
12
Establishing secure connections over insecure channels

We’ve now compiled all the tools that are needed for the basic goal
of cryptography (which is still being subverted quite often) allow-
ing Alice and Bob to exchange messages assuring their integrity and
confidentiality over a channel that is observed or controlled by an
adversary. Our tools for achieving this goal are:

• Public key (aka asymmetric) encryption schemes.

• Public key (aka asymmetric) digital signatures schemes.

• Private key (aka symmetric) encryption schemes - block ciphers
and stream ciphers.

• Private key (aka symmetric) message authentication codes and
pseudorandom functions.

• Hash functions that are used both as ways to compress messages
for authentication as well as key derivation and other tasks.

The notions of security we require from these building blocks can
vary as well. For encryption schemes we talk about CPA (chosen
plaintext attack) and CCA (chosen ciphertext attacks), for hash func-
tions we talk about collision-resistance, being used (combined with
keys) as pseudorandom functions, and then sometimes we simply
model those as random oracles. Also, all of those tools require access
to a source of randomness, and here we use hash functions as well for
entropy extraction.

12.1 CRYPTOGRAPHY’S OBSESSION WITH ADJECTIVES.

As we learn more and more cryptography we see more and more
adjectives, every notion seems to have modifiers such as “non-
malleable”, “leakage-resilient”, “identity based”, “concurrently
secure”, “adaptive”, “non-interactive”, etc. etc. Indeed, this motivated
a parody web page of an automatic crypto paper title generator.

Compiled on 11.17.2021 22:35

https://cseweb.ucsd.edu/~mihir/crypto-topic-generator.html

256 an intensive introduction to cryptography

Unlike algorithms, where typically there are straightforward quanti-
tative tradeoffs (e.g., faster is better), in cryptography there are many
qualitative ways protocols can vary based on the assumptions they
operate under and the notions of security they provide.

In particular, the following issues arise when considering the task
of securely transmitting information between two parties Alice and
Bob:

• Infrastructure/setup assumptions: What kind of setup can Alice
and Bob rely upon? For example in the TLS protocol, typically Alice
is a website and Bob is user; using the infrastructure of certificate
authorities, Bob has a trusted way to obtain Alice’s public signature
key, while Alice doesn’t know anything about Bob. But there are
many other variants as well. Alice and Bob could share a (low en-
tropy) password. One of them might have some hardware token, or
they might have a secure out of band channel (e.g., text messages)
to transmit a short amount of information. There are even variants
where the parties authenticate by something they know, with one
recent example being the notion of witness encryption (Garg, Gen-
try, Sahai, and Waters) where one can encrypt information in a
“digital time capsule” to be opened by anyone who, for example,
finds a proof of the Riemann hypothesis.

• Adversary access: What kind of attacks do we need to protect
against. The simplest setting is a passive eavesdropping adversary
(often called “Eve”) but we sometimes consider an active person-
in-the-middle attacks (sometimes called “Mallory”). We sometimes
consider notions of graceful recovery. For example, if the adversary
manages to hack into one of the parties then it can clearly read their
communications from that time onwards, but we would want their
past communication to be protected (a notion known as forward
secrecy). If we rely on trusted infrastructure such as certificate au-
thorities, we could ask what happens if the adversary breaks into
those. Sometimes we rely on the security of several entities or se-
crets, and we want to consider adversaries that control some but not
all of them, a notion known as threshold cryptography. While we typ-
ically assume that information is either fully secret or fully public,
we sometimes want to model side channel attacks where the adver-
sary can learn partial information about the secret, this is known as
leakage-resistant cryptography.

• Interaction: Do Alice and Bob get to interact and relay several
messages back and forth or is it a “one shot” protocol? You may
think that this is merely a question about efficiency but it turns
out to be crucial for some applications. Sometimes Alice and Bob

establishing secure connections over insecure channels 257

might not be two parties separated in space but the same party
separated in time. That is, Alice wishes to send a message to her
future self by storing an encrypted and authenticated version of it
on some media. In this case, absent a time machine, back and forth
interaction between the two parties is obviously impossible.

• Security goal: The security goals of a protocol are usually stated in
the negative- what does it mean for an adversary to win the secu-
rity game. We typically want the adversary to learn absolutely no
information about the secret beyond what she obviously can. For
example, if we use a shared password chosen out of 𝑡 possibilities,
then we might need to allow the adversary 1/𝑡 success probability,
but we wouldn’t want her to get anything beyond 1/𝑡 + 𝑛𝑒𝑔𝑙(𝑛). In
some settings, the adversary can obviously completely disconnect
the communication channel between Alice and Bob, but we want
her to be essentially limited to either dropping communication
completely or letting it go by unmolested, and not have the ability
to modify communication without detection. Then in some set-
tings, such as in the case of steganography and anonymous routing,
we would want the adversary not to find out even the fact that a
conversation had taken place.

12.2 BASIC KEY EXCHANGE PROTOCOL

The basic primitive for secure communication is a key exchange pro-
tocol, whose goal is to have Alice and Bob share a common random
secret key 𝑘 ∈ {0, 1}𝑛. Once this is done, they can use a CCA secure /
authenticated private-key encryption to communicate with confiden-
tiality and integrity.

The canonical example of a basic key exchange protocol is the Diffie
Hellman protocol. It uses as public parameters a group 𝔾 with genera-
tor 𝑔, and then follows the following steps:

1. Alice picks random 𝑎 ←𝑅 {0,… , |𝔾| − 1} and sends 𝐴 = 𝑔𝑎.

2. Bob picks random 𝑏 ←𝑅 {0,… , |𝔾| − 1} and sends 𝐵 = 𝑔𝑏.

3. They both set their key as 𝑘 = 𝐻(𝑔𝑎𝑏) (which Alice computes as 𝐵𝑎

and Bob computes as 𝐴𝑏), where 𝐻 is some hash function.

Another variant is using an arbitrary public key encryption scheme
such as RSA:

1. Alice generates keys (𝑑, 𝑒) and sends 𝑒 to Bob.

2. Bob picks random 𝑘 ←𝑅 {0, 1}𝑚 and sends 𝐸𝑒(𝑘) to Alice.

3. They both set their key to 𝑘 (which Alice computes by decrypting
Bob’s ciphertext)

258 an intensive introduction to cryptography

Under plausible assumptions, it can be shown that these protocols
are secure against a passive eavesdropping adversary Eve. The notion
of security here means that, similar to encryption, if after observing
the transcript Eve receives with probability 1/2 the value of 𝑘 and with
probability 1/2 a random string 𝑘′ ← {0, 1}𝑛, then her probability
of guessing which is the case would be at most 1/2 + 𝑛𝑒𝑔𝑙(𝑛) (where
𝑛 can be thought of as log |𝔾| or some other parameter related to the
length of bit representation of members in the group).

12.3 AUTHENTICATED KEY EXCHANGE

The main issue with this key exchange protocol is of course that ad-
versaries often are not passive. In particular, an active Eve could agree
on her own key with Alice and Bob separately and then be able to see
and modify all future communication. She might also be able to create
weird (with some potential security implications) correlations by, say,
modifying the message 𝐴 to be 𝐴2 etc..

For this reason, in actual applications we typically use authenticated
key exchange. The notion of authentication used depends on what
we can assume on the setup assumptions. A standard assumption
is that Alice has some public keys but Bob doesn’t. The justification
for this assumption is that Alice might be a server, which has the
capabilities to generate a private/public key pair, disseminate the
public key (e.g., using a certificate authority) and maintain the private
key in a secure storage. In contrast, if Bob is an individual user, then
it might not have access to a secure storage to maintain a private key
(since personal devices can often be hacked). Moreover, Alice might
not care about Bob’s identity. For example, if Alice is nytimes.com and
Bob is a reader, then Bob wants to know that the news he reads really
came from the New York Times, but Alice is equally happy to engage
in communication with any reader. In other cases, such as gmail.com,
after an initial secure connection is setup, Bob can authenticate himself
to Alice as a registered user (by sending his login information or
sending a “cookie” stored from a past interaction).

It is possible to obtain a secure channel under these assumptions,
but one needs to be careful. Indeed, the standard protocol for securing
the web: the transport Layer Security (TLS) protocol (and its prede-
cessor SSL) has gone through six revisions (including a name change
from SSL to TLS) largely because of security concerns. We now illus-
trate one of those attacks.

12.3.1 Bleichenbacher’s attack on RSA PKCS V1.5 and SSL V3.0
If you have a public key, a natural approach is to take the encryption-
based protocol and simply skip the first step since Bob already knows
the public key 𝑒 of Alice. This is basically what happened in the SSL

https://goo.gl/md9Bsa

establishing secure connections over insecure channels 259

1 The first attack of this flavor was given in the 1982
paper of Goldwasser, Micali, and Tong. Interestingly,
this notion of “hardcore bits” has been used for both
practical attacks against cryptosystems as well as
theoretical (and sometimes practical) constructions of
other cryptosystems.

V3.0 protocol. However, as was shown by Bleichenbacher in 1998, it
turns out this is susceptible to the following attack:

• The adversary listens in on a conversation, and in particular ob-
serves 𝑐 = 𝐸𝑒(𝑘) where 𝑘 is the private key.

• The adversary then starts many connections with the server with
ciphertexts related to 𝑐, and observes whether they succeed or fail
(and in what way they fail, if they do). It turns out that based on
this information, the adversary would be able to recover the key 𝑘.

Specifically, the version of RSA (known as PKCS �1 V1.5) used in
the SSL V3.0 protocol requires the value 𝑥 to have a particular for-
mat, with the top two bytes having a certain form. If in the course of
the protocol, a server decrypts 𝑦 and gets a value 𝑥 not of this form
then it would send an error message and halt the connection. While
the designers of SSL V3.0 might not have thought of it that way, this
amounts to saying that an SSL V3.0 server supplies to any party an
oracle that on input 𝑦 outputs 1 iff 𝑦𝑑 (mod 𝑚) has this form, where
𝑑 = 𝑒−1 (mod |ℤ∗

𝑚|) is the secret decryption key. It turned out that
one can use such an oracle to invert the RSA function. For a result of
a similar flavor, see the (1/2 page) proof of Theorem 11.31 (page 418)
in KL, where they show that an oracle that given 𝑦 outputs the least
significant bit of 𝑦𝑑 (mod 𝑚) allows one to invert the RSA function.1

For this reason, new versions of the SSL used a different variant
of RSA known as PKCS �1 V2.0 which satisfies (under assumptions)
chosen ciphertext security (CCA) and in particular such oracles cannot
be used to break the encryption. Nonetheless, there are still some im-
plementation issues that allowed adversaries to perform some attacks,
specifically Manger showed that depending on how PKCS �1 V2.0 is
implemented, it might be possible to still launch an attack. The main
reason is that the specification states several conditions under which
decryption box is supposed to return “error”. The proof of CCA secu-
rity crucially relies on the attacker not being able to distinguish which
condition caused the error message. However, some implementations
could still leak this information, for example by checking these con-
ditions one by one, and so returning “error” quicker when the earlier
conditions hold. See discussion in Katz-Lindell (3rd ed) 12.5.4.

12.4 CHOSEN CIPHERTEXT ATTACK SECURITY FOR PUBLIC KEY
CRYPTOGRAPHY

The concept of chosen ciphertext attack security makes perfect sense
for public key encryption as well. It is defined in the same way as it was
in the private key setting:

http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
http://archiv.infsec.ethz.ch/education/fs08/secsem/Manger01.pdf

260 an intensive introduction to cryptography

Definition 12.1 — CCA secure public key encryption. A public key encryp-
tion scheme (𝐺,𝐸,𝐷) is chosen ciphertext attack (CCA) secure if
every efficient Mallory wins in the following game with probability
at most 1/2 + 𝑛𝑒𝑔𝑙(𝑛):

• The keys (𝑒, 𝑑) are generated via 𝐺(1𝑛), and Mallory gets the
public encryption key 𝑒 and 1𝑛.

• For 𝑝𝑜𝑙𝑦(𝑛) rounds, Mallory gets access to the function 𝑐 ↦
𝐷𝑑(𝑐). (She doesn’t need access to 𝑚 ↦ 𝐸𝑒(𝑚) since she already
knows 𝑒.)

• Mallory chooses a pair of messages {𝑚0,𝑚1}, a secret 𝑏 is cho-
sen at random in {0, 1}, and Mallory gets 𝑐∗ = 𝐸𝑒(𝑚𝑏). (Note
that she of course does not get the randomness used to generate
this challenge encryption.)

• Mallory now gets another 𝑝𝑜𝑙𝑦(𝑛) rounds of access to the func-
tion 𝑐 ↦ 𝐷𝑑(𝑐) except that she is not allowed to query 𝑐∗.

• Mallory outputs 𝑏′ and wins if 𝑏′ = 𝑏.

In the private key setting, we achieved CCA security by combining
a CPA-secure private key encryption scheme with a message authenti-
cating code (MAC), where to CCA-encrypt a message 𝑚, we first used
the CPA-secure scheme on 𝑚 to obtain a ciphertext 𝑐, and then added
an authentication tag 𝜏 by signing 𝑐 with the MAC. The decryption
algorithm first verified the MAC before decrypting the ciphertext. In
the public key setting, one might hope that we could repeat the same
construction using a CPA-secure public key encryption and replacing
the MAC with digital signatures.

P
Try to think what would be such a construction, and
whether there is a fundamental obstacle to combin-
ing digital signatures and public key encryption in
the same way we combined MACs and private key
encryption.

Alas, as you may have realized, there is a fly in this ointment. In a
signature scheme (necessarily) it is the signing key that is secret, and
the verification key that is public. But in a public key encryption, the
encryption key is public, and hence it makes no sense for it to use a
secret signing key. (It’s not hard to see that if you reveal the secret
signing key then there is no point in using a signature scheme in the
first place.)

establishing secure connections over insecure channels 261

Why CCA security matters. For the reasons above, constructing CCA
secure public key encryption is very challenging. But is it worth the
trouble? Do we really need this “ultra conservative” notion of secu-
rity? The answer is yes. Just as we argued for private key encryption,
chosen ciphertext security is the notion that gets us as close as possible
to designing encryptions that fit the metaphor of secure sealed envelopes.
Digital analogies will never be a perfect imitation of physical ones, but
such metaphors are what people have in mind when designing cryp-
tographic protocols, which is a hard enough task even when we don’t
have to worry about the ability of an adversary to reach inside a sealed
envelope and XOR the contents of the note written there with some
arbitrary string. Indeed, several practical attacks, including Bleichen-
bacher’s attack above, exploited exactly this gap between the physical
metaphor and the digital realization. For more on this, please see
Victor Shoup’s survey where he also describes the Cramer-Shoup en-
cryption scheme which was the first practical public key system to be
shown CCA secure without resorting to the random oracle heuristic.
(The first definition of CCA security, as well as the first polynomial-
time construction, was given in a seminal 1991 work of Dolev, Dwork
and Naor.)

12.5 CCA SECURE PUBLIC KEY ENCRYPTION IN THE RANDOM
ORACLE MODEL

We now show how to convert any CPA-secure public key encryption
scheme to a CCA-secure scheme in the random oracle model (this
construction is taken from Fujisaki and Okamoto, CRYPTO 99). In the
homework, you will see a somewhat simpler direct construction of a
CCA secure scheme from a trapdoor permutation, a variant of which
is known as OAEP (which has better ciphertext expansion) has been
standardized as PKCS �1 V2.0 and is used in several protocols. The
advantage of a generic construction is that it can be instantiated not
just with the RSA and Rabin schemes, but also directly with Diffie-
Hellman and Lattice based schemes (though there are direct and more
efficient variants for these as well).

CCA-ROM-ENC Scheme:

• Ingredients: A CPA-secure public key encryp-
tion scheme (𝐺′, 𝐸′, 𝐷′) and three hash functions
𝐻,𝐻′,𝐻″ ∶ {0, 1}∗ → {0, 1}𝑛 (which we model
as independent random oracles 2).

• Notes: We assume that 𝐸′ takes 𝑛 bit messages
(since CPA security is preserved under concate-
nation, a one-bit scheme can be transformed into
such a scheme). Since 𝐸′ is (necessarily) ran-

http://www.shoup.net/papers/expo.pdf

262 an intensive introduction to cryptography

2 Recall that it’s easy to obtain two independent
random oracles 𝐻,𝐻′ from a single oracle 𝐻″, for
example by letting 𝐻(𝑥) = 𝐻″(0‖𝑥) and 𝐻′(𝑥) =
𝐻″(1‖𝑥). Similarly we can extend this to three, four
or any number of oracles.

domized, we denote by 𝐸′(𝑥; 𝑠) the encryption
of the message 𝑥 using the randomness 𝑠. We as-
sume that the number of bits of randomness 𝐸′

uses is 𝑛. (Otherwise we can modify the scheme
to use 𝑛 bits using a pseudorandom generator,
or modify the co-domain of 𝐻 to be the space of
random choices for 𝐸′.)

• Key generation: We generate keys (𝑒, 𝑑) =
𝐺′(1𝑛) for the underlying encryption scheme.

• Encryption: To encrypt a message 𝑚 ∈ {0, 1}ℓ,
we select 𝑟 ←𝑅 {0, 1}𝑛, and output

𝐸𝑒(𝑚) = 𝐸′
𝑒(𝑟;𝐻(𝑚‖𝑟))‖𝐻″(𝑟) ⊕ 𝑚‖𝐻′(𝑚‖𝑟)

recall that 𝐸′
𝑒(𝑟; 𝑠) denotes the encryption of the

message 𝑟 using randomness 𝑠.

• Decryption: To decrypt a ciphertext 𝑐‖𝑦‖ℎ first
let 𝑟 = 𝐷′

𝑑(𝑐), then compute 𝑚 = 𝐻″(𝑟) ⊕ 𝑦.
Finally check that 𝑐 = 𝐸′

𝑒(𝑟;𝐻(𝑚‖𝑟)) and
ℎ = 𝐻′(𝑚‖𝑟). If either check fails we output
error; otherwise we output 𝑚.

Theorem 12.2 — CCA security from random oracles. The above CCA-ROM-
ENC scheme is CCA secure.

Proof. Let 𝐴 be a polynomial-time adversary that wins the “CCA
Game” with respect to the scheme (𝐺,𝐸,𝐷) with probability 1/2 + 𝜖.
We will show (Claim 1) that there is an adversary ̃𝐴 that can win in
this game with probability 1/2+𝜖−𝑛𝑒𝑔𝑙(𝑛) without using the decryption
box. We will then show (Claim 2) that this implies that 𝐴′ can win
the CPA game with respect to the scheme (𝐺′, 𝐸′, 𝐷′) with probability
1/2 + Ω(𝜖). We start by establishing the first claim:

Claim 1: Under the above assumptions, there exists a polynomial-
time adversary ̃𝐴 that wins the CCA game with respect to the scheme
(𝐺,𝐸,𝐷) without making any queries to the decryption box.

Proof of Claim 1: The adversary ̃𝐴 will simulate 𝐴, keeping track
of all of 𝐴’s queries to its decryption and random oracles. Whenever 𝐴
makes a query 𝑐‖𝑦‖ℎ to the decryption oracle, then ̃𝐴 will respond to
it using the following “fake” decryption box 𝐷̃: check whether ℎ was
returned before from the random oracle 𝐻′ as a response to a query
𝑚‖𝑟 by 𝐴. If this is the case, then ̃𝐴 will check if 𝑐 = 𝐸′

𝑒(𝑟;𝐻(𝑚‖𝑟))
and 𝑦 = 𝐻″(𝑟) ⊕𝑚. If so, then it will return 𝑚, otherwise it will return

establishing secure connections over insecure channels 263

error. Note that 𝐷̃(𝑐‖𝑦‖ℎ) is computed without any knowledge of the
secret key 𝑑.

We claim that the probability that ̃𝐴 will return an answer that
differs from the true decryption box is negligible. Indeed, for each
particular query 𝑐‖𝑦‖ℎ, first observe that if 𝐷̃(𝑐‖𝑦‖ℎ) is not error
then 𝐷̃(𝑐‖𝑦‖ℎ) = 𝐷𝑑(𝑐‖𝑦‖ℎ). Indeed, in this case it holds that 𝑐 =
𝐸′

𝑒(𝑚;𝐻(𝑚‖𝑟)), 𝑦 = 𝐻′(𝑟) ⊕ 𝑚 and ℎ = 𝐻′(𝑚‖𝑟). Hence this is a
properly formatted encryption of 𝑚, on which the true decryption box
will return 𝑚 as well.

So the only way that 𝐷 and 𝐷̃ differ is if 𝐷𝑑(𝑐‖𝑦‖ℎ) = 𝑚 but
𝐷̃(𝑐‖𝑦‖ℎ) returns error. For this it must be the case that for 𝑟 = 𝐷′

𝑑(𝑐),
ℎ = 𝐻′(𝑚‖𝑟) but 𝑚‖𝑟 was not queried before by 𝐴. There are two
options: either 𝑚‖𝑟 was not queried at all, but then by the “lazy eval-
uation” paradigm, the value 𝐻′(𝑚‖𝑟) is chosen uniformly in {0, 1}𝑛
independently of ℎ, and the probability that it equals ℎ is 2−𝑛. The
other option is that 𝑚‖𝑟 was queried but not by the adversary. The
only other party that can make queries to the oracle in the CCA game
is the challenger, and it only makes a single query to 𝐻′ when produc-
ing the challenge ciphertext 𝐶∗ = 𝑐∗‖𝑦∗‖ℎ∗ with ℎ∗ = 𝐻′(𝑚∗‖𝑟∗). Now
the adversary is not allowed to make the query 𝐶∗ so in this case the
query must have the form 𝑐‖𝑦‖ℎ∗ where 𝑐‖𝑦 ≠ 𝑐∗‖𝑦∗. But the only way
that 𝐷𝑑(𝑐‖𝑦‖ℎ∗) returns a value other than error is if for 𝑟 = 𝐷′

𝑑(𝑐)
and 𝑚 = 𝑦 ⊕ 𝐻″(𝑟), 𝑐 = 𝐸𝑒(𝑟;𝐻(𝑚‖𝑟)) and ℎ∗ = 𝐻′(𝑚‖𝑟). Since
the probability of a collision in 𝐻′ is negligible, this can only happen
if 𝑚‖𝑟 = 𝑚∗‖𝑟∗, but in this case it will hold that 𝑐 = 𝑐∗ and 𝑦 = 𝑦∗,
contradicting the fact that the ciphertext must differ from 𝐶∗. QED
(Claim 1)

Claim 2: Under the above assumptions, there exists a polynomial-
time adversary 𝐴′ that wins the CPA game with respect to the scheme
(𝐺′, 𝐸′, 𝐷′) with probability at least 1/2 + 𝜖/10.

Proof of Claim 2:
𝐴′ runs the full CCA experiment with the adversary ̃𝐴 obtained

from Claim 1, simulating the random oracles 𝐻,𝐻′,𝐻″ using “lazy
evaluation”. When the time comes and the adversary ̃𝐴 chooses two
ciphertexts 𝑚0,𝑚1, then 𝐴′ does the following:

1. The adversary 𝐴′ will choose 𝑟0, 𝑟1 ←𝑅 {0, 1}𝑛, give them to its
own challenger and get 𝑐∗ which is either an encryption of 𝑟𝑏∗ under
𝐸′

𝑒 for 𝑏∗ ←𝑅 {0, 1}. If the adversary ̃𝐴 made in the past a query of
the form 𝑟𝑏 or 𝑚𝑏‖𝑟𝑏′ for 𝑏, 𝑏′ ∈ {0, 1} to one of the random oracles
then we stop the experiment and declare failure. (Since 𝑟0, 𝑟1 are
random in {0, 1}𝑛 and ̃𝐴 made only polynomially many queries, the
probability of this happening is negligible).

264 an intensive introduction to cryptography

2. The adversary 𝐴′ will now give 𝑐∗‖𝑦∗‖ℎ∗ with 𝑦∗, ℎ∗ ←𝑅 {0, 1}𝑛 to
̃𝐴 as the response to the challenge. (Note that this ciphertext does

not involve neither 𝑚0 nor 𝑚1 in any way.)

3. Now if the adversary ̃𝐴 makes a query of the form 𝑟𝑏 or 𝑚‖𝑟𝑏 for
𝑏 ∈ {0, 1} to one of its oracles, then 𝐴′ will output 𝑏. Otherwise, it
outputs a random output.

Note that the adversary 𝐴′ ignores the output of ̃𝐴. It only cares
about the queries that ̃𝐴 makes. Let’s say that an “𝑟𝑏 query is one that
has 𝑟𝑏 as a postfix”. To finish the proof we make the following two
claims:

Claim 2.1: The probability that ̃𝐴 makes an 𝑟1−𝑏∗ query is negligi-
ble. Proof: This is because the only value that ̃𝐴 receives that depends
on one of 𝑟0, 𝑟1 is 𝑐∗ which is an encryption of 𝑟𝑏∗ . Hence ̃𝐴 never sees
any value that depends on 𝑟1−𝑏∗ and since it is uniform in {0, 1}𝑛, the
probability that ̃𝐴 makes a query with this postfix is negligible. QED
(Claim 2.1)

Claim 2.2: ̃𝐴 will make an 𝑟𝑏∗ query with probability at least 𝜖/2.
Proof: Let 𝑐∗ = 𝐸′

𝑒(𝑟𝑏∗ ; 𝑠∗) where 𝑠∗ is the randomness used in produc-
ing it. By the lazy evaluation paradigm, since no 𝑟𝑏∗ query was made
up to that point, the distribution would be identical if we defined
𝐻(𝑚𝑏‖𝑟𝑏∗) = 𝑠∗, defined 𝐻″(𝑟𝑏∗) = 𝑦∗⊕𝑚𝑏 and define ℎ∗ = 𝐻′(𝑚𝑏‖𝑟𝑏∗).
Hence the distribution of the ciphertext is identical to how it is dis-
tributed in the actual CCA game. Now, since ̃𝐴 wins the CCA game
with probability 1/2 + 𝜖 − 𝑛𝑒𝑔𝑙(𝑛), in this game it must query 𝐻″ at 𝑟𝑏∗
with probability at least 𝜖/2. Indeed, conditioned on not querying 𝐻″

at this value, the string 𝑦∗ is independent of the message 𝑚0, and the
adversary cannot win the game with probability more than 1/2. QED
(Claim 2.2)

Together Claims 2.1 and 2.2 imply that the adversary ̃𝐴 makes
an 𝑟𝑏∗ query with probability at least 𝜖/2, and makes an 𝑟1−𝑏∗ query
with negligible probability, hence our adversary 𝐴′ will output 𝑏∗
with probability at least 𝜖/2, and with all but a negligible part of the
remaining probability will guess randomly, leading to an overall suc-
cess in the CPA game of at least 1/2 + 𝜖/2. QED (Claim 2 and hence
theorem)

■

12.5.1 Defining secure authenticated key exchange
The basic goal of secure communication is to set up a secure channel
between two parties Alice and Bob. We want to do so over an open
network, where messages between Alice and Bob might be read, mod-
ified, deleted, or added by the adversary. Moreover, we want Alice
and Bob to be sure that they are talking to one another rather than

establishing secure connections over insecure channels 265

3 The registration process could be more subtle than
that, and for example Alice might need to prove to
the CA that she does indeed know the corresponding
secret key.

other parties. This raises the question of what is identity and how is
it verified. Ultimately, if we want to use identities, then we need to
trust some authority that decides which party has which identity. This
is typically done via a certificate authority (CA). This is some trusted
authority, whose verification key 𝑣𝐶𝐴 is public and known to all par-
ties. Alice proves in some way to the CA that she is indeed Alice, and
then generates a pair (𝑠𝐴𝑙𝑖𝑐𝑒, 𝑣𝐴𝑙𝑖𝑐𝑒), and gets from the CA the message
𝜎𝐴𝑙𝑖𝑐𝑒=“The key 𝑣𝐴𝑙𝑖𝑐𝑒 belongs to Alice” signed with 𝑠𝐶𝐴.3 Now Alice
can send (𝑣𝐴𝑙𝑖𝑐𝑒, 𝜎𝐴𝑙𝑖𝑐𝑒) to Bob to certify that the owner of this public
key is indeed Alice.

For example, in the web setting, certain certificate authorities can
certify that a certain public key is associated with a certain website. If
you go to a website using the https protocol, you should see a “lock”
symbol on your browser which will give you details on the certificate.
Often the certificate is a chain of certificate. If I click on this lock sym-
bol in my Chrome browser, I see that the certificate that amazon.com’s
public key is some particular string (corresponding to a 2048 RSA
modulos and exponent) is signed by the Symantec Certificate au-
thority, whose own key is certified by Verisign. My communication
with Amazon is an example of a setting of one sided authentication. It
is important for me to know that I am truly talking to amazon.com,
while Amazon is willing to talk to any client. (Though of course once
we establish a secure channel, I could use it to login to my Amazon
account.) Chapter 21 of Boneh Shoup contains an in depth discussion
of authenticated key exchange protocols, see for example ??. Because
the definition is so involved, we will not go over the full formal def-
initions in this book, but I recommend Boneh-Shoup for an in-depth
treatment.

https://en.wikipedia.org/wiki/Certificate_authority

266 an intensive introduction to cryptography

the definitions of protocols AEK1 - AEK4.

12.5.2 The compiler approach for authenticated key exchange
There is a generic “compiler” approach to obtaining authenticated key
exchange protocols:

• Start with a protocol such as the basic Diffie-Hellman protocol that
is only secure with respect to a passive eavesdropping adversary.

• Then compile it into a protocol that is secure with respect to an ac-
tive adversary using authentication tools such as digital signatures,
message authentication codes, etc., depending on what kind of
setup you can assume and what properties you want to achieve.

This approach has the advantage of being modular in both the con-
struction and the analysis. However, direct constructions might be
more efficient. There are a great many potentially desirable properties
of key exchange protocols, and different protocols achieve different
subsets of these properties at different costs. The most common vari-
ant of authenticated key exchange protocols is to use some version of
the Diffie-Hellman key exchange. If both parties have public signature
keys, then they can simply sign their messages and then that effec-
tively rules out an active attack, reducing active security to passive
security (though one needs to include identities in the signatures to
ensure non repeating of messages, see here).

The most efficient variants of Diffie Hellman achieve authentication
implicitly, where the basic protocol remains the same (sending 𝑋 = 𝑔𝑥

http://link.springer.com/article/10.1007%2FBF00124891

establishing secure connections over insecure channels 267

Figure 12.1: How the NSA feels about breaking en-
crypted communication

and 𝑌 = 𝑔𝑦) but the computation of the secret shared key involves
some authentication information. Of these protocols a particularly
efficient variant is the MQV protocol of Law, Menezes, Qu, Solinas and
Vanstone (which is based on similar principles as DSA signatures),
and its variant HMQV by Krawczyk that has some improved security
properties and analysis.

12.6 PASSWORD AUTHENTICATED KEY EXCHANGE.

NOTE: The following three parts are not yet written - we will discuss
them in class, but please at least skim the resources pointed out below

PAKE is covered in Boneh-Shoup Chapter 21.11

12.7 CLIENT TO CLIENT KEY EXCHANGE FOR SECURE TEXT MES-
SAGING - ZRTP, OTR, TEXTSECURE

To be completed. See Matthew Green’s blog , text secure, OTR.
Security requirements: forward secrecy, deniability.

12.8 HEARTBLEED AND LOGJAM ATTACKS

• Vestiges of past crypto policies.

• Importance of “perfect forward secrecy”

https://eprint.iacr.org/2005/176.pdf
http://blog.cryptographyengineering.com/2013/03/here-come-encryption-apps.html
https://whispersystems.org/blog/advanced-ratcheting/
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

IV
ADVANCED TOPICS

