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FOREWORD

Some mathematical works of considerable vintage have a timeless
quality about them. Like classics in any field, they still bring joy and
guidance to the reader. Books of this kind, if no longer readily available,
are being sought cut by the National Council of Teachers of Mathcinatics,
which has begun to publish a series of such classics. The present title
is the third volume of the series.

The Trisection Problem was first published in 1942 by the Franklin
Press, Inc., of Baton Rouge, Louisiana, when the author was teaching at
Louisiana State University. A photo-lithoprint reproduction was issued in
1947 by Edwards Brothers, Inc., Lithoprinters, of Ann Arbor, Michigan.
The present reprint edition has been similarly produced, by photo-offset,
from a copy of the original publication. Except for providing new front
matter, including a Table of Contents, a biographical sketch of the author,
and this Foreword by way of explanation, no attempt has been made to
modernize the book in any way. To do so would surely detract from,
rather than add to, its value,
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ABOUT THE AUTHOR

Since I undertook to write this brief biographical sketch, letters have
come to me from departments of mathematics where Bob Yates taught in
the course of his career. One of these begins:

“Bob was one of the most refreshing things that ever happened to
this Department. His complete professionalism as a teacher and
lecturer, his irrepressible wit and engaging social charm. plus the
sadness, too, that we went through with him in the loss of his wife
in childbirth shortly after he joined us, are all memories that are
crystal clear to me. It is certainly a feather in his cap and a monu-
ment to his abilities that the NCTM intends to publish some of his
work.”!

This tribute expresses succinctly what those who knew the author well-—

a mathematician, and a teacher.

Robert Carl Yates was born in Falls Church, Virginia, on 10 March
1904. In 1924 he received a B.S. degree in civil engineering from Virginia
Military Institute. This degree was followed by an A.B. degree in psy-
chology and education from Washington and Lee University in 1926 and
by the M.A. and Ph.D. degrees in mathematics and applied mathematics
from Johns Hopkins University in 1928 and 1931.

While working on these later degrees Bob Yates was an instructor at
Virginia Military Institute, the University of Maryland, and Johns Hop-
kins University. On completion of the Ph.D. degree, he accepted a posi-
tion as assistant professor, in 1931, at the University of Maryland, where
later he was promoted to associate professor. In 1939 he became associate
professor of mathematic 3 at Louisiana State University.

As a captain in the Army Reserves, Professor Yates reported to the
United States Military Academy for active duty on 6 June 1942. Before

1. From a letter written by Colonel John S. B. Dick, professor of mathematics and
head of the Department of Mathematics at the United States Military Academy.

ix



X ABouT THE AUTHOR

leaving the Academy he rose to the rank of colonel and the title of
associate professor of mathematics.

He left West Point in August 1954, when a reduction in the number
of colonels was authorized at USMA, and accepted a position as professor
of mathematics at Virginia Polytechnic Institute. In 1955 hLe became
grafessczr ()f Ilmthénmtit:s and chairnmn of the department at ﬂ’lE‘ CQI]EgF‘

_pmfessms at the Umvez slty c;f SQuth I“‘Im ldaj begmmng in 1960, He wcnt
to this new institution as chairman of the Department of Mathematics,
resigning the chairmanship in 1962 in order to devote more time to teach-
ing, lecturing, and writing.

During his tour of duty at West Point, Dr. Yates spent many of his
summers as a visiting professor. Among the institutions he served were
Teachers College, Columbia University; Yeshiva University; and Johns
Hopkins University.

Robert Yates was a man of many talents. Although he was trained in
pure and applied mathematics, he became interested in the field of
mathematics education rather early in his professional career. In both
areas he built up a fine reputation as a lecturer and a writer. During his
lifetime he had si’{ty-odd papers published in Varigus research and rnathé-

NCTM yealbmﬂxsi He a]sc: wrote five bc:c:ks deahng w1th various aspec‘;ts
of geometry, the calculus, and differential equations. From 1937 until he
was called to active duty at West Point in 1942, he served on the editorial
board, and as editor of one department, of the National Mathematics
Magazine.

These were some of his professional achievements. His activities, how-
ever, were not limited to the world of mathematics. At VMI, where he
was a member of the track squad, dramatics and journalism claimed some
of his time. Music became a continuing resource. In later life his recrea-
tions included playing the piano as well as sailing; skating, and golf. -

Dr. Yates, whose social fraternity was Kappa Alpha, was elected to two
scientific honor societies: Gamma Alpha and Sigma Xi. Holding member-
ship in the American Mathematical Society, the Mathematical Association
of America, and the National Council of Teachers of Mathematics, he
was at one period a governor of the MAA. He was also a member of the
MAA’s original ad hoc Committee on the Undergraduate Program in
Mathematics (CUPM). In late 1961 he was selected by the Association
of Higher Education as one of twenty- -five “outstanding college and uni-
versity educators in America today,” and on 4 February 1962 he was
featured on the ABC-TV program “Meet the Professor.”

Dr. Yates had been interested in mathematics education before 1939.
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However, when he came to Louisiana State University, his work in this
field began to expand. Owing to his efforts, the Departinent of Mathe-
matics and the College of Education made some important changes in the
mathematical curriculum for the training of prospective secondary school
teachers. One of the most important additions was six semester hours in
geometry. Dr. Yates was given this course to teach, and for a text he
used his first book, Geometrical Tools. From this beginning his interest
and work in mathematics education increased, while he continued to
lecture and write in the arecas of pure and applied mathematics.

The atmosphere at West Point was quite a change for Dr. Yates. How-
ever, even here he continued his activities in mathematics education. One
of his duties was to supervise and conduct courses in the techniques of
teaching mathematics. These were courses designed for the groups of
new instructors who joined the department staff annually; for most of the
faculty at the Academy, then as now, were active-duty officers who came
on a first or second tour of three to four years’ duration. In performing
this duty he was considered a superior instructor and also an excellent
teacher of teachers.

After leaving the service Professor Yates continued his efforts to improve
mathematics education. During the summers he taught in several different
mathematics institutes, and he was a guest lecturer in many summer and
academic-year institutes supported by the National Science Foundation.
In earlier years he both taught and lectured in the grandfather of all
institutes, the one developed by Professor W. W. Rankin at Duke Uni-
versity., In Virginia and later in Florida he served as a consultant to
teachers of mathematics in various school districts. During the academic
years 1961/62 and 1962/63 the University of South Florida was engaged
in an experimental television program. Professor Yates was the television
lecturer in the course materials developed through this program. As a
. result of this program as well as the MAA lectureship program for high
schools, supported by the NSF, he traveled to all parts of Florida giving
lectures and consulting with high school teachers.

Through all these activities Dr. Yates greatly enhanced the field of
mathematics education. He built up a reputation as an outstanding lec-
turer with a pleasing, interest-provoking presentation and a rare ability

to talk while illustrating his subject. Those who have heard him will .

long remember him and his great ability. Others will find that his writ-
ings show, somewhat vicariously, these same characteristics.

By his first wife, Naomi Sherman, who died in childbirth, he had three
children. Robert Jefferson, the eldest, is now in business in California.
Melinda Susan, the youngest, is now Mrs. Richard B. Shaw, the wife of a
Missouri surgeon. Mrs. Shaw majored in mathematics at Mount Holyoke
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College, and before getting married she worked for the American Tele-
phone and Telegraph Company as a computer programmer and systems
analyst. The second child is Daniel Sherman. He is following in his
father’s footsteps and is currently completing his doctorate in mathe-
matics education at Florida State University.

Dr. Yates passed away on 18 December 1963 and was interred in
Arlington National Cemetery.

Houston T. KARNES

Louisiana State University
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Much of the history of mathematics is re-
flected in, or owes its origin to, the three problems
of the ancients. The most elementary of these,
and the one with the widest appeal, is that of
trisecting the general angle.

Long considered a closed chapter by some, it
is nonetheless a subject of constant investiga-
tion by others. Endowed with a strange will-o’-
the-wisp character, it reappears perennially upon
the pages of scientific journals and the newspa-
pers, in discussions of the classroom and street
corner. Academically, it serves as a medium
through which the student is brought to an un-
derstanding of the nature and limitations of
Euclidean geometry.

To that group of persons who found their
first real interest in mathematics awakened by
the problem of trisecting the angle is this little

volume dedicated.
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The Trisection Problem

CHAFTER 1
THE PROBLEM

1. The Famous Three

In the history of mathematics there are three problems that have
persisted with astounding vigor for over two thousand years. They
are Trisecling the Angle, Duplicating the Cube, and Squaring the Circle,
and because of their hardy existence they are now called Famous
Problems. The bare problems themselves, stripped of all implications,
seem hardly worth more than passing attention and yet, even today,
an incredible amount of energy is expended in the search for solutions
by some means or other. We cannot help but wonder why three such
apparently simple mathematical issues should stand forth above all
others. Statements of the problems can be made in the simplest of
terms and no one need be terrified by the heavy terminology usually
associated with mathematical questions. It is just this disarming
simplicity, however, that invites one to make courageous attacks.
Doctors, lawyers, butchers and bakers, young men and old men,
amateur mathematicians and professional ones, the sane and  the
insane—people in all walks of life have been drawn to them only to
be snared insidiously in a web of their own spinning or to open for
themselves suddenly and unexpectedly a path down which they could
look into new fields. These three problems, solidly impregnable to
all approaches from the vantage of plane geometry, the medium of the
ancient Greeks, served only to tantalize and tease the mathematician
into devising new apparatus and theorems for their solution. Through
this stimulus did much of our present structure of algebra and geome-
try grow.

Constant search over so long a period for solutions of the Three
Problems has yielded amazingly fruitful discoveries, often hit upon
by the sheerest accident, that have thrown light in a totally unsus-
pected manner upon far distant things. The Ellipse, Parabola, and

13



6 THE TRISECTION PROBLEM

Hyperbola—sections formed from a cone by a cutting plane—are
undoubtedly the most interesting and useful curves known. Without
them we would be sore put to explain the heavens or to fire upon the
hidden enemy or to peer into the habits of the microscopic world. It
is said that these curves were discovered by Menzchmus in an am-
bitious attempt at the solution of the Three Problems. A further
outgrowth was the development of that important field, the Theory
of Equations. More indirectly, we find traces of their influence in the
modern Group Theory, a doctrine of the highest importance to the
physicist and chemist in their study of atomic structure and relativity
theory. Little wonder then that these problems, to the credit of
which so much mathematical activity is due, should now be classified
as famous.

2. A Classical Game

The plane geometry of the ancient Greeks was a game to be played
with simple equipment and governed by a rigid set of rules. The
equipment consisted only of the compasses and an unmarked siraighi-
edge, indefinite in length., The rules, established and insisted upon
by Plato,* were the postulates which allowed certain privileges in the
use of the tools. These permitted:

1. The drawing of a straight line of indefinite length threough two
given distinct points;

2. The construction of a circle with center at a given point and
passing through a second given point.

Indeed, it seeins that a game built around such scanty outlay would
be a disappointing affair. Nothing, however, could be farther from
the truth. Prcbably the most fascinating game ever invented, it is
awe-inspiring in its extent to the novice, and a thoroughly absorbing
occupatinn to the expert.

"Any geometry that was indulged in which did not adhere closely
to the Platonian rules was condemned as unsportsmanlike and
ulabeﬁttlng the ideal thoughts of the scholar and mathematician.
This was the general opinion of the old classical school. All geometri-
cal situations had to be met with only straightedge and compasses.
But under their rules, these tools alone are incapable of producing
solutions of the Three Problems. This fact, however, was not estab-
lished until about 1800—two thousand years: later. This statement
is not surprising in view of the fact that it is necessa:y to pass beyond

*As rumor has it.
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the confines of plane geometry in order to show that solutions cannot
be found there. The mathematical structure needed to do this was a
long time being developed and at first seemed to have nothing whatever
to do with geometry.

3. Trisection

The first of the Three Problems, the trisection of a general angle,
no doubt arose, so long ago that historians can find no record, in just
the manner that we would propose it for ourselves today. We find
it easy enough tc biseaz’ any angle Whatever With the compasses,

and then draw mth the stralghtedge the hne ]Dlrllllg this pomt Wlth
the vertex of the angle. Success is easily won and we turn raturally

" to the division of the angle into three equal parts. After a variety of

attempts restricted to the classical rules and tools the difficulties seem
discouraging. We begin to suspect the existence of some underlying
principles that block every move.

Hippias of Elis, who lived in the Fifth century B. C., was one of
the first to attempt to solve the Trisection Problem. The very same
obstacles presented themselves to thwart his efforts but, freeing him-
self from the Platonian rules, he devised a curve called the Quadratrix,
to be discussed later, by means of which he was able to give an exact
SGlutlQﬂ tﬁ) the pmblem But, we must understand, it was not achieved

Hlpplas was c:my one of the nrst to succumb to the ~' .rm of this
perplexing question. A partial list of his followers will show you what
a powerful pull it had upon the attention of the great and the near-
great. Archimedes, Nicomedes, Pappus, Leonardo da Vinci, Diirer,
Descartes, Ceva, Pascal, Huygens, Leibniz, Newton, Maclaurin,
Mascheroni, Gauss, Steiner, Chasles, Sylvester, Kempe, Klein, Dick-
son—ali of these, and hundreds more, attacked the problem directly
or created the mathematics by which substantial advances could be
made toward a full understanding of the situation.

4. Statement of the Problem
Let us express the requirements for solution of the Problem in
analytical form.

(A) Algebraic Formulation. Given the angle AOB =306, let us
suppose one of the trisecting lines to be OT, Fig. 1, so that 70B =o0.
Select an arbitrary length on OA as the unit distance and draw the
parallel AC to OT, meeting OB extended at C. Then angle DCO =0.

ji17



8 THE TRISECTION PROBLEM

FIG. |

alternate interior angles. It is evident, since angle ADQ is the sum
of the opposite interior angles of triangles DCO and angle DCO =6,
that angle DOC=0. Therefore. triangle DCO is isosceles and
DC=D0=1. Let x denote the distance OC, 2y the distance AD,
and a the projection of OA upon the side OB. From similar triangles
CMD,d CNA, and CLO, all right triangles with equal angles at C,
we find:

x/2=(x+a)/(1+2y) = (1+) /%,

which give x2=242y and 14+2y=2(x-+a)/x.

From these we eliminate y by substitution to obtain:
x2—1=2(x+a)/x or

@1 F8i-8a=0

This relation, as will be seen shortly, is fundamental to the problem
and is called the Trisection Equ=tion. It is a cubic equation with the
term in x2 missing.

(B) Trigonoineiric Formulation. A knowledge of trigonometry
will produce the Trisection Equation in different fashion. In what
follows we make use of the expression for the sine and cosine of the
sum of two angles. We have:

€08 30 =c0s(20+6) =cos 20 cos 0 —sin 20 sin 6.
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This becomes, on replacing sin 26 and cos 26 by their equivalent
values in terms of O:

cos 30 = (2 cos%0 —1)cos 6 — (2 cos 8 —2 cos?), or
(4.2) cos 30 =4 cos®0 —3 cos 0.

This expresses the cosine of a given angle in terms of the cosine of its
third part. Looking again at Fig. 1:

x=2cos©® and a=cos 30,
so that by making these replacements, (4.2) becomes:
a=x*/2—-3x/2,
or x3—3x—2a=0.

Note, before passing on, that no matter what angle is given, the
corresponding value of ¢ lies between +1 and —1 while that of x lies
between 42 and —2.

Since we may drop the perpendicular from A upon OB and thus
determine @, then we may think of this quantity as being given with
the angle AOB. If the point C, or its distance x along OB, can be
determined, the problem is at once solved by connecting C to A and
taen constructing the trisecting parallel O7. Thus we see that the
geomelirical solution of the problem is entirely equivalent to the alge-
braic solution of the corresponding Trisection Equation.

5.  Constructibility

We may now restate the proposal in a differexfxt way: I st passz’ble
a 700l % of the ;szse%cizmz Egugizan# The answer, Suspected for so lc;rng,
that it is not always possible is now definitely established.

Any construction which depends on the location of points by
means of the straightedge and compasses is a permissible one under the
rules of plane geometry. To conserve space we shall use the word
constructible for the operations that can be performed with these tools.
Since the Trisection Problem has now been put upon an algebraic
footing, we must see how these operations appear in algebraic form.
For, it is only through this medium that we can determine the charac-

ter of the solution we seek.

(A) Algebraic Equivalence of C‘mzstmctzbzlzty If we are given
two line segments, @ and b, these segments can be added, subtracted,
multiplied, and divided geometrically, using only straightedge and
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compasses. These operations on the given quantities are called
rational. The first two need no explanation and are evident from the
meanings of the words sum and difference. The multiplication of a
and b is effected by drawing the line P&, Fig. 2A, at any angle with
PR and constructing the parallel line to produce similar triangles as

FiG. 2A FIG.28

FIG. 2C

shown. Since ¢ and b represent the ratio of segment length to unit
length the unit is given with ¢ and 4. Division of the segments, b/a,
is similar to multiplication and should be obvious from Fig. 2B. The
extraction of a root of a quantity is called an ¢rrational operation. - The
square root of a line segment, @, may be constructed by drawing the
semicircle with (1-+a) as a diameter and erecting the perpendicular
at the joint of the segment and the unit distance. It should not be
difficult to see from the two similar nght triangles the proportion:
1/x=x/a, and thus x =+/a.

Y



THE PROBLEM 11

We shall presently show that these five algebraic operations are
the only ones that admit construction by straightedge and com-
passes. Combinations of these, however, can be built up step by step
to produce very complicated constructions. For example,

(1) a+b\e (2) '\/a:-%—-\/ b+ ¢
(3) (a+b)/(c-++\d) (4)  a++BFe)

are all constructible if the quantities a, b, ¢, d are given lengths and no
imaginaries appear. Thus, for (2) we would first take the square
root of ¢, then add b, then take the square root of the result, then add
a, and finally take the sguare root of that result—all accomplished by
straightedge and compasses as shown in Figure 2.

Generally, such expressions are called gquadratic irrationalities of
order n, where n is the least possible number of superimposed square
root radicals. Number (2), for instance, is of order 3. Complicated
as these irrational quantities appear, it will be noticed that they in-
volve nothing more than a series of square roots of constructible
lengths and they are, therefore, themselves constructible. We shall
use a general symbol to represent all of them:

A+ByC,

where A, B, C are constructible quantities and, generally, \/C is a
quadratic irrationality of higher order than 4 and B.

Numbers of this sort may be roots of equations of much higher
degree than the second—equations whose coefficients are either the
given lengths or rational functions of them. Let us take a single
illustration from the preceding group. If we set, for (3):

x=(a++b)/(c++d),
and square, we have:
c2x? —2acx +a? = b —2x+/(bd) +dx2.
Ccllectmg and squaring again to remove the radical \(@d):
(c?—d) 2t —4ac(c— d)x'ﬂ‘—l—(t’:’i‘nz:ip'guz:2 ~ 2bc? —2a%d — —2bd)x?
L sé(ag bacx+(a*—b)2 =0,

an equation of fourth degree in x whose coefficients are rational func-
tions of a, b, ¢, and d. :

We shall now prove that the z:atmnal DpEI‘EtlDIlS of addltl@n, sub-
traction, Inultlphcatmrl, and division, together with the irrational
operation of extraction of square roots are the only ones possible by

95



12 THE TrRisECTION PROBLEM
straightedge and compasses. To this end we transfer to analysis and
use the algebraic interpretation of these geometrical elements.
All constructions of plane geometry are but the location of points
either as the intersection of two lines, a line and a circle, or two circles.
I. Two given or constructed lines are represented by the equations
ax-+by-+e¢ =0
ax+by+c: =0
where the coefficients are geometrical lengths either given to start
with or determined at some stage in the construction. These lines
intersect in the point whose coordinates are the simultaneous solut.on
of their equations, that is, in
x = (bico — bse1) /(@b — ashy), ¥ = (@1cs —ascy) /(@b — ash,).
These numbers are evidently rational functions of the coefficients in
the equations of the lines. Thus the manipulation of the straightedge
leads to no operation other than addition, subtraction, multiplication,
and division of lengths.

I1. The line ax+by-+c=0
meets the circle (x—h)2 4 (y—R)2 =1

in points whose abscissas are given by

(a2 +b2)x2+2(ac — hb*>+abk)x +c?+2bck+ (A2 + k% —12)b2 =0,
or Ax:*+Bx+C=0,
where the coefficients A, B, C are clearly rational functions of the
quantities e, b, ¢ and &, k, r. The solutions of this quadratic are

x=(—B=~B*—4AC)/2A,

quantities which involve, in addition to the operations mentigned in I,
nothing further than the constructible irrationality B2 —4AC.*

III. The intersections of two circles are the same as the inter-

sections of their common chord and one of the circles. Thus, since
the coefficients in the equation of the chord are rational functions of
those in the equations of the circles, this case reduces immediately to I1.
Accordingly, '
The straightedge and compasses together are capable of making
only those geomelrical constructions which are algebraicaily

*If the quantity B2 —~4AC is negative, the roots are imaginary and there is no ques-
tion of constructibility since the line and circle do not meet.

22



THE PROBLEM 13

equivalent (o a finile number of the operations of addition, sub-

traction, multiplication, division and the extraction of real square

rools involving the given lengihs.
6. The Impossible

In order to determine the impossiblity of trisection of the general
angle, it suffices to give but a single example. Keturning to the Tri-
section Equation, we shall discuss the situation for the particular
angle AOB=60°. For this the projection value a=cos 60°=1/2
produces the corresponding equation:

(6.1) x3—3x—1=0.

The question that must be decided is whether or not this equation has
constructible roots of the sort described in the preceding pages. If
not, then trisection is not always possible by straightedge and com-
passes. The argument is a bit involved, to be sure, but the end in
view is worth the effort.

In order to proceed without interruption, we shall dispose of a
necessary preliminary consideration. If %;, x., x; are the roots of
(6.1) we may write the equation as

(x—=21) (x — x2) (x — x3) =0,
or X3 — (X122 +%3) X%+ (XaX3+ X3X1 +X1X2) X — X1 %03 =0.
This, however, is identical with
x?*—=3x—1=0.
It is evident on comparing these two forms that the sum of the roots
of equation (6.1) is zero. That is, since the term in x? is missing, its
coefficients must be zero. Thus

(6.2) X1+ %2+ X3 =0.

-~ (A) We shall first prove that (6.1) does not have a rational rool.
If we assume that it does, we are led to a contradiction, as follows:
Let x=A/B, where A,B are integers with no common factor other
than 1. Then from (6.1): (A/B)3—3(A/B) =1, which may be written
in either of the forms:

3A+B=A(A/B): or A?—3B>=B2(B/A).

Now, since A and B are both integers, the left hand member of each
of these equations is an integer. Accordingly, the right hand members
must be integers and, since A and B have no common factors
other than 1, the only possibility is that A and B have either of the
values +1 or —1. That is, x= =1. But this is impossible for neither

R
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+1 nor —1 satisfies (6.1). This establishes the statement that
x% —3x —1 =0 has no rational root.

(B) If (6.1) has a constructible root of the sort x;=A+B+\C
where A and B are constructible irrationalities of lower order than +/C,
then on substituting in (6.1) we have:

(A+B+\/C)?—3(A+B+C)—1=0,
or (A*+3AB*C—3A—1)+(3AB-+4B*C—3B)C=0.

The only condition under which this can exist is that both quantities
in the parentheses be zero. But this implies something further. Since
the substitution of (A—B+/C) produces the same equation except
for a change in sign between the parentheses, we are apparently in
possession of a second root: x;=A4 — B+y/C. But, from (6.2) the three

X1+ X+ Xa =A ‘EI’B‘\/C’!—A sB‘VC‘!“Xa EO,
or X3 = —2A.

If, as we supposed, A is a constructible irrationality it must be of the
sort, L+ M-/N with /N of higher order than either L or M but yet of
lower order than 4/C. A repetition of the preceding argument applies
here and forces us to admit the existence of a root whose irrationality is of
the same order as L. Thus we are led from link to link down this
chain of reason until we find the only constructible root that this equa-
tion might have is a rational number. But we demonstrated in (A)
that it did not have such a root. Therefore, equation (6.1) has no
constructible root and

60° cannot be (risected by straightedge and compasses.

7. The Possible

" From the preceding discussions it is evident that certain angles
do admit of trisection by straightedge and compasses. In fact, if the
Trisection Equation

(7.1) x3—=3x—2a=0
can be factored into the form:
(7.2) (x+r)(x2+sx+) =0

is @ can be trisected by these means. Since (7.1) and (7.2) are here
identical, we may equate their coefficients, having:

r=—s§, {=7*=3, 7ri=-—27,
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and the three roots of (7.2) may bc written as:

Xi= —1;  xa=(1/2) (r+3VI+2a/r); xs=(1/2) (r —\3J1+2a/7).

To illustrate such a possibility, consider the given angle AOB =54°
whose cosine is (1/4)4/(10—2+/5). The corresponding Trisection
Equation is therefore

%3 —3x — (1/2)4/(10 —24/5) =0,
which can be factored into the forms:

[2—(1/4)(V/5+1)4Y10—-2v5] =0,

and [ x2+ (x/4) (\5+1)\VI0— 245+ (/5 — 1) /2] =0.

Notice that all coefficients, complicated as thev are, are constructible
and all roots are consequently constructible. Thus 54° can be tri-
sected, or, which is the same thing, 18° can be constructed by straight-
edge and compasses.

The discriminant, D, of a cubic equation is an expression which
indicates the character of its roots. For the Trisection Equation this
discriminant is the quantity:

D =108(1 —a2).

Now, since @ cannot be greater than 1, D is always positive and this
assures us that all three roots of the equation are real numbers. Why
should there be three when only one is all that is necessary to be
determined for a given angle? The answer is found in realizing that
the quantity « is not only the cosine of the given angle, 39, but also
of (360°+4-30) and of (720°+436). Accordingly, the Trisection Equa-
tion delivers to us a root which determines the trisection of the given
angle and two further ‘““induced’ roots corresponding to the angles
(120°+0©) and (240°+0©). Thus for 360 =90° e=cos 90°=0, and the
Trisection Equation x®—3x =0 produces the three roots: ++/3, —+/3,
and 0. The first of these values corresponds to the third part, 30°,
of the given angle. The two remaining values give constructions for
150° and 270° as the third parts of the two induced angles.

Some Trisection Equations belonging to familiar angles which
fall under the “‘possible’” case are listed in the accompanying table:
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AOB |a=cos(AO0B)| Trisection Equation Roots

0° 1 ' X3 —3x—2=0 -1, —1,2

45° | ~2/2 |  x9—B8x—y2=0 ' V2, (V2/2)(1 2y 3)

72° | W5—1)/4 | 23—8x—(V5—1)/2=0 |~2/(V5—1) ,1/(v5—1)= g‘g_—i‘%

T 90°| o %7 —3x =0 | 0, +v3, —v3
180° -1 % —3x +2 =0 1,1, =2

Since we can trisect 72° and can bisect any angle, it follows that
an angle of 3° is constructible. On the other hand, angles of 1° and 2°
are not constructible for,* otherwise, we would be able to trisect 60°.
It is somewhat startling to realize that the unit of angular measure
we have used with so much familiarity cannot be constructed with
straightedge and compasses.

8. Other Crileria

Although it is impossible to give a simple criterion to apply to all
angles, the following discussion leads to rules that produce an infinitude
of possibilities.

(A) If nis a given integer no! @ multiple of 3, then the equation
(8.1) n-b+3-c=1

can alwayvs be satisfied by finding particular integer values for b and c.
Thus, for example, 4b-+3c =1 is satisfied by =4, ¢= —5; or b= —5,
c=7; etc.; —13b+3c=1by b=2, c=9; or by b= —1, c= —4. Multi-
plying (8.1) throughout by (360°/3#), we have:

@8.2) b(120°) +¢(360°/n) = (1/3)(360°/n).
Now if the given angle AOB is of this type, 360°/#, (18° for examyle)
then (8.2) may be written (reversing the order):

AOB/3 =c(AOB)+b(120°).
The angle 120° is itself constructible and we can always find integers
b and ¢ to satisfy this last equation. Thus, to construct AOB/3, we
need only multiply the given angle by ¢, the angle 120° by b, and add

*Trisection of 60° followed by two bisections would produce an angle of 5°. The
angle 2° results in constructing the difference 5°—~3°.

28
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the result—all of which are possible constructions. It should be clear
then that
If AOB=360°/n, where n is an integer not divisible by 3, then AOB
admils of lriseclion by straighiedge and compasses.

Obviously, £(360°/n) is an angle in the same class if % is an integer.

(B) Suppose now that AOR =360°/n where n is a multiple of 3,
say n =37-m where 37 contains all the factors 3, and » does not contain
anty. Then, as in the preceding, two integers & and ¢ can be found
such that

mb-+3c=1
is satisfied. Multiplying this last equation through by (360°/3n), we
obtain:
mb(360°/3n) +¢(360°/n) = (1/3)(360°,/n).
In the first term, hcwever, m/n =1/3", and thus
5(120°/37) 4+-¢(360° /») = (1/3)(360° /n)

or AOB/3 =c(AOB)+2p(G0°/3").
Now since r is a positive integer, the last term in the right member is
either 20° or some repeated trisection of 60°. We have shown that 60°
cannot be trisected by straightedge and compasses and it follows that
60°/3" is not a constructible angle. Accordingly, AOB/3 is not con-
structible in this case and a companion rule to the preceding one is
established:

If AOB =360°/n, where n ts an inleger divisible by 3, then AOB

cannot be trisected by straightedge and compasses.

Another set of each class may be determined by the two following
rules:

If p and q are integers and p is numerically less than q then it is

bossible to trisect by siraightedge and compasses any angle
whose cosine 1s
a= (°—3pg%) /24",
For, the corresponding Trisection Equation:
23 —3x— (p°—3pg*) /g* =0

is obviously satisfied if x=p¢/¢, and this root is constructible. An
example is furnished by the values p=—1, ¢g=3. For these,

27
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cos(AOB) =13/27 and AOB is approximately 61°13’. On the other
hand,

If the cosine of the given angle is p/q, where p and q are inlegers without
common factors and q is greater than 1 but not the multiple of a
cube, then it is tmpossible (o (risect this angle
by straightedge and compasses.

9. Regular Polygons

The general question of trisection enters into the study of the
possibility of constructing regular polygons. Those of three, four,
five, six, ten, and fifteen sides, for example, are constructible by straight-
edge and compasses, a fact well known to the ancient Greeks. But
the polygons of seven, nine, eleven sides cannot be so constructed.
This fact, like the proof of the impossibility of general trisection, was
also late in being established. The ennagon, or 9-sided polygon, has
the central angle of 40° subtended by each side and we have seen that
this angle is not constructible. The construction of the 7-sided poly-
gon depends on an equation of the third degree which can be shown,
by a treatment similar to that of Paragraph 6, to contain no con-
structible roots. Gauss was the first to give a general constructibility
rule for all regular polygons thus bringing to light some possibilities
that were never dreamed of up to his time. Among the constructible
ones were found the polygons of 17, 257, and even 65,536 sides. Un-
fortunately, the scope of this book does not permit us to wander down
this enchanting path.

(W
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CHAPTER 11
SOLUTIONS BY MFEANS OF CURVES

From the very beginning, keen sighted persons suspected the
impossibility of a solution of the Trisection Problem through the
medium of straight lines and circles and looked about for other means to
turn the trick. Since these two curves, the line and circle, were found
insufficient, one person after another began to devise new and more
complex curves, thus of course breaking the rules of the game as laid
down by Plato. Many of these curves did offer solutions to the problem
and, in addition, played important roles in other fields of mathematics
and physics. For these reasons, they deserve a prominent place in
our discussion. The drawing of these curves called for more complicated
tools than the simple straightedge and compasses and their descrip-
tion forms a part of the subject of the next chapter.

1. The Quadratrix

The Quadratrix, invented by Hippias in an attempt to trisect the
angle and square the circle, is formed in the following fashion. In Fig. 3,

COB is a quadrant of the unit circle. The point D travels along the line
from O to C at a constant rate. In the same interval of time, the point
E moves from B to C along the arc, also at a constant rate. The
horizontal line through D meets OF in P. The path described by P
is the Quadratrix.

It is evident from this definition that the ratio of the lengths of
any two arcs BE and BA is the same as the ratio of their corresponding
segments on OC. That is,

1.1) OD/OF =BE/BA =06/¢.

Having by some means drawn the curve, if AOB =¢ is the angle to be
trisected, it is necessary only to take OD = (1/3)0OF, in the manner of
Fig. 2. Thus from (1.1):

(1/3)(OF /OF) =0/¢,

or 0=9¢/3.

-?;i
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FIG. 3

The rectangular equation of the curve may be obtained as follows.
Take OB and OC as the positive X and Y axes and let the coordinates
of P be (x,v). Then since

oD/OC=06/(xr/2), x=(0P)cos O, 0C=1, OD=y,
we have: x=ycot® and y=20/r.

These form the parametric equations of the Quadratrix and the rectarn-
gular equation results from eliminating O:

| y=x tan(zy/2)

The reader familiar with indeterminate forms will find that the curve
strikes the line OB at a point 2/x units distant from O.
2. The Conchoid

The Conchoid, designed by Nicomedes about 200 B. C., was used
to obtain a solution of the Trisection Problem by Pappus five centuries

S0-.
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later. It is formed in a very simple way. A circle moves with its
center always on a fixed line XX. Through its center and also through
a fixed point O, not on the line, passes the line O7. The path of the
intersections P and P’ of this line with the circle is the Conchoid.
There are thus two branches of the curve, both having the line XX as
an asymptote.

Unlike the Quadratrix, which, once drawn, can be used to trisect
any given angle immediately, a fresh Conchoid must be constructed

FIG. 5

for each new angle. Suppose it is required to trisect AOB, Fig. 5.
Place the angle with vertex at O and draw the perpendicular line XX,
cutting OB at L so that OL = a, the projection value: cos (AOB). Using
2a as the radius of the generating circle, draw the Conchoid ACB.
At L construct the parallel to OA which will meet the curve at C.
The line OC then trisects AOB. The proof of this is direct:

Let angle AOC=LCO=0. Now since CN =2a (by definition of
the curve) and CLN is a right angle, then the segment from the mid-
point M of CN to the right-angled vertex L is of length «. Thus tri-
angles CML and MLQO are both isosceles. Accordingly,

LAOC=,L0CL=sMLC=06.
But £LOML =20, since it is the exterior angle of triangle CML. Thus
£LMOL =26

and the angle AOB is trisected by OC. ,

A polar equation of the curve may be derived directly from the
definition by selecting OA in Fig. 5 as the polar axis and O as the pole.
We have OC =7 and angle AUC =0, where r and 6 are now understood
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to be variables. If we denote the distance OD by b, we have from the
right triangle ODN:

cos ©=b/ON or ON=b/cos ©.

Thus r=5b/ ca§é+2a |

is the polar equation of the upper branch.

Using XX and OA as X and Y axes respective.y, the rectangular
equation results from substituting 7 =+/(x2+3?) and cos © =y/4/(x2+3?)
in the precedi: ; polar equation. We find, after squaring:

[y by =daty?

(Tt reac’er will find this interesting shell-shaped curve quite easy
to co-struct. If 60° be the given angle, the corresponding Conchoid
has ¢==cos 60°=1/2 and b =a-cos 60°=1/4).

A word of caution should be made here against a possible mis-
understanding. Although points on the curve may be found by straight-
edge and compasses, the conlinuosus description is entirely beyond
the possibilities of these instruments.

3. The Hyperbola

In solving the Trisection Equation, Pappus, about 300 A. D.,
made use of some propertiez of conic sections that were well known
at that time. His method of trisection [39]* is essentially this: a unit
circle is described with center at the vertex of the given angle AOB
and the bisector OC constructed. A point P is allowed to move so that
its distance from B is always lwice its distance from the bisector OC.
In this fashion P traces out a branch of an Hyperbola with the line
OC as the direcirix and the point B as focus. ‘This branch is reflected
in OC so that P’ corresponds to P.

The points of intersection of the unit circle and the Hyperbola
are trisecting points of the arc AP'PB. For, if PQ=x=P’Q, then
PB=P'A=2x and *he three isosceles triangles AOQOP’, P'OP, and
POB are congruent to each other with equal angles at their common
vertex O. ’

To derive the rectangular equation of the curve, let AB and OC
represent the X and Y axes. If we denote by 2c¢ the distance AB,
then B has the coordinates (¢,0) and we need only express in symbols

*Such bracketed numbers refer to items in the Bibliography.

32
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the requirement that the distance PB must at all times be twice the
distance PQ. That is, if the coordinates of P are (x,7):

v ixﬁ¢)2+3?2 =2x
or B —3x2— 21:x—|=c2 =0.

The location of the trlsec;tmg point P requires the simultaneous solu-
tion of this equdtmn and that of the circle, which’is itself of the second
degree. This gives rise to an equation of the fourth degree, the roots
of which are the coordinates of P together with those of trisecting
points for induced angles.

4. The Limacon

The Limacon, invented by Pascal about 1650, was later found to

have trisecting possibilities. It is defined in a manner similar to the

Conchoid: A point F is selected, Fig. 7, upon a fixed circle of unit
radius, The movable line FA, Whlc:h passes always through F, inter-
sects the circle at P. The point A on the line at a constant distance
b from P describes the curve.

The polar equatmn of the curve rnay be derived by taking the
diameter F B as polar axis and F as pole. A then will have the coordi-
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nates (7,0). Angle FPB is inscribed to the semicircle and is accordingly
a right angle. Thus FP =2 cos 6. Directly then, '

EEFITYETS

is the equation of the path of 4. Replacing r by /(¥24-»*) and cos ©
by x/+/(x2+y?) produces the rectangular equation:

2 ).

Thus the Limacon is a curve of the fourth degree.

The special value, b=1, is selected in order to utilize the curve as a
trisector. Place the given angle, Fig. 8, with vertex at O, the center
of the unit circle, and one side along its diameter F*'B. The other side
will strike the Limacon at A. Draw AF. Then the line through O

p;arallgl to AF trisects AOB. The proof follows: We have by con-
struction:

AP=P0=F0=1,
so that triangles FOP and OPA are isosceles. Thus, if angle OFP =0,

ZOPF=06 and <ZPOA=/LPAO=06/2.

But £ BOP =20 since it is the exterior angle of triangle OF P.
Accordingly, £ZAOB=/BOP—-/LAOP=20—-0/2=36/2,
and thus £LPAQ=LAOB/3.
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FIG. 8

There are three types of Limagon which will be interesting to
sketch by taking, for example, b=1, b =2, b=3. One will appear with
the loop, one without, and one with a cusp. This last, the heart-
shaped Cardioid, has many beautiful properties. It can be generated
by a point on the rim of a circular disk rolling on another of equal size
and also can be seen as the curve of light rays reflected from a polished
cylinder.

5. The Parabola

Rene Descartes, the founder of modern Analytic Geometry,
published the epoch-making treatise [12] ‘““La Geometrie”’ in 1637.
Contained in this monumental work is another attack upon the Tri-
section Problem, a solution by means of conic sections. The idea
involved is that the roots of the Trisection Equation

x*—3x—2a=0
can be represented as the x-coordinates of the points of intersection of a
Parabola and a circle. Consider the Parabola:

and the circle: x2+32—2hx —2ky =0,

352
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whose center is at the point (%,£). The abscissas of their points of inter-

FIG. 9
section are found by eliminating y between their equations; thus, by
substitution:

x2xt—2hx —2kx?=x[x*— (2k —1)x —2h] =0.

The factor, x =0, which was expected since both curves pass through the
origin, may be discarded. The other factor:

X —(2k—1)x—2k=0

can be the given Trisection Equation if we take particular values for
h and k; that is, if
2k—1=3 or k=2 and h=a.

This is the requirement that the center of the circle be taken at (a,2).
With such arrangement, the circle will cut the Parabola in points whose
abscissas are the roots of the Trisection Equation.

For illustration, let us apply this method to the trisection of 60°,
the corresponding Equation for which is

x3—-3x—1=0.
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Construct the Parabola y =x2. Then draw the circle whose center is
(1/2,2) and which passes through the origin 0. The x-coordinate OC
of a point of intersection is shown in Fig. 10.
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It is-obvious that the Parabola can be drawn once for all angles.
When given any particular angle such as A0B (with 0OA selected as
2 units), drop the perpendicular from A to OB. Halve this projection
and erect another perpendicular to meet the line y =2 at the center of
the required circle. Draw the circle passing through the origin. From
the point P, where this circle meets the Parabola, drop the perpendicu-
lar to OB. This will determine the root x of the Trisection Equation.
But this value, see Fig. 1, is twice the projection value of the trisected
part of AOB. That is, x/2=cos 8. Thus we may either halve x and
erect the perpendicular to meet the unit circle or, more conveniently,
: draw the circle with radius 2 meeting PC in 7. The line OT then is a
4 trisector of AOB.

ERIC .37
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Notice that the circle has for radius the quantity: +/(2-+a?).
Thus, since the numerical value of & is never greater than 1, the largest
radius of any circle needed is /5. For this reason, the Parabola need
not be drawn beyond a certain range.

6. The Cubic Parabola

The curve whose equation is y = x%/2 cuts the line
(6.1) y=3x/2+a
in the points whose x-coordinates are given by the cubic equation:

x3/2—3x/24+a=0 or x8—3x—2a =0,
This system then may be used for trisection:

To each given angle with its projection value a there will cor-

respond a certain line (6.1). All such lines have the same slope: 3/2;

that is, they are all parallel to the segmer . L drawn in Fig. 11. Fur-
thermore, the line (6.1) corresponding to any given angle AOB cuts off
upon the Y —axis a segment equal to ¢ itself. The geometrical con-
struction for the trisection of AOB is thus indicated: Draw the circles
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of radii 1 and 2 as shown. From A’, where OA meets the unit circle,
drop the perpendicular to find the projection ¢. Lay off this projec-
tion length OP’=a upon the Y —axis and draw the line PP’ parallel
to L. From the intersection point P drop the perpendicular to OB,
thus determining O@=x, a root of the Trisection Equation. Now,
as explained in the preceding paragraph, T is a point on the trisector.*

7. The Cycloid of Ceva

Prompted by the familiar ““insertion”” method (see Chapter III)
of Archimedes, Ceva devised in 1699 a curve for trisection which was
called the ““Cycloidum anomalarum™. The principle involved is that
of doubling angles. With center C on the fixed line CB, draw the unit
circle. A point P on a line rotating through C is located so that

FiG. 12

CQ=QD=DP=1.

The locus of P, as AC revolves about C, is the curve in question. It is
evident from the figure that if angle QCD =9, then

£QDC=6 and <ZPQD=/QPD= /20,
Now since LQDP=7—40 and 2ZQDC=0,
then £PDO=30 and ZQCD=,/PD0/3.

The application to a given angle AOB is as follows. Place one side, 0B,
of the angle coincident with the line CB. With the compasses lay off

~ *Points P in the first quadrant determine trisectors of given acute angles, while
the]cther intersections in the third quadrant locate trisectors for the ‘‘induced’”
angles.
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the unit length OF on OA. Then draw the line EP parallel to CB
which strikes the curve at P. Then £ PCD=~£AOB/3.*

An equation of the curve in polar coordinates is:

' 7::*17—1—2 cos 20 |,

and in rectangular coordinates:

The Cycloidum anomalarum is then a curve of the sixth degree. Com-

pare the polar equation of this curve with that of the Limacon.
8. Remarks
We found in Chapter I that the cubic Trisecticn Equaticjn could

SF‘CDnd degree equatlcm Df the CIFC.IE exc:ept when the Equatlon had
constructible roots. In this chapter we have presented a number of
solutions of the Trisection Equation in its general form, that is, for any
value of @, but in each instance we made use of equations and corres-
ponding curves which, excepting the conics, were of higher degree than
the second.

Mathematical literature is crammed with such solutions of the
Trisection Problem as are given in this chapter. It is an interesting
fact that there exists an infinitude of curves, both transcendental and
algebraic, which furnish the means of solvinz the problemi. These
curves, for the most part, are difficult to draw. Mechanical devices
C)f Variaus scrts hJVE been invented for the deq':;iijticn r}f these high&:x

1tr1sectors in dlrec:t fashmn. This is the Subgect of the ftrll(:)wmg chapter
*Lines EP cut the loop on both sides of its highest point. Those intersections to

the right determine trisectors for acute angles while those to the left give trisectors
for obtuse angles.
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CHAPTER III
MECHANICAL TRISECTORS

A variety of mechanisms have been devised for the solution of the
Trisection Problem. Some of these mechanisms draw the curves
that aid in the solution of the Trisection Equation; others solve the
equation directly or are applicable to the immediate division of the
angle into three equal parts. It is with the latter sort that we shall
concern ourselves in this chapter.

1. The Graduated Ruler

Undoubtedly known to Plato and Archimedes was the method of
trisecting an angle by means of compasses and graduated ruler; that is,
one along which marks have been spaced. These marks need not be
any specified distance apart and, what is indeed surprising, there need
be only {fwo marks.

(A) Let us suppose the ruler to have upon one edge* the two
points P and R at a distance 2m apart. This distance is laid off on
one side OB of the given angle. At the midpoint C of this segment,

*The other edge is not be used in constructions. A ruler with two straight edges
is alone sufficient to make all constructions that are possible by the compasses and
simple straightedge [51].

af
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erect the lines perpendicular and parallel to OA. Then slide the ruler
through O so that P and R become coincident with these constructed
lines as shown in Fig. 13. In that position, the edge of the ruler tri-

sects angle AOB. For, if M is the midpoint of PR,
PM=MR=MC=0C=m

so that, if ZAOR =6, then ZMRC =6, the alternate angle formed by
the transversal OR and the parallels OA and CR. Since triangles
CMR and OCM are isosceles,

LMCR=0, <ZOMC=20=/LCO0M
and OR is the trisecting line.

Let us look at the algebraic statement of this “‘sliding’ process.
Essentially, it is required that a given segment PR shall be so *“inserted’”

ié

between two fixed perpendicular lines that, extended if necessary, it
shall pass through a fixed point 0. Let the X and Y axes, Fig. 14,
represent the perpendicular lines and let (%,k) be the coordinates of the
fixed point. If x and y represent the intercepts of the segment PR,
we must have: :

x? _|£ y2 — 4m2
for the constant length PR =2m, and from similar triangles:

y/k=x/(x—h).
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These two equations are now solved for x in terms of the given quanti-
ties £, k, and m. From the second y = kx/(x — k) which, substituted in
the first, gives:

x*+kx?/(x — h)*=4m?,

or xt—2hx? 4 (W2 4k —4AmD) x>+ 8hmx — 4hm? =0.

Thus this insertion problem of Archimedes is one of the fourth degree;
that is, there may be four possible positions of the segment. It is
evident then that the possession of two marks upon the straightedge,
although apparently innocent enough, forms a very powerful tool
when used in the insertion manner.

It will be noticed that the insertion principle is fundamental to
many of the devices explained in the following paragraphs.

(B) Another mode of solution by the graduated ruler follows
directly from Fig. 1 of Chapter I. Construct at the vertex of the given
angle AOB the circle with a radius egqual to the distance between the
marks on the ruler. That is,

FIG 15
OR =0A = PR =2m.

The points P and R of the ruler are brought into coincidence with the
line OB (produced) and the ciicle, respectively, while the edge of the
ruler slides through the point A. Since triangles PRO and ROA,

LAPO= LAOB/3.
2. The Compasses of Hermes

Exactly the same idea forms the basis of the compasses with three
feet devised by H. Hermes in 1883 [5][17]. Hure two points P and R,
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apart, are always in line with A, the point of the other leg. The circle
with PR as radius is drawn about the vertex of the given angle. The

FIG. &

point A of the compasses is applied to A on the side of the angle as
shown and the compasses opened until P and R fall on the line OB
and the circle, respectively. Then £ APB= £ AOB/3.

3. A Three Bar Apparatus
Under the insertion method falls the very simple arrangement
of three bars shown in Fig. 17. Aubrv [3] gives credit for this to Ceva
but no doubt Pascal also used the instrument to draw his Limacon.

FiG 7

The bars OF and OF are taken equal in length and jointed together
at 0. The point E is attached so that CE =OFE and F is made to slide
in a groove along CD. For trisection, the point O is placed at the
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vertex of the given angle AOB and OF coincident with OB. When C
is brought to the produced line 04 then

ZACD= £ AOB/3.

It should be noticed that if CD is fixed, any point of OF traces out an
Ellipse. To draw the Limacon, fix the bar OF and mark the path
described by C. If the point C is fixed and O be made to move along
a fixed straight line CA, then F describes the Cycloidum anomalarum
of Ceva which was discussed in Chapter 11I.

4. Ceva’s Pantograph.

Similar to the foregoing is the apparatus of Ceva, [9], which was
considerably elaborated by Lagarrique in 1831 [32]. It is composed of
four jointed bars forming a parallelogram with equal sides, two of
which are extended. Its application to the angle AOB is shown in

(cy P

FIG 18

Fig. 1&. The point O is placed at the vertex of AOB and P is made
to move along the bisector of AOB until the extended sides of the
parzilelogram pass through A and B, the points where the circle of
radius OR = RP meets the sides of the given angle. Then, since arcs
RS, AS’, and BR’, teing subtended between parallel chords of the
circle, are equal, ZROS= £ AOB/3.

The instrument can be used as a Pantograph by fixing R to the
plane and selecting a point T oi. SB as the tracer. Then the point 7'
on OS which is collinear with R and 7 describes a reduction of the path
of 7. Compare this device with the one shown in Fig. 17.
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5. Amadori’s Instrument

Again the same principle is involved in the apparatus of Ama-
dori [2]. As indicated in Fig. 19, the straightedge is attached to a
plate out of which are cut parts of the circle. The point £ of the
straightedge moves in a slot along the bisector of the given angle
AOB while the other point R moves along the diameter of the circle,
this diameter, of course, being equal to the distance PR. When the

T FIG. 19

edge passes through C then the point M determines the trisecting
line MOT.

The mechanisms of the preceding paragraphs all contained as the
fundamental principle the ability to insert a given segment either
between two lines or between a line and a circle in such a way that the
line upon which the segment lies passes through some fixed point.
The following two very novel and ingenious devices employ the in-
sertion idea but with the different requirement that a line fixed at
right angles to the segment shall pass through a given fixed point.

6. The Carpenter’s Square

A right-angled square with parallel eges whose legs have the same
width m, Fig. 20, is first used to draw the line 0’B’ parallel to OB. It
is then placed so that its inner edge passes through O with the corners
P and R on OA and O'B’ respectively so that PR=2m. In this posi-
tion, it is readily seen that the right triangles, OPT, ORT, and
ORK are all congruent with equal angles at O. Then 0T and OR
are trisecting lines of angle AOB {44]. The square was used by
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Nicholson, [37], todraw a trisecting curve and a little later by Aubry
[3] in this more direct fashion [51].

FIG. 20

7. The Tomahawk

This implement is, in a sense, an improvement over the carpenter’s
square since it is directly applicable to the trisection of a given angle.
Furthermore, the edges of the ‘“handle’ need not be parallel to each

other. The point
C is the center of the semicircle and A is taken on PT extended so that
AT is equal to the radius of the circle. Asin Paragraph 6, OT and OC
are trisecting lines. :

Although the inventor of the Tomahawk is not known, Bergery
describes the instrument in the 3rd edition of Geométrie appliquée a
Uindusirie, Metz, 1835. See also [22].
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8. Laisant’s Compasses

A mechanism composed of four straight bars hinged together at
one point and forced to make equal angles with each other was given
by Laisant [33] in 1875. The lengths are chosen so that, Fig. 22,

OB=0C, CS'=BS', 0D=0A, AS=DS,

with S and S’ as joints permitted to slide in straight grooves along the
two trisecting bars. The triangles OBS’, ODS’, and OAS are congru-
ent with equal aneles at 0. The bars 0S’ and OS are extended be-
yond O so that th: third part can be set off upon the same arc.

9. Laisani’s Mechanism

Somewhat different is a second device offered by Laisant, ibid.
See also [7]. OBCD and CDES, Fig. 23, are jeinted parallelograms
with all sides equal. The joint S is forced to move in a straight groove
along the rod OD extanded. Triangles CBO and CDO are congruent
with equal angles at 6. Moreover, the same is true of triangles SCO
and SEO. Thus

£LBOC= £COS= £LSOE= £ZAOB/3.

A glance at the three bars ODES will indicate the connection between
this instrument and that shown in Fig. 17, Paragraph 3. Notice that
if the bar OB is held fixed, the point E will describe a Limagon.
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FIG. 23

10. Kempe's Trisector

One of the cleverest amateur mathematicians of the past century

was A. B. Kempe who, in 1875, was a young London barrister specializ-
ing in ecclesiastical law. To him is due the following elegant mechanism
for direct trisection [29].

c g’
©, ©

o FI1G. 24 O
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Consider the jointed crossed parallelogram OC'O’'C, Fig. 24, com-
posed of four bars equal in pairs. That is,
OC=0'C'"=b and OC':=0'C=c.
It is evident that no matter how the mechanism is deformed,
LCOC = £CO'C’'=0.

Now let us attach two more bars OD and DZFE as shown in Fig. 25 so
that

DE=0C=b and OD=CE=d.

With this, ODLC itself is another smaller crossed parallelogram with
<2 DOC= £CED.

Let us see if it is possible to arrange matters so that £ DOC= £COC’' =90
throughout all deformations of the second mechanism. If these angles
are to be equal, the two crossed parallelograms are always similar
since they already have equal angles at D, C, and C’. Consequently,
we must have the proportion:

OD/OC=0C/0C’ or d/b=b/c,
or bz =cd.

This means that the length of OC (and of O’C’) must be a mean propor-
tional between the lengths OC’ and OD; for example, d=1, b=2, ¢c=4.

From this discussion, it is obvious that two more bars, OF and
FG, may be attached in the same fashion to give fkree equal angles
at 0, thus producing the Kempe trisector shown in Fig. 26. For the
construction of the mechanism, it will be found convenient to tale
1, 2, 4, and 16 inches as appropriate lengths.
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FIG 26

11. A Linkage

With the Kempe arrangement of two crossed parallelograms, we
may now improve on the Laisant mechanism of Paragraph 9 [51].
Returning to Fig. 23, it will be noticed that the purpose of the slide S
is to keep the bars CD and ED equally inclined to OD. Accordingly,

FiGg. 27
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by properly attaching crossed parallelograms to these three bars, this
equal inclination may be accomplished and the useless bars CS and ES
removed without otherwise altering the effect of the mechanism. We
have then, Fig. 27, a linkage free from the slide and groove combina-
tion that is mechanically undesirable.

12. Shylvester’s Isoklinosial

Another linkage trisector was announced by Sylvester [47] in 1875
under the title “A Lady’s Fan”. The joints A, B, C, D, E, F, G lie on
a circle with center at O so that AH=HB and BK =KC, etc. Thus
LAOB=/COD =/ EQOF and £BOC=/DOE=/F0G. Accordingly,

LAOC=LZCOE = £EOG.

Q
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Shortly after its appearance this mechanism was utilized in an
optical apparatus to keep moving prisms equally inclined to each other.

132. A Line Motion Trisector

Consider the figures of Paragraphs 9 and 11. In Fig. 23, the point
S was constrained to move along the diagonal of the rhombus CDES.
Let 1 put the bars ES and CS back into place in Fig. 27. It is clear
then that S would move always in line with bar OD. Consequently,
if the bar OD were held fixed as shown in Fig. 29, then S would move in
the straight line determined by this bar [29].

o<
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Let the side of the rhombus OCSE be the unit length. By fixing
the diagonal OD in a horizontal position, £ will move on the unit
circle about O, and S along its horizontal diameter. This, it will be
noticed, is precisely the underlying principle of the insertion method
explained in Paragraph 1. Thus if the bar SE he extended as shown
here we need only move this bar so that it will pass through A in order
to trisect angle AOB. The angle OSE will, of course, be ZAOBE/3.

14. Draughting Triangles

Two celluloid triangles, each having a right angle, are sufficient
equipment to trisect any angle [1]{17]. Let AOB =306 be the given
angle about which is drawn the unit circle, Fig. 30. As usual, ¢ will
denote the projection of one unit side upon the other, that is, @ = cos 30.
Draw the two perpendicutlar diameters of the circle and mark off two
units on the vertical one below the circle to P. At P lay off the dis-
tance 2¢ horizontally to S. Slide the two triangles along with their
two edges together until the other perpendicular edges pass through
S and 7. At the same time, the corresponding right angle vertices
should lie on the wvertical and horizontal lines, respectively. In this
position, the line AC determines the angle 6= £ AOB/3. Let x
represent the distance CO =nd z the distance MP. Since CD and LM
are parallel, they make equal angles with the horizontal and thus

o3
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- -

r

I E FIG. 30

LZ0CT = £ PSM =c«. Furthermore, £CMQO=«. Therefore, the right

l/x=x/(3+2)=z2/2a.

From the first and last members here: z =2a/x which, substituted in
the first two members, gives:

1/x=x2/(3x12a),
or x3—3x—2a=0,
the Trisection Equation.

i5. The Cone Triseclor

The following trisection, given by Aubry [3] is included here for
its novelty. A right circular cone, Fig. 31, is constructed having its
slant height equal to three times the base radius. The cone is placed
so that the center of the base is coincident with the vertex of the given
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Fltz 31

angle, AOB =30. Then arc AB=370. A sheet of paper is now wrapped
around the cone and the points A, B, and V are marked on it as shown.
When the sheet is removed and flattened out, the angle AV E is one-
third angle AOB. For, since AV =37,

arc AB=31r(£LAVB),
and thus LAVB=0= ~2A0B/3.

16. Remarks

It has been said that Plato objected to all constructions which
involved the use of any mathematical instrument other than the
straigthedge and compasses. Yet there is every indication that he
himself proposed for the solution of the cubic a mechanical arrange-
ment very similst to the pair of right triangles of Paragraph 14. Some
historians credit nim with the following statement concerning the
practice of mechanical solutions: ‘‘The good of geometry is set aside
and destroyed, for we again reduce it to the world of sense, instead of
elevating and imbuing it with the eternal and incorporeal images of
thought, even as it is employed by God, for which reason He always
is God.”” Of course, it is and was realized that the actual drawings
made by these instruments were but crude physical representations of
the ideals in mind-—the *‘eternal and incorporeal images of thought.’’
But there is nothing un-mathematical about the use of a graduated

295




46 THE TRISECTION PROBLEM

ruler or any other instrument capable of making appropriate illustra-
tions and physical applications of theory.

By adopting tools other than the classical ones and by altering
Platonian rules many interesting and important contributions have
been made to the whole field of mathematics. Mascheroni, for ex-
ample, performed an amazing feat when he proved that the whole
of the plane geometry of Euclid could be reconstructed by throwing
the straightedge into discard and using only the compasses. If such
a possibility had occurred to the Ancients they certainly would not
have labeled the straightedge as an instrument of the gods. It too
would have been banned and shunned as a degraded tool fit only for
the baser uses of the mechanic.

Ul
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CHAPTER IV

APPROXIMATIONS

Sufficient for any purpose are a large number of constructions by
straightedge and compasses which, although simple, give remarkably
good approximations [49] for trisecting a given angle. Many of these
are of long standing and exhibit considerable ingenuity of construction.
Individuals who think they have found exact methods of trisection of
the general angle by straightedge and compasses have actually found
nothing more than approximations. Of course, a large number of these
attempts yield very accurate results and to the eye the drawings
appear successsful indeed. Dependence on such a physical impression,
however, often brings about unfortunate conclusions.

1. An Unending Construclion

Fialkowski [19] in 1860, based an approximation upon the series:
(1.1) S,=1/2—-1/2241/23—1/244- .. =1/27,
If this series is multiplied through by (1/2), it becomes:

Sn/2=1/22—1/234+1/24—1/254 - . . ==1/2"+1,
Now, by adding the two equations, we have the compact expression
for the sum:
3S,./2=1/2==1/27+1,

or S,.=(1/3)(1=1/27%).

As » is allowed to grow larger, it is evident that the value of S, grows
nearer equal to 1/3. Thus, for example, on taking eight terms of the
series, n =8, S, differs from 1/3 by an amount equal to 1/28; taking
n =9, S, differs from-1/3 by 1/22; etc.

For the application of this to the approximate trisection of A0B =&,
let S, represent the ratio ©,/®%, where 0, is the angle to be coustructed
at the nth step. That is,

(1.2) e.=(1/3)(1=1/2")-%.
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It is apparent from this that the larger we take 7, the nearer will O,
equal /3, or AOB/3. Let us agree that a positive angle is to be
measured from OF towards OA, a2 negative angle in the opposite

A
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direction. The steps in the construction are indicaied in (1.2): first,
bisect angle AOB, obtaining the line (1); then bisect angle B0(1), ob-
taining the line (2); etc., alternately adding and subtracting as shown.
‘The process leads step by st=p toward the actual position of the trisecting
line OT. It must be realized, however, that no matter how large =
be chcsen, 6, will difier by seme amount fromi ®/3. For example, if
eight steps be taken for the angle AOB = & ==60°, equaticn (1.2) gives:
O3 = (60°/3) (1 —28) =20°—20°/28,

so that 83 is too srnall by less than five minutes.

2. Approximation of von Cusa and Snellius

Consider the sector AOB of the unit circle with the segments
AC and BD drawn perpendicular to OB. If the central angle be
measpred in radians, then

AC=sin©, arc AB=06, BD=tan 0.
Evidently these lengths satisfy the inegquality:
(2.1) sihn <o <tan 6.
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Nikolaus von Cusa, who lived in the 15th century, noticed that
the quantity:

(2.2) (1+#n)sin 6/(nn+cos ©O)

Tang

ok

FIG. 33

is, for n =0, equal to tan 6 and thus, by (2.1), grealer than ©; more-
over, as » approaches infinity the ratio approaches sin 6, a quantity
less than ©. He accordingly proposed the following question: For
what value of #n is this quantity the best approximation for 6 ¥ The
answer he gave is #=2. Let us see for ourselves.

If the quantity (2.2) is to be a good approximation for © then we
should be able to mal:e the difference between the quantity and the
exact value of 6 as small as we please. This difference is:

D=[(1-+n)sino/(nt+cos0)] —©
= [ (14-n)sin @ —nO —0 cos 6] /(n-+cos 0).
By using well known expressions for sin © and cos © directly in terms
of © this difference can be written in the form:
[(1+n)(©@—063/3!4-65/56!—---)—n0—0(1 —62/2!4a/41— .. )]
(n—+cos )
or D=(2-—-n)e3/6(n+o0s 8)+(n—4)65/120(n+cos 0)+( )B"--- .

If ©, measured in radians, is numerically less than 1, the terms in the
right member diminish rapidly as the series is extended.

It may be seen that the result, =2, arrived at empirically by
von Cusa, is in fact the best possible choice for |©] <1. For, by

D:
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putting » =2 in this last equation, the first power of @ to appear is the
5th and the whole right hand member is considerably less than if the
3rd power were present. Willebrod Snellius, in the next century, was
the first to consider the von Cusa question on a rigorous basis and equal
credit for the method should belong to him.*

We may thus establish the approximation formula:

©=23sin 6/(2-+cos ©).

In order to see the geometrical meaning contained in the formula,

FiG. 34

extend the diameter BE of the unit circle, Fig. 34, to P, so that EF =1.
The line PA strikes the tangent at D. From the similar triangles
PCA and PBD, we have the proportion:

AC/PC=BD/PB,
or, since AC=sin 6, PC=2+4-cos 0, PB=3:
BD =3 sin 6/(2--cos 6).
Thus the approximation made by von Cusa is that of replacing the arc
length subtending angle AOB by the tangent length BD.

For the approximate trisection of angle AOB we need only locate
the point M so that BM =BD/3 and join it to P. The line PM wili
cut the unit circle in 7. The line joining 7 to O thus approximately
trisects angle AOQB. A table of errors for angles from 0° to 90° follows:

*Snellius in his Cyclometria figured ™ by using polygons up to 5,242,880 sides.

6O
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———— = = = M = = = = —= e e
Angle Error ’] Angle Error Angle l Error
10° 137 | a0° 15° 47 70° ‘ 1°28
20° 1'51” 50° 30’ € &80° 2°17’
30° 620" 60° 5320 90° l 3°27'

3. Diirer’s Approximalion

Extremely elegant in both its simplicity and accuracy is the early
approximation of Albrech Diirer which appeared [15] in 1525. Let
the chord and the subtended arc cof the unit circle be constructed upon
the given angle AOB =26, The points A4,, M, are located dividing

FiG. 356

the chord into three equal parts and at these points perpendiculars are
erected to meet the arc in C, and C,. It was Diirer’s plan to construct
the average between the chord lengths, AC,, C,C;, and C.B in as few
steps as possible. To this end, he described the arc C:D with A as
center and AC: as radius. Then, locating the point E such that
EM,=-2(DE), a second arc, center at A and radius AFE, was drawn
intersecting the circle at 7. The line OT then was his approximate
trisecting line.

In order to show the degree of accuracv of this construction,
draw the bisecting line OP so that PC, is parallel te the chord AB.
The following relations are determined with the help of the figure:

0Q=cos©; AQ=sin©; AB=2sin0©; AM,={2sin08)/3;

61
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PCy=AQ—AM, = (sin ©)/3; OP =+/(0C;2~PC:2) = (1/3)/(9 —sin?0);
PG =M, = 0P —0Q = (1/3)(9 —sin?6) —cos 0;

AC1=AD =J(AM,*+CiM,®) =+/(2/3)\] 2-+c0s26 —cos O/ B+ cos?0.
Now by construction:

AT =AE=AM;+ME=AM,+(2/3)(M,D)
=AM+ (2/3)(AD —AM,) = (1/3)(AM,+2 - AD),

which is precisely the average of the chords AC;, C,C.;, C:E, which
Diirer planned. We have for this, on substituting the expressions for
AM, and AD in terms of ©: e B
AT = (2/9)sin © + (24/2/3+/3) - /20?0 —cos © -8+ cos?6,
the length of the approximate trisecting chord in terms of the given
angle. Thus, since
2sin(AO0T/2)=AT or AOT =2 -arcsin(AT/2),

we have: o
£ AOT =2 arc sin| (1/9)sin 0++/(2/27) - \/2+c0s20 —cos 0 {EFc0s6 |
as the approximate third part of the given angle. A table of errors for

angies between 0° and 180° gives an indication of the remarkable
accuracy:

Angle Error Angle Error
60° 17 140° 5;37”
S0° 187 140° 9’ 47

120° 156" 180° 31738

Before passing on, we must recall to the readei’s mind a few of
the accomplishments of this remarkable man. He is perhaps best
known for his etchings and paintings. A champion of the art of per-
spective, he organized the information developed up to his time into
the first text book on the subject. His etching, Melancholia, is to be
found in many present day books on architecture and mathematics.

4. Karajordanoff’s Approximalion
Dropping dow: several centuries to recent times, we find a simple

approximation discovered by Karajordanoff in 1928 [5]. The circles
of radii 1 and 2 are drawn about the angle A0B. The tangent to the

62

e g W o S e e
e A R



- APPROXIMATIONS 53

unit circle at A meets the chord BC in D, where C is the midpoint of
AB. The line throvgh D parallel to OB intersects the larger circle
in 7 and OT is the approximate trisecting Jine.

FiIG. 26

We seek the error cominitted in trisecting various angles by this
method. Making use of rectangular coordinates with O for origin
and OB as X —axis, the coordinates of the several points are:

A :(cos 20, sin 20); B :(1,0); C :(cos 6, sin ©),
where £ AOB = 26.
The line through B and C has for its equation:
x=1—y-tan(0/2)
while the tangent to the smaller circle at 4 is (with negative reciprocal

slope of 04 ):
xcos 204y sin 20 =1.

The two lines meet at D, the y —coordinate, DFE, of which is obtained
by eliminating x between the two:
y = (1—cos 20) /[ sin 26 —cos 26 tan (6/2)].
This, by construction, is the length of the segment F7 and, since O7 =2:
£ FOT =arc sin[ (1 —cos 26)sin ©/2(cos © —cos 20) ].
Errors for angles between 0° and 90° follow:

. - Error Angle Error Angle Error

~10° 1 40° 45" 70° 21127

20° 6"’ 50° 1'19” 80° 1’650
30° 217 60° 153" 90° 4]

©p
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Although this method of Karajordanoff is not as accurate as
Direr’s for ~«me angles, it has a redeeming feature: the error does not
always increase as the given angles increase to 90°. A maximum error
occurs at 70°15° with a value less than two and one-third minutes.

5. Kopf-Perron Approximation

A comparative study of the arc lengths of a particular circle and
the trisecting Limacon of Pasca! led Kopf in 1919 to the following
method, which was refined somewhat
later by Perron [40] and d’Ocagne
[38].

FIG. 37
The unit circle cuts the sides of the given angle at A and B. The

third the length DE; that is, since 0D =1/2, OE =1:
DE =+/3/2 and DF =+/3/6.

' 34++3

[ ,_L\/_’ 0 ]

6

and radius FB =1--(3-++/3)/6, the arc BA’ is constructed. The line
CA meets this arc in A’ and angle A'PBis apprc)ximately ZAOB/3.
The errors committed for various angles have already been tabulated
by Perron:

With center at F':

Amngle Error Angle Error Amngle Error

12° 0.18" 48° 3.58" 84° 8.47

24° 1.38” 60° 13.08"” 90° 0

36° 4.23" 72° 14.76"
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The error, as in the method of Karajordanoff, is nct an increasing one.
The maximum of 14.9” occurs at 69°57/407".

6. Approximation of D' Ocagne
A recent and extremely simple method that is surprisingly accurate
for small angles is given by d’Ocagne [38]. From the inidpoint C of
the radius of the unit circle, the line CA{ is drawn to the midpoint of
thz arc of the given angle AOB. Then angle MCRB is approximately
one-third angle AOD.

FIG. 38

The coordinates of M are [ cos—-—'-g—— , Sin—fg—‘

T/ (2] |
5 cos—5— .

Thus: £ MCREB =arc tan [2 -sin

The errors are:

- St haey — — —
Angle Error Amngle ’i Error Amngle Error
10° 1.5% 40° 1’48"’ 70° 10/
20° 2.64" 50° 326" 20° 1157
3GC° 45" 60° 6’14’ a0° 21’41

7. Comparison of Melhods

The following chart affords a comparison of the methods of approxi-

mation given in this chapter.

angles.
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P. L. Wantzel in 1837 (see Licuville’s Journal, II, p. 366) was the
first to give a rigorous proof of the impossibility of trisecting the general
angle by straightedge and compasses. (Gauss had already made the
statement in his Disquisitiones Arithmeticze but neglected to give the
proof). He was able to do this, however, only after far-reaching
discoveries had been made in the fields of algebraic analysis and num-
ber theory. Since this date, other demonstrations by Klein [30] in
1895, Enriques [17] in 1900, Dickson [14] in 1914, etc., have appeared
in more modern notation. Yet in the face of these conclusive proofs
we still find a tremendous host advancing to the attack, armed only
with straightedge and compasses. Some persistent stubbornness in
our human race keeps this army at war-time strength and for each
casualty there is at least one recruit ready to bear arms, indeed the
same ones, in an effort to revise the scientific world and make it safe
for the mathematician.

Once the virus of this fantastic disease gets into the brain, if proper
circle that leads him from one outrage of logic to another. Consistent-
ly inconsistent, he slides under each fence, clears his conscience, and
proceeds blithely to the next truth only to violate that in turn. It
seems generally characteristic that all of these individuals have a
superb command of flowery and bewitching language to tempt the
uninitiated and gullible. To the professional mathematician, these
phrases seem to serve but one purpose—to obscure the very violations
that are always lurking in the proposals under one guise or zanother.
These violations are ot times very difficult to discover. But once
brought to light, usually nc amount of patient persuasion can convince
the author of his error. Strangely enough, each new ‘‘solver’ can
see glaring mistakes in the work of his predecessor but is apparently
wwulivious to his own.

The fact that simple rezsoning can accomplish nothing toward
setting these people right Iras forced the professional mathematician
to meet each proffered challenge in deep silence. The result, of course,
in the already warped mind of the ‘‘savior of science’ is the deep-
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rooted conviction that all mathematican. are in league against him.
And that in itself becomes yet another unassailable argument of his
infallibility. As a last resort, he turns to the layman through the
medium of the daily newspapers much to the detriment of public faith
in the professional mathematician.

Once a person has convinced himself inat he has solved one of the
Taraous Problems that “have defied mathematicians for over two
thousand years”, it is but a short step to the realization that he is
endowed with unusual powers. These powers are *hen focused upon
all the other paradoxes from perpetual motion to the existence of God,
and with characteristic consummate success. Cne professor of mathe-
matics writes as ioilows:

“Quite often I receive letters from some individual who has discovered a
kinshin between phenomena which to the benighted scientist appear worlds
apart. One, possessed by a truly universal spirit, has succeeded in uniting into
a single synthesis the Euclidean postulate of parallels and the quadrature of the
circle. the Fermat problem and perpetual motion, the principle of relativity
and the cxistence of the Deicy. the quantum theory of the atom and the iore-
casts of the stock market, the abolition of wars, the s.'ution of the economic
depression and *he liberation of mankind from the Bolshevist scourge—to men-
tion but a few of the achievements he claims.”

A typical person of this sort was Mr. L. 5. B—. His self assur-
ance was so great that he offered a thousand dollars to th> one who
woiild prove wrong his argument in support of the value 3 for .

A very recent “‘solver’” of the Trisection Problem announced his
disco-zry to the editor of an American mathematical journal but
refused to disclose the nature of the solution until he had been awarded
the sum of $15,000. That amount, he said, was only the just compen-
sation of an ordinary school teacher for services over the fifteen years
that he had devoted to the problem—an amount that could very well
come, he said, from football receipts.

CASE I1ISTORIES
1. The Caseof J. C. W—.

In 1902 a little book, Trisection of Angles by Mr. W—, appeared
:th the explanatory preface:

... It was necessary to get outside of the problem %o solve it, and it was
not solved by a study or knowledge of Geometry or Trigonometry, as the author
had never made a study of these branches of learning. The proof was arranged
in Geometrical order and formula by Ada S. Flood, '

“The problem might have remained unsolved cxcept for a study and
analysis of the little poem, ‘In the Distance ’. wherein the numbers 3 and 7
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seem to coincide in various ways and wherein various other coincidences are
demonstrated by the aid of progressive or triangular numbers. Herein was
found the key to the solution of the problem:

“IN TEE DISTANCE”

1 v
The countless legions passed away, Where doubl exists a hope may live;
And all the hosls on earth lo-day, None know the gifis that lime may swe;
Like vanished dreams may be forgot, Above our highest hepes and far
Their names and deeds remembered nol, BReyong the dreame.’s brighlest star,
Thetr gilded glories gone, Havye faith! for us may rise
Their works as rust and deserl dust, The fulure's dawn, the shores ramknown,
Fame's phantom shadows flown. The fadeless Eden skies.
II vV
Or like enchanled music rung, Let patience ever shield 1hv breast
Our songs alluned lo cadence sung, From storm-tossed waves of wild unresi,
Or names by mystic fate renowned, And love make all thy pathways bright,
By glamoured ancient glories crowned Conlentment make thy burdens light;
With all that fame endears, Let gloomy thoughis forlorn,
Il nought would be lo you or me, And griefs and feais, the pains and lears,
Far down the distant vears. All pass like misls of morn.
111 VI
A few al most our lroublous days; Haste not {o leap the fabled stream;
Unto the vast unknown we gaze; What waits beyond we may nol dream; ,
A slinuner of Immorlal dawn, Rejoice to-day, yel meekly trust,
A star of hope still shining on, T hat only good above our aust,
Gleam - through the darkest sky; By fate, somewhere, somehow,
A trust that good shall cross the flood, From acts of ours may grow as flowers, :
And only evil die. In jar-off years from now.
VII
Trust now in fame now weallh to bless;
Go help the poor and soolhe distress;
Be brave, be true and do your best;
Do good until witk God you rest,

In some far wondrous home,
And all will be as well with thee,
Through all the years to come.

“Coincidences”

“_.. There are as many syllables to the verse as there are weeks to the
year, and 52 punctuation marks are used in the 7 verses. There‘are 365 syllables
in the 7 verses. Also. the second and fourth verses combined have 365 letters
and fourth and sixth verses combined have 365 letters, corresponding to the
number of days in one year... . The first letter of the alphabet is used as a
word and for the commencement of words 33 times; 33 commas are used; there
are 33 letters in the longest line and 33 lines preceding it. There are 24 letters
in the last line and 24 letters in the first word of each verse combined; the sum
of all numbers from 1 to 24 =300, the number of words in the 7 verses... . The
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number of letters in the alphabet, 26, multiplied by the number of verses, 7,
=182, the number of letters in the 7th verse... The most wonderful of all
numbers is 1287. The number of verses, 7, multiplied by the number of letters
1287 =9009: the answer reads the same either way backward or forward. The
sum of all numbers from 1 to 1287 =828828 which reads same either way... .
‘The sum of ail numbers from 1 to 7=28. ‘God’ is the 28th word of the 7th
verse in the 4th line, and the 279th word of the work... . The sum of al. num-
bers from 1 tu 10=55: ‘Mystic’ is the 55th word of the work in the 10th line.
Cominencing with the Sun as 1, Mercury as 2, Venus 3, Earth 4, Mars 5, The
Asteroids 6, Jupiter 7, Saturn 8, Uranus 9, Neptune 10, Comets 11, the Fixed
Stars and Nebu'a 12, and 13th the Unknown: 13 muitiplied by the number of
verses, 13X7=91. *‘Unknown’ is the 91st word of the work... .”

Although Mr. W— lays considerable stress upon the poemn and its
numerical oddities, he fails to reveal its connection with the Trisection
Problem. The error in his solution is the assumption that a certain
arc in the construction is circular. This arc, however, was shown to be
hyperbolic by Pappus in the 3rd Century. We need not enter intc
the details of the construction here.

2. The Case of J. W—.

Mr. W—, B. A., M. D., Edin., a native of Greenock, went to
considerable pains and expense to publish in 1911 a magnificent book
of 169 pages called The Trisection of the Angle by Plane Geomelry. In
the preface he calms the reader by assuring him that he need only
understand the geometry of Euclid in order to digest his treatment.
Unfortunately, Mr. W— labored under the delusion that calculations
carried out to seven place accuracy were sufficient proof of his method.
The editor of the Mathematical Gazette reviewed this book as follows:

“Dr. W— has found a formula for the third part of a given angle, and applies
it to fifty selected cases... . This stately marshalling of the arithmetical pro-
cedure is worthy of a better cause than the computation of sines and cosines
to seven figures... . He seems to be quite aware of the fact that the problem
has been classed among those that are insoluble, and quotes from De Morgan
to that effect. We fear that he may continue to hug his comfortable delusion

3

3. The Caseof J. J. C—.

Mr. C—, president of an American university, published in 1931
the two works:

Euclid or Einstein. A Proof of the Parallel Theory and a Critique of

Metageomelry;
and :
The Trisection of the Angle. The Trigonometric Functions of One-
third of an Angle in Terms of the Funclions of the Angle. The In-
sertion of Two Geometric Means Belween a line and Amnother twice
as Long. The Duplication of the Cube. Et al.
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The first is a book of more than 300 pages which gives emphasis
to the author’s opening sentence:
“We are surely living in a strange iatellectual age.”

In it Mr. C— “‘proves” the parallel postulate and concludes that the
only geometry that can possibly exist is Euclidean. His attitude
toward modern investigations is disclosed in the following quotations:

**... This age has gone further in this respect than any other; it has =x-
tended its attacks to the utmost bounds of science. The mutineers against
the old order have seized the ship of knowledge and nailed the flag of dissent
to the mast; they have driven the defenders of all manner of orthodoxy below
decks and battened down the hatches over them, and have left in their admin-
istration not x singl~ department of science. ... When normally sound criticism
turns into destructive bolshevism, it is time to inquire whether the criticism is
as sound as that which it criticises, ”’

*“As a result of this failure (to prove the parallel postulate), certain mathe-
maticians of the last century came to the conclusion that the postulate was
indemonstrable, certainly a very easy way to cut the Gordian knot of the diffi-
culty; and then with the utmost inconsequence, and with more mental agility
than either poise or balance, jumped to the other and much more radical and
subversive conclusion, that the proposition itself was not valid.”

This last is a misstatement. Mathemesticians did not conclude that
the postulate was invalid; they simply replaced it with another one
which is consistent with the rest and upnn this foundation created a
vast and important non-Euclidean geometry.

FIG. 40

The second work of Mr. C— disposes of the problem of Trisection.
Because its absurdity is both simple and interesting we shall give the
method here. The lines BC and DF are drawn parallel to each other.
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With any point, such as D, as center, describe the circular arc FC.
With the same radius and center F draw the arc DB. Construct the
angle DCE equal to angle DCA. Draw DA parallel to EC and DE
parailel to FB. Then DF and DC trisect angle ANE.

Nothing could be truer or more fundamenta  sound. However,
Mr. C— has his cart before the horse. Instead of trisecting a given
angle, he has erected from an arbitrarily chosen angle DCA its {riple,
angle ADE. Due to the respected position that he held in the educa-
tional world, Mr. C— unfortunately received considerable notoriety
for this bit of mathematical play. The newspapers of the day made
much of his “discovery’’ and undoubtedly created excitement in the
ranks of the layman.

A curious paragraph in the same pamphlet lists the trigonometric
functions of one-third of an angle in terms of the angle:

sin(A/3) =2sin A+tan A4; cos(A/3)=2sec A+1;
tan(A/3)=2sin A; sec(A/3)=2cos A+1;
cc(A/3)=2csc A; csc(A/3) =2 sin A+-cot A.

Using these formulas to calculate the functions of 30°, letting A =90°,
we find:

sin 30°= cos 30°= m tan 30°=2
sec 30° = csc 30°=2 cot 30°=2.

This display seems doubly strange when we remember that the square
of the sine added to the square of the cosine equals 1.

4. The Case of J. J. G—.

Mr. G—, onetime instructor of mathematics in a college of Cali-
fornia, published in 1932 a beautiful little book under the title: T#e
Mathematical Atom. That it struck a popular note among the interested
public is evidenced by the fact that three editions appeared in scarcely
more than a year’s time. He recounts the “success” of his struggles
with the Trisection Problem:

“In the course of the attempt and upon closer scrutiny I found the fwe
lines mathematicians had beep in search of since the days of old Pythagoras
securely linked up with a couple of sets of parallel lines crisscrossing each other
and together forming ‘perspectives of pleasant shades and wide open spaces’;
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and the two distinguished points nestling in the heart of two mutually over-
lapping right triangles, perched upon two tangen's to a circle at the ends of
two of its radii; and the three great poinls O and A and B dominating the whole
expanse of the angle’s empyrean.’

Farther on, ™r. G— tells of his discovery of a new kind of triangle
that seems to him destined to play a vital role on the mathematical
stage:

“The Golden Mean Triansle will serve to show that even the scalene lriangle
is not to be classed among the lower host of things, ‘the loose, the lawless, the
exaggerated, the insolent, anc the profane’. For though the scalene triangle
may appear at a first glance to be something of a sans-cull-fe, and sartorially
and smsthetically not quite on a par with t more aristocratic triangles, the
capricious little vagabond can nevertheless be shown fundamentally and po-
tentially to possess the properties of beauty and symmetry, even as it possesses
the other metaphysical properties of truth and goodness,—which things are
ontologically inherent ir .'! of Ged’s creations, yea, in their every tiniest atom or
fragment, however huriblc or commonpiace.”

We need not comment upon these passages. It is regrettable that
lack of space forces us to reject Mr. G—'s invitation to an excursion:

.. if you want to take & jaunt out into the belt of any zngle. wide, narrow,
or straight, and want to make equally good and spzcious reservations for your-
self and two companions, hitch your wagon to the twin stars—ALPHA and
BETA GEMINORIUM; give them the reins, and they’ll talke you to see half a
hundred points of interest on a tour through their vast domain, including a num-
ber of delightful stopovers at their own commanding coignes of vantage, leaving
you—heart and fancy free—to walk and ramble about in the garden of the
manor, dolce far niente, to your heart’s content. Or to pause and invite your
soul to rest... the while you hearken to the distant cosmic harmonies of the
whirling =pheres as their echoes come crashing upon the treetops in dlapaaamc
over- and under-tones, running through all the compass of the notes, sympk.oni-
cally blending with the rustling music of the forests, strummed out by iairy
fingers upon a thousand harps of sunbeams piercing the fragrant shadows of

the giant primeval groves.”

Toward the latter part of the book we find Mr. G—’s method of
“‘trisection’’: Describe the arc AR upon the given angle AOB. Draw
lines OC bisecting the angle; aund OD bisecting the half. The tangent
to AB at E intersects OC at F. Draw FG parallel to OD. With F as
center and FO as radius describe the arc cutting out the points D, G, C.
Draw FD and EG which intersect each other at X. Then OX is the
““trisecting”’ line.

We leave to the reader the fun of spotting the error in thismethod. As
an approximation it is excellent.

i‘“};‘:;'lﬁ-‘v’ w,.“‘u<_“‘
fon & \. :
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FIG. 91

5. The Caseof L. J. R. H—.

It is an infrequent occurence that a purported straightedge and
compasses trisection should appear in a serious periodical devoted
to science. Through the editorial offices of every journal there passes
a continual stream of new ‘“solutions’ which are either returned
promptly to the authors or just as promptly consigned to rightful
oblivion in the waste basket. Although every editor is constantly
on guard, some of these attempts do slip through to the printed page.
An instance of this is te be found in the paper: ‘A Solution for the
Geometrical Trisection of Angles a=d the Proportional Dividing of
Arcs” by L. J. R. H—. Mr. H— there gives two methods of ‘‘tri-
section’’, one of which follows:

FIG. 42
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Given the angle AOB. Draw an arc BA with center 0. With
the same radius and center B draw arc ON. With center at an arbi-
trary point N on ON, same radius, draw arc BT of any length and
divide it into three equal arcs. Bisect arcs BA, BT to obtain the
points P and €. Draw the lines T4 and £Q which intersect at K.
Then lines drawn from K to the trisecting poiats of the arc BT ““trisect’’
the arc BA.

It is easy to show tnat a fallacy exists and that the length of the
arc BT and the position of the point N cannot be chosen at randem.
Thus, for example, if BT be taken as a semicircle the construction will
yield the following ‘‘trisection’’ for 60°:

FIG. 43

This does not even appeal to the eye.

6. Miscellaneous Cases
1. The Trisection of the Angle by J. A. L—, (1890) (““being a problem
in Geometry that has baffled the efforts of mathematicians up
to the present day, now solved for the first time.””)
The Geometrical Problem Solved by H. D. D—, (1892).
Geometrical Division and Aleasurement of Arcs and Angles by
N. J—, (1900) (“‘the first person in the world to trisect, penta-
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sect, and hepta-sect arcs and angles geometrically, or to measure
arcs and angles without compass or protractor.”).
A New Method of Trisecting Any Angle and of Constructing a Regu

City Schools, Slater, Mo. (no date).

Triseciio Arcus et Anguli by J. W. Th. O—, (1906) (*‘...and
hereby we give to the world the solution of this remarkable
problem of twenty odd centuries. May the tired spirits of the
past from Pytagoras and Euclid to Newton now rest in peace!
We are happy ourselves at last to feel entitled to rest.”’)

The Trisection of an Angle by J. S—, (1914).

Trisecting an Angle by Compass and Straightedge by E. H. Y—,
(1931).

Euclidean Trisection, Quinlisection, and Hexasection by A. A. Z—,
(1932).

Seclution of an Insolvable Problem by B. D. H—, (1932).

The Trisection of the Angle and Theorems and Corollaries Leading,
To It (Revised) by F. S—, (1933).

Trisecting an Angle of any General Magnitude by L. A. McC—
(1934).

Youth Claims Formula Great Mathematicians Seek, Associated
Press Dispatch, (Aug. 31, 1935).
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