
20
Software Obfuscation

Let us stop and think of the notions we have seen in cryptography.
We have seen that under reasonable computational assumptions (such
as LWE) we can achieve the following:

• CPA secure private key encryption and Message Authentication codes
(which can be combined to get CCA security or authenticated
encryption)- this means that two parties that share a key can have
virtual secure channel between them. An adversary cannot get any
additional information beyond whatever is her prior knowledge given
an encryption of a message sent from Alice to Bob. Moreover, she
cannot modify this message by even a single bit. It’s lucky we only
discovered these results from the 1970’s onwards— if the Germans
had used such an encryption instead of ENIGMA in World War II
there’s no telling how many more lives would have been lost.

• Public key encryption and digital signatures that enable Alice and Bob
to set up such a virtually secure channel without sharing a prior key.
This enables our “information economy” and protects virtually
every financial transaction over the web. Moreover, it is the crucial
mechanism for supplying “over the air” software updates to smart
devices, whether they be phones, cars, thermostats or anything else.
Some had predicted that this invention would change the nature
of our form of government to crypto anarchy and while this may
be hyperbole, governments everywhere are worried about this
invention.

• Hash functions and pseudorandom functions enable us to create au-
thentication tokens for deriving one-time passwords out of shared
keys, or deriving long keys from short passwords. They are also
useful as a tool in a password based key exchange, which enables two
parties to communicate securely (with fairly good but not over-
whelming probability) when they share a 6 digit PIN, even if the
adversary can easily afford much much more than 106 computa-
tional cycles.

Compiled on 11.17.2021 22:35

http://www.activism.net/cypherpunk/crypto-anarchy.html
https://www.fbi.gov/about-us/otd/going-dark-issue

374 an intensive introduction to cryptography

• Fully homomorphic encryption allows computing over encrypted data.
Bob could prepare Alice’s taxes without knowing what her income
is, and more generally store all her data and perform computations
on it, without knowing what the data is.

• Zero knowledge proofs can be used to prove a statement is true with-
out revealing why its true. In particular since you can use zero
knowledge proofs to prove that you posses X bitcoins without giv-
ing any information about their identity, they have been used to
obtain fully anonymous electronic currency.

• Multiparty secure computation are a fully general tool that enable
Alice and Bob (and Charlie, David, Elana, Fran, etc.) to perform
any computation on their private inputs, whether it is to compute
the result of a vote, a second-price auction, privacy-preserving data
mining, perform a cryptographic operation in a distributed manner
(without any party ever learning the secret key) or simply play
poker online without needing to trust any central server.

(BTW all of the above points are notions that you should be famil-
iar and be able to explain what are their security guarantees if you
ever need to use them, for example, in the unlikely event that you ever
find yourself needing to take a cryptography final exam…)

While clearly there are issues of efficiency, is there anything more in
terms of functionality we could ask for? Given all these riches, can we
be even more greedy?

It turns out that the answer is yes. Here are some scenarios that are
still not covered by the above tools:

20.1 WITNESS ENCRYPTION

Suppose that you have uncovered a conspiracy that involves very
powerful people, and you are afraid that something bad might hap-
pen to you. You would like an “insurance policy” in the form of writ-
ing down everything you know and making sure it is published in
the case of your untimely death, but are afraid these powerful peo-
ple could find and attack any trusted agent. Ideally you would want
to publish an encrypted form of your manuscript far and wide, and
make sure the decryption key is automatically revealed if anything
happens to you, but how could you do that? A UA-secure encryption
(which stands for secure against an Underwood attack) gives an abil-
ity to create an encryption 𝑐 of a message 𝑚 that is CPA secure but
such that there is an algorithm 𝐷 such that on input 𝑐 and any string
𝑤 which is a (digitally signed) New York Times obituary for Janine
Skorsky will output 𝑚.

http://zerocash-project.org/
https://goo.gl/8ms4wP

software obfuscation 375

1 One could also think of a deniable witness encryp-
tion, and so if Janine in the scenario above is forced to
open the ciphertexts she sent by reveal the random-
ness used to create them, she can credibly claim that
she didn’t encrypt her knowledge of the conspiracy,
but merely wanted to make sure that her family secret
recipe for pumpkin pie is not lost when she passes
away.

The technical term for this notion is witness encryption, by which
we mean that for every circuit 𝐹 we have an algorithm 𝐸 that on in-
put 𝐹 and a message 𝑚 creates a ciphertext 𝑐 that is CPA secure, and
there is an algorithm 𝐷 that on input 𝑐 and some string 𝑤, outputs
𝑚 if 𝐹(𝑤) = 1. In other words, instead of the key being a unique
string, the key is any string 𝑤 that satisfies a certain condition. Wit-
ness encryption can be used for other applications. For example, you
could encrypt a message to future members of humanity, that can be
decrypted only using a valid proof of the Riemann Hypothesis.

20.2 DENIABLE ENCRYPTION

Here is another scenario that is seemingly not covered by our current
tools. Suppose that Alice uses a public key system (𝐺,𝐸,𝐷) to encrypt
a message 𝑚 by computing 𝑐 = 𝐸𝑒(𝑚, 𝑟) and sending 𝑐 to Bob that
will compute 𝑚 = 𝐷𝑑(𝑐). The ciphertext is intercepted by Bob’s
archenemy Freddie Baskerville Ignatius (or FBI for short) who has
the means to force Alice to reveal the message and as proof reveal
the randomness used in encryption as well. Could Alice find, for any
choice of 𝑚′, some string 𝑟′ that is pseudorandom and for which 𝑐
equals 𝐸𝑒(𝑚′, 𝑟′)? An encryption scheme with this property is called
deniable, since we Alice can deny she sent 𝑚 and claim she sent 𝑚′

instead.1

20.3 FUNCTIONAL ENCRYPTION

It’s not just individuals that don’t have all their needs met by our
current tools. Think of a large enterprise that uses a public key en-
cryption (𝐺,𝐸,𝐷). When a ciphertext 𝑐 = 𝐸𝑒(𝑚) is received by the
enterprise’s servers, it needs to be decrypted using the secret key 𝑑.
But this creates a single point of failure. It would be much better if we
could create a “weakened key” 𝑑1 that, for example, can only decrypt
messages related to sales that were sent in the date range X-Y, a key
𝑑2 that can only decrypt messages that contain certain keywords, or
maybe a key 𝑑3 that only allows to detect whether the message en-
coded by a particular ciphertext satisfies a certain regular expression.

This will allow us to give the key 𝑑1 to the manager of the sales
department (and not worry about her taking the key with her if she
leaves the company), or more generally give every employee a key
that corresponds to his or her role. Furthermore, if the company re-
ceives a subpoena for all emails relating to a particular topic, it could
give out a cryptographic key that reveals precisely these emails and
nothing else. It could also run a spam filter on encrypted messages
without needing to give the server performing this filter access to the

376 an intensive introduction to cryptography

full contents of the messages (and so perhaps even outsource spam
filtering to a different company).

The general form of this is called a functional encryption. The idea is
that for every function 𝑓 ∶ {0, 1}∗ → {0, 1}∗ we can create a decryption
key 𝑑𝑓 such that on input 𝑐 = 𝐸𝑒(𝑚), 𝐷𝑑𝑓

(𝑐) = 𝑓(𝑚) but 𝑑𝑓 cannot
be used to gain any other information on the message except for 𝑓(𝑚),
and even if several parties holding 𝑑𝑓1

,… , 𝑑𝑓𝑘
collude together, they

can’t learn more than simply 𝑓1(𝑚),… , 𝑓𝑘(𝑚). Note that using fully
homomorphic encryption we can easily transform an encryption of
𝑚 to an encryption of 𝑓(𝑚) but what we want here is the ability to
selectively decrypt only some information about the message.

The formal definition of functional encryption is the following:

Definition 20.1 — Functional Encryption. A tuple (𝐺,𝐸,𝐷,𝐾𝑒𝑦𝐷𝑖𝑠𝑡) is a
functional encryption scheme if:

• For every function 𝑓 ∶ {0, 1}ℓ → {0, 1}, if (𝑑, 𝑒) = 𝐺(1𝑛) and 𝑑𝑓 =
𝐾𝑒𝑦𝐷𝑖𝑠𝑡(𝑑, 𝑓), then for every message 𝑚, 𝐷𝑑𝑓

(𝐸𝑒(𝑚)) = 𝑓(𝑚).

• Every efficient adversary Eve wins the following game with
probability at most 1/2 + 𝑛𝑒𝑔𝑙(𝑛):

1. We generate (𝑑, 𝑒) ←𝑅 𝐺(1𝑛).
2. Eve is given 𝑒 and for 𝑖 = 1,… , 𝑇 = 𝑝𝑜𝑙𝑦(𝑛) repeatedly chooses

𝑓𝑖 and receives 𝑑𝑓𝑖
.

3. Eve chooses two messages 𝑚0,𝑚1 such that 𝑓𝑖(𝑚0) = 𝑓𝑖(𝑚1) for
all 𝑖 = 1,… , 𝑇 .

4. For 𝑏 ←𝑅 {0, 1}, Eve receives 𝑐∗ = 𝐸𝑒(𝑚𝑏) and outputs 𝑏′.
5. Eve wins if 𝑏′ = 𝑏.

20.4 THE SOFTWARE PATCH PROBLEM

It’s not only exotic forms of encryption that we’re missing. Here is an-
other application that is not yet solved by the above tools. From time
to time software companies discover a vulnerability in their products.
For example, they might discover that if fed an input 𝑥 of some partic-
ular form (e.g., satisfying a regular expression 𝑅) to a server running
their software could give an adversary unlimited access to it. In such
a case, you might want to release a patch that modifies the software to
check if 𝑅(𝑥) = 1 and if so rejects the input. However the fear is that
hackers who didn’t know about the vulnerability before could dis-
cover it by examining the patch and then use it to attack the customers

software obfuscation 377

who are slow to update their software. Could we come up for a reg-
ular expression 𝑅 with a program 𝑃 such that 𝑃(𝑥) = 1 if and only
if 𝑅(𝑥) = 1 but examining the code of 𝑃 doesn’t make it any easier to
find some 𝑥 satisfying 𝑅?

20.5 SOFTWARE OBFUSCATION

All these applications and more could in principle be solved by a
single general tool known as virtual black-box (VBB) secure software
obfuscation. In fact, such an obfuscation is a general tool that can also
be directly used to yield public key encryption, fully homomorphic
encryption, zero knowledge proofs, secure function evaluation, and
many more applications.

We will now give the definition of VBB secure obfuscation and
prove the central result about it, which is unfortunately that secure
VBB obfuscators do not exist. We will then talk about the relaxed
notion of indistinguishablity obfuscators (IO) - this object turns out to
be good enough for many of the above applications and whether it
exists is one of the most exciting open questions in cryptography at the
moment. We will survey some of the research on this front.

Let’s define a compiler to be an efficient (i.e., polynomial time) pos-
sibly probabilistic map 𝒪 that takes a Boolean circuit 𝐶 on 𝑛 bits of
input and outputs a Boolean circuit 𝐶′ that also takes 𝑛 input bits and
computes the same function; i.e., 𝐶(𝑥) = 𝐶′(𝑥) for every 𝑥 ∈ {0, 1}𝑛.
(If 𝒪 is probabilistic then this should happen for every choice of its
coins.) This might seem a strange definition, since it even allows the
trivial compiler 𝒪(𝐶) = 𝐶. That is OK, since later we will require
additional properties such as the following:

Definition 20.2 — VBB secure obfuscation. A compiler 𝒪 is a virtual black
box (VBB) secure obfuscator if it satisfies the following property: for
every efficient adversary 𝐴 mapping {0, 1}∗ to {0, 1}, there exists
an efficient simulator 𝑆 such that for every circuit 𝐶 the following
random variables are computationally indistinguishable:

• 𝐴(𝒪(𝐶))

• 𝑆𝐶(1|𝐶|) where by this we mean the output of 𝑆 when it is given
the length of 𝐶 and access to the function 𝑥 ↦ 𝐶(𝑥) as a black
box (aka oracle access).

(Note that the distributions above are of a single bit, and so being
indistinguishable simply means that the probability of outputting 1 is
equal in both cases up to a negligible additive factor.)

378 an intensive introduction to cryptography

20.6 APPLICATIONS OF OBFUSCATION

The writings of Diffie and Hellman, James Ellis, and others that
thought of public key encryption, shows that one of the first ap-
proaches they considered was to use obfuscation to transform a
private-key encryption scheme into a public key one. That is, given
a private key encryption scheme (𝐸,𝐷) we can transform it to a pub-
lic key encryption scheme (𝐺,𝐸′, 𝐷) by having the key generation
algorithm select a private key 𝑘 ←𝑅 {0, 1}𝑛 that will serve as the de-
cryption key, and let the encryption key 𝑒 be the circuit 𝒪(𝐶) where
𝒪 is an obfuscator and 𝐶 is a circuit mapping 𝑐 to 𝐸𝑘(𝑐). The new
encryption algorithm 𝐸′ takes 𝑒 and 𝑐 and simply outputs 𝑒(𝑐).

These days we know other approaches for obtaining public key
encryption, but the obfuscation-based approach has significant addi-
tional flexibility. To turn this into a fully homomorphic encryption, we
simply publish the obfuscation of 𝑐, 𝑐′ ↦ 𝐷𝑘(𝑐) NAND 𝐷𝑘(𝑐′). To turn
this into a functional encryption, for every function 𝑓 we can define 𝑑𝑓
as the obfuscation of 𝑐 ↦ 𝑓(𝐷𝑘(𝑐)).

We can also use obfuscation to get a witness encryption: to encrypt
a message 𝑚 to be opened using any 𝑤 such that 𝐹(𝑤) = 1, we can ob-
fuscate the function that maps 𝑤 to 𝑚 if 𝐹(𝑤) = 1 and outputs error
otherwise. To solve the patch problem, for a given regular expression
we can obfuscate the function that maps 𝑥 to 𝑅(𝑥).

20.7 IMPOSSIBILITY OF OBFUSCATION

So far, we’ve learned that in cryptography no concept is too fantastic to
be realized. Unfortunately, VBB secure obfuscation is an exception:

Theorem 20.3 — impossibility of Obfuscation. Under the PRG assump-
tion, there does not exist a VBB secure obfuscating compiler.

20.7.1 Proof of impossibility of VBB obfuscation
We will now show the proof of Theorem 20.3. For starters, note that
obfuscation is trivial for learnable functions. That is, if 𝐹 is a function
such that given black-box access to 𝐹 we can recover a circuit that
computes it, then we can obfuscate it. Given a circuit 𝐶, the obfuscator
𝒪 will simply use it as a black box to learn a circuit 𝐶′ that computes
the same function and output it. Since 𝒪 itself only uses black box
access to 𝐶, it can be trivially simulated perfectly. (Verifying that
this is indeed the case is a good way to make sure you followed the
definition.)

However, this is not so useful, since it’s not hard to see that all the
examples above where we wanted to use obfuscation involved func-
tions that were unlearnable. But it already suggests that we should

http://www.boazbarak.org/Papers/obfuscate.pdf

software obfuscation 379

2 Pseudorandom functions can be used to construct
examples of functions that are unlearnable in the
much stronger sense that we cannot achieve the
machine learning goal of outputting some circuit that
approximately predicts the function.

use an unlearnable function for our negative result. Here is an ex-
tremely simple unlearnable function. For every 𝛼, 𝛽 ∈ {0, 1}𝑛, we
define 𝐹𝛼,𝛽 ∶ {0, 1}𝑛 → {0, 1}𝑛 to be the function that on input 𝑥
outputs 𝛽 if 𝑥 = 𝛼 and otherwise outputs 0𝑛.

Given black box access for this function for a random 𝛼, 𝛽, it’s ex-
tremely unlikely that we would hit 𝛼 with a polynomial number of
queries and hence will not be able to recover 𝛽 and so in particular
will not be able to learn a circuit that computes 𝐹𝛼,𝛽.2

This function already yields a counterexample for a stronger ver-
sion of the VBB definition. We define a strong VBB obfuscator to be a
compiler 𝒪 that satisfies the above definition for adversaries that can
output not just one bit but an arbitrary long string. We can now prove
the following:

Lemma 20.4 There does not exist a strong VBB obfuscator.

Proof. Suppose towards a contradiction that there exists a strong VBB
obfuscator 𝒪. Let 𝐹𝛼,𝛽 be defined as above, and let 𝐴 be the adversary
that on input a circuit 𝐶′ simply outputs 𝐶′. We claim that for every 𝑆
there exists some 𝛼, 𝛽 and an efficient algorithm 𝐷𝛼,𝛽

∣Pr[𝐷𝛼,𝛽(𝐴(𝒪(𝐹𝛼,𝛽))) = 1] − Pr[𝐷𝛼,𝛽(𝑆𝐹𝛼,𝛽(110𝑛)) = 1]∣ > 0.9 (∗)
these probabilities are over the coins of 𝒪 and the simulator 𝑆. Note

that we identify the function 𝐹𝛼,𝛽 with the obvious circuit of size at
most 10𝑛 that computes it.

Clearly (∗) implies that that these two distributions are not in-
distinguishable, and so proving (∗) will finish the proof. The algo-
rithm 𝐷𝛼,𝛽 on input a circuit 𝐶′ will simply output 1 iff 𝐶′(𝛼) = 𝛽.
By the definition of a compiler and the algorithm 𝐴, for every 𝛼, 𝛽,
Pr[𝐷𝛼,𝛽(𝐴(𝒪(𝐹𝛼,𝛽))) = 1] = 1.

On the other hand, for 𝐷𝛼,𝛽 to output 1 on 𝐶′ = 𝑆𝐹𝛼,𝛽(110𝑛), it must
be the case that 𝐶′(𝛼) = 𝛽. We claim that there exists some 𝛼, 𝛽 such
that this will happen with negligible probability. Indeed, assume 𝑆
makes 𝑇 = 𝑝𝑜𝑙𝑦(𝑛) queries and pick 𝛼, 𝛽 independently and uniformly
at random from {0, 1}𝑛. For every 𝑖 = 1,… , 𝑇 , let 𝐸𝑖 be the event that
the 𝑖𝑡ℎ query of 𝑆 is the first in which it gets a response other than
0𝑛. The probability of 𝐸𝑖 is at most 2−𝑛 because as long as 𝑆 got all
responses to be 0𝑛, it got no information about 𝛼 and so the choice of
𝑆’s 𝑖𝑡ℎ query is independent of 𝛼 which is chosen at random in {0, 1}𝑛.
By a union bound, the probability that 𝑆 got any response other than
0𝑛 is negligible. In which case if we let 𝐶′ be the output of 𝑆 and let
𝛽′ = 𝐶′(𝛼), then 𝛽′ is independent of 𝛽 and so the probability that
they are equal is at most 2−𝑛.

■

380 an intensive introduction to cryptography

The adversary in the proof of Lemma 20.4 does not seem very
impressive. After all, it merely printed out its input. Indeed, the
definition of strong VBB security might simply be an overkill, and
“plain” VBB is enough for almost all applications. However, as men-
tioned above, plain VBB is impossible to achieve as well. We’ll prove a
slightly weaker version of Theorem 20.3:

Theorem 20.5 — Impossiblity of Obfuscation from FHE. If fully homomor-
phic encryption exists then there is no VBB secure obfuscating
compiler.

(To get the original theorem from this, note that if VBB obfuscation
exists then we can transform any private key encryption into a fully
homomorphic public key encryption.)

Proof. Let (𝐺,𝐸,𝐷,EVAL) be a fully homomorphic encryption
scheme. For strings 𝑑, 𝑒, 𝑐, 𝛼, 𝛽, 𝛾, we will define the function
𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾 as follows: for inputs of the form 00𝑥, it will output 𝛽 if and
only if 𝑥 = 𝛼, and otherwise output 0𝑛. For inputs of the form 01𝑐′,
it will output 𝛾 iff 𝐷𝑑(𝑐′) = 𝛽 and otherwise output 0𝑛. And for the
input 1𝑛, it will output 𝑐. For all other inputs it will output 0𝑛.

We will use this function family where 𝑑, 𝑒 are the keys of the FHE,
and 𝑐 = 𝐸𝑒(𝛼). We now define our adversary 𝐴. On input some circuit
𝐶′, 𝐴 will compute 𝑐′ = 𝐶′(1𝑛) and let 𝐶″ be the circuit that on input
𝑥 outputs 𝐶′(00𝑥). It will then let 𝑐″ = EVAL𝑒(𝐶″, 𝑐′). Note that if
𝑐′ is an encryption of 𝛼 and 𝐶′ computes 𝐹 = 𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾 then 𝑐″ will
be an encryption of 𝐹(00𝛼) = 𝛽. The adversary 𝐴 will then compute
𝛾′ = 𝐶′(01𝑐″) and output 𝛾′

1.
We claim that for every simulator 𝑆, there exist some tuple

(𝑑, 𝑒, 𝑐, 𝛼, 𝛽, 𝛾) and a distinguisher 𝐷 such that

∣Pr[𝐷(𝐴(𝒪(𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾))) = 1] − Pr[𝐷(𝑆𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾(1|𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾|)) = 1]∣ ≥ 0.1

Indeed, the distinguisher 𝐷 will depend on 𝛾 and on input a bit 𝑏
will simply output 1 iff 𝑏 = 𝛾1. Clearly, if (𝑑, 𝑒) are keys of the FHE
and 𝑐 = 𝐸𝑒(𝛼) then no matter what circuit 𝐶′ the obfuscator 𝒪 outputs
on input 𝐹𝑑,𝑒,𝑐,𝛼,𝛽,𝛾 , the adversary 𝐴 will output 𝛾1 on 𝐶′ and hence
𝐷 will output 1 with probability one on 𝐴’s output. > In contrast
if we let 𝑆 be a simulator and generate (𝑑, 𝑒) = 𝐺(1𝑛), pick 𝛼, 𝛽, 𝛾
independently at random in {0, 1}𝑛 and let 𝑐 = 𝐸𝑒(𝛼), we claim that
the probability that 𝑆 will output 𝛾1 will be equal to 1/2 ± 𝑛𝑒𝑔𝑙(𝑛).
Indeed, suppose otherwise, and define the event 𝐸𝑖 to be that the 𝑖𝑡ℎ
query is the first query (apart from the query 1𝑛 whose answer is
𝑐) on which 𝑆 receives an answer other than 0𝑛. Now there are two
cases:

software obfuscation 381

Case 1: The query is equal to 00𝛼.
Case 2: The query is equal to 01𝑐′ for some 𝑐′ such that 𝐷𝑑(𝑐′) = 𝛽.
Case 2 only happens with negligible probability because if 𝑆 only

received the value 𝑒 (which is independent of 𝛽) and did not receive
any other non 0𝑛 response up to the 𝑖𝑡ℎ point then it did not learn any
information about 𝛽. Therefore the value 𝛽 is independent of the 𝑖𝑡ℎ
query and the probability that it decrypts to 𝛽 is at most 2−𝑛.

Case 1 only happens with negligible probability because otherwise
𝑆 is an algorithm that on input an encryption of 𝛼 (and a bunch of
answers of the form 0𝑛, which are of course not helpful) manages to
output 𝛼 with non-negligible probability, hence violating the CPA
security of the encryption scheme.

Now if neither case happens, then 𝑆 does not receive any informa-
tion about 𝛾, and hence the probability that its output is 𝛾1 is at most
1/2.

■

P
This proof is simple but deserves a second read. A
crucial point here is to use FHE to allow the adversary
to essentially “feed 𝐶′ to itself” so it can obtain from
an encryption of 𝛼 an encryption of 𝛽, even though
that would not be possible using black box access
only.

20.8 INDISTINGUISHABILITY OBFUSCATION

The proof can be generalized to give private key encryption for which
the transformation to public key encryption would be insecure, and
many other such constructions. So, this result might (and indeed to
a large extent did) seem like a death blow to general-purpose obfus-
cation. However, already in that paper we noticed that there was a
variant of obfuscation that we could not rule out, and this is the fol-
lowing:

Definition 20.6 — Indistinguishability Obfuscation. We say a compiler 𝒪
is an indistinguishability obfuscator (IO) if for every two circuits
𝐶,𝐶′ that have the same size and compute the same function, the
random variables 𝒪(𝐶) and 𝒪(𝐶′) are computationally indistin-
guishable.

It is a good exercise to understand why the proof of the impos-
sibility result above does not apply to rule out IO. Nevertheless, a
reasonable guess would be that:

382 an intensive introduction to cryptography

1. IO is impossible to achieve.

2. Even if it was possible to achieve, it is not good enough for most of
the interesting applications of obfuscation.

However, it turns out that this guess is (most likely) wrong. New
results have shown that IO is extremely useful for many applications,
including those outlined above. They also gave some evidence that it
might be possible to achieve. We’ll talk about those works in the next
lecture.

