
Evaluation and Improving
Scalability of the BAZO Blockchain

Fabio Maddaloni
Zurich, Switzerland

Student ID: 15-703-150

Supervisor: Sina Rafati
Date of Submission: April 23, 2019

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

English

Blockchains are one of the newer and recently often discussed topics in the information
and communication technology world. Therefore, many research projects are currently
ongoing on this subject. Every new idea reaches a point where performance and usability
are compared to existing technologies. Additionally, different versions of the same re-
search project are compared against each other with the goal to estimate, if the applied
improvements bring the desired outputs.

Cryptocurrencies are based on the blockchain technology because under certain conditions
they are extraordinary secure. This is attributed to the decentralization and validation
mechanisms of a blockchain and the user’s anonymity. Since blockchains were, especially
at the beginning, often used for currencies, it is not surprising that many blockchain
developers and their projects choose the biggest credit card companies as their comparison
target in terms of transaction speed.
At the time of writing this thesis hardly any blockchains is able to even process nearly as
many transactions per second as credit card companies. Therefore, a part of this thesis
is devoted to a scalability improvement.

The scalability improvement is an aggregation process of transactions with either the same
sender or receiver. Thus, depending on the use case, fewer transactions need to be written
into a block and therefore, the number of transactions per second can be increased. The
implementation of the scalability improvement is realized onto the BAZO blockchain’s
source code.

Furthermore, the performance before and after the improvement is tested in a newly
created global network based on 20 miners. The results are evaluated and can be used to
plan the next steps to get even higher transaction speeds.

Deutsch

Blockchains sind eines der grossen neuen Theme in der Informations- & Kommunikation-
stechnik und genau deshalb gibt es viele Forschungsprojekte dazu. Jede neue Idee kommt
an einen Punkt, bei dem die Leistung und Verwendungsvor- sowie -nachteile mit bere-
its bestehenden Technologien verglichen werden. Oft werden verschieden Versionen einer

i

ii

neuen Technlologie verglichen, um abzuwägen, ob die angebrachten Verbesserungen auch
die gewünschten Effekte zur Folge haben.

Kryptowährungen basieren auf der Blockchain Technologie, da diese, unter bestimmten
Voraussetzungen, besonders sicher ist. Dies ist vorallem auf die Dezentralisierung und
die Validierung der Blockchain zurückzuführen, sowie der Anonymität der Benutzer zu
verdanken. Da viele Blockchain Projekte, vorallem als die Technologie ganz neu war, für
Währungen verwendet wurden, ist es nicht sonderlich erstaunlich, dass viele Entwickler
und ihre Projekte den grossen Kreditkartenfirmen, in Hinsicht auf die Anzahl Transakio-
nen pro Sekunde, nacheifern.
Als diese Arbeit verfasst wurde, waren die meisten Blockchains nicht in der Lage an-
nähernd hohe Transaktionsraten wie die Kreditkartenbetreiber zu erzielen. Aus diesem
Grund ist ein Teil dieser Arbeit einer Lösung zum Skalieren von Blockchains gewittmet.

Die gewünschte Skalierbarkeit wird durch Zusammenfassen von bestimmten Transaktio-
nen mit dem gleichen Sender oder Empfänger gemacht. Je nach Anwendungsfall, können
deutlich mehr Transakionen in einen Block geschrieben werden und dadurch die Anzahl
Transakion pro Sekunde erhöht werden. Die Verbesserung wird anhand einer Implemen-
tation basierend auf der BAZO Blockchain durchgeführt.

Weiter wird die Leistung vor und nach der Verbesserung in einem globalen, neu erstell-
ten Netzwerk mit 20 Miner getestet, analsiert und verbessert. Die Resultate werden
begutachtet sowie ausgewertet und können daher als Grundlage zur Planung der näch-
sten Schritte zum Erreichen von noch höheren Transaktionsgeschwindigkeiten gebraucht
werden.

Acknowledgments

I would like to thank my supervisor, Sina Rafati, for his continuous assistance and inputs
during the last six months. It was a tremendous relief that I could write to him or show
up in his office any time and received always a precious answer. This ensured a continuous
work, which is highly appreciated.

Also, I would like to thank Prof. Dr. Thomas Bocek for his great inputs and wider
perspective on the project during the weekly meetings. Most often, these meetings were
truly eye-opening and I, as a student and personally, learned a lot.

Furthermore, I thank Kürsat Aydinli, Roman Blum and Marc-Alain Chételat for their
valuable answers regarding code-questions.

And last, I would also like to thank Prof. Dr. Burkhard Stiller, the head of the Com-
munication Systems Research Group, for the possibility to work on such an amazing and
interesting project.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 BAZO - The Blockchain . 1

1.3 Description Of Work . 2

1.4 Thesis Outline . 2

2 Related Work 3

2.1 Performance Analysis . 3

2.2 Scalability Improvements . 4

2.2.1 Increase Block Size . 5

2.2.2 Decrease Block Interval . 5

2.2.3 Smaller Transaction Size & Transaction Aggregation 6

2.2.4 Sharding . 6

2.2.5 Altcoins ←→ New Blockchain . 7

2.2.6 Off-Chain Solutions . 8

2.2.7 Scalable Consensus Mechanisms . 8

2.2.8 Comparison And Conclusion . 9

v

vi CONTENTS

3 Design 11

3.1 Performance Analysis . 11

3.1.1 Metrics . 11

3.2 Transaction Aggregation . 14

3.2.1 Idea . 14

3.2.2 Aggregation Of Transactions . 14

3.2.3 Double Linked Blockchain . 17

4 Implementation 21

4.1 Performance Analysis . 21

4.1.1 Virtual Machines . 21

4.1.2 Test Scenarios . 22

4.2 Transaction Aggregation . 24

4.2.1 Aggregation Of Transactions . 24

4.2.2 Double Linked Blockchain . 25

5 Bug fixing 27

5.1 Forking . 27

5.1.1 Problem . 28

5.1.2 Developed Solution . 29

5.2 Block Size . 30

5.2.1 Problem . 30

5.2.2 Developed Solution . 31

5.3 Strange Header.TypeID & Connection Issues 31

5.3.1 Problem . 31

5.3.2 Developed Solution . 32

5.4 Missing Transactions . 32

5.4.1 Problem . 32

5.4.2 Developed Solution . 33

CONTENTS vii

6 Evaluation 37

6.1 Different Block Sizes . 37

6.2 Different Block Intervals . 41

6.3 Blockchain’s Overall Size . 43

6.4 Benefits Of Transaction Aggregation . 44

6.5 Obstacles Of Transaction Aggregation . 44

6.5.1 Join As A New Miner & Order Of Transactions 45

6.5.2 Join As A New Miner & Nonce . 46

6.6 Future Work . 47

7 Summary and Conclusions 49

Bibliography 51

Abbreviations 55

Glossary 57

List of Figures 58

List of Tables 59

A Installation And Usage Guidelines 63

A.1 Virtual Machines . 63

A.2 BAZO . 64

A.2.1 Setup Bootstrap Miner And Client 64

A.2.2 Setup Normal Miner And Client . 65

A.2.3 Usage . 66

A.2.4 Tips And Tricks . 66

B Contents of the CD 69

viii CONTENTS

Chapter 1

Introduction

1.1 Motivation

As with every new technology, performance metrics are important evidences if a novel
approach is usable at large scale or if the idea will stay a niche product. Often new
approaches are compared against older, already established techniques, technologies and
products. This should bring a new perspective on what is truly possible and how it should
be improved to reach the desired goals. Nevertheless, it is important that similar things
are getting compared. Often also different versions of a product are compared against
each other to see if new applied solutions bring the desired effects.

One of the biggest problems of blockchains is scalability. Because of the decentralization
and its unique consensus approach, it is hard to scale a blockchain. One goal of the
whole blockchain world is to achieve transaction rates comparable to the biggest credit
card providers. Currently, this is not possible and therefore multiple research projects are
running on different blockchains [24].

1.2 BAZO - The Blockchain

BAZO is a research blockchain created and mainly developed at the University of Zurich
in 2017. At the beginning, it was a private/invite-only blockchain which was planned to
replace a traditional bonus system of a credit card issuer [44]. BAZO used a Proof-of-
Work consensus algorithm but soon it changed to a Proof-of-Stake version. This change
was performed in early 2018 [19].

Since then, BAZO became more evolved and, at the time of writing, various research
projects and improvement attempts in several directions from different universities are in
progress. Some of them are going into a direction of changing BAZO from a bonus system
replacement to a blockchain specialized for the Internet of Things (IoT). One overlapping
goal of all those projects is to scale the blockchain to be able to handle more transactions
per second.

1

2 CHAPTER 1. INTRODUCTION

1.3 Description Of Work

This thesis consists of three parts which overlap slightly and therefore also influence each
other.

The objective of part one is the creation of a global network of BAZO miners and clients.
This network should run on virtual machines hosted by various cloud providers. It is used
for performance tests with the ability of geographical distance between peers as well as
tests with multiple miners.

Furthermore, a scalability improvement, namely transaction aggregation, for the BAZO
blockchain is implemented and evaluated. In this paper the core mechanisms, design
ideas and difficulties are discussed. In the evaluation part, the scalability mechanism is
analyzed and interpreted as well as compared to older BAZO versions.

Besides these two planned core parts, a third part, where all bugs and its fixes which were
found during the process of the thesis, are described and developed solutions explained.

1.4 Thesis Outline

The thesis starts with a small introduction in chapter 1 followed by a chapter comparing
different scalability ideas and approaches. This is handled in chapter 2. Chapters 3, 4
and 6 do cover the main aspects of this thesis, namely the network preparation and setup
as well as the scalability improvement. All bugs found during the process are listed in
chapter 5. There the problems and the elaborated solutions are described and elucidated.
This thesis ends with a small summary and conclusion in chapter 7.

Chapter 2

Related Work

This chapter describes related work for the two core directions of this thesis, performance
analysis and scalability improvements.

2.1 Performance Analysis

Blockchains are often compared against each other in term of performance. To be more
precise, most of the time they are compared in regards to transaction throughput. Many
people subsequently assume that a faster blockchain is better than a slower one. This
assumption can sometimes be problematic because many blockchain projects reach high
throughput at the cost of reducing and neglecting important characteristics.

Currently VisaNet, one of the biggest electronic payment systems, can handle over 24’000
transactions per second (TPS) as listed on their US-website [12]. However, on the Swiss
website, they claim up to 56’000 TPS are possible with VisaNet and in the official fact
sheet linked on the same website, VisaNet should be able to process 65’000+ transactions
per second [8,13]. No matter if these numbers are correct or not, they are only peak values
and not handled over a long time period. Especially blockchain near people often say that
Visa is able to process a few thousand transactions per second, but never numbers like
those officially published ones [34, 43]. This is a great example, that TPS, despite the
fact that it is probably the most used and widespread metric as soon as transactions are
involved, should always be used with care.

Although it is not 100% sure how many transactions VisaNet can handle per second, it
is a clear goal for many blockchains to be faster than Visa. Also here multiple different
rankings exist. This is probably caused by the fact that new blockchain projects sprout
in a fast manner. According to a Deloitte study, published in September 2018, alone on
Github around 6’500 active blockchain projects are available [29].

Howmuch.net created a ranking, based on transactions per second, for blockchains and
its competitors in 2018 and according to this, Ripple is second fastest after Visa in re-
gards to transactions per second. Ripple does reach 1’500 TPS and therefore, nearly 7.8

3

4 CHAPTER 2. RELATED WORK

times more Transactions than PayPal which is listed at 193 TPS. The two most famous
cryptocurrencies, Bitcoin and Ethereum, can handle around 7 resp. 20 TPS [41]. Zilliqa,
another blockchain project but not included in this ranking, claims that they are able to
process over 2’800 transactions per second with the help of sharding [15].

In 2018 a team from the University of Sydney created a blockchain called Red Belly
Blockchain. This blockchain is, at the time of writing, probably the fastest one on earth.
The research team claims that their blockchain can handle up to nearly 700’000 TPS [9].
This team also used a global network of virtual machines hosted on Amazon Web Services
(AWS).
In their paper they spawn 1’000 virtual machines in 14 data centers and get a final TPS
of 30’684 [25]. The difference in these TPS numbers is probably related to the fact, that
at their peak of 700’000 TPS, all machines were located in one availability zone whereas in
the second experiment were they reached around 30’000 TPS they were located globally.
However, they do not deliver how they exactly calculate and measured the transactions
per second.
They used c4.large machines for their so-called requester and c4.8xlarge computes for
proposers, which behave similarly as miners. These machines have 3.75GB resp. 60GB of
RAM and both are optimized for computing-intensive workloads with an extremely high
level of data processing. Hence, especially because of the c4.8xlarge virtual machines,
it is possible to argue about the decentralization of this test run. This problem is fur-
ther described in section 2.2.1, because it contradicts the concept of a truly distributed
blockchain.

2.2 Scalability Improvements

One of the biggest problems the latest blockchains have, is that they cannot be scaled
up easily. There is always a trade-off between security, decentralization and scalability.
Every blockchain can select two out of these three attributes. The third one will become
difficult up to impossible to achieve. This trilemma is the problem of scaling blockchains.

As an example, Bitcoin and Ethereum were designed with a focus on decentralization
and security. The Red Belly Blockchain is probably designed with a focus on scalability
and speed rather than security and decentralization. In other words, when a super fast
blockchain is developed with toady’s techniques, it must have some drawbacks in either
decentralization or security [30]. That is one reason, why Bitcoin and Ethereum have
much lower TPS in comparison to other blockchains.

In the following subsections some blockchain scalability improvements are listed and their
individual advantages & disadvantages are shortly stated. Other distributed ledger tech-
niques, like directed acyclic graphs, are not discussed here.

2.2. SCALABILITY IMPROVEMENTS 5

2.2.1 Increase Block Size

Increasing the block size is one simple way to increase the throughput of a blockchain
system. This works not only if the bottleneck is the block size. When the block size is
somehow limited, only a restricted number of transactions fit in one block and with a
given block interval only a limited number of transactions per second can be validated in
the network. Thus, one of the easiest ways to enhance the TPS is to increase the block
size and by doing this rise the maximum of transactions per second [18]. Increasing the
block size can, if utilized, only be used as a first step towards TPS enhancement because
it does bring some problems [27].

With an enhanced block size, the overall blockchain size does grow as well. This can be
a problem, for example when a new miner joins the network and has to request all blocks
first. In such a situation, but also during daily business as a miner, the hardware on
which a miner is running has to be more powerful with regards to the ability of handling
larger blocks [18]. When the block size becomes bigger and bigger, at one point only
supercomputers can handle them. In that case, the network will probably not be truly
decentralized, because a normally powerful computer cannot work as miner anymore.
This is exactly the negative connotation of the Red Belly Blockchain described in the
subchapter 2.1, where they use virtual machines with 60GB of RAM.

Furthermore, it is good to know, that an increment of the block size is done on-chain,
also known as layer 1 scalability improvement. This means that the enhancement of the
block size is done directly in the code base. Because this is a fundamental change, a hard
fork is required (Forks are further explained in section 5.1) [30].

The effects of different block sizes are evaluated and compared in subsection 6.1 in the
Evaluation chapter.

2.2.2 Decrease Block Interval

Decreasing the block interval is another simple way to enhance network performance.
When mining fixed sized blocks lessening of the timespan between two following blocks
does enhance the TPS [27].

In this case, alike problems as in subsection 2.2.1 will occur. At one point the data size
will become too big, not because block entities are too large, but because of the too small
interval between two consecutive blocks. Thus, many blocks are created, which increases
the overall amount of data. As a consequence, only powerful computers and miners with a
good network connection are fast enough. This probably leads to a decentralized network.

Similar to the increment of the block size, this is an on-chain solution which will bring a
hard fork once implemented and rolled out [30].

The effects of different block intervals are evaluated and compared in subsection 6.2 in
the Evaluation chapter.

6 CHAPTER 2. RELATED WORK

2.2.3 Smaller Transaction Size & Transaction Aggregation

When transaction sizes can be reduced, this can bring the same positive impact as in-
creasing the block size, described in subsection 2.2.1, but without the negative aspect. It
is either possible to push more transactions into one block by enhancing the block size or
by reducing the transaction size. With the in this thesis described concept two advantages
in comparison to the enhanced block size are visible. Firstly, the size of a block must not
be increased, meaning the miners do not have to handle large blocks and therefore they
must not be extraordinarily powerful. And secondly, less transaction data has to be sent
through the network what would obviously reduce the network traffic.

It is definitely a good idea to keep the transaction sizes as small as possible and only
include truly necessary data in it. The transaction size is given through the amount of
data in a transaction. Therefore, a contradiction between the necessary volume of data
inside a transaction and the overall size of a transaction exists. A trade-off between
necessary data and the transaction size needs to be found.

BAZO, originally, does already include some kind of scalability improvements because
only the transaction hashes are stored inside a block [44]. This enhances the throughput,
as described in section 5.2.2.

With transaction aggregation, the transactions get summed up in a special way such that
fewer transactions have to be written into one block. It is a concept designed in a way, that
miners do not store transactions older than a predefined number of blocks. Furthermore,
transactions of the same sender or receiver can be aggregated while mining a new block.
A small example would be if A sends 1 coin to B and 3 to C, instead of writing both
transactions in a block, only one transaction is directly saved in a block. This transaction
has the form: A send 4 coins to B & C. It is done vice versa for receiving coins.
With this technique the overall blockchain size should remain small and at the same time
the number of transactions validated per seconds should rise. The concept, elaborated for
the BAZO blockchain by Roman Blum, is discussed in further details in section 3.2 [23].

2.2.4 Sharding

Sharding is a concept, where the blockchain deliberately splits into smaller divisions,
so-called shards, to increase the throughput. It is widely used for databases, where a
database is split to several chunks which can be processed in parallel [22,31]. This is kind
of a divide & conquer strategy, which is planned to be applied to blockchains with some
differences.

In the blockchain world, all open transactions get split into different groups according to,
at this point unimportant, rules. Each shard, with a number of miners, then works on
his chunk of transactions and therefore, transactions only get validated in one shardchain
and not in the whole blockchain [21,22,31].

It is a layer 1 scalability improvement, meaning it is done directly on-chain and a hard
fork will occur once implemented [30].

2.2. SCALABILITY IMPROVEMENTS 7

There is a sharding concept for BAZO, created by Roman Blum. The intention behind
this is to divide the network into different shards. All transactions are stored in every
miners mempool. But a miner only validates the transaction if a user, belonging to the
same shard, is either sender or receiver in this transaction. After a predefined number of
blocks, the shards will congregate to one specific block, called the epoch block (denoted
with E1 – E4 in figure 2.1). These epoch blocks are the same for every miner in the
network and thus, all forks between two consecutive epoch blocks are resolved. At this
epoch blocks, the number of shards and the number of miners per shard will be calculated.
With a load-balancing algorithm, it is ensured, that the optimal number of shards is found
as well as the ideal number of miners per shard [23].

Figure 2.1: Sharding concept with dynamically load-balancing [23]

Sharding pertains as one of the most promising scalability concepts and multiple blockchain
projects (Ethereum [30], Elastico [35] or RapidChain [48]) are planning to implement it.
On January 31st, 2019, Zilliqa’s mainnet with sharding went online and demonstrates
that sharding works [20].

However, basic sharding does also bring a bigger problem. Since the miners only work in
one shard, a 51% attack, with the goal to control one shard, becomes way more easy [17].
As an example, when 12 miners are mining in one network, it needs at least control over
seven miners to possess over 51% of the hashing power. When these 12 miners now are
split into four shards, an attacker only needs to hold three miners to control one shard.
Then, the attacker has influence on which transactions are validated in this shard. In this
example, a bad influence to 25% of all miners in the network would be enough to control
a shard.

2.2.5 Altcoins ←→ New Blockchain

Whenever some major changes are introduced to a network, it is up to the user to decide
if the new settings and ideas match their own thoughts. When this is not the case, they
can search for others with the same conception and try to create a new blockchain with
a hard fork [30]. This new blockchain is then an alternative to the other blockchain and
therefore it is called an altcoin [14].

This is good on one hand because discrepancies about the future of a blockchain get solved
easily [32]. But it also brings, at least, two problems on the other hand. Firstly, it is not
a true scaling of the blockchain. When the new currency simply is created by users who
want a n-times larger block size, similar problems as in subsection 2.2.1 will occur at one
point. Thus, this does not solve the scalability problem of the original ledger. Secondly,

8 CHAPTER 2. RELATED WORK

the blockchain gets securer the more user participate. When a blockchain now forks, the
security may be reduced because less user compete.

2.2.6 Off-Chain Solutions

Off-chain solutions are, in contrast to the previously described on chain approaches, built
on top of the actual blockchain and only certain transactions are listed in the chain. Often
side-chains or state-channels are used. This should prevent congestion of the network,
reduce data traffic and fasten up the blockchain. With this approach, the blockchain
base-code does not get changed and a hard fork is not required [30].

An interesting approach is used by the lightning network built on top of Bitcoin. It creates
state-channels between two entities and transactions among these two can be executed
through the channel without validating all of them in the blockchain. Simply spoken,
the goal of these channels is that only the total, absolute transaction balance is listed in
the blockchain. All, but especially the small, transactions among these two entities are
aggregated and the total amount then written to the blockchain [39,40].

An advantage is that all transactions happening inside a channel are only visible to the
two entities what results in even bigger anonymity than what cryptocurrencies are already
providing. Furthermore, they do not have to wait until a new block is mined and the
transactions are validated in there. Also, the entities have lower transaction costs because
not all transactions are listed in the blockchain. This is opening more space for other
transactions [39].
The biggest disadvantage here is, that these channels are only useful when two entities
exchange data on a regular basis because a channel needs to be established whenever two
entities want to exchange coins for the first time [39].
At the time of writing the Lightning Network can be used with Bitcoin and the counterpart
for Ethereum is called Raiden Network [30,40].

Plasma, another off-chain approach using the Ethereum blockchain, uses side-chains which
originate from the original chain. These side-chains will push transactions to the root-
chain at a certain point. They are also called child-chains and can issue other side-chains
by themselves. Therefore, it can be seen as a hierarchical tree of side-chains, which all
will transfer data and information to the root-chain periodically. With plasma, Ethereum
should be able to handle larger data sets and therefore a higher throughput should be
feasible [42]

2.2.7 Scalable Consensus Mechanisms

There are three main ways of scalable consensus mechanisms: Delegated Proof-of-Stake,
Byzantine Fault Tolerance and Proof-of-Authority [30].

The approach of Delegated Proof-of-Stake is kind of similar to a democratic process.
Here all token holders can vote for delegates which validate transactions. Whenever one
delegate does not validate transactions correctly, it can be voted out by the other normal

2.2. SCALABILITY IMPROVEMENTS 9

users. Basically, the top n delegates get a regular salary, but they can be voted out
any time. This ensures that they do their work in a proper way. But, it also brings
centralization, because only these nodes hold and validate the whole blockchain [17, 29].
The voting power of a specific user is dependent on the size of the stake [30,45]. Therefore,
it is not a truly democratic process. It is similar to stocks and shareholders. The more
shares you have, the more influence you have on the shareholder meeting. However, this
does also bring new possibilities of attack scenarios, as an example when smaller miners
sell their vote to wealthy or influential miners.

Byzantine Fault Tolerance, a solution to the Byzantine Generals’ Problem, is listed as a
possible scalability improvement. Hyperledger Fabric and Zilliqa are two projects which
use a high-performance version of the Practical Byzantine Fault Tolerance [30]. The
developers behind Zilliqa claim that they are able to reach slightly more than 2’800 TPS
with the help of this Byzantine Fault Tolerance and sharding [15,46].
The Federated Byzantine Agreement is another version of the Byzantine Fault Tolerance
which is used in Ripple. In Ripple only a chosen list of so-called validators can validate
blocks and transactions. This harms the concept of true decentralization [30].

Proof-of-Authority is the third way on how blockchains can scale with respect to the
consensus mechanism. This approach does violate the concept of true decentralization
and anonymity because there exist entities which are participating as administrators of
a network. These administrators are completely identified, sometimes even with the help
of authoritative data such as in public notary databases [28, 30]. Therefore, it is more
convenient to use this in a private and / or permissioned network.

2.2.8 Comparison And Conclusion

This subsection, especially table 2.1, is shortly summarizing section 2.2 and giving a short
overview of the rating of a specific scalability improvement.

As seen in the previous subsections, scaling a blockchain is actually needed to gain a
higher throughput and thus gain a wider area of application. But it is not a trivial scaling
procedure and more research in this area is needed. There are already some good scaling
ideas around, like Sharding and Transaction Aggregation. Especially when combining
these mechanisms higher rates in regards to transactions per second are feasible. However,
particularly for these two approaches, the implementation is not as easy as thought, mainly
due to the decentralization.

10 CHAPTER 2. RELATED WORK

Table 2.1: Scalability ideas, their rating sand reasons therefore.

Scalability Idea Rating Reason
Increase Block size Bad Not a true scalability improvement

and a problem of decentralization
because of the amount of data.

Decrease Block interval Bad Not a true scalability improvement
and a problem of decentralization
because of the amount of data.

Transaction Aggregation Good This can indeed scale the
blockchain because more
transactions can be aggregated
inside one block.

Sharding Good With this scalability improvement,
more transactions should be
processed due to the parallel like
processing.

New Chains Bad – Medium At one point there may exists a
great number of different chains.
These chains may not have many
users and are therefore not
extremely secure or decentralized.

Off Chain Solutions Medium – Good They are good, but often only for
some special use cases.

Scalable Consensus Algorithm Medium Some of them would help in
scaling a blockchain but also bring
some side effects like less
anonymity, centralization or new
attack scenarios.

Chapter 3

Design

In this chapter, design ideas and decisions for the performance analysis and the transaction
aggregation are listed and shortly explained.

3.1 Performance Analysis

The goal is to implement a global BAZO network with the help of Amazon Web Services
(AWS) and the Google Cloud Platform (GCP). Furthermore, a local instance runs at the
University of Zurich on server b04.

3.1.1 Metrics

The metrics used in the evaluation process are defined as follows [47]:

• TPS = Transactions per second = Average number of transactions validated per
second.

• TPScalc. = Transactions per second calculated = Theoretical maximal number of
transactions, which can be validated per second with given block size and block
interval.

• TPSsent = Transactions per second sent = Average number of transactions sent to
the network per second.

• ABI = Actual block interval = Timespan between two consecutive blocks.

• BCS = Block chain size = Size of the blockchain.

Of course, there are other metrics, but at the time of writing the metrics above were
decided to be the most interesting ones because they illustrate the possibilities and power
of transaction aggregation the most.

11

12 CHAPTER 3. DESIGN

TPS

The transactions per second are calculated with the help of the timespan between the first
transaction sent to the network and the first block which includes all sent transactions,
called the timespanValidation.

TPS =
numberOfV alidatedTransactions

timespanV alidation
=

numberOfV alidatedTransactions

(timeOfBlock − timeFirstTxSent)
(3.1)

The TPS on its own does only tell how many transactions are validated in a blockchain
per second. It does not reveal anything about limiting factors and why a specific TPS is
reached.

TPScalc.

The maximal possible calculated number of transactions, which can be validated with a
set block size and interval, is computed out of the number of transactions which fit into
a block and the block interval (in seconds). The blockSize has unit byte.

TPScalc. =
numberOfPossibleTxPerBlock

blockInterval
=

(blockSize−658byte)
32byte

blockInterval
(3.2)

This number provides the upper maximum when blocks are validated in the correct user-
set interval. Therefore, it is mainly used as a benchmark, since it is basically just a
theoretical value. It should always be handled with care because the theoretical and not
the actual block interval is taken into account for this. It indicates the maximal speed
a blockchain can have without any type of scalability improvements, such as sharding or
transaction aggregation.

However, if the TPS is very close or similar to the TPScalc. and the TPSsent is far above
than the other two, the blockchain is probably limited either through the block size or by
the block interval.

TPSsent

The sent transactions per second is the average number of transactions sent to the network
by all clients and it indicates the upper limit for the number of transactions which can be
validated per second.

TPSsent =
numberOfSentTransactions

timespanSent
=

numberOfSentTransactions

(timeLastTxSent− timeFirstTxSent)
(3.3)

3.1. PERFORMANCE ANALYSIS 13

The TPSsent indicates how fast transactions are sent to the network. When the TPSsent

and the TPS are close to each other, it can be assumed, that all transactions get validated
shortly after they are issued. This because it does not take much longer to validate all
transactions than it takes to send them. Thus, if they diverge a lot, it is an indicator,
that it takes longer until the transactions are validated.

Furthermore, it is an indicator for the upper TPS limit, since the TPS can not be higher
than the TPSsent.

ABI

The ABI does reveal the actual timespan between two consecutive blocks. It does indicate
if the network satisfies the defined block interval. Adjusting the block interval needs time
to become consistent.

ABI =
(endT ime− startT ime)

numberOfBlocksInBetween
(3.4)

It is simply measured as the difference between two following blocks or as an average
with the timespan between two selected blocks (endTime - startTime) and the number
of blocks between them.

BCS

The BCS is the metric for the blockchain’s overall size. The block’s size consists out of
the fixed part and the size of all transactions. Since BAZO only writes the transaction
hashes into blocks, the actual transaction size is not taken into account here. Once they
get emptied, the overall blockchain size should shrink.

It is calculated as a sum of all block’s size when they are secure enough. These blocks are
all blocks from the genesis block (genB) up to the last validated and secure block (lvB).
Taking only valid and secure blocks should help to prevent miscalculations of blocks if a
rollback scenario appears.

BCS =
lvB∑
genB

(fixedBlocksize + hashSize ∗ nrOfTransactions) (3.5)

It should reveal, if the transaction aggregation, and especially the emptying of blocks,
once all transactions are aggregated (more in section 3.2.3), is reducing the blockchain’s
overall size.

14 CHAPTER 3. DESIGN

3.2 Transaction Aggregation

This chapter addresses the transaction aggregation, the underlying techniques and its
design decisions. The concept and the basic idea is based on the paper of Roman Blum [23].

3.2.1 Idea

The idea behind transaction aggregation is to aggregate valid transactions such that mul-
tiple transactions from one sender or to one receiver are visible as one transaction in the
blockchain. This should enhance the TPS because more transactions can be validated in
one block. Thus, the block size becomes less of a limiting factor when many transactions
with the same sender or receiver are issued to the network. Furthermore, transaction
aggregation reduces the blockchain’s overall size because fewer transactions are visible
in the blockchain. Especially when aggregating transactions, which are validated in an
already closed block, the overall blockchain size can shrink since at a certain point these
blocks can be emptied completely. This results in a reduced block size.

An Example: User A sends 2 BAZO-Coins to B and 5 Bazo-Coins to C. Without trans-
action aggregation both transactions are listed in a block as (schematic) (A →B : 2) &
(A →C : 5). With transaction aggregation only one transaction (A →[B,C] : 7) will be
written into the block. This illustrates that the overall blockchain size could be smaller
and more transaction can be handled because they are aggregated.

The aggregation is planned to be fully hidden from the users.

3.2.2 Aggregation Of Transactions

For the aggregation, a new type of transactions, called AggTx, is introduced. Furthermore,
all funds transactions, called FundsTx, are slightly updated. The changes are shown below.

FundsTx

Aggregated: The variable ’Aggregated’ is a boolean and does indicate if this transaction
is aggregated already.

Block: In this filed the hash of the block, in which this transaction is validated the first
time, gets stored. This is used for rollback scenarios. It is of type [32]byte.

AggTx

This type of transaction does aggregate and sum up matching funds transactions and older
aggregation transaction. Instead of these transactions, an AggTx will be listed inside a
block.

3.2. TRANSACTION AGGREGATION 15

Amount: The amount is the summed up amount of all transactions aggregated inside
this AggTx. It is of type uint64.

Fee: The fee of this transaction. It is set to 0 because, at the time of writing, the users
should not be charged for this type of transaction. It is also a uint64.

From: It is a slice where the addresses of all senders sending a transaction aggregated in
this block are stored. It is a slice of type [][32]byte

To: This is the counterpart of the From field and filled with the addresses of the trans-
actions’ receivers. It is also a slice of type [][32]byte.

AggregatedTxSlice: This slice is of type [][32]byte and does store all hashes of the
transactions aggregated inside this AggTx.

Aggregated: The variable ’Aggregated’ is a boolean and does indicate if this transaction
is aggregated.

Block: In this filed the hash of the block, in which this transaction is aggregated the first
time, gets stored. It is of type [32]byte.

MerkleRoot: Root of the Merkle tree to ensure integrity and the correct order for the
transactions aggregated in this AggTx. It is a slice of type [32]byte.

These AggTx are added to the blocks similar to other transactions. They are listed in the
AggTxData slice.

Theoretical Aggregation Process

Funds transactions and aggregation transactions can be aggregated in two different ways.
All other types of transactions are not taken into account. Furthermore, it is not possible
to combine an already aggregated transaction aggregated by the sender and one by the
receiver. This results in either the From or To slice to have a length of one.

1. Transactions can be aggregated by the sender. Then all transactions which are sent
by a specific wallet are aggregated into one AggTx. When aggregating transactions
this way, the From slice has a length of one, as there is only one sender included.

2. On the other hand transactions can also be aggregated by the receiver. Then all
transactions sent to one specific wallet are aggregated into one AggTx. Here the To
slice is only length one because all transactions are sent to one specific receiver.

When a miner combs through all open transactions he tries to aggregate as many open
funds transactions as possible according to these two rules. If two or more transactions
can be aggregated, their transaction hashes are written to the AggTx’s AggregatedTxSlice
and the transactions’ boolean Aggregated will be set to true.

16 CHAPTER 3. DESIGN

In the next step, the miner checks already closed blocks, whether there are transactions
(either FundsTx or AggTx) which do match the chosen pattern (either aggregated by
sender or receiver) and are not aggregated by now. If such historic transactions exist,
they are also added to the AggTx. But they do not have an influence on the state during
the post validation of a block anymore.

Figure 3.1: Concept transaction aggregation

In figure 3.1 the aggregation process is visualized schematically. The letters are wallets
and the numbers are the amount of BAZO-coins sent (Similar to section 3.2.1). All open
transactions are listed on the right side. In this example, the historic aggregation is
omitted due to simplicity and only one of various possibilities is shown.

An algorithm (it is algorithm 1, which is further explained in subsection 4.2.1) does group
these transactions in an optimal way, such that the fewest transactions are listed in the
block, but the most transactions are validated. Without Transaction Aggregation, all
these open transactions try to be in current block 103. When the block size is assumed
to be limited to five transactions, with aggregation, there is still place for one more
transaction whereas without transaction aggregation not even all nine transactions can
be validated in the current block. Because BAZO only writes the hashes of transactions
inside its blocks, this is possible. Consequently, with aggregation only the hashes of the
two aggregated transactions and the two normal funds transactions, which cannot be
aggregated in this block, are stored in the block’s body. This is visible in figure 3.1.

Furthermore, it is also visible that it actually does not matter, how many transactions are
aggregated in one AggTx. If A would have sent more transactions, still only one transaction
is written into the block, but this transaction would aggregate more transactions. This is
especially nice for a blockchain which is used in a case, where often multiple transactions
are sent from one or to one peer. With small modifications, an imaginable example
use case would be a blockchain which stores values sent from Internet-Of-Things devices
always to the same receiver.

3.2. TRANSACTION AGGREGATION 17

The miners do not earn a specific fee for aggregating. But they still receive all the fees
which belong to the FundsTx. This results in miners that want to validate as many
FundsTx as possible and thus earning as much as feasible. The more transactions they
can aggregate the more transactions are in a block and they will get a higher reward. Since
the block’s size does not grow with every transaction, they can add more transaction into
one block.

3.2.3 Double Linked Blockchain

The concept of a double linked blockchain is a result of the idea to remove all transactions
from a block once all of them are aggregated in a later validated block. This is kind of a
contradiction against the theory of a blockchain where all validated blocks are immutable.
They are unchangeable because it would take too much effort to recalculate the complete
chain since this adapted block, and additionally persuade over 50% of all miners to accept
the newly created blocks.

In BAZO the block hash is calculated from various block related input fields. One of
these variables is the Merkle root, which ensures transaction verification. It ascertains
that transactions neither can be added to or removed from a block nor the ordering can
be changed once a block hash is created [44]. Thus, the removing of transactions is only
possible when a new additional block hash is calculated for every block because the old
hash is becoming invalid, as soon as some transactions are removed. This new hash, called
HashWithoutTransactions, is used always when the normal hash is becoming invalid. The
normal hash becomes invalid because the Merkle root changes.

The goal and also the specification of the double linking is, that at least one link to the
previous block is valid.

Block

Additionally to the common variables included in a block, the following fields are added
in respect of the double linking of the blockchain:

Aggregated: It indicates if a block is aggregated and therefore does not contain any
transactions anymore. It is of type boolean.

HashWithoutTransactions: This hash is used once all transactions from a specific
block are aggregated. It can be calculated when not taking the transactions into
account and as a consequence assuming an empty block. Thus, it is only possible
to empty a block, once all transactions are aggregated and removed. It is of type
[32]byte.

PrevHashWithoutTransactions: This field links the current block to the previous one
once all transactions in the previous block are aggregated. It is of type [32]byte.

18 CHAPTER 3. DESIGN

ConflictingBlockHashWithoutTx1: HashWithoutTransactions of the first conflicting
block. It is of type [32]byte.

ConflictingBlockHashWithoutTx2: HashWithoutTransactions of the second conflict-
ing block. It is of type [32]byte.

Theoretical Double Linking Process

In figure 3.2 the concept of a double linked blockchain is illustrated. Every block, expect
the genesis block, can either be in the storage Blocks With Tx or Blocks Without Tx.
This two versions of a block are indicated with block-namew/ (including transactions) and
block-namew/o (without transactions, meaning this block never contained transactions or
all of them are aggregated by now). The increasing block number indicates which block
is the ancestor, and the arrows point to them.

Figure 3.2: Concept double linked BAZO Blockchain

3.2. TRANSACTION AGGREGATION 19

Every block, expect the genesis block, can contain transactions. These transactions
are sent from clients to the network, what is indicated on the left side, as incoming
Tx. Transactions are read as FundsTxsenderAddress=>receiverAddress or when aggregated as
AggTxsenderAddress=>{receiverAddress}. This happens as a historical aggregation in block 103
or while mining a new block denoted as the incoming AggTx also included in block 104.

As FundsTxB=>D reaches the network, the miners search in already validated blocks
for other FundsTx or AggTx with either the same sender or receiver. In this example
FundsTxB=>C in block 102 can be aggregated, which leads to the case where in block 102
all transactions are aggregated.

Once all transactions are aggregated and the block is out of the exclusion zone, it can
be transferred to the storage without transactions. The exclusion zone is defined as the
current blockheight minus NO EMPTYING LENGTH what ensures that the user-defined
NO EMPTYING LENGTH last blocks are not moved even though all their transactions
are aggregated. Meaning only blocks with a blockheight smaller than currentBlockheight
- NO EMPTYING LENGTH are moved. Block 105 is not emptied yet despite the fact
it does not contain any transactions. Once block 105 will be out of the exclusion zone,
it will be transferred to the Blocks Without Tx. When a NO EMPTYING LENGTH of
2 is assumed, block 105 can be moved once a block with height 108 is appended to the
chain.

When emptying block 102, it will be moved to the Blocks Without Tx, and the hash
HashWithoutTransactions gets valid. Therefore block 103 is not linked to block 102 via
the Previous Hash anymore but over the PrevHashWithoutTransactions now. It has to
be ensured that one link between two consecutive blocks is always valid. In figure 3.2 this
is indicated with the black arrows between blocks. This results in a valid chain indicated
with grayish background color whereas all other blocks are only there for visual purposes
and therefore slightly faded.

20 CHAPTER 3. DESIGN

Chapter 4

Implementation

In this chapter, the implementation of the scalability improvement as well as the prepa-
ration for the test cases with the global network are discussed.

4.1 Performance Analysis

This section discusses the implementation and usage of the performance analysis part
with the help of a global BAZO network.

4.1.1 Virtual Machines

For the performance analysis with the global network, virtual machines on Amazon Web
Services (AWS), Google Cloud Platform (GCP) and locally at the University of Zurich
(on server b04) were created. The locations of the virtual machines are visible in figure
4.1.

In AWS -datacenters the t2.medium machines with Ubuntu 18.04 are used. These virtual
machines have 4GB of RAM [1].
On GCP alike specified machines are used. They are called n1-standard-1, run Ubuntu
18.0 and have 3.75GB of RAM [7].
The virtual machine located at the University of Zurich is running on the b04 server. It
uses Ubuntu 18.04 and has 2GB of usable RAM.

In the beginning, less powerful virtual machines were used. During testing the blockchain
in the network, often an out of memory error occurred. Therefore, selecting the next
bigger possible machine was necessary. On both, GCP and AWS, the next bigger ones
with 1.7GB resp. 2.0GB, were still not powerful enough and therefore the next available
configuration was selected. Luckily these were powerful enough and the error stopped
appearing. On b04, the virtual machine was provided by the University and therefore no
selection about the specs was possible. At the time of writing, the bootstrap miner runs at

21

22 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Global BAZO network. Image is created based on the world map from [26].

the University. Because the bootstrap miner operates as a root account, no transactions
are sent from and to this wallet. Otherwise, new coins would be issued to the network.
Due to the fact that no transactions are issued to the root miner permanently, there is no
client running all the time. Thus, a machine with 2GB of RAM is powerful enough.

The client running on b04 is, because of its root access, only used to set up the network
and do configuration transactions. In all other regions, one client per virtual machine is
set up as well. They send a fixed number of funds transactions to a predefined receiver.
These transactions are sent by a simple bash for -loop with a sleep timeout in between.

To maximally ensure that no wallet is running out of funds, the funds need to be sent
in a looping manner. The ”route” is: Oregon →South Carolina →Iowa →Sao Paulo
(GCP) →Frankfurt →Finland →Netherlands →Sydney →Hong Kong →Tokyo →Taiwan
→Los Angeles →London →Paris →Sao Paulo (AWS) →Seoul →Mumbai →Singapore
→Montreal →Oregon.

However, the direction of sending does not have an influence, because every transaction
needs to be validated by ever miner anyways. Therefore, every transaction needs to be
sent through the whole network. Furthermore, it can still happen that a miner runs out
of funds, since the transaction fees also need to be paid or when one miner crashes.

4.1.2 Test Scenarios

In this section, the tree test scenarios, which are used for the evaluation of BAZO are
described.

4.1. PERFORMANCE ANALYSIS 23

Different Block Size

In this test scenario, multiple test runs with different block sizes are executed. The
block sizes tested are 1’000 byte, 5’000 byte and 20’000 byte. These sizes are chosen
with respect to different circumstances. In Ethereum, the block size is currently a little
below 20’000 byte [3]. Furthermore, because BAZO is planned to be an Internet-of-Things
blockchain, a small block size, here 1’000 byte, is chosen. Thus it should be visible how
many transactions per second BAZO can handle when the block size is kept small.

In these test runs, the block interval is set to 15 seconds and all 20 miners, defined in
section 4.1.1, are used. The historic aggregation is disabled. The 19 non-root clients send
10’000 transactions each. For the test runs without transaction aggregation and a block
size of 1’000 resp. 5’000 byte, the number of transactions sent is lowered. The lowering is
needed because the TPScalc. is is very low and therefore it would take too long.

For the testing without transaction aggregation, nearly the same code is used. The only
difference is how the transactions get added and how it is checked if a block is full already.

Different Block Interval

The test runs for different block intervals were designed similar to the ones for different
block sizes. The only difference is that in these runs, the interval between the blocks is
changing and not the block size. As for intervals, 15, 60 and 120 seconds are chosen and
the blockchain was able to stabilize before the test cases started. The stabilizing is needed
because the change of a block interval needs time to become consistent. The block size is
fixed to 5’000 byte.

Again 20 miners were running in the network, and 19 clients are sending 10’000 trans-
actions each. The number of sent transactions for large block intervals, with transaction
aggregation disabled, is also reduced due to the same reason as in the previous chapter.

Blockchain Size

The testing of the blockchain’s overall size (BCS) is done locally on a Windows 10 machine
with 16GB of RAM. This is done because it is not important how fast transactions can
be validated and how many miners are in a network. Therefore, the testing is done with
four miners and a total of 15’000 transactions sent from three non-root clients. Between
two transactions sent, a 0.1-second long break is inserted.

The block size is set to 5’000 byte and the interval between two consecutive blocks is 15
seconds.

In total three different scenarios are tested:
1. without transaction aggregation,
2. with transaction aggregation enabled,
3. with transaction aggregation and the emptying of blocks enabled as well.

24 CHAPTER 4. IMPLEMENTATION

In the 3. case, the NO EMPTYING LENGTH (described in section 4.2.2) is set to 10
blocks.

4.2 Transaction Aggregation

In this section the implementation of the transaction aggregation is described. The eval-
uation about it is in chapter 6.

4.2.1 Aggregation Of Transactions

Since only valid funds transaction and already validated AggTx can be aggregated, the
aggregation takes place after a funds transaction is characterized as a valid transaction.
Instead of adding this valid transaction directly into the block’s body it gets added into a
temporary slice. The transactions in this slice will be sorted by the sender’s address and
then by the transaction counter.

All different senders and receivers are stored into two maps. The number of occurrences
in all open transactions, which can possibly be aggregated, are used as values. These
maps are called diffS and diffR in this thesis.
This approach finds the best combination of how transactions will be aggregated (ei-
ther by the sender or by receiver address). The getMaxSenderReceiver(diffS, diffR)

function does return the sender and receiver with the most occurrences.

Algorithm 1 does group transactions in a way that open transactions either have the same
sender or the same receiver. The output is then a new slice of transactions which matches
the rules defined in subsection 3.2.2. It always takes the sender or receiver which occurs
the most and groups its transactions together.
Those selected transactions are stored into the txToAggregate slice and aggregated with
the function AggregateTransactions(txToAggregate, b) (on line 19 of algorithm 1).
Then the algorithm removes this group of transactions from possibleTxToAggregate and
recalculates the diffS and diffR. A miner repeats these steps until possibleTxToAggregate
is empty. This ensures, that the highest maximal number of transactions is validated in
a block.

The function AggregateTransactions(txToAggregate, b)does the aggregation. The
aggregation of transactions already validated in previous blocks takes place during the
process of building a new AggTx. After all grouped transactions, which were received
by algorithm 1, are added to the temporary slice, BAZO searches transactions in closed
blocks which do either have the same sender or the same receiver as the transactions in
the temporary slice. These transactions can either be FundsTx or other AggTx. This is
proceeded by an iteration over all closed blocks which still have transactions not aggre-
gated. Once a matching transaction is found, it gets added to the temporary slice as well
and the process continues with creating the AggTx. The AggTx’s constructor does create
the AggregatedTxSlice out of all matching transactions. After the new AggTx is created,
it gets added to the block’s AggTxData slice.

4.2. TRANSACTION AGGREGATION 25

Algorithm 1: Split alid transactions for aggregation:

splitSortedAggregatableTransactions (block b)

Input : block b

Output: Slice of transactions which can be aggregated and block b, into

which they belong

[1] get possibleTxToAggregate from TempList

[2] get diffS and diffR

[3] sort possibleTxToAggregate by senderAddress and then TxCnt

[4] for moreTxToAggregate do
[5] maxSender, maxReceiver := getMaxSenderReceiver(diffS, diffR)

[6] if maxSender >= maxReceiver then
[7] forall tx in possibleTxToAggregate do
[8] if tx.From == maxSender then append tx to txToAggregate

[9] else keep tx in possibleTxToAggregate

[10] end
[11] else
[12] forall tx in possibleTxToAggregate do
[13] if tx.From == maxSender then append tx to txToAggregate

[14] else keep tx in possibleTxToAggregate

[15] end
[16] end
[17] remove txToAggregate from possibleTxToAggregate

[18] recount diffS & diffR

[19] AggregateTransactions(txToAggregate, b)

[20] set txToAggregate to nil

[21] if len(possibleTxToAggregate) == 0 then moreTxToAggregate = false

[22] else moreTxToAggregate = true

[23] end

This implementation revealed the big problem with missing transactions which is described
in section 5.4.2.

4.2.2 Double Linked Blockchain

For the concept of a double linked BAZO blockchain, the blocks were adapted as designed
in section 3.2.3. Furthermore, a BoltDB bucket, namely closedblockswithouttx, for the
blocks without transactions was created. This bucket holds all emptied blocks which do
not include transactions anymore.

In every post validation step of a new mined or received block, it will be checked, if blocks
can be emptied. This is done for all blocks, which are in the closed state but not aggregated
yet. If a block can be emptied is determined by the transactions included in this block
and its height. Only if all of the transactions are aggregated and the block is out of the

26 CHAPTER 4. IMPLEMENTATION

NO EMPTYING LENGTH, it can be moved to the newly created closedblockswithouttx
BoltDB bucket.

Whenever a block can be emptied, the block’s FundsTxData and AggTxData slices are
set to nil, such that they do not contain any transactions. The transaction is still in the
storage, but not linked to the block anymore.

Since the blocks moved to the closedblockswithouttx bucket do not contain any transactions
anymore, rolling back these blocks can be problematic. Especially rolling back blocks
with a height smaller than the current block’s height minus NO EMPTYING LENGTH
is difficult, because they do not know about the transactions anymore. When sharding
would be implemented at this time, the NO EMPTYING LENGTH could have been the
span between the current block’s height and the epoch block (described in section 2.2.4).
This would help insofar, that no forks, which already include emptied blocks, need to be
resolved.

Because sharding for BAZO is not implemented yet, there are two possible solutions to
minimize this risk. In the first one, the NO EMPTYING LENGTH is chosen that large,
that there are no rollbacks including that many blocks for sure. The second one, also
implemented, is letting all transactions know in which block they were validated for the
first time. Thus, even an emptied block can be rolled back. However, this process is very
computation intensive, because every transaction ever received need to be checked. This
is caused by the fact that the used BoltDB is only a key-value database which does not
allow search queries other than the key.

Chapter 5

Bug fixing

In this chapter, the major problems, found during the analysis of the BAZO blockchain
with the help of a global network, are described. Additionally, the developed solutions
and intentions behind it are indicated. This work was necessary because otherwise the
improvement and analysis of BAZO would have been incorrect and useless because every-
thing was built on top of a faulty working blockchain.

5.1 Forking

A fork is a blockchain typical phenomenon which can occur in three different types. The
base behavior in all forks is the same. A fork splits one chain after a certain occasion into
two or more different chains. Below the three types are listed, but only accidental forks
are discussed in detail [16].

• Hard Fork : A hard fork is a permanent divergence in the chain. In the hard fork
scenario nodes on one chain branch cannot validate blocks from the other chain
because of changes in the protocol. Famous examples are the forking of Bitcoin
where it forked to Bitcoin Cash and later also to Bitcoin Gold [32].

• Soft Fork : A soft fork, on the other hand, is a temporary divergence and therefore
softer than a hard fork. It often occurs when not upgraded miners do not follow a
new consensus rule for a certain time.

• Accidental Fork : Accidental forks appear most often of these three types. A fork of
this type can be caused by two or more miners, with the same block height, mining
and validating a new block at nearly the same time. Then the chain does quickly
not know which branch is longer. When a new block is added to either of these two
chain ends, it is clear which chain is the longer one. As soon as this happens, one
branch will be rolled back and the miners concentrate on one chain again.
Accidental forks also occur, when a miner does not receive blocks due to a connection
outage.

27

28 CHAPTER 5. BUG FIXING

5.1.1 Problem

The main problem BAZO had with forking was that the miners did sometimes not go
back to one chain after an accidental fork. Under certain circumstances, no rollbacks
were possible. The chain forked up to the state, where every active miner was working on
his own chain.

Figure 5.1 illustrates the problem and its root cause based on a small example.
Graph 5.1a is read like this: Block A is the ancestor of block B and therefore visualized
as B −→ A, because B includes the hash of A as previous hash. The different colored
arrows are symbolizing different miners.
Figure 5.1b does only show the messaging, where block Y is broadcasted to the network
with Brd Y and block Z is requested with Req Z. The arrows indicate the direction of the
message. Again, the different colors are indicating different miners.

When the blockchain is at the point, where it is only mined up to D & Z, and these two
blocks are mined at the same time, an accidental fork occurs. Here the miners do not
know which fork branch is longer. The at this moment newest BAZO implementation
rejects and deletes all blocks which were either invalid or belonged to a shorter or equally
long chain. It is clear which chain is longer, as soon as the next block is mined, validated
and broadcasted to the network.

(a) Forking blockchain (b) Circling request

Figure 5.1: Description of forking problem and visualization of the root cause.

When E is the next mined and broadcasted block, the blue miner does make a block
request for block D to the other miners and they all can give him the wanted answer.
Once the blue miner received D, a rollback can be performed and the fork gets resolved.
The blue miner has to request D, because it was discarded before, due to the fact, that
at the time of receiving it, it did not belong to a longer chain.

When the next block is not D, but Y, the green, orange and red miner have to request
block Z from the network, because of the same reason as in the previous paragraph.

5.1. FORKING 29

When this request is done in a random manner, it is possible that they create a circling
request (Figure 5.1b). They will never receive Z and therefore, the longer chain will not
be accepted by the green, orange and red miner. The blue miner does not recognize that
the others did not accept his mined and broadcasted block Y. Thus, the blue miner will
start mining block X.
After the next broadcast, which is block X, the green, orange and red miner have to
request blocks Y & Z form the network. The possibility, that a request is successful for
one of those miners, is (1

3
)2 and calculated by equation 5.1.

Possibility =

(
#MinersWithBlock

(#Miners− 1)

)#NumberOfBlocksToRequest

(5.1)

Hence it is visible that the number of miners in the network (#Miner) and the number
of blocks to request (#NumberOfBlocksToRequest) have a tremendous influence on the
likeliness of a successful request.

A further problem was the fact, that the original BAZO implementation also discards all
transactions when they cannot be added during the mining process of a new block. When
the blockchain does fork accidental (e.g., with blocks Z & D mined at the same time), the
blockchain state is different on those chain branches until the miners focus on the longest
chain again. Until this happens, some transactions may be valid in one fork branch and
invalid in another one.

As a result, when validating blocks after a rollback, all transactions included in the blocks
from the new branch have to be requested from the network. Here similar circling requests
as described above can occur.

5.1.2 Developed Solution

The evolved solution for the forking issue can be divided into four parts: broadcast block
request, stashing of received blocks, better connectivity and transaction requests.

To prevent the problem of circling requests in an easy manner the original block request
to a random other miner is now a broadcast block request to the miners which are in the
neighbor list. This does enhance the network traffic, but it provides a higher likeliness of
receiving the requested block because more other miners are asked.

Enhancing the minimum number of miners in the neighbor list does enhance the likeliness
of a successful broadcast block request. With a higher minimum, the miners do actively
search for neighbors until this minimum number is reached. This provides better con-
nectivity. Here also a dynamic timeout between two consecutive requests for neighbors
makes sense. As a consequence, the miners now do more requests, when they only have a
few neighbors and fewer requests when they are better connected.

Because the solutions listed above enhance the network traffic and the original BAZO
implementation discards all blocks when they are not valid (e.g., belonging to a shorter

30 CHAPTER 5. BUG FIXING

or equally long chain) a stash with received blocks is implemented. In this stash the last
n received blocks, regardless of whether they are valid or not, are listed. This helps to
lower the network traffic because before requesting a block from the network, a miner can
search it in this stash. If it is in there, obviously no network request is needed.

The forking caused by the transaction requests can be handled in a similar manner. Thus,
the request for a certain transaction is now also a broadcast request. Furthermore, espe-
cially to lower the network traffic, a stash for all, at a certain point, invalid transactions, is
implemented. When a miner searches a specific transaction, as an example when the pre-
viously discarded transaction now is validated in a received block, it first can be searched
in this stash. When the transaction is found there, it gets validated again and then pro-
cessed as normal. If the transaction is neither in this stash nor in all other local storage
facilities, a broadcast transaction request is executed.

It is important to mention that with these fixes, malicious behavior is not barred. When
thinking about the example in figure 5.1a, where blocks Z & D were mined at the same
time, a staking account can validate all transactions somehow including himself and thus,
under certain circumstances, becoming a higher amount of coins in a shorter time than
others. Then the likeliness of getting below the target in the PoS algorithm gets higher
and with this, the possibility to be chosen to add the next block, and collect the reward,
rises as well.

Investigation on this attack scenario and its prevention can be seen as future work because
it busts this thesis goal and scope.

5.2 Block Size

BAZO does set a maximum block size and checks this twice. The first time when mining
a new block for checking how many transactions can fit inside this block. The second time
is when receiving another block from the network. Then it gets examined and validated
again. When the block is too large at the second check, it is labeled as an invalid block
and will not be added to the chain. Because no new blocks where added, the mempool
never shrinks and in a new round the miners try to pack the same amount of transactions
into the next block. This locks the network completely and neither transactions nor blocks
get validated anymore.

This problem occurred only when lots of transactions were sent into the network.

5.2.1 Problem

The original BAZO version had a problem, where the check to prevent a block size overflow
did not work properly. The block’s size used at the first check was not increasing, because
the transactions were truly added after the check. This resulted in a check on empty
blocks all the time. This ended in too many transactions inserted into a new block.

5.3. STRANGE HEADER.TYPEID & CONNECTION ISSUES 31

During the second check in another miner, after receiving the new block, the block was,
obviously, too large. Therefore, all miners sent blocks, which were too large into the
network, and no new blocks where added to the chain.

5.2.2 Developed Solution

A simple counter does help to prevent the block size overflowing. Because the adding
process is executed in a for -loop, a counter, which multiplies the number of already
included transactions with the size of a transaction, does help. The downside is that
this does only work if the part of a transaction written into a block is the same for all
transactions. In BAZO this is the case because only the transaction hashes are included.

During this fix also a small but very effective scalability improvement was found. In the
BAZO blockchain, only the transaction hashes are stored inside the blocks. These hashes
have fixed sizes of 32 byte whereas the transactions have sizes between 83 (ConfigTX)
and 362 byte (StakeTX). BAZO’s original implementation did the block size check with
those absolute transaction sizes. This resulted after the check was working properly, in
far fewer transactions validated in a block than actually possible when executing these
checks with the hash size.

5.3 Strange Header.TypeID & Connection Issues

In BAZO, every message sent through the network consists of a header and an optional
payload. Whereas the payload is the actual message transferred, the header does contain
the length of the payload as well as the TypeID. This TypeID does indicate the type of
the message and peers distinguish how to handle an incoming message based on it. The
header has a fixed size of 5 byte whereby the payload length takes 4 byte and the TypeID
1 byte. The TypeID is an 8 bit unsigned integer (uint8) what results in a value range
from 0 to 255 and therefore in 256 distinct message types [44]. At the time of writing, 40
different message types are listed in the source code.

5.3.1 Problem

Despite the fact, that in BAZO only about 40 different message types are listed, extremely
often received messages cannot be handled correctly because the TypeID is not known.
Whenever an unknown message type is received, the connection to the sending peer gets
aborted and needs to be reestablished in the next step. The received messages have often
random looking TypeIDs in the range of an 8 bit unsigned integer.

When running multiple miners in the network, this leads to a constant reconnecting.
Thus many messages sent through the network can only be sent delayed, or have to be
requested by the receivers in a later step. This does, on one side, decelerates the network
and thereby also the TPS and on the other side, increase the possibility of forks, because
many transactions and / or blocks are not received or parsed correctly.

32 CHAPTER 5. BUG FIXING

5.3.2 Developed Solution

At the time of writing, there is no fix for this issue. The implementation of the same
checks before sending a message as when receiving a message, indicate that no unknown
message types are sent to the network. All messages sent, pass the check for a valid
TypeID but some of them do not pass the same test at the receiver’s side. This does
somehow suggest the assumption, that the concurrent receiving is the problem. When
logging the start and end of read operations on one connection, they always alternate.
This excludes simultaneously reading on one connection.

However, there are multiple ways to reduce the connection outage between miners. On
one hand, a dynamic neighbor requesting interval does help in a way that miners do
actively search other miners when they only know a couple of miners. At the time of
writing, this requesting interval is between 5 sec, when less than two miners are known,
and 30 seconds, when six or more miners are known. In between, it is dynamic according
to the number of neighbors. This is also described in section 5.1.2. On the other hand
and since most of the miners do not leave the network as soon as the connection is down,
it is possible to directly try to reconnect to a miner. In BAZO all IP-addresses and
ports of new miners are sent to the checkHealthService()Goroutine via the iplistChan
channel. Thus reconnecting to a miner can simply be initiated by sending the IP-address
and port again through this channel. Once it is received at checkHealthService(), a
new connection will be reestablished.

5.4 Missing Transactions

In a peer-to-peer network, the network type which is used for blockchains, as well as in
other network types it can happen, that a transaction gets lost. BAZO does work with a
flooding type sending mechanism between different miners. Furthermore, in BAZO there
are no acknowledgments sent between miners when transactions and / or blocks are well
received.

BAZO works with a transaction counter (txCnt) for every wallet in the network. Further-
more, every miner does create the network’s global state out of the received transactions.
This means, that there is no message after a block which indicates that, e.g., wallet A
has now 20 coins. The miners calculate the balance for each wallet based only on the
transactions they received.

5.4.1 Problem

Since BAZO miners do disconnect between each other very often, it happens regularly that
not all transactions are received at all miners. In the original BAZO version, miners do not
notice if transactions can be sent or not. This resulted in the issue, that at the moment a
miner loses all connections to other miners, this miner still ”sends” the transaction to the
network. When no other miner is available, the sending miner nonetheless believed that

5.4. MISSING TRANSACTIONS 33

the transaction was sent successfully, despite the fact, that this transaction never reached
any other miner. There was no safety mechanism, which checks if there are connections
to other miners and thus a connection to the network.

Since BAZO works with a transaction counter to prevent double spending and replay
attacks, the next valid transaction is always the one with the transaction counter similar
as in the miners’ state [44]. When miner A receives transactions (form one wallet) with
txCnt 10 up to 20, but the miners local state for this wallet is at txCnt 9, all these received
transactions are not valid. And they will not be validated until the miner receives the
transaction with txCnt 9.
This may never happen, because of the disconnection problem or it will take a lot of time
until a block with this transaction is validated and sent to the network. When receiving
this block, miner A may not know all transactions validated in there and thus, it can
request the unknown ones. If the missing transaction with txCnt 9 is also requested
cannot be known by the miner, because it only has unknown hashes which can be used
for requests.

BAZO did not implement a mechanism where missing transactions can be requested based
on the sender’s address and txCnt which results in long validation times sometimes. This
because every transaction had to be requested after the hash was received in a valid block.

5.4.2 Developed Solution

To completely solve this problem, more than one fix is needed. On one hand, a miner
should recognize, when a connection is down, on the other hand miners should be able to
request missing transactions based on the sender’s address and the transaction counter.
Hereby it is important, that only transactions are searched when a transaction with a
higher transaction counter from the same sender is ready to get validated. This means,
that only transactions between the current transaction counter from the local state and
the transaction’s txCnt are searched if there are transactions missing in between these
two transaction counters.

As soon as a connection to another miner is down, the peers.minerConns map gets up-
dated and the peer gets removed from the map. Even if there are no other miners in this
map, from a sending-miner’s perspective the transaction was sent to the network. Fixing
this includes a new map, called sendingMap, into which all connections are written but
do not get deleted, once the receiving-miner gets disconnected. Furthermore, all messages
which cannot be sent immediately are added to a slice and are sent once the connection
to the miner is reestablished. This map uses the IP-address and port of the other miners
as the key because this is consistent even if miners reconnect to each other. The other
characteristics (like channel or connection) of a BAZO peer do change with every recon-
nection. Therefore, it is not only checked, if a miner does exist in the map, but also if its
values have changed and if they should be updated.

Once two miners reconnect to each other, all the messages from the slice are sent, such
that they get the missed transactions and blocks. The slice which holds the not sent

34 CHAPTER 5. BUG FIXING

messages is limited, hence it will not influence the performance and prevents transaction
starving.

Since BAZO uses the BoltDB, a simple GO specific key/value database, it is not possible
to neither set secondary keys nor use specific queries to search transactions whenever the
transaction hash (used as BoltDB key in the BAZO implementation) is unknown [33].
Therefore, when searching a transaction by the sender’s address and txCnt either all
transactions had to be checked, which is very bad in regards of performance, or a map
with the txCnt as key needs to be implemented. With the second approach, an additional
key/value mapping can be achieved, but the consistency needs to be handled by the
user [11]. As a consequence, BAZO now has a map, called TxcntToTxMap with the txCnt
as key and a slice of all transaction hashes matching this txCnt as value. When now
a SPECIALTX REQ with the sender’s address and txCnt is received, the miners can
look up transaction hashes in this map and do not have to iterate over every transaction
ever received. This map is also used when searching locally before creating a transaction
request.

Algorithm 2 shows how a miner determines if transactions are missing. It is not useful
to only fetch the transactions missing between the state txCnt and the first transaction’s
counter, because other transactions may be missing as well. Thus the goal is an algorithm
which finds missing transactions during the process of checking how many transactions
can be validated in the block.

Therefore, a new map, called missingTxCntSender is implemented. This map takes the
sender’s address as key and sender’s address, txCnt and a slice with missing transactions
as value. A transaction is missing, if the transaction’s txCnt is bigger than the local state’s
txCnt or the highest txCnt from the transactions which can be added at this point, plus
one. Whenever this is the case, directly checked with the for -loop on line 6 of algorithm
2, the transaction counters between the currently applicable txCnt and the transaction’s
txCnt are appended to the missing transaction slice of this specific sender.

When missing transactions are detected in the previous step, these transactions are first
searched in all local stores with the help of the previously described TxcntToTxMap. It
can be the case that a miner does receive a transaction during the process of preparing
a block, as an example when the miner reconnects to another one and this other miner
now can send delayed messages, or if another miner broadcasts this transaction in the
meantime. With this check, network requests can be decreased. When the transaction is
not in the local storage, a SPECIALTX REQ with the txCnt and the sender’s address is
sent to the network.

It is still possible that a transaction cannot be found, even with the SPECIALTX REQ.
Then, all transactions after this one cannot be added and this specific transaction will be
searched with the next block again. This is designed that way, because when a request
does not bring the desired transaction, the miner having this transaction may not be
reachable at the moment. Then requesting immediately afterward does not help.

The method checkBestCombination(allOpenTx), called on line 2 of algorithm 2, does
return the maximal number of transactions which can be added with transaction aggre-
gation.

5.4. MISSING TRANSACTIONS 35

Algorithm 2: Preparation of a new block:

prepareBlock(block b)

Input : block b

Output: none

[1] ...
[2] openTx := checkBestCombination(allOpenTx)

[3] forall tx in openTx do
[4] ...

[5] if missingTxCntSender[tx.From] == nil then create new map

[6] for i ← missingTxCntSender[tx.From].txCnt + 1 to tx.txCnt by 1 do
[7] append i to missingTxCntSender[tx.From].missingTransactions

[8] end
[9] append tx to openTxToAdd

[10] end
[11] ...

[12] forall sender in missingTxCntSender do
[13] limit length of sender.missingTansactions to int(blockInterval)

[14] forall tx in sender.missingTansactions do
[15] search tx local again

[16] if tx not found local then SPECIALTX_REQ

[17] if tx found then append tx to openTxToAdd

[18] end
[19] end
[20] ...

[21] sort openTxToAdd

[22] forall tx in openTxToAdd do validate tx and add tx to TempList

[23] splitSortedAggregatableTransactions(b)

All transactions which can be added, the openTxToAdd, are validated and written into a
temporal storage, called TempList.
From this list, the algorithm splitSortedAggregatableTransactions()(described in
4.2.1) gets all transactions and aggregates them correctly.

36 CHAPTER 5. BUG FIXING

Chapter 6

Evaluation

In this section, the results from the performance analysis are discussed. Therefore, the
test cases defined in chapter 4.1.2 are used. There is a section about the block size, about
the interval between blocks and about the blockchain’s overall size. The chapter closes
with the benefits and obstacles of transaction aggregation and a prospect about possible
future work.

6.1 Different Block Sizes

Here, the evaluation and comparison between different block sizes and its influence on the
TPS, with an initially defined amount of transactions sent to the network, is measured
and listed. However, it is possible that not the same amount of transactions are sent to
the network in each test run because of either the miner or the client crashes. This is
mainly caused by an unrecoverable SIGBUS error. For certain test runs, the number of
transactions sent is lowered on purpose, as described in chapter 4.1.2.

Table 6.1 does show the transactions per second rates for test cases with transaction ag-
gregation enabled whereas table 6.2 shows the test cases without transaction aggregation.
In both tables, the block size has unit byte, and the values belonging to transactions have
unit transaction or transactions per second.

The actual block size (ABS and unit byte) is the available space in a block where trans-
actions can be filled in. At the time of writing, it is DefinedBlockSize − 658byte. The
658 bytes are used for block related values and therefore this space cannot be filled with
transactions.

At a first look, it occurs strange that there are also TPSmin and TPSmax beside the normal
TPS. This is due to the fact, that some miners need longer to fetch all transactions when
they do not receive all transactions during broadcasts, as described in section 5.3. Also
nearly always the virtual machines hosted on GCP had a lower TPS than the ones on
AWS, what may be an indicator that they are slightly underpowered in regards of the
random access memory. The TPSmax is an evidence of what speeds can be possible with

37

38 CHAPTER 6. EVALUATION

transaction aggregation as it is implemented in this thesis. However, in chapter 6.2, it
is visible that also with transaction aggregation, the TPSmin and TPSmax can be close to
each other. Therefore it is strongly assumed, that this difference is caused by connection
issues, which results in requesting more transactions.

Table 6.1: Table of different block sizes influencing the TPS with transaction aggregation
enabled.

Block size Transactions
Defined ABS #sent #validated TPSsent TPS TPSmin TPSmax

TPS
TPScalc.

1’000 342 179’328 178’196 33.1 28.0 14.6 32.7 39.2
5’000 4’342 181’933 181’933 33.3 28.5 20.9 33.2 3.1
20’000 19’324 181’613 181’613 33.0 28.0 16.7 32.9 0.7

Table 6.2: Table of different block sizes influencing the TPS with transaction aggregation
disabled.

Block size Transactions
Defined ABS #sent #validated TPSsent TPS TPSmin TPSmax

TPS
TPScalc.

1’000 342 19’000 19’000 36.3 0.6 0.6 0.6 0.7
5’000 4’342 74’960 74’834 34.7 7.0 7.0 7.0 0.8
20’000 19’342 181’078 181’078 33.5 27.3 27.2 27.4 0.7

As visible in table 6.1, the block size does not take a big influence on the reached TPS
value. This does have multiple reasons:

1. Transaction Aggregation: Since transactions are aggregated, not every transac-
tion needs space in a block, and thus, more transactions fit into one block. Actually
it does not matter, if there are two transactions from A to B or if there are one
hundred transactions from A to B. With transaction aggregation, only one trans-
acting will be written into the block. Consequently, it is good to group as many
transactions as possible and bad, not to group any transaction, because it needs too
much space in comparison.

2. Unlimited AggTx Size: If a transaction does not fit in one block, it is likely
that it is validated in the next block because there is no limit in how many trans-
actions can be written into one AggTx and because of the splitAndSort-algorithm’s
design (explained in section 4.2.1, algorithm 1). This algorithm takes the senders
or receivers which have most awaiting transactions to be validated. Thus, the more
transactions from one sender or to one receiver are in the mempool, the more likely
it is that they get validated. Because the transactions from / to one wallet, which
cannot be validated in a block, are still in the mempool, it is likely that there are
more transactions matching the selection criteria for the next block. Since the size of
an AggTx is unlimited, they are able to aggregate as many transactions as possible.

6.1. DIFFERENT BLOCK SIZES 39

3. Test Case: In the test cases, there are maximal 20 users in the network. Thus it
is likely, that the same sender or receiver is found quickly. This does help to keep
the TPS at a high level. It is obvious that transaction aggregation works better the
more similar sender or receivers are in the transactions. But since BAZO is planned
to become an IoT blockchain, where multiple IoT devices send their data to one
receiver, this limited number of wallets is not a problem.

4. Transaction Sending: Transactions are sent approximately every 1/2 second. If
transactions would only be sent after the previous transaction is validated in the
network, aggregating by sender would not work. The current acknowledgment a
miner sends to a client is only confirming that a certain transaction is sent to the
network. A client does not know if and when the sent transaction is validated. Thus,
aggregating by sender is possible.

The TPS
TPScalc.

does indicate by which factor the aggregation increases the maximum pos-

sible TPScalc. value. Thus with a block size of 1’000 byte, the version with transaction
aggregation can theoretically handle roughly 39 times more transactions than without
aggregation. It is clear, that with a smaller TPScalc. and a constant TPS, this factor
increases.
The TPS

TPScalc.
for a block size of 20’000 byte is below one, because, theoretically, over 600

transactions fit into a 20’000 byte block what results in a TPScalc. of about 40 transac-
tions. This TPScalc. is higher then the TPSsent and therefore, the ratio cannot be bigger
than one.
Summarizing this, it is not possible to generally say, that with transaction aggregation
it is exactly 39.2 respectively, 3.1 times faster, because this numbers are highly influ-
enced by the actual TPS which can not be higher than the TPSsent. Thus, sending more
transactions probably increases the TPS, and therefore also the TPS

TPScalc.
ratio, even more.

In table 6.2, the fraction TPS
TPScalc.

can be understood as degree of utilization in terms of

defined and actual block size.

Figure 6.1 does visualize the output of tables 6.1 and 6.2. The scalability improvement
is clearly visible. One can say, that with transaction aggregation, the block size is not a
limiting factor anymore if there are either same senders or same receivers in the transac-
tions. This is visible in figure 6.1, because the blue bars are nearly constant, whereas the
orange ones, standing for test runs without aggregation, are increasing with bigger block
sizes. The grey bars do visualize the TPScalc..
Furthermore it is surprising, that the orange bar is not higher in the test run with a block
size of 20’000 byte. The block’s size is not limiting the TPS anymore, since the TPScalc.

is higher as the TPSsent. This may indicate, that the connection issues described in sec-
tion 5.3 and 5.4 are limiting the network throughput. Unfortunately, this assumption can
neither be confirmed nor rejected because there is no fix for this problem yet.
The TPSsent is indicated by the green line.

The shrinking of the TPSsent in figure 6.1 is not related to the block size, as it may could
be assumed. Sending the transactions, even with a fixed interval, is still not always equally
fast. It is related to the timespan in which a client receives an acknowledgment from a

40 CHAPTER 6. EVALUATION

Figure 6.1: Different block sizes and its influence on the TPS with and without aggregation

miner after sending the transaction. This timespan can slightly differ, and thus, it can
have a bigger influence when sending a lot of transactions.

In the test runs with a block size of 1’000 byte, the version with transaction aggregation
can handle that much more transactions because about 10 transactions fit into one block.
These 10 transactions can be aggregation transactions aggregating way more transactions
and therefore increasing the TPS. Here point two from the listing above does have an
influence because 19 different wallets are in the network. When aggregating these trans-
actions perfectly, it would result in 19 AggTx transactions. This would overflow the block
size by nine transactions. If transactions from one sender cannot be validated in block n,
there will be all these transactions plus the newly received ones for block n + 1. Thus,
during the preparation of block n + 1, this specific sender will have more transactions
than a sender whose transactions get validated in block n and therefore all its transactions
get validated then.

The global distance of the network is not influencing the performance a lot since the
ping-latency between the used virtual machines was usually below half a second during
the test runs.

The block size is not limiting the BAZO version with transaction aggregation up to the
point, where only distinct senders and receivers are sending and receiving the transactions.
But since BAZO is going to be an Internet-of-Things blockchain, where different IoT-
devices often send data to the same receiver, this looks quite unreachable. Therefore, in
regards to the block size, transaction aggregation does increase the TPS especially for
small blocks and thus it looks very promising.

6.2. DIFFERENT BLOCK INTERVALS 41

6.2 Different Block Intervals

Here the comparison and evaluation between different block intervals, with a given number
of transactions sent to the network, is measured and listed.

Table 6.3 does show the TPS rates for test cases with transaction aggregation enabled
whereas table 6.4 shows the test cases without transaction aggregation. In both tables,
the block interval has unit seconds, and the values belonging to transactions have unit
transactions or transactions per second.
In table 6.3 the fraction TPS

TPScalc.
can be seen as improvement factor in contrast to the

theoretical maximum and in table 6.4 as degree of utilization.

The ABI (actual block interval) is an indicator if the blockchain does validate blocks in
the user defined interval. It has unit seconds and is the average timespan between two
blocks. Since the validation speed is set with the help of the target, it is not exactly the
set interval [19]. This target is adapted every n blocks, whereas n is user defined.

Table 6.3: Table of different block intervals influencing the TPS with transaction aggre-
gation enabled.

Block interval Transactions
Defined ABI #sent #validated TPSsent TPS TPSmin TPSmax

TPS
TPScalc.

15 18.8 181’933 181’933 33.3 28.5 20.9 33.2 3.1
60 66.8 190’000 190’000 34.8 34.4 33.9 34.7 15.3
120 118.4 181’278 181’278 33.8 32.9 30.2 33.4 28.5

Table 6.4: Table of different block intervals influencing the TPS with transaction aggre-
gation disabled.

Block interval Transactions
Defined ABI #sent #validated TPSsent TPS TPSmin TPSmax

TPS
TPScalc.

15 14.3 74’960 74’834 34.7 7.0 7.0 7.0 0.8
60 63.5 78’375 78’375 36.3 2.0 2.0 2.0 0.9
120 111.4 18’000 18’000 34.4 1.1 1.1 1.1 1

The test runs with different block intervals look similar to the test runs with various block
sizes. The TPS can be increased when transaction aggregation is used. Especially because
the block interval and the TPS without aggregation are behaving inversely proportional,
these test runs show the advantages nicely. The relationship between the TPS and the
block interval is inversely proportional because, with a higher block interval, fewer blocks
can be validated, and thus, less transaction as well.
The block size, on the other side, is related proportional to the TPS, because bigger blocks
can handle more transactions. This results in a higher TPS value.
Consequently, the version without aggregation can theoretically handle the most transac-
tions with a tiny block interval and huge blocks.

42 CHAPTER 6. EVALUATION

Similar to the different block sizes, the block interval is not a TPS limiting factor anymore.
Furthermore, transaction aggregation also allows validating more transactions per second,
as already stated before.

During one test run, with a block interval of 60 seconds, the TPS is close to the TPSsent.
In this test run, due to certain unknown circumstances, the TypeID issue (section 5.3)
was not influencing so much as during other test runs.

Figure 6.2: Different block intervals and its influence on the TPS with and without
aggregation

In figure 6.2 the differences of the TPSsent, which is indicated with the green line, were
relatively big and thus it has different heights. The differences are again caused by small
differences between sending a transaction and receiving the acknowledgment from a miner.

The difference between the TPS with aggregation (blue bars in cart 6.2) and without
(orange bars) is even bigger here, since the block interval and the TPS are inversely
proportional.

It is not appropriate, to say, that with a higher block interval, the TPS can be increased
for BAZO with aggregation enabled. Theoretically, the different block intervals should
not have an effect on the TPS up to a certain number of different senders and or receivers.
However, the differences can be founded on the TypeID issue again. This, because with
the two higher block intervals, four to eight times fewer blocks have to be sent through the
network compared to the 15 seconds interval. Therefore, the miners probably disconnect
less often and they have more time to fetch transactions or blocks, which they never
received.

Similar to the test with different sizes of blocks, the global distribution of miners and

6.3. BLOCKCHAIN’S OVERALL SIZE 43

clients did not have a huge influence. The latency for a ping-test was usually around half
a second.

Summarizing these outcomes results in the same perception as in section 6.1. Transac-
tion aggregation does definitely increase the transactions possible to handle per second.
Especially for a large block interval, similar to small defined block sizes, summarizing
transactions increases the throughput enormously. Since the relation between the block
interval and the TPS is inversely proportional, the difference in regards to the TPS with
and without aggregation is even bigger, as with different block sizes.

6.3 Blockchain’s Overall Size

In this section, the blockchain’s overall size is analyzed and the findings, based on the test
scenario defined in subchapter 4.1.2, are discussed.

As it is visible in graph 6.3, the blockchain size can be reduced with aggregation and even
more with aggregation and emptying of blocks, once all transactions are aggregated. The
difference between only aggregating and aggregating with emptying is not extraordinary
big, because, in this test case only three different transactions are written into a block
with aggregation. When emptying a block, the block’s size gets reduced only around three
times the size of a transaction hash. The more different transactions are listed in a block,
the bigger this difference will be.

Figure 6.3: Differences regarding the size of the blockchain with aggregation, with aggre-
gation and emptying of blocks and without aggregation.

When a BAZO version with transaction aggregation (red or black line in figure 6.3) is
compared to the version without (green line), a huge difference is visible. The difference

44 CHAPTER 6. EVALUATION

is this big, because with transactions aggregation enabled, around three transactions
are validated in each block, whereas without aggregation, roughly 135 transactions get
aggregated in each block. These 135 transactions are also the maximum capacity of a
block with the defined size of 5’000 byte. The two major kinks are caused by the start
and end of sending transactions, whereas the smaller ones are caused by rollbacks. This
graph shows the possibility of having a smaller overall blockchain size with transaction
aggregation and emptying of blocks.

However, since self-contained proofs are not implemented in this aggregation technique,
a new joining miner still has to fetch all transactions, no matter if BAZO is aggregating
or not. And because aggregating transactions brings an extra transaction each time some
transactions get aggregated, a new joining miner has to fetch even more transactions
actually. This will change, once self-contained proofs are implemented. Then only the
transactions since, e.g., the last epoch block needs to be fetched from the network. This
reduces the amount of data which needs to be fetched.

6.4 Benefits Of Transaction Aggregation

Transaction aggregation does definitely allow more transactions in one block. Thus the
overall throughput increases and at the same time the block size and the overall chain
size can be kept small. Furthermore, the block interval can be enlarged, which reduces
network traffic. However, transaction aggregation does help the most, if there are similar
senders or receivers of transactions. It performs better, the more transactions with the
same sender or receiver are sent. As BAZO is becoming an IoT blockchain, where many
IoT nodes send their transactions to one receiver, this aggregation approach helps in
scaling the blockchain.

As stated above, the implementation presented in this thesis does not help if there is
no overlapping in terms of sender or receiver. Therefore, another aggregation technique
should be used. A different possibility would be: Aggregate transactions (A →B : 5) and
(B →A : 20) as one transaction (B →A : 15). Here the only the final amount and the
direction of the transaction gets written into the blockchain. This idea is kind of similar
to state-channels proposed in section 2.2.6.

Although transaction aggregation already works well here, its full power may only be
visible once sharding and self-contained profs are implemented and combined with this
technique.

6.5 Obstacles Of Transaction Aggregation

The intention behind double linking the blockchain is emptying all blocks once they are
secure enough. A block is secure enough when it is accepted by the majority of miners, and
thus, will not be included in rollbacks anymore. The emptying helps to save storage, as
visible in section 6.3. However, the emptying of validated blocks is kind of a contradiction

6.5. OBSTACLES OF TRANSACTION AGGREGATION 45

against the core concept of a blockchain, where secure blocks are immutable and cannot
be changed again. Thus, some impediments occur, especially when a new miner joins the
network and wants to start mining.

6.5.1 Join As A New Miner & Order Of Transactions

When aggregating transactions in a historic manner, as it is described in section 3.2.2,
various problems and difficulties can occur. They are described with the help of figure
6.4.

In figure 6.4 three FundsTx are incoming to the blockchain and get validated in in blocks
1011, 1012 and 1013. As it is visible, the third transaction (FundsTxA=>C : 5) can be
aggregated with the first transaction (FundsTxA=>B : 10), because of the similar sender.
This results in the AggTxA=>{B, C} : 15 in block 1013, and the removing of FundsTxA=>B : 10

in block 1011.
The table on the right side shows the balances for the three wallets A, B and C with and
without aggregation, before, between and after the three blocks are validated.

Figure 6.4: Transaction aggregation and the balance.

As it is now visible in the table, the balances for A and B are not the same when aggregat-
ing the transaction as when not aggregating them. This can lead to problems, especially
when restarting or joining the network after transactions are already sent. Since BAZO
fetches all blocks from the last validated one to the genesis block first and afterward
validates them in the correct order, moving and aggregating transactions is problematic.

As example, when the transactions FundsTxA=>B : 10 and FundsTxA=>C : 5 get aggregated
to AggTxA=>{B, C} : 15 and thus transaction FundsTxA=>B : 10 moves from block 1011 to

46 CHAPTER 6. EVALUATION

1013, B does not have enough funds for transaction FundsTxB=>C : 4 at the point of
validating block 1012. This is visible in the middle two sub-tables where the balance of B
is not the same with and without aggregation. When a new miner is joining the network,
which uses transaction aggregation, and the FundsTxA=>B : 10 is not in Block 1011 but in
1013, this new joining miner is not able to validate block 1012, because B does not have
enough funds.

One Way of eluding this is a credit-like behavior on startup. This concept allows a wallet
to have a negative balance during the startup process. At the end, similar to the fourth
small table in figure 6.4, the balances with aggregation enabled are the same as when
validating each transaction without aggregation. As long as all transactions are validated,
the order of validation does not play a substantial role. At a participation of a miner, this
new miner only validates transactions which are already validated from other miners in
the network. If the bootstrap miner tries to send invalid transactions to the new miner,
the currently joining miner will find them, either by invalid block hashes, or when other
miners are refusing its mined blocks later. Consequently, with this credit like behavior
during the participation, it is possible to validate block 1012 even with aggregation and
join the network.

Furthermore, once sharding is implemented, it can be assumed, that new miners are only
able to join when an epoch block is inserted to the chain. This is needed because of the
load balancing and the division into shards. Because these epoch blocks are similar for
every miner, and thus every miner agrees on all blocks before this epoch block, joining
is not problematic, even if the transactions are not validated in the correct order. Once
self-contained proofs are merged and therefore not all transactions are needed to prove
that a wallet has enough funds, the transactions before an epoch block will not be used
anymore.

6.5.2 Join As A New Miner & Nonce

Joining as a new miner, when blocks are already emptied, is problematic since the nonce
of a block is calculated with the help of the wallets’ balances. Here, similar problems
as in the previous subsection can occur, and blocks are not validated because the nonce
is incorrect at this point. This should also be possible to prevent, when not checking
the nonce on startup. It is also possible to argue, that these blocks are validated in the
network already and therefore secure.

This problem probably will also shrink, when sharding is merged, because then it is
ensured, that at the time an epoch block is inserted, the network agreed on one block.
Thus all miners approve blocks up to this epoch block as valid. When only emptying
blocks up to this epoch block, only commonly accepted blocks are emptied and the nonce
of these blocks does not have to be checked during startup.

6.6. FUTURE WORK 47

6.6 Future Work

Future work on BAZO should definitely include a fix for the problem with the strange
TypeIDs for messages sent in the BAZO network, described in section 5.3. This should
have the highest priority because it will reveal, how powerful sharding and transaction
aggregation is with stable connections between the miners.

In a possible next step, sharding, transaction aggregation, self-contained proofs and other
IoT adaptions should be merged into one project, such that the combined power can be
used. Only if all these mechanisms are combined, the true power and speed of BAZO can
be revealed.

Nice and very useful would also be, if a user does not have to take care of the transaction
counter in the future. Probably there is a way, how the transaction counter can be fetched
from the state for every incoming transaction. Thus, the transaction counter is out of the
user’s view and usage of the blockchain will become easier.

48 CHAPTER 6. EVALUATION

Chapter 7

Summary and Conclusions

As seen in the previous chapters, the implemented transaction aggregation does work in
a global network of up to 20 miners. The development process was hampered due to the
fact that many defects and issues were only found once the implementation was tested
with multiple miners. Fixing these problems from the original BAZO implementation
took a tremendous amount of time. Because of this and the fact that some old issues are
still not fixed, sometimes the result in regards to the TPS may be not as unambiguous
as they can be. However, transaction aggregation, as it is implemented here, does truly
help to increase the maximal number of transactions per second. This is especially visible
when the block size is chosen small, or when the block interval is big.

Furthermore, it is also proven, that the overall blockchain size can be reduced with the
techniques presented in this paper. Also here, the full power of it will be visible once
sharding and self-contained proofs are merged.

49

50 CHAPTER 7. SUMMARY AND CONCLUSIONS

Bibliography

[1] Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Ac-
cessed: 29.03.2019.

[2] Arrays, Slices (And Strings): The Mechanics Of ’Append’. https://

blog.golang.org/slices. Accessed: 04.03.2019.

[3] Ethereum Average Blocksize Chart. https://etherscan.io/chart/blocksize. Ac-
cessed: 04.02.2019.

[4] Git Large File Storage. https://git-lfs.github.com/. Accessed: 06.04.2019.

[5] ./jq. https://stedolan.github.io/jq/. Accessed: 06.04.2019.

[6] Lubuntu. https://lubuntu.net/. Accessed: 15.04.2019.

[7] Machine Types. https://cloud.google.com/compute/docs/machine-types. Ac-
cessed: 29.03.2019.

[8] Mehr Informationen Über VisaNet. https://www.visaeurope.ch/de_CH/uber-
visa/visanet.html#2. Accessed: 02.02.2019.

[9] Performance. http://redbellyblockchain.io/Benchmark.html. Accessed:
02.02.2019.

[10] Segmentation Fault (SIGSEGV) Vs. Bus Error (SIGBUS). https://

www.geeksforgeeks.org/segmentation-fault-sigsegv-vs-bus-error-sigbus/.
Accessed: 07.04.2019.

[11] Using Two Separate Keys In BoltDB. https://stackoverflow.com/questions/
36111698/using-two-separate-keys-in-boltdb/36115609#36115609. Accessed:
10.04.2019.

[12] Visa Acceptance For Retailers. https://usa.visa.com/run-your-business/small-
business-tools/retail.html. Accessed: 02.02.2019.

[13] VISA Fact Sheet. https://www.visaeurope.ch/dam/VCOM/download/corporate/
media/visanet-technology/aboutvisafactsheet.pdf. Accessed: 02.02.2019.

[14] Was Sind Altcoins? https://www.coinpro.ch/was-sind-altcoins/. Accessed:
02.04.2019.

51

https://aws.amazon.com/ec2/pricing/on-demand/
https://blog.golang.org/slices
https://blog.golang.org/slices
https://etherscan.io/chart/blocksize
https://git-lfs.github.com/
https://stedolan.github.io/jq/
https://lubuntu.net/
https://cloud.google.com/compute/docs/machine-types
https://www.visaeurope.ch/de_CH/uber-visa/visanet.html#2
https://www.visaeurope.ch/de_CH/uber-visa/visanet.html#2
http://redbellyblockchain.io/Benchmark.html
https://www.geeksforgeeks.org/segmentation-fault-sigsegv-vs-bus-error-sigbus/
https://www.geeksforgeeks.org/segmentation-fault-sigsegv-vs-bus-error-sigbus/
https://stackoverflow.com/questions/36111698/using-two-separate-keys-in-boltdb/36115609#36115609
https://stackoverflow.com/questions/36111698/using-two-separate-keys-in-boltdb/36115609#36115609
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://www.visaeurope.ch/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visaeurope.ch/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.coinpro.ch/was-sind-altcoins/

52 BIBLIOGRAPHY

[15] Zilliqa Is A Scalable, Secure Public Blockchain Platform. https://zilliqa.com/
about-us.html#general. Accessed: 03.02.2019.

[16] Andreas M. Antonopoulos. Mastering Bitcoin, 2nd Edition. O’Reilly Media, 2017.

[17] Collis Aventinus. Age Of Scale: How Can Blockchain Systems Become Powerful
Enough For A Global Audience? https://cointelegraph.com/news/age-of-
scale-how-can-blockchain-systems-become-powerful-enough-for-a-global-

audience. Accessed: 03.04.2019.

[18] Matt B. To Reduce Or Not To Reduce The Block Size? https:

//medium.com/chainrift-research/to-reduce-or-not-to-reduce-the-block-
size-ed42795f3891. Accessed: 09.04.2019.

[19] Simon Bachmann. Proof Of Stake For Bazo. https://files.ifi.uzh.ch/CSG/staff/
bocek/extern/theses/BA-Simon-Bachmann.pdf. Accessed: 02.02.2019.

[20] Paddy Baker. Zilliqa CEO: Mainnet Launch Shows Sharding Works. https://

cryptobriefing.com/zilliqa-mainnet-launch-sharding/. Accessed: 17.04.2019.

[21] Shehar Bano, Mustafa Al-Bassam, and George Danezis. The Road To Scalable
Blockchain Designs. USENIX; login: magazine, 2017.

[22] Matthew Beedham. Blockchain Sharding Made So Simple Your Dog Would Under-
stand. https://thenextweb.com/hardfork/2019/01/18/explainer-blockchain-
sharding-beginners/. Accessed: 09.04.2019.

[23] Roman Blum. Scalability For The Bazo Blockchain With Sharding. https:

//github.com/rmnblm/papers/blob/master/sharding_concept/main.pdf. Ac-
cessed: 02.02.2019.

[24] Deb Cobb. Best Practices In Blockchain Testing. https://www.neotys.com/blog/
best-practices-blockchain-testing/. Accessed: 02.02.2019.

[25] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Evaluating The Red Belly
Blockchain. CoRR, abs/1812.11747, 2018.

[26] Crates. World Map Blank Without Borders. https://de.wikipedia.org/wiki/
Datei:World_map_blank_without_borders.svg. Accessed: 05.02.2019.

[27] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,
and Roger Wattenhofer. On Scaling Decentralized Blockchains. In Financial Cryp-
tography and Data Security, pages 106–125, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[28] Brian Curran. What Is Proof Of Authority Consensus? Staking Your Identity
On The Blockchain. https://blockonomi.com/proof-of-authority/. Accessed:
03.02.2019.

https://zilliqa.com/about-us.html#general
https://zilliqa.com/about-us.html#general
https://cointelegraph.com/news/age-of-scale-how-can-blockchain-systems-become-powerful-enough-for-a-global-audience
https://cointelegraph.com/news/age-of-scale-how-can-blockchain-systems-become-powerful-enough-for-a-global-audience
https://cointelegraph.com/news/age-of-scale-how-can-blockchain-systems-become-powerful-enough-for-a-global-audience
https://medium.com/chainrift-research/to-reduce-or-not-to-reduce-the-block-size-ed42795f3891
https://medium.com/chainrift-research/to-reduce-or-not-to-reduce-the-block-size-ed42795f3891
https://medium.com/chainrift-research/to-reduce-or-not-to-reduce-the-block-size-ed42795f3891
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Simon-Bachmann.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Simon-Bachmann.pdf
https://cryptobriefing.com/zilliqa-mainnet-launch-sharding/
https://cryptobriefing.com/zilliqa-mainnet-launch-sharding/
https://thenextweb.com/hardfork/2019/01/18/explainer-blockchain-sharding-beginners/
https://thenextweb.com/hardfork/2019/01/18/explainer-blockchain-sharding-beginners/
https://github.com/rmnblm/papers/blob/master/sharding_concept/main.pdf
https://github.com/rmnblm/papers/blob/master/sharding_concept/main.pdf
https://www.neotys.com/blog/best-practices-blockchain-testing/
https://www.neotys.com/blog/best-practices-blockchain-testing/
https://de.wikipedia.org/wiki/Datei:World_map_blank_without_borders.svg
https://de.wikipedia.org/wiki/Datei:World_map_blank_without_borders.svg
https://blockonomi.com/proof-of-authority/

BIBLIOGRAPHY 53

[29] Aniket Dongre David Schatsky, Amanpreet Arora. Blockchain And The Five Vectors
Of Progress. https://www2.deloitte.com/insights/us/en/focus/signals-for-
strategists/value-of-blockchain-applications-interoperability.html. Ac-
cessed: 09.04.2019.

[30] Aziz Dolce. Blockchain Scalability Solutions: Overview Of Crypto Scaling So-
lutions. https://masterthecrypto.com/blockchain-scalability-solutions-
crypto-scaling-solutions/. Accessed: 03.02.2019.

[31] EdChain. Blockchain FAQ #3: What Is Sharding In The Blockchain? https:

//medium.com/edchain/what-is-sharding-in-blockchain-8afd9ed4cff0. Ac-
cessed: 22.03.2019.

[32] Werner Grundlehner. Der Bitcoin Eilt Zum Nächsten Rekord – Aber Abspaltungen
Verunsichern Investoren. https://www.nzz.ch/finanzen/bitcoin-rekord-aber-
abspaltungen-verunsichern-die-investoren-ld.1325385. Accessed: 24.01.2019.

[33] Ben Johnson. An Embedded Key/Value Database For Go. https://github.com/
boltdb/bolt. Accessed: 17.03.2019.

[34] Kenny Li. The Blockchain Scalability Problem & The Race For Visa-Like Transaction
Speed. https://hackernoon.com/the-blockchain-scalability-problem-the-
race-for-visa-like-transaction-speed-5cce48f9d44. Accessed: 09.04.2019.

[35] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A Secure Sharding Protocol For Open Blockchains. In Proceedings Of
The 2016 ACM SIGSAC Conference On Computer And Communications Security,
CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

[36] Mark McGranaghan. Go by Example: Channels. https://gobyexample.com/
channels. Accessed: 02.04.2019.

[37] Mark McGranaghan. Go By Example: Goroutines. https://gobyexample.com/
goroutines. Accessed: 02.04.2019.

[38] Noisefloor. Tmux. https://wiki.ubuntuusers.de/tmux/. Accessed: 06.04.2019.

[39] Eric Olszewski. State Channels For Dummies: Part 1. https://medium.com/
blockchannel/counterfactual-for-dummies-part-1-8ff164f78540. Accessed:
03.02.2019.

[40] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. https://www.bitcoinlightning.com/wp-content/
uploads/2018/03/lightning-network-paper.pdf, 2016. Accessed: 03.03.2019.

[41] Raul. Transactions Speeds: How Do Cryptocurrencies Stack Up To Visa Or Pay-
Pal? https://howmuch.net/articles/crypto-transaction-speeds-compared.
Accessed: 02.02.2019.

[42] Lukas Schor. Explained: Ethereum Plasma. https://medium.com/@argongroup/
ethereum-plasma-explained-608720d3c60e. Accessed: 03.02.2019.

https://www2.deloitte.com/insights/us/en/focus/signals-for-strategists/value-of-blockchain-applications-interoperability.html
https://www2.deloitte.com/insights/us/en/focus/signals-for-strategists/value-of-blockchain-applications-interoperability.html
https://masterthecrypto.com/blockchain-scalability-solutions-crypto-scaling-solutions/
https://masterthecrypto.com/blockchain-scalability-solutions-crypto-scaling-solutions/
https://medium.com/edchain/what-is-sharding-in-blockchain-8afd9ed4cff0
https://medium.com/edchain/what-is-sharding-in-blockchain-8afd9ed4cff0
https://www.nzz.ch/finanzen/bitcoin-rekord-aber-abspaltungen-verunsichern-die-investoren-ld.1325385
https://www.nzz.ch/finanzen/bitcoin-rekord-aber-abspaltungen-verunsichern-die-investoren-ld.1325385
https://github.com/boltdb/bolt
https://github.com/boltdb/bolt
https://hackernoon.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44
https://hackernoon.com/the-blockchain-scalability-problem-the-race-for-visa-like-transaction-speed-5cce48f9d44
https://gobyexample.com/channels
https://gobyexample.com/channels
https://gobyexample.com/goroutines
https://gobyexample.com/goroutines
https://wiki.ubuntuusers.de/tmux/
https://medium.com/blockchannel/counterfactual-for-dummies-part-1-8ff164f78540
https://medium.com/blockchannel/counterfactual-for-dummies-part-1-8ff164f78540
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf
https://howmuch.net/articles/crypto-transaction-speeds-compared
https://medium.com/@argongroup/ethereum-plasma-explained-608720d3c60e
https://medium.com/@argongroup/ethereum-plasma-explained-608720d3c60e

54 BIBLIOGRAPHY

[43] Kai Sedgwick. No, Visa Doesn’t Handle 24,000 TPS And Neither Does Your
Pet Blockchain. https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-
and-neither-does-your-pet-blockchain/. Accessed: 09.04.2019.

[44] Livio Sgier. Bazo – A Cryptocurrency From Scratch. https://files.ifi.uzh.ch/
CSG/staff/bocek/extern/theses/BA-Livio-Sgier.pdf. Accessed: 02.02.2019.

[45] Stellabelle. Explain Delegated Proof Of Stake Like I’m 5. https://hackernoon.com/
explain-delegated-proof-of-stake-like-im-5-888b2a74897d. Accessed:
03.02.2019.

[46] ZILLIQA Team. The ZILLIQA Technical Whitepaper. https://docs.zilliqa.com/
whitepaper.pdf, August 2017. Accessed: 03.02.2019.

[47] Bozhi Wang, Shiping Chen, Lina Yao, Bin Liu, Xiwei Xu, and Liming Zhu. A
Simulation Approach For Studying Behavior And Quality Of Blockchain Networks,
pages 18–31. Springer, Cham, 06 2018.

[48] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. RapidChain: Scaling
Blockchain Via Full Sharding. In Proceedings Of The 2018 ACM SIGSAC Conference
On Computer And Communications Security, CCS ’18, pages 931–948, New York,
NY, USA, 2018. ACM.

https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-neither-does-your-pet-blockchain/
https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-neither-does-your-pet-blockchain/
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Livio-Sgier.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Livio-Sgier.pdf
https://hackernoon.com/explain-delegated-proof-of-stake-like-im-5-888b2a74897d
https://hackernoon.com/explain-delegated-proof-of-stake-like-im-5-888b2a74897d
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf

Abbreviations

ABI Actual block interval
ABS Actual block size
BCS Blockchain size
AggTx Aggregation Transaction
AWS Amazon Web Services
b04 Server of the University of Zurich on which one miner is running
calc. Calcualted, theoretical possible value.
ConfigTX BAZO specific transaction to change the blockchains overall configurations
FundsTX BAZO specific transaction to send funds from one to another wallet
GB Gigabyte
genB Genesis block
GCP Google Cloud Platform
IoT Internet of Things
LFS Large File System
lvB Last validated and secure block
PoS Proof-of-stake consensus technique
RAM Random Access Memory
SIGBUS Bus error [10]
StakeTX BAZO specific transaction to change the staking behaviour of an account
TPS Transactions validated in the network per second
TPScalc. Calculated, maximal possible TPS
TPSmax Highest TPS during a test run
TPSmin Lowest TPS during a test run
TPSsent Transactions sent to the network per second
Tx Transaction
TxCnt Transaction counter, counter which prevents double spending
uint64 unsigned 64-bit integer
uint8 unsigned 8-bit integer
VM Virtual Machine
w/ with
w/o without

55

56 ABBREVIATONS

Glossary

Altcoins Altcoins are alternative cryptocurrencies [14].

BoltDB GO specific key/value database [33].

Bootstrap Miner The bootstrap miner is the entry point to the network for a new
joining miner. This Bootstrap miner does provide a list of other miners as well as
the first few blocks. After the first couple of blocks, a connection to more miners
should be established and the remaining blocks get also requested from them. This
ensures a faster startup.

Bucket BoltDB specific collection of key/value pairs within the database [33].

Channel Channels are pipes which connect concurrent and synchronously running Gor-
outines. [36].

ConflictingBlockHashWithoutTx1 HashWithoutTransactions from the first conflict-
ing block.

ConflictingBlockHashWithoutTx2 HashWithoutTransactions from the second con-
flicting block.

Defined blocksize The defined block size is the size which is set with a ConfigTx or in
the code directly. This is the maximum size a block can have with all transactions
and data included.

Fixed Blocksize In BAZO the fixed block size is 658 byte and consists of the fixed
sizes form the block struct (393 byte), the common proof length (256 byte) and the
maximum length of the bloomfilter plus one.

Fork A fork is a split in the chain. There are mainly three types of forks, further described
in section 5.1

Genesis Block First block of a blockchain.

Goroutine A Goroutine is a lightweight thread which allows synchronously computation
[37].

Git LFS Git Large File Storage (LFS) is used to store files larger than GitHub allows [4].

HashWithoutTx Hash Without Transactions.

57

58 GLOSSARY

Jq Jq is a command line JSON processor [5].

Lubuntu Lubuntu is a lightweight Linux operating system [6].

Mempool List, in which all open transactions are stored.

PrevHashWithoutTx Previous Hash Without Transactions

Rollback When an accidental fork occurs, the process of resolving these forks consists of
a rollback phase and a validation phase. During the rollback phase, wrong validated
blocks are revoked and in the validation phase, the new received chain branch gets
validated.

Slice A slice is a GO specific data type which does describe a piece of an array [2].

Shardchain A part of a blockchain which is only validated in one shard.

Target Constant, which determines the speed of validating new blocks in BAZO [19].

TxHashSize In BAZO the transaction hashes have a length of 32 bytes.

TMUX TMUX is a terminal multiplexer for Linux [38].

Wallet A wallet is basically a .txt-file which contains a public and a private key for
signing and signature verification of a transaction. The first two lines are the public
key, the last line the private key [44]. Furthermore, the public key is also used as
the address of an account in the state. In BAZO, coins are sent between wallets.

List of Figures

2.1 Sharding concept with dynamically load-balancing [23] 7

3.1 Concept transaction aggregation . 16

3.2 Concept double linked BAZO Blockchain 18

4.1 Global BAZO Network . 22

5.1 Illustration of forking problem . 28

5.1a Forking blockchain . 28

5.1b Circling request . 28

6.1 Different block sizes and its influence on the TPS with and without aggre-
gation . 40

6.2 Different block intervals and its influence on the TPS with and without
aggregation . 42

6.3 Differences regarding the size of the blockchain with aggregation, with ag-
gregation and emptying of blocks and without aggregation. 43

6.4 Transaction aggregation and the balance. 45

59

60 LIST OF FIGURES

List of Tables

2.1 Scalability ideas, their rating sand reasons therefore. 10

6.1 Table of different block sizes influencing the TPS with transaction aggre-
gation enabled. 38

6.2 Table of different block sizes influencing the TPS with transaction aggre-
gation disabled. 38

6.3 Table of different block intervals influencing the TPS with transaction ag-
gregation enabled. 41

6.4 Table of different block intervals influencing the TPS with transaction ag-
gregation disabled. 41

61

62 LIST OF TABLES

Appendix A

Installation And Usage Guidelines

A.1 Virtual Machines

This section does describe how the setup of virtual machines, miners and clients can
be done on a new created Ubuntu VM. Since BAZO is a frequently changing research
blockchain, it does not make much sense to create a fixed unchangeable virtual machine
or docker container. The version of BAZO used for this thesis is not truly permissionless
and therefore, a ready to use VM, which can be deployed to any cloud provider wanted, is
not possible since the accounts are not correct. For the setup process, a bash shell script
was created, which allows fetching the desired branch from GitHub. This is way more
flexible.

There is a virtual machine, called BAZO-VM on the CD, which is ready to use with
Oracle’s Virtualbox. This Virtual machine has four miners and clients. It can be used to
test the transaction aggregation locally. Further information about this VM can be found
in section A.2.4.

Prepare New Virtual Machines

1. Create wanted instance on desired cloud provider: Depending on the desired
cloud provider, different machines in terms of computation power, storage, operating
system and various other selection possibilities are available. One or multiple virtual
machines should be created according to the tutorials provided by eh cloud provider.
Connecting to this instances via a ssh connection is recommended. The desired
TCP -ports for BAZO (at the time of writing ports 8000, 8001, 8010 and 8020 are
used) need to opened automatically.

2. Prepare VM for BAZO: Once connected to the VM, the GO setup script.sh
from the GitHub repository BAZO-Scripts-Fabio (https://github.com/febe19/
BAZO-Scripts-Fabio) can be used.
This script installs GO, TMUX, jq, git lfs and an alias for the public IP-address

63

https://github.com/febe19/BAZO-Scripts-Fabio
https://github.com/febe19/BAZO-Scripts-Fabio

64 APPENDIX A. INSTALLATION AND USAGE GUIDELINES

(pubIP) on the virtual machine. Furthermore it does an update of the operating
Linux system, set the GOPATH and enables a colorful command prompt.

Steps:

(a) clone the BAZO-Scripts-Fabio repository with:
$ git clone https://github.com/febe19/BAZO-Scripts-Fabio.git

(b) change directory into BAZO-Scripts-Fabio

(c) run the GO setup script.sh with source, because otherwise, the coloring of the
prompt does not work.
$ source GO_setup_script.sh

(d) if needed, insert [Y] during the execution of the script.

After steps 2.(a) to 2.(d), the newly created machine is BAZO ready.

A.2 BAZO

The README.md from the miner and client application does describe the setup process
perfectly.

The most important part here is that the correct Wallets and Commitments are used on
every miner and client in the network, as otherwise, BAZO will never run correctly.

There are two types of a miner, the bootstrap miner and all other normal miners. Normally
the bootstrap miner is driven by an account with root privileges.

The implementation and versions used for test runs are in these GitHub repositories:
Miner: https://github.com/febe19/bazo-miner
Client: https://github.com/febe19/bazo-client

In the client repository, the performance test branch should be taken.
On miner side, there are two branches, depending on what version is wanted. For a BAZO
miner with transaction aggregation enabled, the branch (TransactionsAggregationWorking
is the correct one. To test BAZO without aggregation but with all fixes, the branch
NoTransactionAggregation should be used. In a network, all miners should run the same
version, because otherwise, a hard fork may occur.

A.2.1 Setup Bootstrap Miner And Client

Setting up the bootstrap miner is a bit different from the others since no accounts are
available at this point. Often the wallet with root access runs the bootstrap miner.

Steps:

1. git clone BAZO miner and client from desired fork with, e.g.:
$ git clone https://github.com/febe19/bazo-miner.git

https://github.com/febe19/BAZO-Scripts-Fabio.git
https://github.com/febe19/bazo-miner
https://github.com/febe19/bazo-client
https://github.com/febe19/bazo-miner.git

A.2. BAZO 65

2. change directory into bazo-miner and bazo-client and build projects with:
$ go build

3. start miner in the bazo-miner folder with the following command. Thereby
exchange the publicIP with the external IP-address of the machine:
$./bazo-miner start --database StoreRoot.db --address publicIP :8000
--bootstrap publicIP :8000 --wallet WalletRoot.txt --commitment
CommitmentRoot.txt --multisig WalletRoot.txt --rootwallet
WalletRoot.txt --rootcommitment CommitmentRoot.txt

4. in the client folder: replace the IP-addresses and ports in the configuratons.json file
with the used IP-address and port. For the client running at the bootstrap miner,
all IP-addresses are the public IP-address of the bootstrap miner.

5. copy WalletRoot.txt & CommitmentRoot.txt to the client folder.
In the client folder, execute steps 5.(a) to 5.(c) for every new account. The name
in WalletName.txt and CommitmentName.txt should be unique. Furthermore, the
txcounter needs to be increased by one for every new account.
Steps:

(a) create new account with:
$./bazo-client account create --rootwallet WalletRoot.txt
--wallet WalletName.txt

(b) add funds to new created wallet with: (txcounter needs to be increased)
$./bazo-client funds --from WalletRoot.txt --to WalletName.txt
--txcount 0 --amount 2000 --multisig WalletRoot.txt

(c) enable staking for new account with:
$./bazo-client staking enable --wallet WalletName.txt
--commitment CommitmentName.txt

In the BAZO-Scripts-Fabio repository, a script called AddAccountsScript.sh does auto-
mate steps 4.(a) to 4.(c) whit slight different names, chosen for the network tests. The
naming convention is described in section A.2.4.

A.2.2 Setup Normal Miner And Client

In the BAZO-Scripts-Fabio repository, a script named MinerClientWithAccountCreated.sh
does help setting up a normal miner and client. This client is not conducted by a wallet
with root access.

If the desired branch is on a special git fork, it needs to be added manually into the script
code with the commands git remote add forkName URL followed by a git pull forkName.
The forkName is user-defined and the URL is the URL of the desired repository. There are
already two forks added. An additional one can be added analog. When this is added,
the automated building will work also for additional forks.

URL
URL

66 APPENDIX A. INSTALLATION AND USAGE GUIDELINES

If the Wallet and Commitment files are stored in the folder as mentioned in Tips & Tricks
in section A.2.4, and these two folders are pulled with the BAZO-Scripts-Fabio repository,
this script will copy the folders to the miner and client directory.

Steps:

1. execute MinerClientWithAccountCreated.sh with:
$./MinerClientWithAccountCreated.sh

2. insert cloud provider and location and confirm both with [ENTER]

3. insert the git branch name, which should be used to build the miner application.
Confirm first with [ENTER], and if prompted, insert [Y] to affirm.

4. same procedure for the client application: Insert the git branch name, which
should be used to build the client application. Confirm first with [ENTER], and if
prompted, insert [Y] to affirm.

5. if prompted, inset public IP-address of the bootstrap miner. This script will replace
all IP-addresses and ports in the configurations.json correctly.

6. if the naming convention, presented in Tips & Tricks (section A.2.4, is satisfied, and
there is a file with the proposed name, insert [Y] when asked. Otherwise copy the
in step 5 of section A.2.1 created Wallet & Commitment files to the bazo-miner and
bazo-client folder by hand.

At the end of the script and if it is used correctly, the start command of the miner is
printed to the command line. When this command is executed in the bazo-miner folder,
it should run.

A.2.3 Usage

The usage is exactly the same as in the README.md of a client. E.g. sending funds
from the wallet GCPSaoPaulo to GCPFrankfurt is done with:
$./bazo-client funds --from Wallets/WalletGCPSaoPaulo.txt --to
Wallets/WalletGCPFrankfurt.txt --txcount 0 --amount 1 --multisig
Wallets/WalletB04Root.txt

A.2.4 Tips And Tricks

Here some tips & tricks for using BAZO in a distributed network as well as locally.

• Since every miner and client in the network, needs access to all Wallet and Com-
mitment files, a logical naming scheme should be applied. A good one also used
is: Wallet + CloudProviderAbbreviation + Location for wallets and the same for
commitment files but starting with Commitment

A.2. BAZO 67

• Exchanging the Wallets and Commitments to multiple machines works well with
the help of GitHub. Therefore create all Wallet- and Commitment- files in folders
called Wallets and Commitments. These folders are then copied to the BAZO-
Scripts-Fabio repository (or any other) and pushed there for further usage.

• If a file called in the start command does not exist, BAZO creates it without letting
the user know. This can cost a lot of time because small typos may be missed and
a miner will not work as it should.

• For a local usage the README.md in the miner and client repository explain ev-
erything perfectly.

• When testing BAZO in a global network, it is recommended to start TMUX sessions
for miner and client and execute the applications in there. This has multiple ad-
vantages, as it is possible to detach the sessions and move them to the background,
which allows disconnecting from the VM. Furthermore, the process does not stop,
if the connection is lost accidentally.

• BAZO only checks if a miner is bootstrapping according to the port. This results in a
case, where two miners with different IP-addresses but the same port cannot connect
to each other during startup. Therefore, it is recommended that the bootstrap miner
uses a port not used from any other normal miner. The normal miners can have a
similar port number but then with a different IP-address.

• Ensure that the IP-addresses and ports are correct. While starting a normal miner,
the --address is the public IP-address of the machine the miner runs on, and the
--bootstrap is the public IP-address of the bootstrap miner. In the configura-
tion.json file of a client, the IP-address of this client is the public IP-address and
port of the client application. The bootstrap server is the miner application to which
the transaction should be sent. This does not have to be the bootstrap miner as
setup in section A.2.1.

• When running multiple miners on one machine, either start the miners in differ-
ent folders or ensure that the log files have distinct names. This can be enabled
/ disabled with commenting / uncommenting certain lines in the function func
InitLogger() *log.Logger {...} (in file: bazo-miner/storage/utils.go) from the
two in section A.2 mentioned branches.

• The BAZO-VM can be imported into Oracle’s VirtualBox. This VM includes the
latest version of BAZO with transaction aggregation and the emptying of blocks
enabled. After importing, there is a document called Tutorial.txt, which describes
how to use the installed miners and clients. The sudo password is BAZO-VM.

• It is recommended to start using BAZO on a local setup. Once BAZO runs locally,
creating a global network should be easier.

68 APPENDIX A. INSTALLATION AND USAGE GUIDELINES

Appendix B

Contents of the CD

• GitHub repository for the miner application,
(bazo-miner)

• GitHub repository for the client application,
(bazo-client)

• GitHub repository for the BAZO scripts,
(BAZO-Scripts-Fabio)

• LATEX source code,
(Evaluation and Improving Scalability of the BAZO Blockchain.zip)

• Final thesis,
(Evaluation and Improving Scalability of the BAZO Blockchain.pdf)

• Excel sheets for calculation,
(BCS Test.xlsx, TPS BlockInterval Test.xlsx & TPS BlockSize Test.xlsx)

• Midterm presentation & Aduno workshop presentation,
(Midterm Presentation.pdf, Aduno Workshop.pdf)

• Virtual Lubuntu machine for local usage in VirtualBox,
(BAZO-VM.ova)

• Abstract & Zusammenfassung,
(Abstract.txt, Zusfsg.txt)

• Archive of used Log-files,
(Performance Archive.zip)

69

	Abstract
	Acknowledgments
	Introduction
	Motivation
	BAZO - The Blockchain
	Description Of Work
	Thesis Outline

	Related Work
	Performance Analysis
	Scalability Improvements
	Increase Block Size
	Decrease Block Interval
	Smaller Transaction Size & Transaction Aggregation
	Sharding
	Altcoins -3mu New Blockchain
	Off-Chain Solutions
	Scalable Consensus Mechanisms
	Comparison And Conclusion

	Design
	Performance Analysis
	Metrics

	Transaction Aggregation
	Idea
	Aggregation Of Transactions
	Double Linked Blockchain

	Implementation
	Performance Analysis
	Virtual Machines
	Test Scenarios

	Transaction Aggregation
	Aggregation Of Transactions
	Double Linked Blockchain

	Bug fixing
	Forking
	Problem
	Developed Solution

	Block Size
	Problem
	Developed Solution

	Strange Header.TypeID & Connection Issues
	Problem
	Developed Solution

	Missing Transactions
	Problem
	Developed Solution

	Evaluation
	Different Block Sizes
	Different Block Intervals
	Blockchain's Overall Size
	Benefits Of Transaction Aggregation
	Obstacles Of Transaction Aggregation
	Join As A New Miner & Order Of Transactions
	Join As A New Miner & Nonce

	Future Work

	Summary and Conclusions
	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Installation And Usage Guidelines
	Virtual Machines
	BAZO
	Setup Bootstrap Miner And Client
	Setup Normal Miner And Client
	Usage
	Tips And Tricks

	Contents of the CD

