
14
Fully homomorphic encryption: Introduction and bootstrap-
ping

In today’s era of “cloud computing”, much of individuals’ and
businesses’ data is stored and computed on by third parties such as
Google, Microsoft, Apple, Amazon, Facebook, Dropbox and many
others. Classically, cryptography provided solutions to protecting
data in motion from point A to point B. But these are not always suffi-
cient to protect data at rest and particularly data in use. For example,
suppose that Alice has some data 𝑥 ∈ {0, 1}𝑛 (in modern applica-
tions 𝑥 would well be terabytes in length or larger) that she wishes to
store with the cloud service Bob, but is afraid that Bob will be hacked,
subpoenaed or simply does not completely trust Bob.

Encryption does not seem to immediately solve the problem. Alice
could store at Bob an encrypted version of the data and keep the secret
key for herself. But then she would be at a loss if she wanted to do
anything more with the data other than retrieving particular blocks of
it. If she wanted to outsource computation to Bob as well, and com-
pute 𝑓(𝑥) for some function 𝑓 , then she would need to share the secret
key with Bob, thus defeating the purpose of encrypting the data in the
first place.

For example, after the computing systems of Office of Personell
Management (OPM) were discovered to be hacked in June of 2015,
revealing sensitive information, including fingerprints and all data
gathered during security clearance checks of up to 18 million people,
DHS assistant secretary for cybersecurity and communications Andy
Ozment said that encryption wouldn’t have helped preventing it since
“if an adversary has the credentials of a user on the network, then they
can access data even if it’s encrypted, just as the users on the network
have to access data”. So, can we encrypt data in a way that still allows
some access and computing on it?

Already in 1978, Rivest, Adleman and Dertouzos considered this
problem of a business that wishes to use a “commercial time-sharing

Compiled on 11.17.2021 22:35

https://www.schneier.com/blog/archives/2010/06/data_at_rest_vs.html
https://en.wikipedia.org/wiki/Data_at_rest
https://en.wikipedia.org/wiki/Data_in_use
https://www.lawfareblog.com/why-opm-hack-far-worse-you-imagine
http://www.federaltimes.com/story/government/omr/opm-cyber-report/2015/06/19/opm-breach-encryption/28985237/
http://luca-giuzzi.unibs.it/corsi/Support/papers-cryptography/RAD78.pdf
https://en.wikipedia.org/wiki/Time-sharing

288 an intensive introduction to cryptography

service” to store some sensitive data. They envisioned a potential solu-
tion for this task which they called a privacy homomorphism. This no-
tion later became known as fully homomorphic encryption (FHE) which
is an encryption that allows a party (such as the cloud provider) that
does not know the secret key to modify a ciphertext 𝑐 encrypting 𝑥 to a
ciphertext 𝑐′ encrypting 𝑓(𝑥) for every efficiently computable 𝑓(). In
particular in our scenario above (see Fig. 14.1), such a scheme will
allow Bob, given an encryption of 𝑥, to compute the encryption of
𝑓(𝑥) and send this ciphertext to Alice without ever getting the secret
key and so without ever learning anything about 𝑥 (or 𝑓(𝑥) for that
matter).

Figure 14.1: A fully homomorphic encryption can be
used to store data on the cloud in encrypted form,
but still have the cloud provider be able to evaluate
functions on the data in encrypted form (without
ever learning either the inputs or the outputs of the
function they evaluate).

Unlike the case of a trapdoor function, where it only took a year for
Diffie and Hellman’s challenge to be answered by RSA, in the case of
fully homomorphic encryption for more than 30 years cryptographers
had no constructions achieving this goal. In fact, some people sus-
pected that there is something inherently incompatible between the
security of an encryption scheme and the ability of a user to perform
all these operations on ciphertexts. Stanford cryptographer Dan Boneh
used to joke to incoming graduate students that he will immediately
sign the thesis of anyone who came up with a fully homomorphic en-
cryption. But he never expected that he will actually encounter such
a thesis, until in 2009, Boneh’s student Craig Gentry released a paper
doing just that. Gentry’s paper shook the world of cryptography, and
instigated a flurry of research results making his scheme more effi-
cient, reducing the assumptions it relied on, extending and applying
it, and much more. In particular, Brakerski and Vaikuntanathan man-
aged to obtain a fully homomorphic encryption scheme based only on
the Learning with Error (LWE) assumption we have seen before.

Although there is a number of implementations for (partially and)
fully homomorphic encryption (see this list), there is still much work
to be done in order to realize the full practical potential of FHE. For
a comparable level of security, the encryption and decryption oper-

https://crypto.stanford.edu/craig/
https://github.com/jonaschn/awesome-he

fully homomorphic encryption: introduction and bootstrapping 289

1 In 2015 the state of art on homomorphically evalu-
ating AES was about 6 seconds of computation per
block using about 4GB memory total for 180 blocks.
See also this paper. In contrast, modern processors
can evaluate 10s-100s millions of AES blocks per
second.

2 As we mentioned before, as a general rule of thumb,
the difference between the ideal schemes and the
one that we describe is that in the ideal setting one
deals with structured matrices that have a compact
representation as a single vector and also enable fast
FFT-like matrix-vector multiplication. This saves a
factor of about 𝑛 in the storage and computation
requirements (where 𝑛 is the dimension of the
subspace/lattice). However, there can be some subtle
security implications for ideal lattices as well, see e.g.,
here, here, here, and here.

ations of a fully homomorphic encryption scheme are several orders
of magnitude slower than a conventional public key system, and (de-
pending on its complexity) homomorphically evaluating a circuit can
be significantly more taxing. However, this is a fast evolving field,
and already since 2009 significant optimizations have been discovered
that reduced the computational and storage overhead by many or-
ders of magnitudes. As in public key encryption, one would imagine
that for larger data one would use a “hybrid” approach of combining
FHE with symmetric encryption, though one might need to come up
with tailor-made symmetric encryption schemes that can be efficiently
evaluated.1 Homomorphically evaluations of approximate computa-
tion, which can be useful for machine learning, can be done more
efficiently.

In this lecture and the next one we will focus on the fully homo-
morphic encryption schemes that are easiest to describe, rather than the
ones that are most efficient (though the efficient schemes share many
similarities with the ones we will talk about). As is generally the case
for lattice based encryption, the current most efficient schemes are
based on ideal lattices and on assumptions such as ring LWE or the
security of the NTRU cryptosystem.2

R
Remark 14.1 — Lesson from verifying computation.
To take the distance between theory and practice
in perspective, it might be useful to consider the
case of verifying computation. In the early 1990’s re-
searchers (motivated initially by zero knowledge
proofs) came up with the notion of probabilistically
checkable proofs (PCP’s) which could yield in prin-
ciple extremely succinct ways to check correctness of
computation.
Probabilistically checkable proofs can be thought of as
“souped up” versions of NP completeness reductions
and like these reductions, have been mostly used for
negative results, especially since the initial proofs were
extremely complicated and also included enormous
hidden constants. However, with time people have
slowly understood these better and made them more
efficient (e.g., see this survey) and it has now reached
the point where these results, are practical (see also
this) and in fact these ideas underlieat least two star-
tups. Overall, constructions for verifying computation
have improved by at least 20 orders of magnitude
over the last two decades. (We will talk about some
of these constructions later in this course.) If progress
on fully homomorphic encryption follows a similar
trajectory, then we can expect the road to practical
utility to be very long, but there is hope that it’s not a
“bridge to nowhere”.

https://eprint.iacr.org/2012/099.pdf
https://link.springer.com/article/10.1007/s10623-015-0095-1
https://www.bearssl.org/speed.html
https://eprint.iacr.org/2016/127
https://eprint.iacr.org/2015/313
https://eprint.iacr.org/2016/139
https://eprint.iacr.org/2015/676
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
http://madhu.seas.harvard.edu/papers/2009/pcpcacm.pdf
http://madhu.seas.harvard.edu/papers/2009/pcpcacm.pdf
http://m.cacm.acm.org/magazines/2015/2/182636-verifying-computations-without-reexecuting-them/fulltext
http://cacm.acm.org/magazines/2016/2/197429-pinocchio/abstract
https://eprint.iacr.org/2016/646
http://z.cash
https://starkware.co/
https://starkware.co/

290 an intensive introduction to cryptography

R
Remark 14.2 — Poor man’s FHE via hardware. Since large
scale fully homomorphic encryption is still impracti-
cal, people have been trying to achieve at least weaker
security goals using certain assumptions. In particular
Intel chips have so called “Secure enclaves” which one
can think of as a somewhat tamper-protected region
of the processor that is supposed to be out of reach for
the outside world. The idea is that a cloud provider
client would treat this enclave as a trusted party that
it can communicate with through the cloud provider.
The client can store their data on the cloud encrypted
with some key 𝑘, and then set up a secure channel
with the enclave using an authenticated key exchange
protocol, and send 𝑘 over. Then, when the client sends
over a function 𝑓 to the cloud provider, the latter party
can simulate FHE by asking the enclave to compute
the encryption of 𝑓(𝑥) given the encryption of 𝑥. In
this solution ultimately the private key does reside on
the cloud provider’s computers, and the client has to
trust the security of the enclave. In practice, this could
provide reasonable security against remote hackers,
but (unlike FHE) probably not against sophisticated
attackers (e.g., governments) that have physical access
to the server.

14.1 DEFINING FULLY HOMOMORPHIC ENCRYPTION

We start by defining partially homomorphic encryption. We focus on en-
cryption for single bits. This is without loss of generality for CPA secu-
rity (CCA security is anyway ruled out for homomorphic encryption-
can you see why?), though there are more efficient constructions that
encrypt several bits at a time.

Definition 14.3 — Partially Homomorphic Encryption. Let ℱ = ∪ℱℓ be a
class of functions where every 𝑓 ∈ ℱℓ maps {0, 1}ℓ to {0, 1}.

An ℱ-homomorphic public key encryption scheme is a CPA secure
public key encryption scheme (𝐺,𝐸,𝐷) such that there exists a
polynomial-time algorithm EVAL ∶ {0, 1}∗ → {0, 1}∗ such that for
every (𝑒, 𝑑) = 𝐺(1𝑛), ℓ = 𝑝𝑜𝑙𝑦(𝑛), 𝑥1,… , 𝑥ℓ ∈ {0, 1}, and 𝑓 ∈ ℱℓ of
description size |𝑓| at most 𝑝𝑜𝑙𝑦(ℓ) it holds that:

• 𝑐 = EVAL𝑒(𝑓, 𝐸𝑒(𝑥1),… ,𝐸𝑒(𝑥ℓ)) has length at most 𝑛.

• 𝐷𝑑(𝑐) = 𝑓(𝑥1,… , 𝑥ℓ).

https://goo.gl/HW4pPU

fully homomorphic encryption: introduction and bootstrapping 291

P
Please stop and verify you understand the defini-
tion. In particular you should understand why some
bound on the length of the output of EVAL is needed
to rule out trivial constructions that are the analo-
gous of the cloud provider sending over to Alice the
entire encrypted database every time she wants to
evaluate a function of it. By artificially increasing the
randomness for the key generation algorithm, this
is equivalent to requiring that |𝑐| ≤ 𝑝(𝑛) for some
fixed polynomial 𝑝(⋅) that does not grow with ℓ or |𝑓|.
You should also understand the distinction between
ciphertexts that are the output of the encryption algo-
rithm on the plaintext 𝑏, and ciphertexts that decrypt
to 𝑏, see Fig. 14.2.

Figure 14.2: In a valid encryption scheme 𝐸, the set
of ciphertexts 𝑐 such that 𝐷𝑑(𝑐) = 𝑏 is a superset
of the set of ciphertexts 𝑐 such that 𝑐 = 𝐸𝑒(𝑏; 𝑟)
for some 𝑟 ∈ {0, 1}𝑡 where 𝑡 is the number of
random bits used by the encryption algorithm. Our
definition of partially homomorphic encryption
scheme requires that for every 𝑓 ∶ {0, 1}ℓ → {0, 1}
in our family and 𝑥 ∈ {0, 1}ℓ, if 𝑐𝑖 ∈ 𝐸𝑒(𝑥𝑖; {0, 1}𝑡)
for 𝑖 = 1...ℓ then EVAL(𝑓, 𝑐1,… , 𝑐ℓ) is in the superset
{𝑐 | 𝐷𝑑(𝑐) = 𝑓(𝑥)} of 𝐸𝑒(𝑓(𝑥); {0, 1}𝑡). For example
if we apply EVAL to the OR function and ciphertexts
𝑐, 𝑐′ that were obtained as encryptions of 1 and 0
respectively, then the output is a ciphertext 𝑐″ that
would be decrypted to OR(1, 0) = 1, even if 𝑐″
is not in the smaller set of possible outputs of the
encryption algorithm on 1. This distinction between
the smaller and larger set is the reason why we cannot
automatically apply the EVAL function to ciphertexts
that are obtained from the outputs of previous EVAL
operations.

A fully homomomorphic encryption is simply a partially homomor-
phic encryption scheme for the family ℱ of all functions, where the
description of a function is as a circuit (say composed of NAND gates,
which are known to be a universal basis).

14.1.1 Another application: fully homomorphic encryption for verifying
computation

The canonical application of fully homomorphic encryption is for a
client to store encrypted data 𝐸(𝑥) on a server, send a function 𝑓 to the
server, and get back the encryption 𝐸(𝑓(𝑥)) of 𝑓(𝑥). This ensures that
the server does not learn any information about 𝑥, but does not ensure
that it actually computes the correct function!

Here is a cute protocol to achieve the latter goal (due to Chung
Kalai and Vadhan). Curiously the protocol involves “doubly encrypt-

https://en.wikipedia.org/wiki/NAND_gate
https://eprint.iacr.org/2010/241
https://eprint.iacr.org/2010/241

292 an intensive introduction to cryptography

ing” the input, and homomorphically evaluating the EVAL function
itself.

• Assumptions: We assume that all functions 𝑓 that the client will be
interested in can be described by a string of length 𝑛.

• Preprocessing: The client generates a pair of keys (𝑒, 𝑑). In the
initial stage the client computes the encrypted database 𝑐 = 𝐸𝑒(𝑥)
and sends 𝑐, 𝑒 to the server. It also computes 𝑐∗ = 𝐸𝑒(𝑓∗) for some
function 𝑓∗ as well as 𝑐∗∗ = EVAL𝑒(𝑒𝑣𝑎𝑙, 𝑐∗‖𝑐) for that 𝑓∗ and keeps
𝑐∗, 𝑐∗∗ for herself, where 𝑒𝑣𝑎𝑙(𝑓, 𝑥) = 𝑓(𝑥) is the circuit evaluation
function.

• Client query: To ask for an evaluation of 𝑓 , the client generates a
new random FHE keypair (𝑒′, 𝑑′), chooses 𝑏 ←𝑅 {0, 1} and lets
𝑐𝑏 = 𝐸𝑒′(𝐸𝑒(𝑓)) and 𝑐1−𝑏 = 𝐸𝑒′(𝑐∗). It sends the triple 𝑒′, 𝑐0, 𝑐1 to
the server.

• Server response: Given the queries 𝑐0, 𝑐1, the server defines the
function 𝑔 ∶ {0, 1}∗ → {0, 1}∗ where 𝑔(𝑐) = EVAL𝑒(𝑒𝑣𝑎𝑙, 𝑐‖𝑐) (for
the fixed 𝑐 received) and computes 𝑐′0, 𝑐′1 where 𝑐′𝑏 = EVAL𝑒′(𝑔, 𝑐𝑏).
(Please pause here and make sure you understand what this step is
doing! Note that we use here crucially the fact that EVAL itself is a
polynomial time computation.)

• Client check: Client checks whether 𝐷𝑑′(𝑐′1−𝑏) = 𝑐∗∗ and if so
accepts 𝐷𝑑(𝐷𝑑′(𝑐′𝑏)) as the answer.

We claim that if the server cheats then the client will detect this
with probability 1/2 − 𝑛𝑒𝑔𝑙(𝑛). Working this out is a great exercise.
The probability of detection can be amplified to 1 − 𝑛𝑒𝑔𝑙(𝑛) using
appropriate repetition, see the paper for details.

14.2 EXAMPLE: AN XOR HOMOMORPHIC ENCRYPTION

It turns out that Regev’s LWE-based encryption LWEENC we saw be-
fore is homomorphic with respect to the class of linear (mod 2) func-
tions. Let us recall the LWE assumption and the encryption scheme
based on it.

Definition 14.4 — DLWE (simplified variant). Let 𝑞 = 𝑞(𝑛) be some func-
tion mapping the natural numbers to primes. The 𝑞(𝑛)-decision
learning with error (𝑞(𝑛)-dLWE) conjecture is the following: for every
𝑚 = 𝑝𝑜𝑙𝑦(𝑛) there is a distribution LWE𝑞 over pairs (𝐴, 𝑠) such that:

• 𝐴 is an 𝑚 × 𝑛 matrix over ℤ𝑞 and 𝑠 ∈ ℤ𝑛
𝑞 satisfies 𝑠1 = ⌊ 𝑞

2⌋ and
|(𝐴𝑠)𝑖| ≤

√𝑞 for every 𝑖 ∈ {1,… ,𝑚}.

fully homomorphic encryption: introduction and bootstrapping 293

• The distribution 𝐴 where (𝐴, 𝑠) is sampled from LWE𝑞 is com-
putationally indistinguishable from the uniform distribution of
𝑚× 𝑛 matrices over ℤ𝑞.

The dLWE conjecture is that 𝑞(𝑛)-dLWE holds for every 𝑞(𝑛) that is
at most 𝑝𝑜𝑙𝑦(𝑛). This is not exactly the same phrasing we used before,
but as we sketch below, it is essentially equivalent to it. One can also
make the stronger conjecture that 𝑞(𝑛)-dLWE holds even for 𝑞(𝑛)
that is super polynomial in 𝑛 (e.g., 𝑞(𝑛) magnitude roughly 2𝑛 - note
that such a number can still be described in 𝑛 bits and we can still
efficiently perform operations such as addition and multiplication
modulo 𝑞). This stronger conjecture also seems well supported by
evidence and we will use it in future lectures.

P
It is a good idea for you to pause here and try to show
the equivalence on your own.

Equivalence between LWE and DLWE: The reason the two conjectures
are equivalent are the following. Before we phrased the conjecture as
recovering 𝑠 from a pair (𝐴′, 𝑦) where 𝑦 = 𝐴′𝑠′ + 𝑒 and |𝑒𝑖| ≤ 𝛿𝑞 for
every 𝑖. We then showed a search to decision reduction (Theorem 11.2)
demonstrating that this is equivalent to the task of distinguishing
between this case and the case that 𝑦 is a random vector. If we now let
𝛼 = ⌊ 𝑞

2⌋ and 𝛽 = 𝛼−1 (mod 𝑞), and consider the matrix 𝐴 = (−𝛽𝑦|𝐴′)
and the column vector 𝑠 = (𝛼𝑠′) we see that 𝐴𝑠 = 𝑒. Note that if 𝑦 is
a random vector in ℤ𝑚

𝑞 then so is −𝛽𝑦 and so the current form of the
conjecture follows from the previous one. (To reduce the number of
free parameters, we fixed 𝛿 to equal 1/√𝑞; in this form the conjecture
becomes stronger as 𝑞 grows.)

A linearly-homomorphic encryption scheme: The following variant of the
LWE-ENC described in Section 11.4 turns out to be linearly homomor-
phic:

LWE-ENC’ encryption:

• Key generation: Choose (𝐴, 𝑠) from LWE𝑞 where
𝑚 satisfies 𝑞1/4 ≫ 𝑚 log 𝑞 ≫ 𝑛.

• To encrypt 𝑏 ∈ {0, 1}, choose 𝑤 ∈ {0, 1}𝑚 and out-
put 𝑤⊤𝐴+ (𝑏, 0,… , 0).

• To decrypt 𝑐 ∈ ℤ𝑛
𝑞 , output 0 iff |⟨𝑐, 𝑠⟩| ≤ 𝑞/10,

where for 𝑥 ∈ ℤ𝑞 we defined |𝑥| = min{𝑥, 𝑞 − 𝑥}.
(Recall that the first coordinate of 𝑠 is ⌊𝑞/2⌋.)

294 an intensive introduction to cryptography

The decryption algorithm recovers the original plaintext since
⟨𝑐, 𝑠⟩ = 𝑤⊤𝐴𝑠 + 𝑠1𝑏 and |𝑤⊤𝐴𝑠| ≤ 𝑚√𝑞 ≪ 𝑞. It turns out that this
scheme is homomorphic with respect to the class of linear functions
modulo 2. Specifically we make the following claim:

Lemma 14.5 For every ℓ ≪ 𝑞1/4, there is an algorithm EVALℓ that on
input 𝑐1,… , 𝑐ℓ which are LWEENC-encryptions of the bits 𝑏1,… , 𝑏ℓ ∈
{0, 1}, outputs a ciphertext 𝑐 whose decryption is 𝑏1 ⊕⋯⊕ 𝑏ℓ.

P
This claim is not hard to prove, but working it out for
yourself can be a good way to get more familiarity
with LWE-ENC’ and the kind of manipulations we’ll
be making time and again in the constructions of
many lattice based cryptographic primitives. Recall
that a ciphertext 𝑐 of LWE-ENC’ is a vector in ℤ𝑛

𝑞 . Try
to show that 𝑐 = 𝑐1 + ⋯ + 𝑐ℓ (where addition is done
as vectors in ℤ𝑞) will be the encryption of 𝑏1 ⊕ ⋯ ⊕ 𝑏ℓ.
Note that if 𝑞 is super polynomial in 𝑛 then ℓ can be an
arbitrarily large polynomial in 𝑛.

Proof of Lemma 14.5. The proof is quite simple. EVAL will simply add
the ciphertexts as vectors in ℤ𝑞. If 𝑐 = ∑𝑐𝑖 then

⟨𝑐, 𝑠⟩ = ∑𝑏𝑖⌊ 𝑞
2⌋ + 𝜉 mod 𝑞

where 𝜉 ∈ ℤ𝑞 is a “noise term” such that |𝜉| ≤ ℓ𝑚√𝑞 ≪ 𝑞.
Since |⌊ 𝑞

2⌋ − 𝑞
2 | < 1, adding at most ℓ terms of this difference adds at

most ℓ, and so we can also write

⟨𝑐, 𝑠⟩ = ⌊∑𝑏𝑖 𝑞2⌋ + 𝜉′ mod 𝑞

for |𝜉′| ≤ ℓ𝑚√𝑞 + ℓ ≪ 𝑞.
If ∑𝑏𝑖 is even then ∑𝑏𝑖 𝑞2 is an integer multiple of 𝑞 and hence in

this case |⟨𝑐, 𝑠⟩| ≪ 𝑞. If ∑𝑏𝑖 is odd ⌊∑𝑏𝑖 𝑞2⌋ = ⌊𝑞/2⌋ mod 𝑞 and so in
this case |⟨𝑐, 𝑠⟩| = 𝑞/2 ± 𝑜(𝑞) > 𝑞/10.

■

Several other encryption schemes are also homomorphic with
respect to linear functions. Even before Gentry’s construction there
were constructions of encryption schemes that are homomorphic with
respect to somewhat larger classes (e.g., quadratic functions by Boneh,
Goh and Nissim) but not significantly so.

14.2.1 Abstraction: A trapdoor pseudorandom generator.
It is instructive to consider the following abstraction (which we’ll
use in the next lecture) of the above encryption scheme as a trapdoor
generator (see Fig. 14.3). On input 1𝑛 the key generation algorithm

fully homomorphic encryption: introduction and bootstrapping 295

outputs a vector 𝑠 ∈ ℤ𝑚
𝑞 with 𝑠1 = ⌊ 𝑞

2⌋ and a probabilistic algorithm
𝐺𝑠 such that the following holds:

• Any polynomial number of samples from the distribution 𝐺𝑠(1𝑛) is
computationally indistinguishable from independent samples from
the uniform distribution over ℤ𝑛

𝑞 .

• If 𝑐 is output by 𝐺𝑠(1𝑛) then |⟨𝑐, 𝑠⟩| ≤ 𝑛√𝑞.

The generator 𝐺𝑠 picks 𝑤 ←𝑅 {0, 1}𝑚 to 𝑤⊤𝐴. Its output will look
pseudorandom but will satisfy the condition |⟨𝐺𝑠(1𝑛), 𝑠⟩| ≤ 𝑛√𝑞
with probability 1 over the choice of 𝑤. Thus 𝑠 can be thought of a
“trapdoor” for the generator that allows us to distinguish between
a random vector 𝑐 ∈ ℤ𝑛

𝑞 (that with high probability would satisfy
|⟨𝑐, 𝑠⟩| ≫ 𝑛√𝑞, assuming 𝑞 ≫ 𝑛2) and an output of the generator.

We use 𝐺𝑠 to encrypt a bit 𝑏 by letting 𝑐 ←𝑅 𝐺𝑠(1𝑛) and out-
putting 𝑐 + (𝑏, 0,… , 0)⊤. While our particular implementation mapped
𝐺𝑠(𝑤) = 𝑤⊤𝐴, we can ignore these implementation details in the
forgoing.

Figure 14.3: In a trapdoor generator, we have two ways
to generate randomized algorithms. That is, we have
some algorithms GEN and GEN′ such that GEN out-
puts a pair (𝐺𝑠, 𝑠) and GEN′ outputs 𝐺′ with 𝐺𝑠,𝐺′

being themselves algorithms (e.g., randomized cir-
cuits). The conditions we require are that (1) the
descriptions of the circuits 𝐺𝑠 and 𝐺′ (considering
them as distributions over strings) are computation-
ally indistinguishable and (2) the distribution 𝐺′(1𝑛)
is statistically indistinguishable from the uniform distri-
bution , (3) there is an efficient algorithm that given
the secret “trapdoor” 𝑠 can distinguish the output
of 𝐺𝑠 from the uniform distribution. In particular
(1),(2), and (3) together imply that it is not feasible to
extract 𝑠 from the description of 𝐺𝑠.

Our LWE-based trapdoor generator satisfies the following stronger
property: we can generate an alternative generator 𝐺′ such that the
description of 𝐺′ is indistinguishable from the description of 𝐺𝑠 but
such that 𝐺′ actually does produce (up to exponentially small statisti-
cal error) the uniform distribution over ℤ𝑛

𝑞 . We can do so by sampling
𝐴 completely at random instead of from the LWE𝑞 distribution. We
can define trapdoor generators formally as follows

Definition 14.6 — Trapdoor generators. A trapdoor generator is a pair of
randomized algorithms GEN,GEN′ that satisfy the following:

296 an intensive introduction to cryptography

3 The choice of 1/3 is arbitrary, and can be amplified
as needed.

• On input 1𝑛, GEN outputs a pair (𝐺𝑠, 𝑠) where 𝐺𝑠 is a string
describing a randomized circuit. The circuit 𝐺𝑠 takes 1𝑛 as in-
put and outputs a (randomly chosen) string of length 𝑡 where
𝑡 = 𝑡(𝑛) is some polynomial.

• On input 1𝑛, GEN′ outputs 𝐺′ where 𝐺′ is a string describing a
randomized circuit with the same inputs and outputs.

• The distributions GEN(1𝑛)1 (i.e., the first output of GEN(1𝑛))
and GEN′(1𝑛)1 are computationally indistinguishable. (These
are both distributions over circuits.)

• With probability 1 − 𝑛𝑒𝑔𝑙(𝑛) over the choice of 𝐺′ output by
GEN′, the distribution 𝐺′(1𝑛) is statistically indistinguishable
(i.e., within 𝑛𝑒𝑔𝑙(𝑛) total variation distance) from 𝑈𝑡 (i.e., the
uniform distribution over {0, 1}𝑡).

• There is an efficient algorithm 𝑇 such that for every pair (𝐺𝑠, 𝑠)
output by GEN, Pr[𝑇 (𝑠,𝐺𝑠(1𝑛)) = 1] ≥ 1 − 𝑛𝑒𝑔𝑙(𝑛) (where this
probability is over the internal randomness used by 𝐺𝑠 on the
input 1𝑛) but Pr[𝑇 (𝑠, 𝑈𝑡) = 1] ≤ 1/3. 3

P
This is not an easy definition to parse, but looking at
Fig. 14.3 can help. Make sure you understand why
LWEENC gives rise to a trapdoor generator satisfying
all the conditions of Definition 14.6.

R
Remark 14.7 — Trapdoor generators in real life. In the
above we use the notion of a “trapdoor” in the pseu-
dorandom generator as a mathematical abstraction,
but generators with actual trapdoors have arisen in
practice. In 2007 the National Institute of Standards
(NIST) released standards for pseudorandom genera-
tors. Pseudorandom generators are the quintessential
private key primitive, typically built out of hash func-
tions, block ciphers, and such and so it was surprising
that NIST included in the list a pseudorandom gen-
erator based on public key tools - the Dual EC DRBG
generator based on elliptic curve cryptography. This
was already strange but became even more worrying
when Microsoft researchers Dan Shumow and Niels
Ferguson showed that this generator could have a trap-
door in the sense that it contained some hardwired
constants that if generated in a particular way, there
would be some information that (just like in 𝐺𝑠 above)

https://en.wikipedia.org/wiki/Dual_EC_DRBG
http://rump2007.cr.yp.to/15-shumow.pdf

fully homomorphic encryption: introduction and bootstrapping 297

4 The story is a bit more complex than that. Frustrat-
ingly, the decryption circuit of Gentry’s basic scheme
was just a little bit too deep for the bootstrapping
theorem to apply. A lesser man, such as yours truly,
would at this point surmise that fully homomprphic
encryption was just not meant to be, and perhaps take
up knitting or playing bridge as an alternative hobby.
However, Craig persevered and managed to come
up with a way to “squash” the decryption circuit so
it can fit the bootstrapping parameters. Follow up
works, and in particular the paper of Brakerski and
Vaikuntanathan, managed to get schemes with much
better relation between the homomorphism depth
and decryption circuit, and hence avoid the need for
squashing and also improve the security assumptions.

allows to distinguish the generator from random (see
here for a 2007 blog post on this issue). We learned
more about this when leaks from the Snowden doc-
ument showed that the NSA secretly paid 10 million
dollars to RSA to make this generator the default
option in their Bsafe software.
You’d think that this generator is long dead but it
turns out to be the “gift that keeps on giving”. In De-
cember of 2015, Juniper systems announced that they
have discovered a malicious code in their system, dat-
ing back to at least 2012 (possibly 2008), that would
allow an attacker to surreptitiously decrypt all VPN
traffic through their firewalls. The issue is that Juniper
has been using the Dual EC DRBG and someone has
managed to replace the constant they were using with
another one, one that they presumably knew the trap-
door for (see here and here for more; of course unless
you know to check for this, it’s very hard by looking
at the code to see that one arbitrary looking constant
has been replaced by another). Apparently, even
though this is very surprising to many people in law
enforcement and government, inserting back doors
into cryptographic primitives might end up making
them less secure. Some more details have emereged in
this case in 2021, see this story and this Tweet thread.

14.3 FROM LINEAR HOMOMORPHISM TO FULL HOMOMORPHISM

Gentry’s breakthrough had two components:

• First, he gave a scheme that is homomorphic with respect to arith-
metic circuits (involving not just addition but also multiplications)
of logarithmic depth.

• Second, he showed the amazing “bootstrapping theorem” that if
a scheme is homomorphic enough to evaluate its own decryption
circuit, then it can be turned into a fully homomorphic encryption
that can evaluate any function.

Combining these two insights led to his fully homomorphic encryp-
tion.4

In this lecture we will focus on the second component - the boot-
strapping theorem. We will show a “partially homomorphic encryp-
tion” (based on a later work of Gentry, Sahai and Waters) that can fit
that theorem in the next lecture.

14.4 BOOTSTRAPPING: FULLY HOMOMORPHIC “ESCAPE VELOC-
ITY”

The bootstrapping theorem is quite surprising. A priori you might
expect that given that a homomorphic encryption for linear functions

https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html
http://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://www.wired.com/2015/12/juniper-networks-hidden-backdoors-show-the-risk-of-government-backdoors/
https://goo.gl/X6pAXV
https://rpw.sh/blog/2015/12/21/the-backdoored-backdoor/
http://blog.cryptographyengineering.com/2015/12/on-juniper-backdoor.html
https://finance.yahoo.com/news/juniper-breach-mystery-starts-clear-130016591.html
https://twitter.com/matthew_d_green/status/1433451378391883782?s=20

298 an intensive introduction to cryptography

Figure 14.4: The “Bootstrapping Theorem” shows that
once a partially homomorphic encryption scheme is
homomorphic with respect to a rich enough family of
functions, and specifically a family that contains its
own decryption algorithm, then it can be converted to
a fully homomorphic encryption scheme that can be
used to evaluate any function.

5 You can ignore the condition of circular security in a
first read - we will discuss it later.

was not trivial to do, a homomorphic encryption for quadratics would
be harder, cubics even harder and so on and so forth. But it turns out
that there is some special degree 𝑡∗ such that if we obtain homomor-
phic encryption for degree 𝑡∗ polynomials then we can obtain fully
homomorphic encryption that works for all functions. (Specifically,
if the decryption algorithm 𝑐 ↦ 𝐷𝑑(𝑐) is a degree 𝑡 polynomial, then
homomorphically evaluating polynomials of degree 𝑡∗ = 2𝑡 will
be sufficient.) That is, it turns out that once an encryption scheme
is strong enough to homomorphically evaluate its own decryption algo-
rithm then we can use it to obtain a fully homomorphic encryption by
“pulling itself up by its own bootstraps”. One analogy is that at this
point the encryption reaches “escape velocity” and we can continue
onwards evaluating gates in perpetuity.

We now show the bootstrapping theorem:

Theorem 14.8 — Bootstrapping Theorem, Gentry 2009. Suppose that
(𝐺,𝐸,𝐷) is a CPA circular 5 secure partially homomorphic en-
cryption scheme for the family ℱ and suppose that for every pair
of ciphertexts 𝑐, 𝑐′ the map 𝑑 ↦ 𝐷𝑑(𝑐) NAND 𝐷𝑑(𝑐′) is in ℱ. Then
(𝐺,𝐸,𝐷) can be turned a fully homomorphic encryption scheme.

14.4.1 Radioactive legos analogy
Here is one analogy for bootstrapping, inspired by Gentry’s survey.
Suppose that you need to construct some complicated object from a
highly toxic material (see Fig. 14.5). For example you want to build a
castle out of radio-active legos.

https://crypto.stanford.edu/craig/easy-fhe.pdf

fully homomorphic encryption: introduction and bootstrapping 299

You are given a supply of sealed bags that are flexible enough so
you can manipulate the object from outside the bag. However, each
bag can only hold for 10 seconds of such manipulations before it leaks.
The idea is that if you can open one bag inside another within 9 sec-
onds then you can use the extra second to perform one step. By re-
peating this, you perform the manipulations for arbitrary length.

Specifically, suppose that you have completed 𝑖 steps out of the total
of 𝑇 , and now have the partially constructed castle inside a sealed bag
𝐵𝑖. You now put the bag 𝐵𝑖 inside a fresh bag 𝐵𝑖+1. You now spend
9 seconds on opening the bag 𝐵𝑖 inside the bag 𝐵𝑖+1, and an extra
second on performing the 𝑖 + 1 step in the construction. At this point
we have completed 𝑖 + 1 steps and have the object in the bag 𝐵𝑖+1, we
can now continue by putting in the bag 𝐵𝑖+2 and so on and so forth.

Figure 14.5: To build a castle from radioactive Lego
bricks, which can be kept safe in a special ziploc bag
for 10 seconds, we can: 1) Place the bricks in a bag,
and place the bag inside an outer bag. 2) Manipulate
the inner bag through the outer bag to remove the
bricks from it in 9 seconds, and spend 1 second
putting one brick in place. Now, just before the outer
bag “leaks” we put it inside a fresh new bag and
repeat the process.

14.4.2 Proving the bootstrapping theorem
We now turn to the formal proof of Theorem 14.8

Proof. The idea behind the proof is simple but ingenious. Recall that
the NAND gate 𝑏, 𝑏′ ↦ ¬(𝑏 ∧ 𝑏′) is a universal gate that allows us
to compute any function 𝑓 ∶ {0, 1}𝑛 → {0, 1} that can be efficiently
computed. Thus, to obtain a fully homomorphic encryption it suffices
to obtain a function NANDEVAL such that 𝐷𝑑(NANDEVAL(𝑐, 𝑐′)) =
𝐷𝑑(𝑐) NAND 𝐷𝑑(𝑐′). (Note that this is stronger than the typical no-
tion of homomorphic evaluation since we require that NANDEVAL
outputs an encryption of 𝑏 NAND 𝑏′ when given any pair of cipher-
texts that decrypt to 𝑏 and 𝑏′ respectively, regardless whether these
ciphertexts were produced by the encryption algorithm or by some
other method, including the NANDEVAL procedure itself.)

300 an intensive introduction to cryptography

6 Without this assumption we can still obtain a form
of FHE known as a leveled FHE where the size of the
public key grows with the depth of the circuit to be
evaluated. We can do this by having ℓ public keys
where ℓ is the depth we want to evaluate, and encrypt
the private key of the 𝑖𝑡ℎ key with the 𝑖 + 1𝑠𝑡 public
key. However, since circular security seems quite
likely to hold, we ignore this extra complication in the
rest of the discussion.

Thus to prove the theorem, we need to modify (𝐺,𝐸,𝐷) into an
encryption scheme supporting the NANDEVAL operation. Our new
scheme will use the same encryption algorithms 𝐸 and 𝐷 but the
following modification 𝐺′ of the key generation algorithm: after run-
ning (𝑑, 𝑒) = 𝐺(1𝑛), we will append to the public key an encryption
𝑐∗ = 𝐸𝑒(𝑑) of the secret key. We have now defined the key generation,
encryption and decryption. CPA security follows from the security of
the original scheme, where by circular security we refer exactly to the
condition that the scheme is secure even if the adversary gets a single
encryption of the public key.6 This latter condition is not known to be
implied by standard CPA security but as far as we know is satisfied by
all natural public key encryptions, including the LWE-based ones we
will plug into this theorem later on.

So, now all that is left is to define the NANDEVAL operation. On
input two ciphertexts 𝑐 and 𝑐′, we will construct the function 𝑓𝑐,𝑐′ ∶
{0, 1}𝑛 → {0, 1} (where 𝑛 is the length of the secret key) such that
𝑓𝑐,𝑐′(𝑑) = 𝐷𝑑(𝑐) NAND 𝐷𝑑(𝑐′). It would be useful to pause at this
point and make sure you understand what are the inputs to 𝑓𝑐,𝑐′ , what
are “hardwired constants” and what is its output. The ciphertexts 𝑐
and 𝑐′ are simply treated as fixed strings and are not part of the input
to 𝑓𝑐,𝑐′ . Rather 𝑓𝑐,𝑐′ is a function (depending on the strings 𝑐, 𝑐′) that
maps the secret key into a bit. When running NANDEVAL we of
course do not know the secret key 𝑑, but we can still design a circuit
that computes this function 𝑓𝑐,𝑐′ . Now NANDEVAL(𝑐, 𝑐′) will simply
be defined as EVAL(𝑓𝑐,𝑐′ , 𝑐∗). Since 𝑐∗ = 𝐸𝑒(𝑑), we get that

𝐷𝑑(NANDEVAL(𝑐, 𝑐′)) = 𝐷𝑑(EVAL(𝑓𝑐,𝑐′ , 𝑐∗)) = 𝑓𝑐,𝑐′(𝑑) = 𝐷𝑑(𝑐) NAND 𝐷𝑑(𝑐′) .

Thus indeed we map any pair of ciphertexts 𝑐, 𝑐′ that decrypt to 𝑏, 𝑏′
into a ciphertext 𝑐″ that decrypts to 𝑏 NAND 𝑏′. This is all that we
needed to prove.

■

P
Don’t let the short proof fool you. This theorem is
quite deep and subtle, and requires some reading and
re-reading to truly “get” it.

https://en.wikipedia.org/wiki/Circuit_complexity

