
1 This theorem as stated was proven by Brakerski and
Vaikuntanathan (ITCS 2014) building a line of work
initiated by Gentry’s original STOC 2009 work. We
will actually prove a weaker version of this theorem,
due to Brakerski and Vaikuntanathan (FOCS 2011),
which assumes a quantitative strengthening of LWE.
However, we will not follow the proof of Brakerski
and Vaikuntanathan but rather a scheme of Gentry,
Sahai and Waters (CRYPTO 2013). Also note that,
as noted in the previous lecture, all of these results
require the extra assumption of circular security on top
of LWE to achieve a non-leveled fully homomorphic
encryption scheme.

15
Fully homomorphic encryption: Construction

In the last lecture we defined fully homomorphic encryption, and
showed the “bootstrapping theorem” that transforms a partially ho-
momorphic encryption scheme into a fully homomorphic encryption,
as long as the original scheme can homomorphically evaluate its own
decryption circuit. In this lecture we will show an encryption scheme
(due to Gentry, Sahai and Waters, henceforth GSW) meeting the lat-
ter property. That is, this lecture is devoted to proving1 the following
theorem:

Theorem 15.1 — FHE from LWE. Assuming the LWE conjecture, there
exists a partially homomorphic public key encryption (𝐺,𝐸,𝐷,EVAL)
that fits the conditions of the bootstrapping theorem (Theo-
rem 14.8). That is, for every two ciphertexts 𝑐 and 𝑐′, the function
𝑑 ↦ 𝐷𝑑(𝑐) NAND 𝐷𝑑(𝑐′) can be homomorphically evaluated by
EVAL.

Before the detailed description and analysis, let us first outline our
strategy. The following notion of “noisy homomorphic encryption”
will be of essential importance (see also Fig. 15.1).

Definition 15.2 — Noisy Homomorphic Encryption. A noisy homomorphic
encryption scheme is a four-tuple (𝐺,𝐸,𝐷,ENAND) of algorithms
such that (𝐺,𝐸,𝐷) is a CPA secure public key scheme and such
that for every keypair (𝑒, 𝑑), there exists a function 𝜂 = 𝜂𝑒,𝑑 which
maps any ciphertext 𝑐 to a number 𝜂(𝑐) ∈ [0,∞) (which we call the
“noise level” of 𝑐) satisfying the following.

For every keypair (𝑒, 𝑑), if we denote

𝒞𝜃
𝑏 = {𝑐 ∶ 𝐷𝑑(𝑐) = 𝑏, 𝜂(𝑐) ≤ 𝜃}.

then

Compiled on 11.17.2021 22:35

302 an intensive introduction to cryptography

• 𝐸𝑒(𝑏) ∈ 𝒞
√𝑞
𝑏 for any plaintext 𝑏. That is, “fresh encryptions” have

noise at most √𝑞.

• If 𝑐 ∈ 𝒞𝜂
𝑏 with 𝜂 ≤ 𝑞/4, then 𝐷𝑑(𝑐) = 𝑏. That is, as long as

the noise is at most 𝑞/4 (which is ≫ √𝑞), decryption will still
succeed.

• For any 𝑐 ∈ 𝒞𝜂
𝑏 and 𝑐′ ∈ 𝒞𝜂′

𝑏′ , it holds that

ENAND(𝑐, 𝑐′) ∈ 𝒞𝑛3⋅max{𝜂,𝜂′}
𝑏∧𝑏′

as long as 𝑛3 ⋅ max{𝜂, 𝜂′} < 𝑞/4. That is, as long as noise is not
too large, applying ENAND to 𝑐 and 𝑐′ will yield an encryption
of NAND(𝐷𝑑(𝑐),𝐷𝑑(𝑐′)) with noise level that is not “too much
higher” than the maximum noise of 𝑐 and 𝑐′.

The noisy homomorphic encryption actually states that if 𝐶 and 𝐶′

encrypt 𝑏 and 𝑏′ up to error 𝜂 and 𝜂′, respectively, then ENAND(𝑐, 𝑐′)
encrypts NAND(𝑏, 𝑏′) up to some error which can be controlled by
𝜂, 𝜂′. The coefficient 𝑛3 is not essential here; we just need the order
𝑝𝑜𝑙𝑦(𝑛). This property allows us to perform the ENAND operator
repeatly as long as we can guarantee the accumulated error is smaller
than 𝑞/4, which means that the decryption can be done correctly.
The next theorem tells us with what depth a circuit can be computed
homomorphically.

Figure 15.1: In a noisy homomorphic encryption,
every ciphertext 𝑐 has a “noise” parameter 𝜂(𝑐)
associated with it. When we encrypt 0 or 1, we get
a ciphertext with noise at most √𝑞, while we are
guaranteed to successfully decrypt. Applying the
ENAND operation to two ciphertexts 𝑐 and 𝑐′ yields
a ciphertext with noise level at most 𝑛3 times the
maximum noise of 𝑐 and 𝑐′. Hence we can compose
ENAND operations to apply any NAND circuit of
depth at most ℓ to fresh encryptions, and succeed in
obtaining a ciphertext decrypting to the circuit output
as long as 𝑛3ℓ√𝑞 ≪ 𝑞/4.

Theorem 15.3 If there exists a noisy homomorphic encryption
scheme with 𝑞 = 2

√𝑛, then it can be extended to a homomor-
phic encryption scheme for any circuit with depth smaller than
𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛).

fully homomorphic encryption: construction 303

Proof. For any function 𝑓 ∶ {0, 1}𝑚 → {0, 1} which can be described
by a circuit with depth ℓ, we can compute EVAL(𝑓, 𝐸𝑒(𝑥1),⋯ ,𝐸𝑒(𝑥𝑚))
with error up to √𝑞(𝑛3)ℓ. (The initial error for 𝐸𝑒(𝑥𝑖) is smaller than√𝑞 and the error will be accumulated with rate up to 𝑛3.) Thus,
to guarantee that EVAL(𝑓, 𝐸𝑒(𝑥1),⋯ ,𝐸𝑒(𝑥𝑚)) can be decrypted to
𝑓(𝑥1, ⋯ , 𝑥𝑚) correctly, we only need √𝑞(𝑛3)ℓ ≪ 𝑞, i.e., 𝑛3ℓ ≪ √𝑞 =
2
√𝑛/2. This is equalvent to 3ℓ log(𝑛) ≪ √𝑛/2, which can be guaran-

teed when ℓ = 𝑛𝑜(1) or ℓ = 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛).
■

We will assume the LWE conjecture with 𝑞(𝑛) ≈ 2
√𝑛 in the re-

mainder of this chapter. With Theorem 15.3 in hand, our goal is to
construct a noisy FHE such that the decryption map (specifically the
map 𝑑 ↦ 𝐷𝑑(𝑐) for any fixed ciphertext 𝑐) can be computed by a cir-
cuit with depth at most 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛). (Theorem 14.8 refers to the map
𝑑 ↦ ¬(𝐷𝑑(𝑐) ∧ 𝐷𝑑(𝑐′)), but this latter map is obtained by applying one
more NAND gate to two parallel executions of 𝑑 ↦ 𝐷𝑑(𝑐), and hence
if the map 𝑑 ↦ 𝐷𝑑(𝑐) has depth at most 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) then so does the
map 𝑑 ↦ ¬(𝐷𝑑(𝑐) ∧ 𝐷𝑑(𝑐′)).) Once we do this then we can obtain a
fully homomorphic encryption scheme. We will head into some de-
tails show how to construct things we want in the rest of this chapter.
The most technical and interesting part would be how to upper bound
the noise/error.

15.1 PRELUDE: FROM VECTORS TO MATRICES

In the linear homomorphic scheme we saw in the last lecture, every
ciphertext was a vector 𝑐 ∈ ℤ𝑛

𝑞 such that ⟨𝑐, 𝑠⟩ equals (up to scaling by
⌊ 𝑞
2⌋) the plaintext bit. We saw that adding two ciphertexts modulo 𝑞

corresponded to XOR’ing (i.e., adding modulo 2) the corresponding
two plaintexts. That is, if we define 𝑐 ⊕ 𝑐′ as 𝑐 + 𝑐′ (mod 𝑞) then
performing the ⊕ operation on the ciphertexts corresponds to adding
modulo 2 the plaintexts.

However, to get to a fully, or even partially, homomorphic scheme,
we need to find a way to perform the NAND operation on the two
plaintexts. The challenge is that it seems that to do that we need to
find a way to evaluate multiplications: find a way to define some oper-
ation ⊗ on ciphertexts that corresponds to multiplying the plaintexts.
Alas, a priori, there doesn’t seem to be a natural way to multiply two
vectors.

The GSW approach to handle this is to move from vectors to ma-
trices. As usual, it is instructive to first consider the cryptographer’s
dream world where Gaussian elimination doesn’t exist. In this case,
the GSW ciphertext encrypting 𝑏 ∈ {0, 1} would be an 𝑛 × 𝑛 matrix 𝐶
over ℤ𝑞 such that 𝐶𝑠 = 𝑏𝑠 where 𝑠 ∈ ℤ𝑛

𝑞 is the secret key. That is, the

304 an intensive introduction to cryptography

Figure 15.2: In the “naive” version of the GSW encryp-
tion, to encrypt a bit 𝑏 we output an 𝑛 × 𝑛 matrix 𝐶
such that 𝐶𝑠 = 𝑏𝑠 where 𝑠 ∈ ℤ𝑛

𝑞 is the secret key. In
this scheme we can transform encryptions 𝐶,𝐶′ of
𝑏, 𝑏′ respectively to an encryption 𝐶″ of NAND(𝑏, 𝑏′)
by letting 𝐶″ = 𝐼 −𝐶𝐶′.

encryption of a bit 𝑏 is a matrix 𝐶 such that the secret key is an eigen-
vector (modulo 𝑞) of 𝐶 with corresponding eigenvalue 𝑏. (We defer
discussion of how the encrypting party generates such a ciphertext,
since this is in any case only a “dream” toy example.)

P
You should make sure you understand the types of
all the identifiers we refer to. In particular, above 𝐶
is an 𝑛 × 𝑛 matrix with entries in ℤ𝑞, 𝑠 is a vector in
ℤ𝑛

𝑞 , and 𝑏 is a scalar (i.e., just a number) in {0, 1}. See
Fig. 15.2 for a visual representation of the ciphertexts
in this “naive” encryption scheme. Keeping track of
the dimensions of all objects will become only more
important in the rest of this lecture.

Given 𝐶 and 𝑠 we can recover 𝑏 by just checking if 𝐶𝑠 = 𝑠 or 𝐶𝑠 =
0𝑛. The scheme allows homomorphic evaluation of both addition
(modulo 𝑞) and multiplication, since if 𝐶𝑠 = 𝑏𝑠 and 𝐶′𝑠 = 𝑏′𝑠 then we
can define 𝐶 ⊕ 𝐶′ = 𝐶 + 𝐶′ (where on the righthand side, addition
is simply done in ℤ𝑞) and 𝐶 ⊗ 𝐶′ = CC′ (where again this refers to
matrix multiplication in ℤ𝑞).

Indeed, one can verify that both addition and multiplication suc-
ceed since

(𝐶 + 𝐶′)𝑠 = (𝑏 + 𝑏′)𝑠
and

CC′𝑠 = 𝐶(𝑏′𝑠) = 𝑏𝑏′𝑠
where all these equalities are in ℤ𝑞.

Addition modulo 𝑞 is not the same as XOR, but given these multi-
plication and addition operations, we can implement the NAND oper-
ation as well. Specifically, for every 𝑏, 𝑏′ ∈ {0, 1}, 𝑏 NAND 𝑏′ = 1 − 𝑏𝑏′.
Hence we can take a ciphertext 𝐶 encrypting 𝑏 and a ciphertext 𝐶′

encrypting 𝑏′ and transform these two ciphertexts to the ciphertext
𝐶″ = (𝐼 − 𝐶𝐶′) that encrypts 𝑏 NAND 𝑏′ (where 𝐼 is the identity
matrix). Thus in a world without Gaussian elimination it is not hard
to get a fully homomorphic encryption.

R
Remark 15.4 — Private key FHE. We have not shown
how to generate a ciphertext without knowledge of 𝑠,
and hence strictly speaking we only showed in this
world how to get a private key fully homomorphic
encryption. Our “real world” scheme will be a full
fledged public key FHE. However we note that private
key homomorphic encryption is already very inter-
esting and in fact sufficient for many of the “cloud
computing” applications. Moreover, Rothblum gave

http://eccc.hpi-web.de/report/2010/146/

fully homomorphic encryption: construction 305

2 For this reason, Craig Gentry called his highly rec-
ommended survey on fully homomorphic encryption
and other advanced constructions computing on the
edge of chaos.

3 We deliberately leave some flexibility in the defini-
tion of “short”. While initially “short” might mean
that |𝑒𝑖| <

√𝑞 for every 𝑖, decryption will succeed as
long as |𝑒𝑖| is, say, at most 𝑞/100𝑛.

a generic transformation from a private key homo-
morphic encryption to a public key homomorphic
encryption.

15.2 REAL WORLD PARTIALLY HOMOMORPHIC ENCRYPTION

We now discuss how we can obtain an encryption in the real world
where, as much as we’d like to ignore it, there are people who walk
among us (not to mention some computer programs) that actually
know how to invert matrices. As usual, the idea is to “fool Gaussian
elimination with noise” but we will see that we have to be much more
careful about “noise management”, otherwise even for the party hold-
ing the secret key the noise will overwhelm the signal.2

The main idea is that we can expect the following problem to be
hard for a random secret 𝑠 ∈ ℤ𝑛

𝑞 : distinguish between samples of
random matrices 𝐶 and matrices where 𝐶𝑠 = 𝑏𝑠 + 𝑒 for some 𝑏 ∈
{0, 1} and “short” 𝑒 satisfying |𝑒𝑖| ≤

√𝑞 for all 𝑖. This yields a natural
candidate for an encryption scheme where we encrypt 𝑏 by a matrix 𝐶
satisfying 𝐶𝑠 = 𝑏𝑠 + 𝑒 where 𝑒 is a “short” vector.3

We can now try to check what adding and multiplying two matri-
ces does to the noise. If 𝐶𝑠 = 𝑏𝑠 + 𝑒 and 𝐶′𝑠 = 𝑏′𝑠 + 𝑒′ then

(𝐶 + 𝐶′)𝑠 = (𝑏 + 𝑏′)𝑠 + (𝑒 + 𝑒′) (15.1)

and
CC′𝑠 = 𝐶(𝑏′𝑠 + 𝑒′) + 𝑒 = 𝑏𝑏′𝑠 + (𝑏′𝑒 + 𝐶𝑒′) . (15.2)

P
I recommend you pause here and check for yourself
whether it will be the case that 𝐶 + 𝐶′ encrypts 𝑏 + 𝑏′
and CC′ encrypts 𝑏𝑏′ up to small noise or not.

We would have loved to say that we can define as above 𝐶 ⊕ 𝐶′ =
𝐶 + 𝐶′ (mod 𝑞) and 𝐶 ⊗ 𝐶′ = CC′ (mod 𝑞). For this we would need
that the vector (𝐶 + 𝐶′)𝑠 equals (𝑏 + 𝑏′)𝑠 plus a “short” vector and the
vector CC′𝑠 equals 𝑏𝑏′𝑠 plus a “short” vector. The former statement
indeed holds. Looking at (15.2) we see that (𝐶 + 𝐶′)𝑠 equals (𝑏 + 𝑏′)𝑠
up to the “noise” vector 𝑒 + 𝑒′, and if 𝑒, 𝑒′ are “short” then 𝑒 + 𝑒′ is
not too long either. That is, if |𝑒𝑖| < 𝜂 and |𝑒′𝑖| < 𝜂′ for every 𝑖 then
|𝑒𝑖 + 𝑒′𝑖| < 𝜂 + 𝜂′. So we can at least handle a significant number of
additions before the noise gets out of hand.

However, if we consider (15.2), we see that CC′ will be equal to 𝑏𝑏′𝑠
plus the “noise vector” 𝑏′𝑒 + 𝐶𝑒′. The first component 𝑏′𝑒 of this noise
vector is “short” (after all 𝑏′ ∈ {0, 1} and 𝑒 is “short”). However, the

https://eprint.iacr.org/2014/610
https://eprint.iacr.org/2014/610

306 an intensive introduction to cryptography

4 If we were being pedantic the length of the vector
(and other constant below) should be the integer
⌈log 𝑞⌉ but I omit the ceiling symbols for simplicity of
notation.

Figure 15.3: We can encode a vector 𝑠 ∈ ℤ𝑛
𝑞 as a vector

̂𝑠 ∈ ℤ𝑛 log 𝑞
𝑞 that has only entries in {0, 1} by using

the binary encoding, replacing every coordinate of 𝑠
with a log 𝑞-sized block in ̂𝑠. The decoding operation
is linear and so we can write 𝑠 = 𝑄 ̂𝑠 for a specific
(simple) 𝑛× (𝑛 log 𝑞) matrix 𝑄.

Figure 15.4: We can encode an 𝑛 × 𝑛 matrix 𝐶 over ℤ𝑞
by an 𝑛 × (𝑛 log 𝑞) matrix ̂𝐶 using the binary basis.
We have the equation 𝐶 = ̂𝐶𝑄⊤ where 𝑄 is the same
matrix we use to decode a vector.

second component 𝐶𝑒′ could be a very large vector. Indeed, since 𝐶
looks like a random matrix in ℤ𝑞, no matter how small the entries of
𝑒′, many of the entries of 𝐶𝑒′ will be large. Hence multiplying 𝑒′ by 𝐶
takes us “beyond the edge of chaos” and makes the noise too large for
decryption to be successful.

15.3 NOISE MANAGEMENT VIA ENCODING

The problem we had above is that the entries of 𝐶 are elements in ℤ𝑞
that can be very large, while we would have loved them to be small
numbers such as 0 or 1. At this point one could say

“If only there was some way to encode numbers between
0 and 𝑞 − 1 using only 0’s and 1’s”

If you think about it hard enough, it turns out that there is some-
thing known as the “binary basis” that allows us to encode a number
𝑥 ∈ ℤ𝑞 as a vector ̂𝑥 ∈ {0, 1}log 𝑞.4 What’s even more surprising is that
this seemingly trivial trick turns out to be immensely useful. We will
define the binary encoding of a vector or matrix 𝑥 over ℤ𝑞 by ̂𝑥. That is,
̂𝑥 is obtained by replacing every coordinate 𝑥𝑖 with log 𝑞 coordinates

𝑥𝑖,0,… , 𝑥𝑖,log 𝑞−1 such that

𝑥𝑖 =
log 𝑞−1
∑
𝑗=0

2𝑗𝑥𝑖,𝑗 . (15.3)

Specifically, if 𝑠 ∈ ℤ𝑛
𝑞 , then we denote by ̂𝑠 the 𝑛 log 𝑞-dimensional

vector with entries in {0, 1}, such that each log 𝑞-sized block of ̂𝑠 en-
codes a coordinate of 𝑠. Similarly, if 𝐶 is an 𝑚 × 𝑛 matrix, then we de-
note by ̂𝐶 the 𝑚×𝑛 log 𝑞 matrix with entries in {0, 1} that corresponds
to encoding every 𝑛-dimensional row of 𝐶 by an 𝑛 log 𝑞-dimensional
row where each log 𝑞-sized block corresponds to a single entry. (We
still think of the entries of these vectors and matrices as elements of ℤ𝑞
and so all calculations are still done modulo 𝑞.)

While encoding in the binary basis is not a linear operation, the
decoding operation is linear as one can see in (15.3). We let 𝑄 be the
𝑛 × (𝑛 log 𝑞) “decoding” matrix that maps an encoding vector ̂𝑠 back
to the original vector 𝑠. Specifically, every row of 𝑄 is composed of
𝑛 blocks each of log 𝑞 size, where the 𝑖-th row has only the 𝑖-th block
nonzero, and equal to the values (1, 2, 4,… , 2log 𝑞−1). It’s a good exer-
cise to verify that for every vector 𝑠 ∈ ℤ𝑛

𝑞 and matrix 𝐶 ∈ ℤ𝑛×𝑛
𝑞 , 𝑄 ̂𝑠 = 𝑠

and ̂𝐶𝑄⊤ = 𝐶. (See Fig. 15.3 amd Fig. 15.4.)

Our final encryption scheme: We describe below the key generation,
encryption and decryption algorithms of our final homomorphic
encryption scheme (FHEENC). It will satisfy the following properties:

fully homomorphic encryption: construction 307

1. Ciphertexts are (𝑛 log 𝑞) × (𝑛 log 𝑞) matrices 𝐶 with all coefficients
in {0, 1}.

2. The secret key is a vector 𝑠 ∈ ℤ𝑛
𝑞 . We let 𝑣 ∈ ℤ𝑛 log 𝑞

𝑞 be the vector
𝑉 = 𝑄⊤𝑠.

3. An encryption of 𝑏 ∈ {0, 1} is a matrix 𝐶 satisfying the following
“ciphertext equation”

𝐶𝑣 = 𝑏𝑣 + 𝑒 (15.4)

for a “short” 𝑒.

Given the conditions 1,2, and 3, we can now define the addition and
multiplication operations for two ciphertexts 𝐶,𝐶′ as follows:

• 𝐶 ⊕ 𝐶′ = 𝐶 + 𝐶′ (mod 𝑞)

• 𝐶 ⊗ 𝐶′ = ̂(CQ⊤)𝐶′

P
Please try to verify that if 𝐶,𝐶′ are encryptions of 𝑏, 𝑏′
then 𝐶 ⊕ 𝐶′ and 𝐶 ⊗ 𝐶′ will be encryptions of 𝑏 + 𝑏′
and 𝑏𝑏′ respectively.

Correctness of operations. Suppose that 𝐶𝑣 = 𝑏𝑣 + 𝑒 and 𝐶′𝑣 = 𝑏′𝑣 + 𝑒′.
Then

(𝐶 ⊕ 𝐶′)𝑣 = (𝐶 + 𝐶′)𝑣 = (𝑏 + 𝑏′)𝑣 + (𝑒 + 𝑒′) (15.5)

which means that 𝐶 ⊕ 𝐶′ satisfies the ciphertext equation (15.4)
with respect to the plaintext 𝑏 + 𝑏′, with the short vector 𝑒 + 𝑒′.

Let’s now analyze the more challenging case of 𝐶 ⊗ 𝐶′.

(𝐶 ⊗ 𝐶′)𝑣 = ̂(CQ⊤)𝐶′𝑣 = ̂(CQ⊤)(𝑏′𝑣 + 𝑒′) . (15.6)

But since 𝑣 = 𝑄⊤𝑠 and ̂𝐴𝑄⊤ = 𝐴 for every matrix 𝐴, the righthand
side of (15.6) equals

̂(CQ⊤)(𝑏′𝑄⊤𝑠 + 𝑒′) = 𝑏′𝐶𝑄⊤𝑠 + ̂(CQ⊤)𝑒′ = 𝑏′𝐶𝑣 + ̂(CQ⊤)𝑒′ (15.7)

but since 𝐵 is a matrix with small coefficients for every 𝐵 and 𝑒′
is short, the righthand side of (15.7) equals 𝑏′𝐶𝑣 up to a short vector,
and since 𝐶𝑣 = 𝑏𝑣 + 𝑒 and 𝑏′𝑒 is short, we get that (𝐶 ⊗ 𝐶′)𝑣 equals
𝑏′𝑏𝑣 plus a short vector as desired.

We can now define

ENAND(𝐶,𝐶′) = 𝐼 − 𝐶 ⊗ 𝐶′ .

308 an intensive introduction to cryptography

Keeping track of parameters. For 𝐶 that encrypts a plaintext 𝑏, let 𝜂(𝐶) =
max𝑖∈[𝑛] |𝐶𝑣 − 𝑏𝑣|. Now if we can see that if 𝐶 encrypts 𝑏 with noise
𝜂(𝐶) and 𝐶′ encrypts 𝑏′ with noise 𝜂(𝐶′), then ENAND(𝐶,𝐶′) will
encrypt 1 − 𝑏𝑏′ = NAND(𝑏, 𝑏′) with noise of magnitude at most
𝑂(𝜇 + 𝑛 log 𝑞𝜇′), which is smaller than 𝑛3 ⋅ max{𝜂(𝐶), 𝜂(𝐶′)} for
𝑞 ≈ 2

√𝑛.

15.4 PUTTING IT ALL TOGETHER

We now describe the full scheme. We are going to use a quantitatively
stronger version of LWE. Namely, the 𝑞(𝑛)-dLWE assumption for
𝑞(𝑛) = 2

√𝑛. It is not hard to show that we can relax our assumption to
𝑞(𝑛)-LWE 𝑞(𝑛) = 2𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) and Brakerski and Vaikuntanathan showed
how to relax the assumption to standard (i.e. 𝑞(𝑛) = 𝑝𝑜𝑙𝑦(𝑛)) LWE
though we will not present this here.

FHEENC:

• Key generation: As in the scheme of last lecture
the secret key is 𝑠 ∈ ℤ𝑛

𝑞 and the public key is
a generator 𝐺𝑠 such that samples from 𝐺𝑠(1𝑛)
are indistinguishable from independent ran-
dom samples from ℤ𝑛

𝑞 but if 𝑐 is output by 𝐺𝑠
then |⟨𝑐, 𝑠⟩| < √𝑞, where the inner product (as
all other computations) is done modulo 𝑞 and
for every 𝑥 ∈ ℤ𝑞 = {0,… , 𝑞 − 1} we define
|𝑥| = min{𝑥, 𝑞 − 𝑥}. As before, we can assume
that 𝑠1 = ⌊𝑞/2⌋ which implies that (𝑄⊤𝑠)1 is
also ⌊𝑞/2⌋ since (as can be verified by direct
inspection) the first row of 𝑄⊤ is (1, 0,… , 0).

• Encryption: To encrypt 𝑏 ∈ {0, 1}, let
𝑑1,… , 𝑑𝑛 log 𝑞 ←𝑅 𝐺𝑠(1𝑛) output 𝐶 = ̂(𝑏𝑄⊤ +𝐷)
where 𝐷 is the matrix whose rows are
𝑑1,… , 𝑑𝑛 log 𝑞 generated from 𝐺𝑠. (See Fig. 15.5)

• Decryption: To decrypt the ciphertext 𝐶, we
output 0 if |(CQ⊤𝑠)1| < 0.1𝑞 and output 1 if
0.6𝑞 > |(CQ⊤𝑠)1| > 0.4𝑞, see Fig. 15.6. (It doesn’t
matter what we output on other cases.)

• NAND evaluation: Given ciphertexts 𝐶,𝐶′,
we define 𝐶∧𝐶′ (sometimes also denoted as
NANDEVAL(𝐶,𝐶′)) to equal 𝐼 − ̂(CQ⊤)𝐶′,
where 𝐼 is the (𝑛 log 𝑞)× (𝑛 log 𝑞) identity matrix.

P

fully homomorphic encryption: construction 309

Please take your time to read the definition of the
scheme, and go over Fig. 15.5 and Fig. 15.6 to make
sure you understand it.

Figure 15.5: In our fully homomorphic encryption,
the public key is a trapdoor generator 𝐺𝑠. To encrypt
a bit 𝑏, we output 𝐶 = ̂(𝑏𝑄⊤ +𝐷) where 𝐷 is a
(𝑛 log 𝑞) × 𝑛 matrix whose rows are generated using
𝐺𝑠.

Figure 15.6: We decrypt a ciphertext 𝐶 = ̂(𝑏𝑄⊤ +𝐷)
by looking at the first coordinate of CQ⊤𝑠 (or equiv-
alently, CQ⊤𝑄 ̂𝑠). If 𝑏 = 0 then this equals the first
coordinate of 𝐷𝑠, which is at most √𝑞 in magintude.
If 𝑏 = 1 then we get an extra factor of 𝑄⊤𝑠 which we
set to be in the interval (0.499𝑞, 0.51𝑞). We can think
of either 𝑠 or ̂𝑠 as our secret key.

15.5 ANALYSIS OF OUR SCHEME

To show that that this scheme is a valid partially homomorphic
scheme we need to show the following properties:

1. Correctness: The decryption of an encryption of 𝑏 ∈ {0, 1} equals 𝑏.

2. CPA security: An encryption of 0 is computationally indistinguish-
able from an encryption of 1 to someone that got the public key.

310 an intensive introduction to cryptography

3. Homomorphism: If 𝐶 encrypts 𝑏 and 𝐶′ encrypts 𝑏′ then 𝐶∧𝐶′

encrypts 𝑏 NAND 𝑏′ (with a higher amount of noise). The growth
of the noise will be the reason that we will not get immediately a
fully homomorphic encryption.

4. Shallow decryption circuit: To plug this scheme into the boot-
strapping theorem we will need to show that its decryption al-
gorithm (or more accurately, the function in the statement of the
bootstrapping theorem) can be evaluated in depth 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) (inde-
pendently of 𝑞), and that moreover, the noise grows slowly enough
that our scheme is homomorphic with respect to such circuits.

Once we obtain 1-4 above, we can plug FHEENC into the Bootstrap-
ping Theorem (Theorem 14.8) and thus complete the proof of exis-
tence of a fully homomorphic encryption scheme. We now address
those points one by one.

15.5.1 Correctness
Correctness of the scheme will follow from the following stronger
condition:

Lemma 15.5 For every 𝑏 ∈ {0, 1}, if 𝐶 is the encryption of 𝑏 then it is an
(𝑛 log 𝑞) × (𝑛 log 𝑞) matrix satisfying

CQ⊤𝑠 = 𝑏𝑄⊤𝑠 + 𝑒

where max |𝑒𝑖| ≪
√𝑞.

Proof. For starters, let us see that the dimensions make sense: the
encryption of 𝑏 is computed by 𝐶 = ̂(𝑏𝑄⊤ +𝐷) where 𝐷 is an
(𝑛 log 𝑞) × 𝑛 matrix satisfying |𝐷𝑠|𝑖 ≤

√𝑞 for every 𝑖.
Since 𝑄⊤ is also an (𝑛 log 𝑞) × 𝑛 matrix, adding 𝑏𝑄⊤ (i.e. either 𝑄⊤

or the all-zeroes matrix, depending on whether or not 𝑏 = 1) to 𝐷
makes sense and applying the ̂⋅ operation will transform every row
to length 𝑛 log 𝑞 and hence 𝐶 is indeed a square (𝑛 log 𝑞) × (𝑛 log 𝑞)
matrix.

Let us now see what this matrix 𝐶 does to the vector 𝑣 = 𝑄⊤𝑠.
Using the fact that 𝑀̂𝑄⊤ = 𝑀 for every matrix 𝑀 , we get that

𝐶𝑣 = (𝑏𝑄⊤ +𝐷)𝑠 = 𝑏𝑣 + 𝐷𝑠

but by construction |(𝐷𝑠)𝑖| ≤
√𝑞 for every 𝑖.

■

Lemma 15.5 implies correctness of decryption since by construction
we ensured that (𝑄⊤𝑠)1 ∈ (0.499𝑞, 0.5001𝑞) and hence we get that if
𝑏 = 0 then |(𝐶𝑣)1| = 𝑜(𝑞) and if 𝑏 = 1 then 0.499𝑞 − 𝑜(𝑞) ≤ |(𝐶𝑣)1| ≤
0.501𝑞 + 𝑜(𝑞).

fully homomorphic encryption: construction 311

15.5.2 CPA Security
To show CPA security we need to show that an encryption of 0 is
indistinguishable from an encryption of 1. However, by the security of
the trapdoor generator, an encryption of 𝑏 computed according to our
algorithm will be indistinguishable from an encryption of 𝑏 obtained
when the matrix 𝐷 is a random (𝑛 log 𝑞) × 𝑛 matrix. Now in this case
the encryption is obtained by applying the ̂⋅ operation to 𝑏𝑄⊤ + 𝐷
but if 𝐷 is uniformly random then for every choice of 𝑏, 𝑏𝑄⊤ + 𝐷 is
uniformly random (since a fixed matrix plus a random matrix yields a
random matrix) and hence the matrix 𝑏𝑄⊤ +𝐷 (and so also the matrix

̂𝑏𝑄⊤ +𝐷) contains no information about 𝑏. This completes the proof
of CPA security (can you see why?).

If we want to plug in this scheme in the bootstrapping theorem,
then we will also assume that it is circular secure. It seems a reasonable
assumption though unfortuantely at the moment we do not know how
to derive it from LWE. (If we don’t want to make this assumption we
can still obtained a leveled fully homomorphic encryption as discussed
in the previous lecture.)

15.5.3 Homomorphism
Let 𝑣 = 𝑄⊤𝑠, 𝑏 ∈ {0, 1} and 𝐶 be a ciphertext such that 𝐶𝑣 = 𝑏𝑣 + 𝑒.
We define the noise of 𝐶, denoted as 𝜇(𝐶) to be the maximum of |𝑒𝑖|
over all 𝑖 ∈ [𝑛 log 𝑞]. We make the following lemma, which we’ll call
the “noisy homomorphism lemma”:

Lemma 15.6 Let 𝐶,𝐶′ be ciphertexts encrypting 𝑏, 𝑏′ respectively with
𝜇(𝐶), 𝜇(𝐶′) ≤ 𝑞/4. Then 𝐶″ = 𝐶∧𝐶′ encrypts 𝑏 NAND 𝑏′ and satisfies

𝜇(𝐶″) ≤ (2𝑛 log 𝑞)max{𝜇(𝐶), 𝜇(𝐶′)} (15.8)

Proof. This follows from the calculations we have done before. As
we’ve seen,

𝐶𝑄⊤𝐶′𝑣 = 𝐶𝑄⊤(𝑏′𝑣+𝑒′) = 𝑏′𝐶𝑄⊤𝑄⊤𝑠+𝐶𝑄⊤𝑒′ = 𝑏′(𝐶𝑣)+𝐶𝑄⊤𝑒′ = 𝑏𝑏′𝑣+𝑏′𝑒+𝐶𝑄⊤𝑒′

But since 𝐶𝑄⊤ is a 0/1 matrix with every row of length 𝑛 log 𝑞, for
every 𝑖 (𝐶𝑄⊤𝑒′)𝑖 ≤ (𝑛 log 𝑞)max𝑗 |𝑒′𝑗|. We see that the noise vector in
the product has magnitude at most 𝜇(𝐶) + 𝑛 log 𝑞𝜇(𝐶′). Adding the
identity for the NAND operation adds at most 𝜇(𝐶) + 𝜇(𝐶′) to the
noise, and so the total noise magnitude is bounded by the righthand
side of (15.8).

■

15.5.4 Shallow decryption circuit
Recall that to plug in our homomorphic encryption scheme into
the bootstrapping theorem, we needed to show that for every ci-
phertext 𝐶 (generated by the encryption algorithm) the function

312 an intensive introduction to cryptography

𝑓𝐶 ∶ {0, 1}𝑛 log 𝑞 → {0, 1} can be computed by a circuit of sufficiently
shallow, where 𝑓𝐶 is defined as

𝑓𝐶(𝑑) = 𝐷𝑑(𝐶)

where 𝑑 is the secret key and 𝐷𝑑(𝐶) denotes the decryption algorithm
applied to 𝐶.

In our case a circuit of 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) ≪ 𝑛5 will be “sufficiently shal-
low”. Specifically, by repeatedly applying the noisy homomorphism
lemma (Lemma 15.6), we can show that can homorphically evalu-
ate every circuit of NAND gates whose depth ℓ satisfies the condition
(2𝑛 log 𝑞)ℓ ≪ 𝑞. If 𝑞 = 2

√𝑛 then (assuming 𝑛 is sufficiently large) as
long as ℓ < 𝑛0.49 this will be satisfied.

We will encode the secret key of the encryption scheme as the bi-
nary string ̂𝑠 which describes our vector 𝑠 ∈ 𝑍𝑛

𝑞 as a bit string of
length 𝑛 log 𝑞. Given a ciphertext 𝐶, the decryption algorithm takes
the dot product modulo 𝑞 of 𝑠 with the first row of CQ⊤. This can be
equivalently described as taking the dot product of ̂𝑠 with the first
row of CQ⊤𝑄. Decryption outputs 0 (respectively 1) if the resulting
number is small (respectively large).

In particular to show that 𝑓𝐶(⋅) can be homomorphically evaluated
it will suffice to show that for every fixed vector 𝑐 ∈ ℤ𝑛 log 𝑞

𝑞 there is a
𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) ≪ 𝑛0.49 depth circuit 𝐹 that on input a string ̂𝑠 ∈ {0, 1}𝑛 log 𝑞

will output 0 if |⟨𝑐, ̂𝑠⟩| < 𝑞/10 and output 1 if |⟨𝑐, ̂𝑠⟩| > 𝑞/5. (We
don’t care what 𝐹 does otherwise.) The above suffices since given
a ciphertext 𝐶 we can use 𝐹 with the vector 𝑐 being the top row of
CQ⊤𝑄, and hence ⟨𝑐, ̂𝑠⟩ would correspond to the first entry of CQ⊤𝑠.

P
Please make sure you understand the above argument.

If 𝑐 = (𝑐1,… , 𝑐𝑛 log 𝑞) is a vector then to compute its inner product
with a 0/1 vector ̂𝑠 we simply need to sum up the numbers 𝑐𝑖 where
̂𝑠𝑖 = 1. Summing up 𝑚 numbers can be done via the obvious recur-

sion in depth that is log𝑚 times the depth for a single addition of two
numbers. However, the naive way to add two numbers in ℤ𝑞 (each
represented by log 𝑞 bits) will have depth 𝑂(log 𝑞) which is too much
for us. The issue is that while 𝑚 = 𝑛 log 𝑞 is polynomial in 𝑛, 𝑞 itself
has exponential magnitude. In particular log 𝑞 ≈ √𝑛, and we cannot
afford to use a circuit of that depth.

P
Please stop here and see if you understand why the
natural circuit to compute the addition of two num-
bers modulo 𝑞 (represented as log 𝑞-length binary

fully homomorphic encryption: construction 313

strings) will require depth 𝑂(log 𝑞). As a hint, one
needs to keep track of the “carry”.

Fortunately, because we only care about accuracy up to 𝑞/10, we
can make the calculation “shallower”. Specifically, if we add 𝑚 num-
bers in ℤ𝑞 (each represented by log 𝑞 bits), we can drop all but the first
100 log𝑚 most significant digits of our numbers. The reason is that
dropping this can change each number by at most (𝑞/𝑚100), and so if
we ignore these digits, then it would change the sum of the 𝑚 num-
bers by at most 𝑚(𝑞/𝑚100) ≪ 𝑞. Hence we can easily do this work in
𝑝𝑜𝑙𝑦(log𝑚) depth, which is 𝑝𝑜𝑙𝑦(log𝑛) since 𝑚 = 𝑝𝑜𝑙𝑦(𝑛).

Let us now show this more formally:

Lemma 15.7 For every 𝑐 ∈ ℤ𝑚
𝑞 there exists some function 𝑓 ∶ {0, 1}𝑚 →

{0, 1} such that:

1. For every ̂𝑠 ∈ {0, 1}𝑛 such that |⟨ ̂𝑠, 𝑐⟩| < 0.1𝑞, 𝑓(̂𝑠) = 0

2. For every ̂𝑠 ∈ {0, 1}𝑛 such that 0.4𝑞 < |⟨ ̂𝑠, 𝑐⟩| < 0.6𝑞, 𝑓(̂𝑠) = 1

3. There is a circuit computing 𝑓 of depth at most 100(log𝑚)3.

::: {.proof data-ref=“decdepthlem”} For every number 𝑥 ∈ ℤ𝑞,
define ̃𝑥 to be the number that is obtained by writing 𝑥 in the binary
basis and setting all digits except the 10 log𝑚 most significant ones to
zero. Note that ̃𝑥 ≤ 𝑥 ≤ ̃𝑥 + 𝑞/𝑚10. The idea is that we will do the
calculation by changing every number 𝑐𝑖 and the modulos 𝑞 into their
correponding numbers ̃𝑐𝑖 and ̃𝑞.

We define 𝑓(̂𝑠) to equal 1 if |∑ ̂𝑠𝑖 ̃𝑐𝑖 (mod ̃𝑞)| ≥ 0.3 ̃𝑞 and to equal
0 otherwise (where as usual the absolute value of 𝑥 modulo ̃𝑞 is the
minimum of 𝑥 and ̃𝑞 − 𝑥.) All numbers involved have zeroes in all but
the 10 log𝑚 most significant digits and so these less significant digits
can be ignored. Hence we can add any pair of such numbers modulo ̃𝑞
in depth 𝑂(log𝑚)2 using the standard elementary school algorithm to
add two ℓ-digit numbers in 𝑂(ℓ2) steps.

Now we can add the 𝑚 numbers by adding pairs, and then adding
up the results, and this way in a binary tree of depth log𝑚 to get a
total depth of 𝑂(log𝑚)3. So, all that is left to prove is that this function
𝑓 satisfies the conditions (1) and (2).

If we look at the non modular sum then |∑ ̂𝑠𝑖 ̃𝑐𝑖 − ∑ ̂𝑠𝑖𝑐𝑖| <
𝑚𝑞/𝑚10 = 𝑞/𝑚9 so now we want to show that the effect of taking
modulo ̃𝑞 is not much different from taking modulo 𝑞. Indeed, note
that this sum (before a modular reduction) is an integer between
0 and 𝑞𝑚. If 𝑥 is such an integer and we divide 𝑥 by 𝑞 to write
𝑥 = 𝑘𝑞 + 𝑟 for 𝑟 < 𝑞, then since 𝑥 < 𝑞𝑚, 𝑘 < 𝑚, and so we can write
𝑥 = 𝑘 ̃𝑞 + 𝑘(𝑞 − ̃𝑞) + 𝑟 so the difference between 𝑘 mod 𝑞 and 𝑘 mod ̃𝑞

314 an intensive introduction to cryptography

will be (in our standard modular metric) at most 𝑚𝑞/𝑚10 = 𝑞/𝑚9.
Overall we get that if ∑ ̂𝑠𝑖𝑐𝑖 mod 𝑞 is in the interval [0.4𝑞, 0.6𝑞] then
∑ ̂𝑠𝑖 ̃𝑐𝑖 (mod ̃𝑞) will be in the interval [0.4𝑞 − 100𝑞/𝑚9, 0.6𝑞 + 100𝑞/𝑚9]
which is contained in [0.3 ̃𝑞, 0.7 ̃𝑞].

This completes the proof that our scheme can fit into the bootstrap-
ping theorem (i.e., of Theorem 15.1), hence completing the descrip-
tion of the fully homomorphic encryption scheme.

P
Now would be a good point to go back and see you
understand how all the pieces fit together to obtain
the complete construction of the fully homomorphic
encryption scheme.

15.6 ADVANCED TOPICS:

15.6.1 Fully homomorphic encryption for approximate computation over
the real numbers: CKKS

We have seen how a fully homomorphic encryption for a plaintext
bit 𝑏 can be constructed and we are able to evaluate addition and
multiplication of ciphertexts as well as a NAND gate in the ciphertext
space. One can also extend FHEENC scheme to encrypt a plaintext
message 𝜇 ∈ ℤ𝑞 and can evaluate multi-bit integer additions and
multiplications more efficiently. Our next following question would be
floating/fixed point operations. They are similar to integer operations,
but we need to be able to evaluate a rounding operation following
every computation. Unfortunately, it has been considered difficult to
evaluate the rounding operation ensuring the correctness property.
An easier solution is to assume approximate computations from the
beginning and embrace errors caused by them.

CKKS scheme, one of the recent schemes, addressed this challenge
by allowing small errors in the decrypted results. Its correctness prop-
erty is more relaxed than what we’ve seen before. Now decryption
does not necessarily be precisely the original message, and indeed,
this resolved the rounding operation problem supporting approxi-
mate computation over the real numbers. To get more sense on its
construction, recall that when we decrypt a ciphertext in the FHEENC
scheme, we have CQ⊤𝑠 = 𝑏𝑄⊤𝑠 + 𝑒 where max |𝑒𝑖| ≪ √𝑞. Since
(𝑄⊤𝑠)1 ∈ (0.499𝑞, 0.5001𝑞), multiplying by this term places a plaintext
bit near the most significant bits of the ciphertext where the plaintext
cannot be polluted by the encryption noise. Therefore, we are able
to precisely remove the noise 𝑒 we added for the security. However,
this kind of separated placement actually makes an evaluation of the
rounding operation difficult. On the other hand, the CKKS scheme

https://eprint.iacr.org/2016/421.pdf

fully homomorphic encryption: construction 315

doesn’t clearly separate the plaintext message and noise in its de-
cryption structure. Specifically, we have the form of 𝑐⊤𝑠 = 𝑚 + 𝑒
and the noise lies with the LSB part of the message and does pollute
the lowest bits of the message. Note that this is acceptable as long as
it preserves enough precision. Now we can evaluate rounding(i.e.,
rescaling in the paper) homomorphically, by dividing both a cipher-
text 𝑐 and the parameter 𝑞 by some factor 𝑝. The concept of handling
ciphertexts with a different encryption parameter 𝑞′ = 𝑞/𝑝 is already
known to be possible. You can find more details on this modulus
switching technique in this paper if you are interested. Besides, it is
also proved that the precision loss of the decrypted evaluation result
is at most one more bit loss compared to the plaintext computation
result, which means the scheme’s precision guarantee is nearly opti-
mal. This scheme offers an efficient homomorphic encryption setting
for many practical data science and machine learning applications
which does not require precise values, but approximate ones. You may
check existing open source libraries, such as MS SEAL and HEAAN,
of this scheme as well as many practical applications including logistic
regression in the literature.

15.6.2 Bandwidth efficient fully homomorphic encryption GH
When we define homomorphic encryption in Definition 14.3, we only
consider a class of single-output functions ℱ. Now we want to ex-
tend the difinition to multiple-output function and consider how
bandwidth-efficient the fully homomorphic encryption can be. More
specifically, if we want to guarantee that the result of decryption is (or
contains) 𝑓(𝑥1,… , 𝑥ℓ), what will be the minimal possible length of the
ciphertext? Let us first define the compressible fully homomorphic
encryption scheme.

Definition 15.8 — Compressible Fully Homomorphic Encryption. A com-
pressible fully homomorphic public key encryption scheme is a CPA
secure public key encryption scheme (𝐺,𝐸,𝐷) such that there exist
polynomial-time algorithms EVAL,COMP ∶ 0, 1∗ → 0, 1∗ such
that for every (𝑒, 𝑑) = 𝐺(1𝑛), ℓ = 𝑝𝑜𝑙𝑦(𝑛), 𝑥1,… , 𝑥ℓ ∈ {0, 1}, and
𝑓 ∶ {0, 1}ℓ → {0, 1}∗ which can be described by a circuit, it holds
that:

• 𝑐 = EVAL𝑒(𝑓, 𝐸𝑒(𝑥1),… ,𝐸𝑒(𝑥ℓ)).

• 𝑐∗ = COMP(𝑐).

• 𝑓(𝑥1,… , 𝑥ℓ) is a prefix of 𝐷𝑑(𝑐∗).

https://eprint.iacr.org/2011/277.pdf
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/snucrypto/HEAAN
https://eprint.iacr.org/2018/254.pdf
https://eprint.iacr.org/2018/254.pdf
https://eprint.iacr.org/2019/733.pdf

316 an intensive introduction to cryptography

This definition is similar to the standard fully homomorphic en-
cryption except an additional compression step. The bandwidth
efficiency of a compressible fully homomorphic encryption is often
described by the rate which is defined as follows:

Definition 15.9 — Rate of Compressible Fully Homomorphic Encryption. A
compressible fully homomorphic public key encryption scheme
has rate 𝛼 = 𝛼(𝑛) if for every (𝑒, 𝑑) = 𝐺(1𝑛), ℓ = 𝑝𝑜𝑙𝑦(𝑛),
𝑥1,… , 𝑥ℓ ∈ {0, 1}, and 𝑓 ∶ {0, 1}ℓ → {0, 1}∗ with sufficiently
long output, it holds that

𝛼|𝑐∗| ≤ |𝑓(𝑥1,… , 𝑥ℓ)|.

The following theorem by Gentry and Halevi 2019 answers the
earlier question, which states that the nearly optimal rate, say a rate
arbitrarily close to 1, can be achieved.

Theorem 15.10 — Nearly Optimal Rate. For any 𝜖 > 0, there exists a com-
pressive fully homomorphic encryption scheme with rate being 1 −
𝜖 under the LWE assumption.

15.6.3 Using fully homomorphic encryption to achieve private information
retrieval.

Private information retrieval (PIR) allows the client to retrive the 𝑖-
th entry of a database which has totally 𝑛 entries without letting the
server know 𝑖. We only consider the single-server case here. Obvi-
ously, a trivial solution is that the server sends the entire database to
the client.

One simple case of PIR is that each entry is a bit, for which the
trivial solution above has the communication complexity being 𝑛.
Kushilevitz and Ostrovsky 1997 reduced the the complexity to be
smaller than 𝑂(𝑛𝜖) for any 𝜖 > 0. After that, another work (Cachin et
al. 1999) further reduced the complexity to 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛). More discus-
sion about PIR and related FHE techniques can be found in Ostrovsky
and Skeith 2007, Yi et al. 2013 and references therein.

One interesting observation is that fully homomorphic encryption
can be applied to the single-server PIR via the following procedures:

• The client computes 𝐸𝑒(𝑖) and sends it to the server.

• The server evaluates 𝑐 = EVAL(𝑓, 𝐸𝑒(𝑖)), where 𝑓(𝑖) returns the 𝑖-th
entry of the database, and sends it (or its compressed version 𝑐∗)
back to the client.

• The client decrypts 𝐷𝑑(𝑐) or 𝐷𝑑(𝑐∗) and obtains the 𝑖-th entry of the
database.

https://eprint.iacr.org/2019/733.pdf
https://web.cs.ucla.edu/~rafail/PUBLIC/34.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Private%20Information%20Retrieval/Computationally%20Private%20Information%20Retrieval%20with%20Polylogarithmic%20Communication.pdf
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Private%20Information%20Retrieval/Computationally%20Private%20Information%20Retrieval%20with%20Polylogarithmic%20Communication.pdf
https://eprint.iacr.org/2007/059.pdf
https://eprint.iacr.org/2007/059.pdf
https://ieeexplore.ieee.org/document/6189348

fully homomorphic encryption: construction 317

• Bandwidth efficient fully homomorphic encryption GH

Since there exists compressive fully homomorphic encryption
scheme with nearly optimal rate, say rate arbitrary close to 1 (see The-
orem 15.10), we can immediately get rate-(1 − 𝜖) PIR for any 𝜖. (Note
that this result holds only for database whose entries is quite large,
since the rate is defined for circuits with sufficiently long output.)
Prior to the theorem by Gentry and Halevi 2019, Kiayias et al. 2015
also constructed a PIR scheme with a nearly optimal rate/bandwidth
efficiency. The application of fully homomorphic encryption to PIR is
a fascinating field; not only limited to the bandwidth efficiency, you
may be also interested in the computational cost. We refer to Gentry
and Halevi 2019 for more details.

https://eprint.iacr.org/2019/733.pdf
https://eprint.iacr.org/2019/733.pdf
https://petsymposium.org/2015/papers/23_Kiayias.pdf
https://eprint.iacr.org/2019/733.pdf
https://eprint.iacr.org/2019/733.pdf

