric and Valentin Popa. Internet of things and loraa¢ low-power wide-
area networks: a survey. In Signals, Circuits and Systems (ISSCS), 2017 Interna-
tional Symposium on, pages 1-5. IEEE, 2017.

Alexandru Lavric and Valentin Popa. Loraa¢ wide-area networks from an internet
of things perspective. In Electronics, Computers and Artificial Intelligence (ECAI),
2017 9th International Conference on, pages 1-4. IEEE, 2017.

Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Giin Sirer. Teechan: Payment
channels using trusted execution environments. arXw preprint arXiv:1612.07766,
2016. https://arxiv.org/pdf/1612.07766.pdf.

Luke-jr. Block size limit controversy, 2015. https://en.bitcoin.it/wiki/Block_
size_limit_controversy,

Thomas Lundqvist, Andreas de Blanche, and H Robert H Andersson. Thing-to-thing
electricity micro payments using blockchain technology. In Global Internet of Things
Summit (GloTS), 2017, pages 1-6. IEEE, 2017. http://www.diva-portal.org/
smash/get/diva2:1136256/FULLTEXTO1 . pdf.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17-30. ACM, 2016.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan
Ravi. Concurrency and privacy with payment-channel networks. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
455-471. ACM, 2017. https://publik.tuwien.ac.at/files/publik_268463.pdf.

Peter Middleton, Peter Kjeldsen, and Jim Tully. Forecast: The internet of things,
worldwide, 2013. Gartner Research, 2013.

Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:
Payment channels that go faster than lightning. CoRR abs/1702.05812, 2017. https:
//allquantor.at/blockchainbib/pdf/miller2017sprites.pdf.

Dennis Miller. Blockchain and the internet of things in the industrial sector. I'T Pro-
fessional, 20(3):15-18, 2018. https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=8378971.

Bing Mo, Kuiren Su, Songjie Wei, Cai Liu, and Jianping Guo. A solution for internet
of things based on blockchain technology. In 2018 IEEE International Conference
on Service Operations and Logistics, and Informatics (SOLI), pages 112-117. IEEE,
2018. https://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=8476777.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. .

Sina Rafati Niya, Sanjiv S Jha, Thomas Bocek, and Burkhard Stiller. Design and
implementation of an automated and decentralized pollution monitoring system with
blockchains, smart contracts, and lorawan. In NOMS 2018-2018 IEEE/IFIP Network

https://arxiv.org/pdf/1612.07766.pdf
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://www.diva-portal.org/smash/get/diva2:1136256/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:1136256/FULLTEXT01.pdf
https://publik.tuwien.ac.at/files/publik_268463.pdf
https://allquantor.at/blockchainbib/pdf/miller2017sprites.pdf
https://allquantor.at/blockchainbib/pdf/miller2017sprites.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8378971
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8378971
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8476777

BIBLIOGRAPHY 47

[47]

48]

Operations and Management Symposium, pages 1-4. IEEE, 2018. https://files.
ifi.uzh.ch/CSG/staff/Rafati/BPMS.pdf.

Asutosh Palai, Meet Vora, and Aashaka Shah. Empowering light nodes in blockchains
with block summarization. In New Technologies, Mobility and Security (NTMS), 2018
9th IFIP International Conference on, pages 1-5. IEEE, 2018.

Jianli Pan, Jianyu Wang, Austin Hester, Ismail Algerm, Yuanni Liu, and Ying Zhao.
Edgechain: An edge-iot framework and prototype based on blockchain and smart
contracts. arXiv preprint arXiv:1800.06185, 2018. https://arxiv.org/pdf/1806.
06185 .pdf.

Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, 2017. https://plasma.io/plasma.pdf.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments. See https://lightning. network/lightning-network-paper.
pdf, 2016. https://www.bitcoinlightning.com/wp-content/uploads/2018/03/
lightning-network-paper.pdf|

Serguei Popov. The tangle. cit. on, page 131, 2016. http://www.descryptions.
com/Iota.pdf.

Serguei Popov, Olivia Saa, and Paulo Finardi. Equilibria in the tangle. arXiv preprint
arXw:1712.05385, 2017. https://arxiv.org/pdf/1712.05385. pdf.

Gowri Sankar Ramachandran and Bhaskar Krishnamachari. Blockchain for the iot:
Opportunities and challenges. arXiv preprint arXiv:1805.02818, 2018. https://
arxiv.org/pdf/1805.02818. pdf.

Ana Reyna, Cristian Martin, Jaime Chen, Enrique Soler, and Manuel Diaz. On
blockchain and its integration with iot. challenges and opportunities. Future Gener-
ation. Computer Systems, 2018.

Mayra Samaniego and Ralph Deters. Blockchain as a service for iot. In Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2016 IEEE International Conference on, pages 433-436. IEEE, 2016.
https://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=7917130.

Mattias Scherer. Performance and scalability of blockchain networks and smart
contracts, 2017. https://umu.diva-portal.org/smash/get/diva2:1111497/
FULLTEXTO1.pdf.

AN Semtech. 120022. LoRa Modulation Basics, 2015.
Livio Sgier. Bazo - a cryptocurrency from scratch, 2017.

Nisarg Shah and S Sundar. Smart electric meter using lora protocols and lot applica-
tions. In 2018 Second International Conference on Electronics, Communication and

Aerospace Technology (ICECA), pages 1178-1180. IEEE, 2018.

https://files.ifi.uzh.ch/CSG/staff/Rafati/BPMS.pdf
https://files.ifi.uzh.ch/CSG/staff/Rafati/BPMS.pdf
https://arxiv.org/pdf/1806.06185.pdf
https://arxiv.org/pdf/1806.06185.pdf
https://plasma.io/plasma.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
http://www.descryptions.com/Iota.pdf
http://www.descryptions.com/Iota.pdf
https://arxiv.org/pdf/1712.05385.pdf
https://arxiv.org/pdf/1805.02818.pdf
https://arxiv.org/pdf/1805.02818.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7917130
https://umu.diva-portal.org/smash/get/diva2:1111497/FULLTEXT01.pdf
https://umu.diva-portal.org/smash/get/diva2:1111497/FULLTEXT01.pdf

48

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

BIBLIOGRAPHY

Pradip Kumar Sharma, Saurabh Singh, Young-Sik Jeong, and Jong Hyuk Park. Dis-
tblocknet: A distributed blockchains-based secure sdn architecture for iot networks.
IEEE Communications Magazine, 55(9):78-85, 2017. http://www.mihantarjomeh.
com/wp-content/uploads/2018/07/4_5915577779562218259 . pdf.

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: Serialization of
proof-of-work events: confirming transactions via recursive elections, 2016.

The Zilliqa Team. The zilliga project - a secure, scalable blockchain platform. 2018.
https://docs.zilliqa.com/positionpaper.pdf.

ZILLIQA Team et al. The zilliga technical whitepaper, 2017.

Weinan Wang, Joseph E Magerramov, Maxym Kharchenko, Min Zhu, Aaron D Ku-
jat, Alessandro Gherardi, and Jason C Jenks. Facilitating data redistribution in
database sharding, April 23 2013. US Patent 8,429,162.

Will Warren and Amir Bandeali. 0x: An open protocol for decentralized exchange
on the ethereum blockchain. URI: https://github. com/0xProject/whitepaper, 2017.

Gavin Wood. FEthereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1-32, 2014. http://gavwood.com/Paper.pdf.

Bin Yu, Jarod Wright, Surya Nepal, Liming Zhu, Joseph Liu, and Rajiv Ranjan.
Iotchain: Establishing trust in the internet of things ecosystem using blockchain.
IEEE Cloud Computing, 5(4):12-23, 2018.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 931-948. ACM, 2018.

http://www.mihantarjomeh.com/wp-content/uploads/2018/07/4_5915577779562218259.pdf
http://www.mihantarjomeh.com/wp-content/uploads/2018/07/4_5915577779562218259.pdf
https://docs.zilliqa.com/positionpaper.pdf
http://gavwood.com/Paper.pdf

Abbreviations

PoW Proof of Work

PoS Proof of Stake

DAG Directed Acyclic Graph

IOTA Internet-of-Things Application
10T Internet-of-Things

ContractTxCreating Account Transaction

FundsTx Transferring Funds Transaction

ConfigTx Changing Configuration/System Parameter Transaction
StakeTx Staking Transaction

49

90

ABBREVIATONS

List of Figures

[2.1 The Tangle - Grey Nodes: Tips - Time Progresses From Left To Right [51] 6
[2.2 Exemplary Representation Of Sharding| 8
2.3 Paymentchannel Between Alice And Bob [A0]] 9
3.1 Overview Of The EntitiesIn Bazdl 16
(3.2 Exemplary Epoch Representation With Epoch Length length., =4 And 3 |

[ohardsl 18
[3.3 Dynamic Load-Balancing| 0000 19
[3.4 Due To Network Latency And T'he Speed Of T'he PoS, Shard Chains Might |

| Diverge, Resulting In Difterent Block Heights 23
1B.5 (A) - State Before Mining The Block; (B) - State After Validating Block

| And Applying The Transactions To The State; (C) - Generated State Tran-

[sition To Be Distributed To The Networkl. 24
[3.6 Point In Time When State Synchronisation Is Performed| 25
[A.1 Testrun With NodeA Starting As Bootstrapping Node And NodeB and |

| NodeC Joining After The First Epoch| 62

51

52

LIST OF FIGURES

List of Tables

(2.1 Comparison Ot Sharding Protocols|

33

o4

LIST OF TABLES

Appendix A

Installation Guidelines

Most of the installation guidelines are taken from the previous system installation instruc-
tions [58], 4].

A.1 Validator Application

In order to start the miner application, Go (version 1.8.3 or higher) needs to be installed.
The newest version can always be fetched from the following website:

https://golang.org/dl/

After downloading Go, the environment variables GOROOT and GOPATH need to be
set to the corresponding paths.

To get the miner application and all necessary libraries, the following command needs to
be executed on the command line:

$ go get github.com/KuersatAydinli/bazo—miner

Upon successfully downloading the miner application and all additional libraries, the
miner application can be started with the following command:

$ go build & bazo_miner start —d <node_name> —a <listening_port>
—b <bootstrapping_port>

It is recommended to always execute go build as the first part of the command to make
sure to use the most current compilation of the application.

95

o6 APPENDIX A. INSTALLATION GUIDELINES

The following command is a sample from the above generalized command, starting the
validator NodeA at port 8000:

$ go build & bazo_miner start —d NodeA —a 127.0.0.1:8000 —b
127.0.0.1:8000

In order to start a second validator NodeB listening on port 8001 to connect to Bazo,
execute following command:

$ go build & bazo_miner start —d NodeB —a 127.0.0.1:8001 —b
127.0.0.1:8000

If the nodes are started for the first time, Bazo will automatically generate a separate
directory for each node containing the wallet key, commitment key as well as a storage
file for the blockchain. The next section further explains the structure of the key files.

A.1.1 Key Handling

All wallet signatures in Bazo are based on the elliptic curve digital signature algorithm
(ECDSA), a digital signature algorithm based on elliptic curve cryptography. An ECDSA
key pair consists of a public key and a private key. The private key is used to sign a
transaction and the public key is used for signature verification. Listing shows an
example of a wallet key file:

Listing A.1: Bazo Wallet Key File

4dc418348abc77263a70544b49ed07d78714e4df0efe277f4df20cc0a0583717
cecl7514ae732c¢d02e0aff7{6d5125d202fc650b912¢c489dabddealfaldb3b904
806372a5e4766bd75e9¢234280f4879832629f3030blebc2cfel2d3bb0d6acac

The first two lines make up the public key, the last line is the private key. For transferring
funds, only the public key is necessary, the third line can thus be omitted when creating
a transaction of this type.

Besides wallets, Bazo also employs commitment keys which are needed in case a user
intends to join the set of validators. Commitment keys are based on the RSA algorithm.
Listing shows an exemplary excerpt of a commitment key file:

Listing A.2: Bazo Commitment Key File

y4-++0vEIIHWP2GVRQZLZpurhWkVLGM4gGgyqS77NaJSTFG7ICsLf94 /oBwgu . . .
Sm1iXgoXEwNRT148i61/i2K 7kenb /gDBNeHjNAyijePbCIHkF1qTubXA7XzUpm . . .
6jyMBvVhUNcGBO38LJULt /gDSH1TqabACnKvW2WQ/OrvYb3ORef+RtCDuYO6h . . .
3nmTTHRS5ihaaed4c39P83 /Zx3q /nlQSMR{S8COu/uBpuW1lelA69v6ktLUoSDS . . .

A.2. CLIENT APPLICATION 57

A.2 Client Application

To download the client application, execute the following command on the command line:

$ go get github.com/KuersatAydinli/bazo—client

The Bazo client lets a user issue transactions by supplying the necessary arguments for
each transaction type on the command line. For a transaction to be successfully validated,
it needs to be signed with a private key (this is true for both root and regular user
accounts). The keys are stored in regular files and the filename is supplied as an argument.

A.2.1 Transferring Funds Transaction

A transferring funds transaction is launched with the following command:

$ bazo_client funds —from <from_wallet> —to <to_wallet> —
txcount <tx_count> —amount <amount> —fee <fee>

The command has following properties:

from The key file of the sender account (only public key needed).
to The key file of the receiver account (only public key needed).

txcount This integer parameter is linked to the sender account and needs to be increased
with every newly created funds transfer transaction (starting at 0).

amount Amount to be sent from the sender to the receiver account.
fee The fee to be paid for the transaction. Must be larger or equal than the Minimum

Fee system parameter.

For instance, to transfer 4000 coins from NodeA (WalletA key) to NodeB (WalletB.key),
execute following command:

$ bazo—client funds —from WalletA . .key —to WalletB.key —
txcount 0 —amount 4000 —fee 5

o8 APPENDIX A. INSTALLATION GUIDELINES

A.2.2 Stake Transaction

A transaction of this type can be initiated with the following command:

$ bazo—client staking enable —wallet <wallet_key_file> —
commitment <commitment_key_file>

whereas

wallet Wallet key file of the sender account (to be found in the node directory).

commitment Commitment key file of the sender account (to be found in the node di-
rectory).

In order to let NodeB join the validator set, this command can be stated as follows:

$ bazo—client staking enable —wallet WalletB.key —commitment
CommitmentB . key

Due to the fact that the key files are generated in the miner application, they have to be
copied to the client application and renamed accordingly.

A.3. COMPLETE EXAMPLE WITH 3 SHARDS 29

A.3 Complete Example with 3 Shards

The following sections guides the reader through the set up of running Bazo with three
validators and three shards.

A.3.1 Generate Node Directories and Keys

Start the bootstrapping node with the following command executed from the miner ap-
plication. In case the node is started for the first time, the node directory as well as the
database and the wallet/commitment keys will be generated automatically.

$ go build & bazo_miner start —d NodeA —a 127.0.0.1:8000 —b
127.0.0.1:8000

While the bootstrapping node is online, run following commands to launch the other two
nodes:

$ go build & bazo_miner start —d NodeB —a 127.0.0.1:8001 —b
127.0.0.1:8000

$ go build & bazo_miner start —d NodeC —a 127.0.0.1:8002 —b
127.0.0.1:8000

As in the case of the bootstrapping node, the two additional miners will also get their
corresponding keys and a local database to store the blockchain.

Note that it is required for the bootstrapping node to be running while starting up the
other validators. The command line of the two validtors will indicate a succeeded connec-
tion to the bootstrapping node with the message Adding a new miner: 127.0.0.1:8000

60 APPENDIX A. INSTALLATION GUIDELINES

Once the commands have been successful, the directory of the miner application should
look as follows:

bazo-miner

| cli

. crypto

| miner

| NodeA
commitment.key
store.db
store.db.lock
wallet.key

| NodeB
commitment.key
store.db
store.db.lock
wallet.key

| NodeC
commitment.key
store.db
store.db.lock
wallet.key

| p2p

| _protocol

, _storage

| vm

The epoch length is set to 9 blocks by default, i.e. every 10th block will be an epoch block.
The epoch length can be customized in the configuration file ..\miner\configs.go

When using Bazo with multiple validators, it is recommended to set the epoch length
enough high to make sure the validtors are well connected when the next epoch starts.
Generally, validators connect themselves first with the bootstrapping node and only after
some time they discover the other validators through a neighbor request.

A.3.2 Transfer Funds and Enable Staking

Now that all three nodes have wallet and commitment keys, they are ready to join the
network as validators and start mining.

To accomplish this, the bootstrapping node has to transfer enough coins to the two nodes
and accept their staking transactions. For this reason, the wallet.key and commit-
ment.key files of NodeA, NodeB and NodeC have to be copied to the client applica-
tion and renamed appropriately.

A.3. COMPLETE EXAMPLE WITH 3 SHARDS 61

Once done, restart NodeA with the above command in the miner application and apply
following commands:

$ bazo—client funds —from WalletA . .key —to WalletB.key —
txcount 0 —amount 4000 —fee 5 & bazo—client staking enable
—wallet WalletB.key —commitment CommitmentB . key

$ bazo—client funds —from WalletA . .key —to WalletB.key —
txcount 1 —amount 4000 —fee 5 & bazo—client staking enable
—wallet WalletC.key —commitment CommitmentC.key

By doing so, NodeA transfers 4000 coins to NodeB and NodeC. At the same time, both
validators issue a staking transaction. Note that the transaction counter in the second
command needs to be incremented by one.

Issuing these commands in the first epoch will generate the required accounts for NodeB
and NodeC and set them to staking.

At this point, NodeB and NodeC can be started in additional terminals through the
previously given commands. They will connect themselves first to the bootstrapping node
and after some seconds also recover each other.

As mentioned during the thesis, validators newly joining Bazo - as in this case with
NodeB and NodeC - need to wait until the running epoch ends. Once both nodes re-
ceive the first epoch block from NodA, they will start mining blocks on their own while
synchronizing the block heights among each other.

For every node, the miner application generates a two log files of the form hash-prevhash-
XXXX.txt and hlog-for-XXXX.txt where XXXX is the port on which the nodes
listen. The files can be found in the main directory.

The file hlog-for-XXXX.txt is basically a redirect of the print statements in the ap-
plication to facilitate debugging whereas the file hash-prevhash-XXXX.txt records all
blocks as a link from the previous hash to the actual block hash. The main purpose of
this file is to give the user the ability of visualizing the blockchain. This can be done
through copying the content of the file to the webpage www.graphviz.it.

Figure A.1 shows a sample run starting off with the bootstrapping node in the first epoch
and two nodes joining in different shards in the second epoch.

APPENDIX A. INSTALLATION GUIDELINES

GENESIS
00600

EPOCH BLOCK.

Hash:

45

MPT

Hash - 1ebab20ad33e850

Haight -4

— I
7 Hash a0fedT0Ta0mbcis >

. Height -8

¢ Huh: T22bShaachsEy
E ~

/

—_— -

EPOCH BLOCK.
Dd3sh

J— \‘r_!
Hash - 418cfedcea™ 08204 Hash - 721 9031 ™ 02601
(\ Height - 11) | Height - 11) 1
B 1 L
H,n £e60e3TTbed btb ¢ Huho0aimbEs " Hash: 54126b0435285200 “\

Height : 12

e ﬁll‘—l/ Height: 12
T i —
i 1

— ——
/ Heh etz Hach © 6208bc=D3468075
-lenn[13) Height - 13
—

Hah ScemlaiRE Hadh© 63575223 TIE
% / Haight: 14

/'/H:: bega2l

Height - 1

[

Hash : 706132¢24284657
Height:

—_—
Hash : bf170062d72f1269 3
Height: 17

~—— = _
/,1
7 Hash: ca965TSeR3b004 Hash : 41693 7Mc5c0d722
. Height: Haight: 1§
— T ~— 7//

Figure A.1: Testrun With NodeA Starting As Bootstrapping Node
And NodeB and NodeC Joining After The First Epoch

Appendix B

Contents of the CD

Miner Application Source Code

Client Application Source Code

The ETEX Source Code

Final Thesis (.pdf)

Final And Intermediate Presentation

Related Work Papers

63

	Einleitung
	Ziele
	Resultate
	Weitere Arbeiten
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Bazo Blockchain
	Thesis Outline

	Background and Related Work
	Blocksize Increase
	IOTA
	Sharding
	Off-Chain state channels
	Scalability Methods Assessment
	Related Work
	Elastico
	OmniLedger
	RapidChain
	Zilliqa
	QuarkChain

	Design
	Key Assumptions
	Entity Management
	Network Sharding
	Epochs
	Number Of Shards
	Leader Formation
	Epoch Finality And Validator Assignment
	Transaction Sharding and Processing
	Block Height and State Synchronisation

	Implementation
	Transactions
	Stake Transaction (StakeTx)
	System Parameters (ConfigTx)
	Funds Transactions (FundsTx)

	Blocks
	Shard Block
	Epoch Block

	State Transition

	Evaluation
	Set-Up of the Testcase
	1 Validator - 1 Shard
	2 Validators - 2 Shards
	3 Validators - 3 Shards

	Future Work
	Summary and Conclusions
	Abbreviations
	List of Figures
	List of Tables
	Installation Guidelines
	Validator Application
	Key Handling

	Client Application
	Transferring Funds Transaction
	Stake Transaction

	Complete Example with 3 Shards
	Generate Node Directories and Keys
	Transfer Funds and Enable Staking

	Contents of the CD

