
11
Lattice based cryptography

Lattice based public key encryption (and its cousins known as
knapsack and coding based encryption) have almost as long a his-
tory as discrete logarithm and factoring based schemes. Already in
1976, right after the Diffie-Hellman key exchange was discovered
(and before RSA), Ralph Merkle was working on building public key
encryption from the NP hard knapsack problem (see Diffie’s recollec-
tion). This can be thought of as the task of solving a linear equation
of the form 𝐴𝑥 = 𝑦 (where 𝐴 is a given matrix, 𝑦 is a given vector,
and the unknown are 𝑥) over the real numbers but with the addi-
tional constraint that 𝑥 must be either 0 or 1. His proposal evolved into
the Merkle-Hellman system proposed in 1978 (which was broken in
1984).

McEliece proposed in 1978 a system based on the difficulty of the
decoding problem for general linear codes. This is the task of solving
noisy linear equations where one is given 𝐴 and 𝑦 such that 𝑦 = 𝐴𝑥 + 𝑒
for a “small” error vector 𝑒, and needs to recover 𝑥. Crucially, here
we work in a finite field, such as working modulo 𝑞 for some prime
𝑞 (that can even be 2) rather than over the reals or rationals. There
are special matrices 𝐴∗ for which we know how to solve this problem
efficiently: these are known as efficiently decodable error correcting
codes. McEliece suggested a scheme where the key generator lets 𝐴 be
a “scrambled” version of a special 𝐴∗ (based on the Goppa algebraic
geometric code). So, someone that knows the scrambling could solve
the problem, but (hopefully) someone that doesn’t know it wouldn’t.
McEliece’s system has so far not been broken.

In a 1996 breakthrough, Ajtai showed a private key scheme based
on integer lattices that had a very curious property- its security could
be based on the assumption that certain problems were only hard in
the worst case, and moreover variants of these problems were known
to be NP hard. This re-ignited the hope that we could perhaps realize
the old dream of basing crypto on the mere assumption that 𝑃 ≠ NP.

Compiled on 11.17.2021 22:35

http://cr.yp.to/bib/1988/diffie.pdf
http://cr.yp.to/bib/1988/diffie.pdf
https://goo.gl/vM7Pvv
https://goo.gl/vM7Pvv
https://goo.gl/Vd4yye
https://goo.gl/Vd4yye

238 an intensive introduction to cryptography

Alas, we now understand that there are fundamental barriers to this
approach.

Nevertheless, Ajtai’s work attracted significant interest, and within
a year both Ajtai and Dwork, as well as Goldreich, Goldwasser and
Halevi came up with lattice based constructions for public key encryp-
tion (the former based also on worst case assumptions). At about the
same time, Hoffstein, Pipher, and Silverman came up with their NTRU
public key system which is based on stronger assumptions but offers
better performance, and they started a company around it together
with Daniel Lieman.

You may note that I haven’t yet said what lattices are; we will do
so later, but for now if you simply think of questions involving linear
equations modulo some prime 𝑞, you will get enough of the intuition
that you need. (The lattice viewpoint is more geometric, and we’ll
discuss it more below; it was first used to attack cryptosystems and in
particular break the Merkle-Hellman knapsack scheme and many of
its variants.)

Lattice based cryptography has captured a lot of attention recently
from both theory and practice. In the theory side, many cool new
constructions are now based on lattice based cryptography, and chief
among them fully homomorphic encryption, as well as indistinguisha-
bility obfuscation (though the latter’s security’s foundations are still
far less solid). On the applied side, the steady advances in the technol-
ogy of quantum computers have finally gotten practitioners worried
about RSA, Diffie Hellman and Elliptic Curves. While current con-
structions for quantum computers are nowhere near being able to,
say, factor larger numbers that can be done classically (or even than
can be done by hand), given that it takes many years to develop new
standards and get them deployed, many believe the effort to transition
away from these factoring/dlog based schemes should start today (or
perhaps should have started several years ago). Based on this, the Na-
tional Institute of Standards and Technology has started a process to
identify “post quantum” public key encryption scheme. All the finalist
for public-key encryption are based on lattices/codes.

Cryptography has the peculiar/unfortunate feature that if a ma-
chine is built that can factor large integers in 20 years, it can still be
used to break the communication we transmit today, provided this
communication was recorded. So, if you have some data that you
expect you’d want still kept secret in 20 years (as many government
and commercial entities do), you might have reasons to worry. Cur-
rently lattice based cryptography is the only real “game in town” for
potentially quantum-resistant public key encryption schemes.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

lattice based cryptography 239

1 While this won’t be of interest for us in this chapter,
one can also define finite fields whose size is a prime
power of the form 𝑞𝑘 where 𝑞 is a prime and 𝑘 is an
integer; this is sometimes useful and in particular
fields of size 2𝑘 are sometimes used in practice. In
such fields we usually think of the elements as vector
𝑣 ∈ (ℤ𝑞)𝑘 with addition done component-wise but
multiplication is not defined component-wise (since
otherwise a vector with a single coordinate zero
would not have an inverse) but in a different way, via
interpreting these vectors as coefficients of a degree
𝑘 − 1 polynomial.

Lattice based cryptography is a huge area, and in this lecture and
this course we only touch on few aspects of it. I highly recommend
Chris Peikert’s Survey for a much more in depth treatment of this area.

11.0.1 Quick linear algebra recap
A field 𝔽 is a set that supports the operations +, ⋅ and contains the
numbers 0 and 1 (more formally the additive identity and multiplica-
tive identity) with the usual properties that the real numbers have.
(That is associative, commutative, and distributive law, the fact that
for every 𝑥 ∈ 𝔽 there is an element −𝑥 such that 𝑥 + (−𝑥) = 0 and
that if 𝑥 ≠ 0 there is an element 𝑥−1 such that 𝑥 ⋅ 𝑥−1 = 1.) Apart
from the real numbers, the main field we will be interested in this sec-
tion is the field ℤ𝑞 of the numbers {0, 1,… , 𝑞 − 1} with addition and
multiplication done modulo 𝑞, where 𝑞 is a prime number.1

You should be comfortable with the following notions (these are
covered in a number of sources, including the appendix of Katz-
Lindell and Shoup’s online-available book):

• A vector 𝑣 ∈ 𝔽𝑛 and a matrix 𝑀 ∈ 𝔽𝑚×𝑛. An 𝑚 × 𝑛 matrix has 𝑚
rows and 𝑛 columns. We think of vectors as column vectors and so
we can think of a vector 𝑣 ∈ 𝔽𝑛 as an 𝑛 × 1 matrix. We write the
𝑖-th coordinate of 𝑣 as 𝑣𝑖 and the (𝑖, 𝑗)-th coordinate of 𝑀 as 𝑀𝑖,𝑗
(i.e. the coordinate in the 𝑖-th row and the 𝑗-th column.) We often
write a vector 𝑣 as (𝑣1,… , 𝑣𝑛) but we still mean that it’s a column
vector unless we say otherwise.

• If 𝛼 ∈ 𝔽 is a scalar (i.e., a number) and 𝑣 ∈ 𝔽𝑛 is a vector then 𝛼𝑣 is
the vector (𝛼𝑣1,… , 𝛼𝑣𝑛). If 𝑢, 𝑣 are 𝑛 dimensional vectors then 𝑢 + 𝑣
is the vector (𝑢1 + 𝑣1,… , 𝑢𝑛 + 𝑣𝑛).

• A linear subspace 𝑉 ⊆ 𝔽𝑛 is a non-empty set of vectors such that
for every vectors 𝑢, 𝑣 ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝔽, 𝛼𝑢 + 𝛽𝑣 ∈ 𝑉 . In partic-
ular this means that 𝑉 contains the all zero vector 0𝑛 (can you see
why?). A subset 𝐴 ⊆ 𝑉 is linearly independent if there is no collec-
tion 𝑎1,… , 𝑎𝑘 ∈ 𝐴 and scalars 𝛼1,… , 𝛼𝑘 such that ∑𝛼𝑖𝑎𝑖 = 0𝑛. It
is known (and not hard to prove) that if 𝐴 is linearly independent
then |𝐴| ≤ 𝑛. It is known that for every such linear subspace there
is a linearly independent set 𝐵 = {𝑏1,… , 𝑏𝑑} of vectors, with 𝑑 ≤ 𝑛,
such that for every 𝑢 ∈ 𝑉 there exist 𝛼1,… , 𝛼𝑑 such that 𝑣 = ∑𝛼𝑖𝑏𝑖.
Such a set is known as a basis for 𝑉 . A subspace 𝑉 has many bases,
but all of them have the same size 𝑑 which is known as the dimen-
sion of 𝑉 . An affine subspace is a set 𝑈 of the form {𝑢0 + 𝑣 ∶ 𝑣 ∈ 𝑉 }
where 𝑉 is a linear subspace. We can also write 𝑈 as 𝑢0 + 𝑉 . We
denote the dimension of 𝑈 as the dimension of 𝑉 in such a case.

https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
https://shoup.net/ntb/

240 an intensive introduction to cryptography

2 Inner products can be defined more generally, and in
particular over fields such as the complex numbers we
would define the inner product as ∑𝑢𝑖𝑣𝑖 where for
𝑎 ∈ ℂ, 𝑎 denotes the complex conjugate of 𝑎. However,
we stick to this simple case for this chapter.

• The inner product (also known as “dot product”) ⟨𝑢, 𝑣⟩ between
two vectors of the same dimension 𝑛 is defined as ∑𝑢𝑖𝑣𝑖 (addition
done in the field 𝔽).2

• The matrix product AB of an 𝑚 × 𝑘 and a 𝑘 × 𝑛 matrix results
in an 𝑚 × 𝑛 matrix. If we think of the rows of 𝐴 as the vectors
𝐴1,… ,𝐴𝑚 ∈ 𝔽𝑘 and the columns of 𝐵 as 𝐵1,… ,𝐵𝑛 ∈ 𝔽𝑘, then the
(𝑖, 𝑗)-th coordinate of AB is ⟨𝐴𝑖, 𝐵𝑗⟩. Matrix product is associative
and satisfies the distributive law but is not commutative: there are
pairs of square matrices 𝐴,𝐵 such that AB ≠ BA.

• The transpose of an 𝑛 ×𝑚 matrix 𝐴 is the 𝑚× 𝑛 matrix 𝐴⊤ such that
(𝐴⊤)𝑖,𝑗 = 𝐴𝑗,𝑖.

• The inverse of a square 𝑛 × 𝑛 matrix 𝐴 is the matrix 𝐴−1 such that
AA−1 = 𝐼 where 𝐼 is the 𝑛 × 𝑛 identity matrix such that 𝐼𝑖,𝑗 = 1 if
𝑖 = 𝑗 and 𝐼𝑖,𝑗 = 0 otherwise.

• The rank of an 𝑚 × 𝑛 matrix 𝐴 is the minimum number 𝑟 such that
we can write 𝐴 as ∑𝑟

𝑖=1 𝑢𝑖(𝑣𝑖)⊤ where 𝑢𝑖 ∈ 𝔽𝑚 and 𝑣𝑖 ∈ 𝔽𝑛. We
can think of the 𝑢𝑖’s as the columns of an 𝑚 × 𝑟 matrix 𝑈 and the
𝑣𝑖’s as the rows of an 𝑟 × 𝑛 matrix 𝑉 , and hence the rank of 𝐴 is the
minimum 𝑟 such that 𝐴 = UV where 𝑈 is 𝑚 × 𝑟 and 𝑉 is 𝑟 × 𝑛. It
can be shown that an 𝑛 × 𝑛 matrix is full rank if and only if it has an
inverse.

• Solving linear equations can be thought of as the task of given an 𝑚×
𝑛 matrix 𝐴 and 𝑚-dimensional vector 𝑦, finding the 𝑛-dimensional
vector 𝑥 such that 𝐴𝑥 = 𝑦. If the rank of 𝐴 is at least 𝑛 (which in
particular means that 𝑚 ≥ 𝑛) then by dropping 𝑚 − 𝑛 rows of 𝐴
and coordinates of 𝑦 we can obtain the equation 𝐴′𝑥 = 𝑦′ where
𝐴′ is an 𝑛 × 𝑛 matrix that has an inverse. In this case a solution
(if it exists) will be equal to (𝐴′)−1𝑦. If for a set of equations we
have 𝑚 > 𝑛 and we can find two such matrices 𝐴′, 𝐴″ such that
(𝐴′)−1𝑦 ≠ (𝐴″)−1𝑦 then we say it is over determined and in such
a case it has no solutions. If a set of equations has more variables
𝑛 than equations 𝑚 we say it’s under-determined. In such a case it
either has no solutions or the solutions form an affine subspace of
dimension at least 𝑛 −𝑚.

• The gaussian elimination algorithm can be used to obtain, given a set
of equations 𝐴𝑥 = 𝑦 a solution to 𝑥 if such exists or a certification
that no solution exists. It can be executed in time polynomial in the
dimensions and the bit complexity of the numbers involved. This
algorithm can also be used to obtain an inverse of a given matrix 𝐴,
if such an inverse exists.

lattice based cryptography 241

3 Despite the name, Gaussian elimination has been
known to Chinese mathematicians since 150BC or so,
and was popularized in the west through the 1670
notes of Isaac Newton, more than 100 years before
Gauss was born.

R
Remark 11.1 — Keep track of dimensions!. Through-
out this chapter, and while working in lattice based
cryptography in general, it is crucial to keep track of
the dimensions. Whenever you see a symbol such as
𝑣,𝐴, 𝑥, 𝑦 ask yourself:

• Is it a scalar, a vector or a matrix?
• If it is a vector or a matrix, what are its dimensions?
• If it’s a matrix, is it “square” (i.e., 𝑚 = 𝑛), “short

and fat” (i.e., 𝑚 ≪ 𝑛) or “tall and skinny”? (𝑚 ≫
𝑛)?

11.1 A WORLD WITHOUT GAUSSIAN ELIMINATION

The general approach people use to get a public key encryption is
to obtain a hard computational problem with some mathematical
structure. We’ve seen this in the discrete logarithm problem, where the
task is to invert the map 𝑎 ↦ 𝑔𝑎 (mod 𝑝), and the integer factoring
problem, where the task is to invert the map 𝑎, 𝑏 ↦ 𝑎 ⋅ 𝑏. Perhaps the
simplest structure to consider is the task of solving linear equations.

Pretend that we didn’t know of Gaussian elimination,3 and that
if we picked a “generic” matrix 𝐴 then the map 𝑥 ↦ 𝐴𝑥 would be
hard to invert. (Here and elsewhere, our default interpretation of
a vector 𝑥 is as a column vector, and hence if 𝑥 is 𝑛 dimensional and
𝐴 is 𝑚 × 𝑛 then 𝐴𝑥 is 𝑚 dimensional. We use 𝑥⊤ to denote the row
vector obtained by transposing 𝑥.) Could we use that to get a public
key encryption scheme?

Here is a concrete approach. Let us fix some prime 𝑞 (think of it as
polynomial size, e.g., 𝑞 is smaller than 1024 or so, though people can
and sometimes do consider 𝑞 of exponential size), and all computation
below will be done modulo 𝑞. The secret key is a vector 𝑥 ∈ ℤ𝑛

𝑞 , and
the public key is (𝐴, 𝑦) where 𝐴 is a random 𝑚× 𝑛 matrix with entries
in ℤ𝑞 and 𝑦 = 𝐴𝑥. Under our assumption, it is hard to recover the
secret key from the public key, but how do we use the public key to
encrypt?

The crucial observation is that even if we don’t know how to solve
linear equations, we can still combine several equations to get new
ones. To keep things simple, let’s consider the case of encrypting a
single bit.

P
If you have a CPA secure public key encryption
scheme for single bit messages then you can extend

https://goo.gl/3HNb5U

242 an intensive introduction to cryptography

it to a CPA secure encryption scheme for messages of
any length. Can you see why?

If 𝑎1,… , 𝑎𝑚 are the rows of 𝐴, we can think of the public key as the
set of equations ⟨𝑎1, 𝑥⟩ = 𝑦1,… , ⟨𝑎𝑚, 𝑥⟩ = 𝑦𝑚 in the unknown vari-
ables 𝑥. The idea is that to encrypt the value 0 we will generate a new
correct equation on 𝑥, while to encrypt the value 1 we will generate an
incorrect equation. To decrypt a ciphertext (𝑎, 𝜎) ∈ ℤ𝑛+1

𝑞 , we think of
it as an equation of the form ⟨𝑎, 𝑥⟩ = 𝜎 and output 1 if and only if the
equation is incorrect.

How does the encrypting algorithm, that does not know 𝑥, get
a correct or incorrect equation on demand? One way would be to
simply take two equations ⟨𝑎𝑖, 𝑥⟩ = 𝑦𝑖 and ⟨𝑎𝑗, 𝑥⟩ = 𝑦𝑗 and add them
together to get the equation ⟨𝑎𝑖 + 𝑎𝑗, 𝑥⟩ = 𝑦𝑖 + 𝑦𝑗. This equation is
correct and so one can use it to encrypt 0, while to encrypt 1 we simply
add some fixed nonzero number 𝛼 ∈ ℤ𝑞 to the right hand side to get
the incorrect equation ⟨𝑎𝑖 + 𝑎𝑗, 𝑥⟩ = 𝑦𝑖 + 𝑦𝑗 + 𝛼. However, even if it’s
hard to solve for 𝑥 given the equations, an attacker (who also knows
the public key (𝐴, 𝑦)) can try itself all pairs of equations and do the
same thing.

Our solution for this is simple- just add more equations! If the en-
cryptor adds a random subset of equations then there are 2𝑚 possibili-
ties for that, and an attacker can’t guess them all. That is, if the rows of
𝐴 are 𝑎1,… , 𝑎𝑚, then we can pick a vector 𝑤 ∈ {0, 1}𝑚 at random, and
consider the equation ⟨𝑎, 𝑥⟩ = 𝑦 where 𝑎 = ∑𝑤𝑖𝑎𝑖 and 𝑦 = ∑𝑤𝑖𝑦𝑖. In
other words, we can think of this as the equation 𝑤⊤𝐴𝑥 = ⟨𝑤, 𝑦⟩ (note
that ⟨𝑤, 𝑦⟩ = 𝑤⊤𝑦 and so we can think of this as the equation that we
obtain from 𝐴𝑥 = 𝑦 by multiplying both sides on the left by the row
vector 𝑤⊤).

Thus, at least intuitively, the following encryption scheme would
be “secure” in the Gaussian elimination-free world of attackers that
haven’t taken freshman linear algebra:

Scheme “LwoE-ENC”: Public key encryption under
the hardness of “learning linear equations without
errors”.

• Key generation: Pick random 𝑚 × 𝑛 matrix 𝐴 over
ℤ𝑞, and 𝑥 ←𝑅 ℤ𝑛

𝑞 , the secret key is 𝑥 and the pub-
lic key is (𝐴, 𝑦) where 𝑦 = 𝐴𝑥.

• Encryption: To encrypt a message 𝑏 ∈ {0, 1}, pick
𝑤 ∈ {0, 1}𝑚 and output 𝑤⊤𝐴, ⟨𝑤, 𝑦⟩+𝛼𝑏 for some
fixed nonzero 𝛼 ∈ ℤ𝑞.

• Decryption: To decrypt a ciphertext (𝑎, 𝜎), output
0 iff ⟨𝑎, 𝑥⟩ = 𝜎.

lattice based cryptography 243

4 Over ℤ𝑞, we can think of 𝑞 − 1 also as the number
−1, and so on. Thus if 𝑎 ∈ ℤ𝑞, we define |𝑎| to be the
minimum of 𝑎 and 𝑞 − 𝑎. This ensures the absolute
value satisfies the natural property of |𝑎| = | − 𝑎|.

P
Please stop here and make sure that you see why
this is a valid encryption (not in the sense that it is
secure - it’s not - but in the sense that decryption of
an encryption of 𝑏 returns the bit 𝑏), and this descrip-
tion corresponds to the previous one; as usual all
calculations are done modulo 𝑞.

11.2 SECURITY IN THE REAL WORLD.

Like it or not (and cryptographers typically don’t) Gaussian elimina-
tion is possible in the real world and the scheme above is completely
insecure. However, the Gaussian elimination algorithm is extremely
brittle.

Errors tend to be amplified when you combine equations. This is
usually thought of as a bad thing, and numerical analysis is much
about dealing with this issue. However, from the cryptographic point
of view, these errors can be our saving grace and enable us to salvage
the security of the ridiculous scheme above.

To see why Gaussian elimination is brittle, let us recall how it
works. Think of 𝑚 = 𝑛 for simplicity. Given equations 𝐴𝑥 = 𝑦 in
the unknown variables 𝑥, the goal of Gaussian elimination is to trans-
form them into the equations 𝐼𝑥 = 𝑦′ where 𝐼 is the identity matrix
(and hence the solution is simply 𝑥 = 𝑦′). Recall how we do it: by
rearranging and scaling, we can assume that the top left corner of 𝐴
is equal to 1, and then we add the first equation to the other equa-
tions (scaled appropriately) to zero out the first entry in all the other
rows of 𝐴 (i.e., make the first column of 𝐴 equal to (1, 0,… , 0)) and
continue onwards to the second column and so on and so forth.

Now, suppose that the equations were noisy, in the sense that we
added to 𝑦 a vector 𝑒 ∈ ℤ𝑚

𝑞 such that |𝑒𝑖| < 𝛿𝑞 for every 𝑖.4 Even ignor-
ing the effect of the scaling step, simply adding the first equation to
the rest of the equations would typically tend to increase the relative
error of equations 2,… ,𝑚 from ≈ 𝛿 to ≈ 2𝛿. Now, when we repeat
the process, we increase the error of equations 3,… ,𝑚 from ≈ 2𝛿 to
≈ 4𝛿, and we see that by the time we’re done dealing with about 𝑛/2
variables, the remaining equations have error level roughly 2𝑛/2𝛿. So,
unless 𝛿 was truly tiny (and 𝑞 truly big, in which case the difference
between working in ℤ𝑞 and simply working with integers or rationals
disappears), the resulting equations have the form 𝐼𝑥 = 𝑦′ + 𝑒′ where
𝑒′ is so big that we get no information on 𝑥.

The Learning With Errors (LWE) conjecture is that this is inherent:

244 an intensive introduction to cryptography

6 One can think of 𝑒 as chosen by simply letting every
coordinate be chosen at random in {−𝛿𝑞,−𝛿𝑞 +
1,… ,+𝛿𝑞}. For technical reasons, we sometimes
consider other distributions and in particular the
discrete Gaussian distribution which is obtained by
letting every coordinate of 𝑒 be an independent
Gaussian random variable with standard deviation
𝛿𝑞, conditioned on it being an integer. (A closely
related distribution is obtained by picking such a
Gaussian random variable and then rounding it to the
nearest integer.)
6 People sometimes also consider variants where both
𝑝(𝑛) and 𝑞(𝑛) can be as large as exponential.

Conjecture (Learning with Errors, Regev 2005):
Let 𝑞 = 𝑞(𝑛) and 𝛿 = 𝛿(𝑛) be some functions. The
Learning with Error (LWE) conjecture with respect to
𝑞, 𝛿,denoted as LWE𝑞,𝛿, is the following conjecture:
for every polynomial 𝑚(𝑛) and polynomial-time
adversary 𝑅,

Pr[𝑅(𝐴,𝐴𝑥 + 𝑒) = 𝑥] < 𝑛𝑒𝑔𝑙(𝑛)
where for 𝑞 = 𝑞(𝑛) and 𝛿 = 𝛿(𝑛), this probability
is taken over 𝐴 a random 𝑚 × 𝑛 matrix over ℤ𝑞, 𝑥 a
random vector in ℤ𝑛

𝑞 , and 𝑒 a random “noise vector”
in ℤ𝑚

𝑞 where |𝑒𝑖| < 𝛿𝑞 for every 𝑖 ∈ [𝑚]. 5

The LWE conjecture (without any parameters) is that
there is some absolute constant 𝑐 such that for every
polynomial 𝑝(𝑛) there, if 𝑞(𝑛) > 𝑝(𝑛)𝑐 then LWE
holds with respect to 𝑞(𝑛) and 𝛿(𝑛) = 1/𝑝(𝑛). 6

It is important to note the order of quantifiers in the learning with
error conjecture. If we want to handle a noise of low enough mag-
nitude (say 𝛿(𝑛) = 1/𝑛2) then we need to choose the modulos 𝑞 to
be large enough (for example it is believed that 𝑞 > 𝑛4 will be good
enough for this case) and then the adversary can choose 𝑚(𝑛) to be as
big a polynomial as they like, and of course run in time which is an ar-
bitrary polynomial in 𝑛. Therefore we can think of such an adversary
𝑅 as getting access to a “magic box” that they can use 𝑚 = 𝑝𝑜𝑙𝑦(𝑛)
number of times to get “noisy equations on 𝑥” of the form (𝑎𝑖, 𝑦𝑖) with
𝑎𝑖 ∈ ℤ𝑛

𝑞 , 𝑦𝑖 ∈ ℤ𝑞 where 𝑦𝑖 = ⟨𝑎𝑖, 𝑥⟩ + 𝑒𝑖.

P
The LWE conjecture posits that no efficient algorithm
can recover 𝑥 given 𝐴 and 𝐴𝑥 + 𝑒. But you might
wonder whether it’s possible to do this is inefficiently.
The answer is yes. Intuitively the reason is that if we
have more equations than unknown (i.e., if 𝑚 > 𝑛)
then these equations contain enough information to
determine the unknown variables even if they are
noisy. It can be shown that if 𝑚 is sufficiently large
(𝑚 > 10𝑛 will do) then with high probability over
𝐴, 𝑥, 𝑒, given 𝐴 and 𝑦 = 𝑥 + 𝑒, if we enumerate over
all ̃𝑥 ∈ ℤ𝑛

𝑞 and output the string minimizing |𝐴 ̃𝑥 − 𝑦|
(where we define |𝑣| = ∑ |𝑣𝑖| for a vector 𝑣), then ̃𝑥
will equal 𝑥.
It is a good exercise to work out the details, but a hint
is this can be proven by showing that for every ̃𝑥 ≠ 𝑥,
with high probability over 𝐴, |𝐴 ̃𝑥 − 𝐴𝑥| > 𝛿𝑞𝑚. The
latter fact holds because 𝑣 = 𝐴(𝑥 − ̃𝑥) is a random
vector in ℤ𝑚

𝑞 , and the probability that |𝑣| < 𝛿𝑞𝑚 is

lattice based cryptography 245

much smaller than 𝑞−0.1𝑚 < 𝑞−𝑛. Hence we can take a
union bound over all possible ̃𝑥 ∈ ℤ𝑛

𝑞 .

11.3 SEARCH TO DECISION

It turns out that if the LWE is hard, then it is even hard to distinguish
between random equations and nearly correct ones:

Figure 11.1: The search to decision reduction (Theo-
rem 11.2) implies that under the LWE conjecture, for
every 𝑚 = 𝑝𝑜𝑙𝑦(𝑛), if we choose and fix a random
𝑚 × 𝑛 matrix 𝐴 over ℤ𝑞, the distribution 𝐴𝑥 + 𝑒 is
indistinguishable from a random vector in ℤ𝑚

𝑞 , where
𝑥 is a random vector in ℤ𝑛

𝑞 and 𝑒 is a random “short”
vector in ℤ𝑚

𝑞 . The two distributions are indistinguish-
able even to an adversary that knows 𝐴.

Theorem 11.2 — Search to decision reduction for LWE. If the LWE con-
jecture is true then for every 𝑞 = 𝑝𝑜𝑙𝑦(𝑛) and 𝛿 = 1/𝑝𝑜𝑙𝑦(𝑛) and
𝑚 = 𝑝𝑜𝑙𝑦(𝑛), the following two distributions are computationally
indistinguishable:

• {(𝐴,𝐴𝑥+𝑒)} where 𝐴 is random 𝑚×𝑛 matrix in ℤ𝑞, 𝑥 is random
in ℤ𝑛

𝑞 and 𝑒 ∈ ℤ𝑚
𝑞 is random noise vector of magnitude 𝛿.

• {(𝐴, 𝑦)} where 𝐴 is random 𝑚 × 𝑛 matrix in ℤ𝑞 and 𝑦 is random
in ℤ𝑚

𝑞 .

Proof. Suppose that we had a decisional adversary 𝐷 that succeeds in
distinguishing the two distributions above with bias 𝜖. For example,
suppose that 𝐷 outputs 1 with probability 𝑝 + 𝜖 on inputs from the
first distribution, and outputs 1 with probability 𝑝 on inputs from the
second distribution.

We will show how we can use this to obtain a polynomial-time
algorithm 𝑆 that on input 𝑚 noisy equations on 𝑥 and a value 𝑎 ∈ 𝑍𝑞,
will learn with high probability whether or not the first coordinate of
𝑥 equals 𝑎. Clearly, we can repeat this for all the possible 𝑞 values of 𝑎
to learn the first coordinate exactly, and then continue in this way to
learn all coordinates.

246 an intensive introduction to cryptography

Our algorithm 𝑆 gets as input the pair (𝐴, 𝑦) where 𝑦 = 𝐴𝑥 + 𝑒 and
we need to decide whether 𝑥1 = 𝑎. Now consider the instance (𝐴 +
(𝑟‖0𝑚‖⋯ ‖0𝑚), 𝑦+𝑎𝑟), where 𝑟 is a random vector in ℤ𝑚

𝑞 and the matrix
(𝑟‖0𝑚‖⋯ ‖0𝑚) is simply the matrix with first column equal to 𝑟 and all
other columns equal to 0. If 𝐴 is random then 𝐴 + (𝑟‖0𝑚‖⋯ ‖0𝑚) is
random as well. Now note that 𝐴𝑥 + (𝑟‖0𝑚 ⋯‖0𝑚)𝑥 = 𝐴𝑥 + 𝑥1𝑟
and hence if 𝑥1 = 𝑎 then we still have an input of the same form
(𝐴′, 𝐴′𝑥 + 𝑒).

In contrast, we claim that if if 𝑥1 ≠ 𝑎 then the distribution (𝐴′, 𝑦′)
where 𝐴′ = 𝐴 + (𝑟‖0𝑚‖⋯ ‖0𝑚) and 𝑦′ = 𝐴𝑥 + 𝑒 + 𝑎𝑟 is identical to
the uniform distribution over a random uniformly chosen matrix 𝐴′

and a random and independent uniformly chosen vector 𝑦′. Indeed,
we can write this distribution as (𝐴′, 𝑦′) where 𝐴′ is chosen uniformly
at random, and 𝑦′ = 𝐴′𝑥 + 𝑒 + (𝑎 − 𝑥1)𝑟 where 𝑟 is a random and in-
dependent vector. (Can you see why?) Since 𝑎 − 𝑥1 ≠ 0, this amounts
to adding a random and independent vector 𝑟 to 𝑦′, which means that
the distribution (𝐴′, 𝑦′) is uniform and independent.

Hence if we send the input (𝐴′, 𝑦′) to our the decision algorithm 𝐷,
then we would get 1 with probability 𝑝 + 𝜖 if 𝑥1 = 𝑎 and an output of 1
with probability 𝑝 otherwise.

Now the crucial observation is that if our decision algorithm 𝐷
requires 𝑚 equations to succeed with bias 𝜖, we can use 100𝑚𝑛/𝜖2
equations (which is still polynomial) to invoke it 100𝑛/𝜖2 times. This
allows us to distinguish with probability 1 − 2−𝑛 between the case
that 𝐷 outputs 1 with probability 𝑝 + 𝜖 and the case that it outputs 1
with probability 𝑝 (this follows from the Chernoff bound; can you see
why?). Hence by using polynomially more samples than the decision
algorithm 𝐷, we get a search algorithm 𝑆 that can actually recover 𝑥.

■

11.4 AN LWE BASED ENCRYPTION SCHEME

We can now show the secure variant of our original encryption
scheme:

LWE-based encryption LWE-ENC:

• Parameters: Let 𝛿(𝑛) = 1/𝑛4 and let 𝑞 = 𝑝𝑜𝑙𝑦(𝑛)
be a prime such that LWE holds w.r.t. 𝑞, 𝛿. We let
𝑚 = 𝑛2 log 𝑞.

• Key generation: Pick 𝑥 ∈ ℤ𝑛
𝑞 . The private key is 𝑥

and the public key is (𝐴, 𝑦) with 𝑦 = 𝐴𝑥 + 𝑒 with
𝑒 a 𝛿-noise vector and 𝐴 a random 𝑚× 𝑛 matrix.

• Encrypt: To encrypt 𝑏 ∈ {0, 1} given the
key (𝐴, 𝑦), pick 𝑤 ∈ {0, 1}𝑚 and output

lattice based cryptography 247

7 In fact, due to the fact that the signs of the error
vector’s entries are different, we expect the errors to
have significant cancellations and hence we would
expect |⟨𝑤, 𝑒⟩| to only be roughly of magnitude√𝑚𝛿𝑞, but this is not crucial for our discussions.

𝑤⊤𝐴, ⟨𝑤, 𝑦⟩ + 𝑏⌊𝑞/2⌋ (all computations are
done in ℤ𝑞).

• Decrypt: To decrypt (𝑎, 𝜎), output 0 iff
|⟨𝑎, 𝑥⟩ − 𝜎| < 𝑞/10.

P
The scheme LWEENC is also described in Fig. 11.2
with slightly different notation. I highly recommend
you stop and verify you understand why the two
descriptions are equivalent.

Figure 11.2: In the encryption scheme LWEENC,
the public key is a matrix 𝐴′ = (𝐴|𝑦), where 𝑦 =
𝐴𝑠 + 𝑒 and 𝑠 is the secret key. To encrypt a bit 𝑏
we choose a random 𝑤 ←𝑅 {0, 1}𝑚, and output
𝑤⊤𝐴′ + (0,… , 0, 𝑏⌊ 𝑞

2 ⌋). We decrypt 𝑐 ∈ ℤ𝑛+1
𝑞 to zero

with key 𝑠 iff |⟨𝑐, (𝑠,−1)⟩| ≤ 𝑞/10 where the inner
product is done modulo 𝑞.

Unlike our typical schemes, here it is not immediately clear that this
encryption is valid, in the sense that the decrypting an encryption of 𝑏
returns the value 𝑏. But this is the case:

Lemma 11.3 With high probability, the decryption of the encryption of 𝑏
equals 𝑏.

Proof. ⟨𝑤⊤𝐴, 𝑥⟩ = ⟨𝑤,𝐴𝑥⟩. Hence, if 𝑦 = 𝐴𝑥 + 𝑒 then ⟨𝑤, 𝑦⟩ =
⟨𝑤⊤𝐴, 𝑥⟩ + ⟨𝑤, 𝑒⟩. But since every coordinate of 𝑤 is either 0 or 1,
|⟨𝑤, 𝑒⟩| < 𝛿𝑚𝑞 < 𝑞/10 for our choice of parameters.7 So, we get that
if 𝑎 = 𝑤⊤𝐴 and 𝜎 = ⟨𝑤, 𝑦⟩ + 𝑏⌊𝑞/2⌋ then 𝜎 − ⟨𝑎, 𝑥⟩ = ⟨𝑤, 𝑒⟩ + 𝑏⌊𝑞/2⌋
which will be smaller than 𝑞/10 iff 𝑏 = 0.

■

We now prove security of the LWE based encryption:

Theorem 11.4 — CPA security of LWEENC. If the LWE conjecture is true
then LWEENC is CPA secure.

For a public key encryption scheme with messages that are just bits,
CPA security means that an encryption of 0 is indistinguishable from

248 an intensive introduction to cryptography

an encryption of 1, even given the public key. Thus Theorem 11.4 will
follow from the following lemma:

Lemma 11.5 Let 𝑞,𝑚, 𝛿 be set as in LWEENC. Then, assuming the LWE
conjecture, the following distributions are computationally indistin-
guishable:

• 𝐷: The distribution over four-tuples of the form (𝐴, 𝑦, 𝑤⊤𝐴, ⟨𝑤, 𝑦⟩)
where 𝐴 is uniform in ℤ𝑚×𝑛

𝑞 , 𝑥 is uniform in ℤ𝑛
𝑞 , 𝑒 ∈ ℤ𝑚

𝑞 is chosen
with 𝑒𝑖 ∈ {−𝛿𝑞,… ,+𝛿𝑞}, 𝑦 = 𝐴𝑥 + 𝑒, and 𝑤 is uniform in {0, 1}𝑚.

• 𝐷: The distribution over four-tuples (𝐴, 𝑦′, 𝑎, 𝜎) where all entries
are uniform: 𝐴 is uniform in ℤ𝑚×𝑛

𝑞 , 𝑦′ is uniform in ℤ𝑚
𝑞 , 𝑎 is uni-

form in ℤ𝑛
𝑞 and 𝜎 is uniform in ℤ𝑞.

P
You should stop here and verify that (i) You under-
stand the statement of Lemma 11.5 and (ii) you un-
derstand why this lemma implies Theorem 11.4. The
idea is that Lemma 11.5 shows that the concatenation
of the public key and encryption of 0 is indistinguish-
able from something that is completely random. You
can then use it to show that the concatenation of the
public key and encryption of 1 is indistinguishable
from the same thing, and then finish using the hybrid
argument.

We now prove Lemma 11.5, which will complete the proof of Theo-
rem 11.4.

Proof of Lemma 11.5. Define 𝐷 to be the distribution (𝐴, 𝑦, 𝑤⊤𝐴, ⟨𝑤, 𝑦⟩)
as in the lemma’s statement (i.e., 𝑦 = 𝐴𝑥 + 𝑒 for some 𝑥, 𝑒 chosen as
above). Define 𝐷′ to be the distribution (𝐴, 𝑦′, 𝑤⊤𝐴, ⟨𝑤, 𝑦′⟩) where 𝑦′
is chosen uniformly in ℤ𝑚

𝑞 .
We claim that 𝐷′ is computationally indistinguishable from 𝐷

under the LWE conjecture. Indeed by Theorem 11.2 (search to deci-
sion reduction) this conjecture implies that the distribution 𝑋 over
pairs (𝐴, 𝑦) with 𝑦 = 𝐴𝑥 + 𝑒 is indistinguishable from the distri-
bution 𝑋′ over pairs (𝐴, 𝑦′) where 𝑦′ is uniform. But if there was
some polynomial-time algorithm 𝑇 distinguishing 𝐷 from 𝐷′ then
we can design a randomized polynomial-time algorithm 𝑇 ′ distin-
guishing 𝑋 from 𝑋′ with the same advantage by setting 𝑇 ′(𝐴, 𝑦) =
𝑇(𝐴, 𝑦, 𝑤⊤𝐴, ⟨𝑤, 𝑦⟩) for random 𝑤 ←𝑅 {0, 1}𝑚.

We will finish the proof by showing that the distribution 𝐷′ is
statistically indistinguishable (i.e., has negligible total variation distance)
from 𝐷. This follows from the following claim:

lattice based cryptography 249

CLAIM: Suppose that 𝑚 > 100𝑛 log 𝑞. If 𝐴′ is a random 𝑚 × 𝑛 + 1
matrix over ℤ𝑞, then with probability at least 1 − 2−𝑛 over the choice
of 𝐴′, the distribution 𝑍𝐴′ over ℤ𝑛+1

𝑞 which is obtained by choosing 𝑤
at random in {0, 1}𝑚 and outputting 𝑤⊤𝐴′ has at most 2−𝑛 statistical
distance from the uniform distribution over ℤ𝑛+1

𝑞 .
Note that the randomness used for the distribution 𝑍𝐴′ is only

obtained by the choice of 𝑤, and not by the choice of 𝐴′ that is fixed.
(This passes a basic “sanity check” since 𝑤 has 𝑚 random bits, while
the uniform distribution over ℤ𝑛

𝑞 requires 𝑛 log 𝑞 ≪ 𝑚 random
bits, and hence 𝑍𝐴′ at least has a “fighting chance” in being statisti-
cally close to it.) Another way to state the same claim is that the pair
(𝐴′, 𝑤⊤𝐴′) is statistically indistinguishable from the uniform distribu-
tion (𝐴′, 𝑧) where 𝑧 is a vector chosen independently at random from
ℤ𝑛+1

𝑞 .
The claim completes the proof of the lemma, since letting 𝐴′ be the

matrix (𝐴|𝑦) and 𝑧 = (𝑎, 𝜎), we see that the distribution 𝐷′, as the
form (𝐴′, 𝑧) where 𝐴′ is a uniformly random 𝑚 × (𝑛 + 1) matrix and
𝑧 is sampled from 𝑍𝐴′ (i.e., 𝑧 = 𝑤⊤𝐴′ where 𝑤 is uniformly chosen
in {0, 1}𝑚). Hence this means that the statistical distance of 𝐷′ from
𝐷 (where all elements are uniform) is 𝑂(2−𝑛). (Please make sure you
understand this reasoning!)

Proof of claim: The proof of this claim relies on the leftover hash
lemma.

First, the basic idea of the proof: For every 𝑚 × (𝑛 + 1) matrix 𝐴′

over ℤ𝑞, define ℎ𝐴′ ∶ ℤ𝑚
𝑞 → ℤ𝑛+1

𝑞 to be the map ℎ𝐴′(𝑤) = 𝑤⊤𝐴′.
This collection can be shown to be a “good” hash function collection
in some specific technical sense, which in particular implies that for
every distribution 𝐷 with much more than 𝑛 log 𝑞 bits of min-entropy,
with all but negligible probability over the choice of 𝐴′, ℎ𝐴′(𝐷) is sta-
tistically indistinguishable from the uniform distribution. Now when
we choose 𝑤 at random in {0, 1}𝑚, it is coming from a distribution
with 𝑚 bits of entropy. If 𝑚 ≫ (𝑛+ 1) log 𝑞, then because the output of
this function is so much smaller than 𝑚, we expect it to be completely
uniform, and this is what’s shown by the leftover hash lemma.

Now we’ll formalize this blueprint. First we need the leftover hash
lemma.

Lemma 11.6 Fix 𝜖 > 0. Let ℋ be a universal hash family with functions
ℎ ∶ 𝒲 → 𝒱. Let 𝑊 be a random variable with output in 𝒲 with
𝐻∞(𝑊) ≥ log |𝒱| + 2 log(1/𝜖) − 2. Then (𝐻(𝑊),𝐻) where 𝐻 follows a
uniform distribution over ℋ has statistical difference less than 𝜖 from
(𝑉 ,𝐻) where 𝑉 is uniform over 𝒱.

https://goo.gl/KXpccP
https://goo.gl/KXpccP

250 an intensive introduction to cryptography

8 This is based on notes from Daniel Wichs’s class

To explain what a universal hash family is, a family ℋ of functions
ℎ ∶ 𝒲 → 𝒱 is a universal hash family if Prℎ←𝑅ℋ[ℎ(𝑥) = ℎ(𝑥′)] ≤ 1

|𝒱| for
all 𝑥 ≠ 𝑥′.

First, let’s see why Lemma 11.6 implies the claim. Consider the
hash family ℋ = {ℎ𝐴′}, where ℎ𝐴′ ∶ ℤ𝑚

𝑞 → ℤ𝑛+1
𝑞 is defined by

ℎ𝐴′(𝑤) = 𝑤⊤𝐴′. For this hash family, the probability over 𝐴′ of 𝑤 ≠ 𝑤′

colliding is Pr𝐴′ [𝑤⊤𝐴′ = 𝑤′⊤𝐴′] = Pr𝐴′ [(𝑤 − 𝑤′)⊤𝐴′ = 0]. Since 𝐴′ is
random, this is 1/(𝑞𝑛+1). So ℋ is a universal hash family.

The min entropy of 𝑤 ←𝑅 {0, 1}𝑚 is the same as the entropy (be-
cause it is uniform) which is 𝑚. The output of the hash family is in
ℤ𝑛+1

𝑞 , and log |ℤ𝑛+1
𝑞 | = (𝑛 + 1) log 𝑞. Since 𝑚 ≥ (𝑛 + 1) log 𝑞 + 20𝑛 − 2

by assumption, Lemma 11.6 implies that (𝑤⊤𝐴′, 𝐴′) is 2−10𝑛 close in
terms of statistical distance to (𝑧, 𝐴′) where 𝑧 is chosen uniformly in
ℤ𝑛+1

𝑞 .
Now, we’ll show this implies that for probability ≥ 1 − 2−𝑛 over the

selection of 𝐴′, the statistical distance between 𝑤⊤𝐴′ and 𝑧 is less than
2−𝑛. If not, the distance between (𝑤⊤𝐴′, 𝐴′) and (𝑧, 𝐴′) would be at
least 2−𝑛 ⋅ 2−𝑛 > 2−10𝑛.

Proof of Lemma 11.6:8
Let 𝑍 be the random variable (𝐻(𝑊),𝐻), where the probability is

over 𝐻 and 𝑊 . Let 𝑍′ be an independent copy of 𝑍.
Step 1: Pr[𝑍 = 𝑍′] ≤ 1

|ℋ|⋅|𝒱| (1 + 4𝜖2). Indeed,

Pr[𝑍 = 𝑍′] = Pr[(𝐻(𝑊),𝐻) = (𝐻′(𝑊 ′),𝐻′)]
= Pr[𝐻 = 𝐻′] ⋅ Pr[𝐻(𝑊) = 𝐻(𝑊 ′)]

= 1
|ℋ| (Pr[𝑊 = 𝑊 ′] + Pr[𝐻(𝑊) = 𝐻(𝑊 ′) ∧ 𝑊 ≠ 𝑊 ′])

≤ 1
|ℋ| (

1
|𝒱|𝜖

2 ⋅ 4 + 1
|𝒱|)

= 1
|ℋ| ⋅ |𝒱| (1 + 4𝜖2).

Step 2: The statistical difference between (𝐻(𝑊),𝐻) and (𝑉 ,𝐻) is
less than 𝜖. Denote the statistical difference by Δ((𝐻(𝑊),𝐻), (𝑉 ,𝐻)),
then

Δ((𝐻(𝑊),𝐻), (𝑉 ,𝐻)) = 1
2 ∑

ℎ,𝑤
∣Pr[𝑍 = (ℎ(𝑤), 𝑤)] − 1

|ℋ| ⋅ |𝒱| ∣ .

http://www.ccs.neu.edu/home/wichs/class/crypto-fall15/

lattice based cryptography 251

9 By discrete we mean that points in 𝐿 are isolated.
One formal way to define it is that there is some 𝜖 > 0
such that every distinct 𝑢, 𝑣 ∈ 𝐿 are of distance at
least 𝜖 from one another.

Define 𝑥ℎ,𝑤 = Pr[𝑍 = (ℎ(𝑤), ℎ)] − 1
|ℋ|⋅|𝒱| and 𝑠ℎ,𝑤 = sign(𝑥ℎ,𝑤). Write

𝑥 for the vector of all the 𝑥ℎ,𝑤 and 𝑠 for the vector of all the 𝑠ℎ,𝑤. Then

Δ((𝐻(𝑊),𝐻), (𝑉 ,𝐻)) = 1
2⟨𝑥, 𝑠⟩

≤ 1
2‖𝑥‖2 ⋅ ‖𝑠‖2 Cauchy-Schwarz

= √|ℋ| ⋅ |𝒱|
2 ‖𝑥‖2.

Let’s expand ‖𝑥‖2:

‖𝑥‖22 = ∑
ℎ,𝑤

(Pr[𝑍 = (ℎ(𝑤), ℎ)] − 1
|ℋ| ⋅ |𝒱|)

2

= ∑
ℎ,𝑤

(Pr[𝑍 = (ℎ(𝑤), ℎ)]2 − 2Pr[𝑍 = (ℎ(𝑤), ℎ)]
|ℋ| ⋅ |𝒱| + 1

(|ℋ| ⋅ |𝒱|)2)

≤ 1 + 4𝜖2
|ℋ| ⋅ |𝒱| −

2
|ℋ| ⋅ |𝒱| +

|ℋ| ⋅ |𝒱|
(|ℋ| ⋅ |𝒱|)2

= 4𝜖2
|ℋ| ⋅ |𝒱| .

When we plug this in to our expression for the statistical distance,
we get

Δ((𝐻(𝑊),𝐻), (𝑉 ,𝐻)) ≤ √|ℋ| ⋅ |𝒱|
2 ‖𝑥‖2

≤ 𝜖.
This completes the proof of Lemma 11.6 and hence the theorem.

■

P
The proof of Theorem 11.4 is quite subtle and requires
some re-reading and thought. To read more about
this, you can look at the survey of Oded Regev, “On
the Learning with Error Problem” Sections 3 and 4.

11.5 BUT WHAT ARE LATTICES?

You can think of a lattice as a discrete version of a subspace. A lattice
𝐿 is simply a discrete subset of ℝ𝑛 such that if 𝑢, 𝑣 ∈ 𝐿 and 𝑎, 𝑏 are
integers then 𝑎𝑢 + 𝑏𝑣 ∈ 𝐿.9 A lattice is given by a basis which simply
a matrix 𝐵 such that every vector 𝑢 ∈ 𝐿 is obtained as 𝑢 = 𝐵𝑥 for
some vector of integers 𝑥. It can be shown that we can assume without
loss of generality that 𝐵 is full dimensional and hence it’s an 𝑛 by 𝑛
invertible matrix. Note that given a basis 𝐵 we can generate vectors
in 𝐿, as well as test whether a vector 𝑣 is in 𝐿 by testing if 𝐵−1𝑣 is an

http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf
http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf

252 an intensive introduction to cryptography

integer vector. There can be many different bases for the same lattice,
and some of them are easier to work with than others (see Fig. 11.3).

Figure 11.3: A lattice is a discrete subspace 𝐿 ⊆ ℝ𝑛 that
is closed under integer combinations. A basis for the
lattice is a minimal set 𝑏1,… , 𝑏𝑚 (typically 𝑚 = 𝑛)
such that every 𝑢 ∈ 𝐿 is an integer combination of
𝑏1,… , 𝑏𝑚. The same lattice can have different bases.
In this figure the lattice is a set of points in ℝ2, and
the black vectors 𝑣1, 𝑣2 and the ref vectors 𝑢1, 𝑢2 are
two alternative bases for it. Generally we consider the
basis 𝑢1, 𝑢2 “better” since the vectors are shorter and
it is less “skewed”.

Some classical computational questions on lattices are:

• Shortest vector problem: Given a basis 𝐵 for 𝐿, find the nonzero vec-
tor 𝑣 with smallest norm in 𝐿.

• Closest vector problem: Given a basis 𝐵 for 𝐿 and a vector 𝑢 that is not
in 𝐿, find the closest vector to 𝑢 in 𝐿.

• Bounded distance decoding: Given a basis 𝐵 for 𝐿 and a vector 𝑢 of
the form 𝑢 = 𝑣 + 𝑒 where 𝑣 is in 𝐿, and 𝑒 is a particularly short “er-
ror” vector (so in particular no other vector in the lattice is within
distance ‖𝑒‖ to 𝑢), recover 𝑣. Note that this is a special case of the
closest vector problem.

In particular, if 𝑉 is a linear subspace of ℤ𝑛
𝑞 , we can think of it also

as a lattice ̂𝑉 of ℝ𝑛 where we simply say that that a vector 𝑢̂ is in ̂𝑉 if
all of 𝑢̂’s coordinates are integers and if we let 𝑢𝑖 = 𝑢̂𝑖 (mod 𝑞) then
𝑢 ∈ 𝑉 . The learning with error task of recovering 𝑥 from 𝐴𝑥 + 𝑒 can
then be thought of as an instance of the bounded distance decoding
problem for ̂𝑉 .

A natural algorithm to try to solve the closest vector and bounded
distance decoding problems is that to take the vector 𝑢, express it in the
basis 𝐵 by computing 𝑤 = 𝐵−1𝑢, and then round all the coordinates
of 𝑤 to obtain an integer vector 𝑤̃ and let 𝑣 = 𝐵𝑤̃ be a vector in the
lattice. If we have an extremely good basis 𝐿 for the lattice then 𝑣 may
indeed be the closest vector in the lattice, but in other more “skewed”
bases it can be extremely far from it.

lattice based cryptography 253

11.6 RING BASED LATTICES

One of the biggest issues with lattice based cryptosystem is the key
size. In particular, the scheme above uses an 𝑚× 𝑛 matrix where each
entry takes log 𝑞 bits to describe. (It also encrypts a single bit using
a whole vector, but more efficient “multi-bit” variants are known.)
Schemes using ideal lattices are an attempt to get more practical vari-
ants. These have very similar structure except that the matrix 𝐴 cho-
sen is not completely random but rather can be described by a single
vector. One common variant is the following: we fix some polynomial
𝑝 over ℤ𝑞 with degree 𝑛 and then treat vectors in ℤ𝑛

𝑞 as the coefficients
of 𝑛 − 1 degree polynomials and always work modulo this polynomial
𝑝(). (By this I mean that for every polynomial 𝑡 of degree at least 𝑛
we write 𝑡 as 𝑝𝑠 + 𝑟 where 𝑝 is the polynomial above, 𝑠 is some poly-
nomial and 𝑟 is the “remainder” polynomial of degree < 𝑛; then 𝑡
(mod 𝑝) = 𝑟.) Now for every fixed polynomial 𝑡, the operation 𝐴𝑡
which is defined as 𝑠 ↦ 𝑡𝑠 (mod 𝑝) is a linear operation mapping
polynomials of degree at most 𝑛 − 1 to polynomials of degree at most
𝑛 − 1, or put another way, it is a linear map over ℤ𝑛

𝑞 . However, the
map 𝐴𝑑 can be described using the 𝑛 coefficients of 𝑡 as opposed to
the 𝑛2 description of a matrix. It also turns out that by using the Fast
Fourier Transform we can evaluate this operation in roughly 𝑛 steps
as opposed to 𝑛2. The ideal lattice based cryptosystem use matrices of
this form to save on key size and computation time. It is still unclear if
this structure can be used for attacks; recent papers attacking principal
ideal lattices have shown that one needs to be careful about this.

One ideal-lattice based system is the “New Hope” cryptosystem
(see also paper) that has been experimented with by Google. People
have also made highly optimized general (non ideal) lattice based
constructions, see in particular the “Frodo” system (paper here, can
you guess what’s behind the name?). Both New Hope and Frodo have
been submitted to the NIST competition to select a “post quantum”
public key encryption standard.

https://newhopecrypto.org/
https://eprint.iacr.org/2015/1092.pdf
https://frodokem.org/
https://eprint.iacr.org/2016/659
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

