
10
Concrete candidates for public key crypto

In the previous lecture we talked about public key cryptography and
saw the Diffie Hellman system and the DSA signature scheme. In this
lecture, we will see the RSA trapdoor function and how to use it for
both encryptions and signatures.

10.1 SOME NUMBER THEORY.

(See Shoup’s excellent and freely available book for extensive coverage
of these and many other topics.)

For every number 𝑚, we define ℤ𝑚 to be the set {0,… ,𝑚 − 1} with
the addition and multiplication operations modulo 𝑚. When two
elements are in ℤ𝑛 then we will always assume that all operations are
done modulo 𝑚 unless stated otherwise. We let ℤ∗

𝑚 = {𝑎 ∈ ℤ𝑚 ∶
𝑔𝑐𝑑(𝑎,𝑚) = 1}. Note that 𝑚 is prime if and only if |ℤ∗

𝑚| = 𝑚 − 1.
For every 𝑎 ∈ ℤ∗

𝑚 we can find using the extended gcd algorithm
an element 𝑏 (typically denoted as 𝑎−1) such that 𝑎𝑏 = 1 (can you
see why?). The set ℤ∗

𝑚 is an abelian group with the multiplication
operation, and hence by the observations of the previous lecture,
𝑎|ℤ∗

𝑚| = 1 for every 𝑎 ∈ ℤ∗
𝑚. In the case that 𝑚 is prime, this result is

known as “Fermat’s Little Theorem” and is typically stated as 𝑎𝑝−1 = 1
(mod 𝑝) for every 𝑎 ≠ 0.

R
Remark 10.1 — Note on 𝑛 bits vs a number 𝑛. One
aspect that is often confusing in number-theoretic
based cryptography, is that one needs to always keep
track whether we are talking about “big” numbers
or “small” numbers. In many cases in crypto, we use
𝑛 to talk about our key size or security parameter,
in which case we think of 𝑛 as a “small” number of
size 100 − 1000 or so. However, when we work with
ℤ∗

𝑚 we often think of 𝑚 as a “big” number having
about 100 − 1000 digits; that is 𝑚 would be roughly
2100 to 21000 or so. I will try to reserve the notation

Compiled on 11.17.2021 22:35

http://www.shoup.net/ntb/

220 an intensive introduction to cryptography

𝑛 for “small” numbers but may sometimes forget to
do so, and other descriptions of RSA etc.. often use
𝑛 for “big” numbers. It is important that whenever
you see a number 𝑥, you make sure you have a sense
whether it is a “small” number (in which case 𝑝𝑜𝑙𝑦(𝑥)
time is considered efficient) or whether it is a “large”
number (in which case only 𝑝𝑜𝑙𝑦(𝑙𝑜𝑔(𝑥)) time would
be considered efficient).

R
Remark 10.2 — The number 𝑚 vs the message 𝑚. In
much of this course we use 𝑚 to denote a string
which is our plaintext message to be encrypted or
authenticated. In the context of integer factoring, it is
convenient to use 𝑚 = 𝑝𝑞 as the composite number
that is to be factored. To keep things interesting (or
more honestly, because I keep running out of letters)
in this lecture we will have both usages of 𝑚 (though
hopefully not in the same theorem or definition!).
When we talk about factoring, RSA, and Rabin, then
we will use 𝑚 as the composite number, while in the
context of the abstract trapdoor-permutation based
encryption and signatures we will use 𝑚 for the mes-
sage. When you see an instance of 𝑚, make sure you
understand what is its usage.

10.1.1 Primaliy testing
One procedure we often need is to find a prime of 𝑛 bits. The typical
way people do it is by choosing a random 𝑛-bit number 𝑝, and testing
whether it is prime. We showed in the previous lecture that a random
𝑛 bit number is prime with probability at least Ω(1/𝑛2) (in fact the
probability is 1±𝑜(1)

ln𝑛 by the Prime Number Theorem). We now discuss
how we can test for primality.

Theorem 10.3 — Primality Testing. There is an 𝑝𝑜𝑙𝑦(𝑛)-time algorithm to
test whether a given 𝑛-bit number is prime or composite.

Theorem 10.3 was first shown in 1970’s by Solovay, Strassen, Miller
and Rabin via a probabilistic algorithm (that can make a mistake with
probability exponentially small in the number of coins it uses), and in
a 2002 breakthrough, Agrawal, Kayal, and Saxena gave a deterministic
polynomial time algorithm for the same problem.

Lemma 10.4 There is a probabilistic polynomial time algorithm 𝐴 that
on input a number 𝑚, if 𝑚 is prime 𝐴 outputs YES with probability 1
and if 𝐴 is not even a “pseudoprime” it outputs NO with probability

https://goo.gl/ChrXJY

concrete candidates for public key crypto 221

at least 1/2. (The definition of “pseudo-prime” will be clarified in the
proof below.)

Proof. The algorithm is very simple and is based on Fermat’s Lit-
tle Theorem: on input 𝑚, pick a random 𝑎 ∈ {2,… ,𝑚 − 1}, and if
𝑔𝑐𝑑(𝑎,𝑚) ≠ 1 or 𝑎𝑚−1 ≠ 1 (mod 𝑚) return NO and otherwise return
YES.

By Fermat’s little theorem, the algorithm will always return YES on
a prime 𝑚. We define a “pseudoprime” to be a non-prime number 𝑚
such that 𝑎𝑚−1 = 1 (mod 𝑚) for all 𝑎 such that 𝑔𝑐𝑑(𝑎,𝑚) = 1.

If 𝑛 is not a pseudoprime then the set 𝑆 = {𝑎 ∈ ℤ∗
𝑚 ∶ 𝑎𝑚−1 = 1}

is a strict subset of ℤ∗
𝑚. But it is easy to see that 𝑆 is a group and hence

|𝑆| must divide |𝑍∗
𝑛| and hence in particular it must be the case that

|𝑆| < |ℤ∗
𝑛|/2 and so with probability at least 1/2 the algorithm will

output NO.
■

Lemma 10.4 its own might not seem very meaningful since it’s
not clear how many pseudoprimes are there. However, it turns out
these pseudoprimes, also known as “Carmichael numbers”, are
much less prevalent than the primes, specifically, there are about
𝑁/2−Θ(log𝑁/ log log𝑁) pseudoprimes between 1 and 𝑁 . If we choose a
random number 𝑚 ∈ [2𝑛] and output it if and only if the algorithm of
Lemma 10.4 algorithm outputs YES (otherwise resampling), then the
probability we make a mistake and output a pseudoprime is equal to
the ratio of the set of pseudoprimes in [2𝑛] to the set of primes in [2𝑛].
Since there are Ω(2𝑛/𝑛) primes in [2𝑛], this ratio is 𝑛

2−Ω(𝑛/ log𝑛) which is
a negligible quantity. Moreover, as mentioned above, there are better
algorithms that succeed for all numbers.

In contrast to testing if a number is prime or composite, there is
no known efficient algorithm to actually find the factorization of a
composite number. The best known algorithms run in time roughly
2𝑂̃(𝑛1/3) where 𝑛 is the number of bits.

10.1.2 Fields
If 𝑝 is a prime then ℤ𝑝 is a field which means it is closed under addition
and multiplication and has 0 and 1 elements. One property of a field is
the following:

Theorem 10.5 — Fundamental Theorem of Algebra, mod 𝑝 version. If 𝑓 is a
nonzero polynomial of degree 𝑑 over ℤ𝑝 then there are at most 𝑑
distinct inputs 𝑥 such that 𝑓(𝑥) = 0.

(If you’re curious why, you can see that the task of, given
𝑥1,… , 𝑥𝑑+1 finding the coefficients for a polynomial vanishing on

222 an intensive introduction to cryptography

the 𝑥𝑖’s amounts to solving a linear system in 𝑑 + 1 variables with
𝑑 + 1 equations that are independent due to the non-singularity of the
Vandermonde matrix.)

In particular every 𝑥 ∈ ℤ𝑝 has at most two square roots (numbers 𝑠
such that 𝑠2 = 𝑥 mod 𝑝). In fact, just like over the reals, every 𝑥 ∈ ℤ𝑝
either has no square roots or exactly two square roots of the form ±𝑠.

We can efficiently find square roots modulo a prime. In fact, the
following result is known:

Theorem 10.6 — Finding roots. There is a probabilistic 𝑝𝑜𝑙𝑦(log 𝑝, 𝑑)
time algorithm to find the roots of a degree 𝑑 polynomial over ℤ𝑝.

This is a special case of the problem of factoring polynomials over
finite fields, shown in 1967 by Berlekamp and on which much other
work has been done; see Chapter 20 in Shoup).

10.1.3 Chinese remainder theorem
Suppose that 𝑚 = 𝑝𝑞 is a product of two primes. In this case 𝑍∗

𝑚 does
not contain all the numbers from 1 to 𝑚−1. Indeed, all the numbers of
the form 𝑝, 2𝑝, 3𝑝,… , (𝑞−1)𝑝 and 𝑞, 2𝑞,… , (𝑝−1)𝑞 will have non-trivial
g.c.d. with 𝑚. There are exactly 𝑞 − 1 + 𝑝 − 1 such numbers (because
𝑝 and 𝑞 are prime all the numbers of the forms above are distinct).
Hence |𝑍∗

𝑚| = 𝑚−1−(𝑝−1)− (𝑞 −1) = 𝑝𝑞−𝑝−𝑞+1 = (𝑝−1)(𝑞 −1).
Note that |𝑍∗

𝑚| = |ℤ∗
𝑝| ⋅ |ℤ∗

𝑞|. It turns out this is no accident:

Theorem 10.7 — Chinese Remainder Theorem (CRT). If 𝑚 = 𝑝𝑞 then there
is an isomorphism 𝜑 ∶ ℤ∗

𝑚 → ℤ∗
𝑝 × ℤ∗

𝑞. That is, 𝜑 is one to one and
onto and maps 𝑥 ∈ ℤ∗

𝑚 into a pair (𝜑1(𝑥), 𝜑2(𝑥)) ∈ ℤ∗
𝑝 × ℤ∗

𝑞 such
that for every 𝑥, 𝑦 ∈ ℤ∗

𝑚:
* 𝜑1(𝑥 + 𝑦) = 𝜑1(𝑥) + 𝜑1(𝑦) (mod 𝑝)
* 𝜑2(𝑥 + 𝑦) = 𝜑2(𝑥) + 𝜑2(𝑦) (mod 𝑞)
* 𝜑1(𝑥 ⋅ 𝑦) = 𝜑1(𝑥) ⋅ 𝜑1(𝑦) (mod 𝑝)
* 𝜑2(𝑥 ⋅ 𝑦) = 𝜑2(𝑥) ⋅ 𝜑2(𝑦) (mod 𝑞)

Proof. 𝜑 simply maps 𝑥 ∈ ℤ∗
𝑚 to the pair (𝑥 mod 𝑝, 𝑥 mod 𝑞). Verify-

ing that it satisfies all desired properties is a good exercise. QED
■

In particular, for every polynomial 𝑓() and 𝑥 ∈ ℤ∗
𝑚, 𝑓(𝑥) = 0

(mod 𝑚) iff 𝑓(𝑥) = 0 (mod 𝑝) and 𝑓(𝑥) = 0 (mod 𝑞). Therefore find-
ing the roots of a polynomial 𝑓() modulo a composite 𝑚 is easy if you
know 𝑚’s factorization. However, if you don’t know the factorization
then this is hard. In particular, extracting square roots is as hard as
finding out the factors:

http://www.shoup.net/ntb/

concrete candidates for public key crypto 223

Theorem 10.8 — Square root extraction implies factoring. Suppose and
there is an efficient algorithm 𝐴 such that for every 𝑚 ∈ ℕ and
𝑎 ∈ ℤ∗

𝑚, 𝐴(𝑚, 𝑎2 (mod 𝑚)) = 𝑏 such that 𝑎2 = 𝑏2 (mod 𝑚). Then,
there is an efficient algorithm to recover 𝑝, 𝑞 from 𝑚.

Proof. Suppose that there is such an algorithm 𝐴. Using the CRT we
can define 𝑓 ∶ ℤ∗

𝑝 × ℤ∗
𝑞 → ℤ∗

𝑝 × ℤ∗
𝑞 as 𝑓(𝑥, 𝑦) = 𝜑(𝐴(𝜑−1(𝑥2, 𝑦2))) for

all 𝑥 ∈ ℤ∗
𝑝 and 𝑦 ∈ ℤ∗

𝑞. Now, for any 𝑥, 𝑦 let (𝑥′, 𝑦′) = 𝑓(𝑥, 𝑦). Since
𝑥2 = 𝑥′2 (mod 𝑝) and 𝑦2 = 𝑦′2 (mod 𝑞) we know that 𝑥′ ∈ {±𝑥} and
𝑦′ ∈ {±𝑦}. Since flipping signs doesn’t change the value of (𝑥′, 𝑦′) =
𝑓(𝑥, 𝑦), by flipping one or both of the signs of 𝑥 or 𝑦 we can ensure
that 𝑥′ = 𝑥 and 𝑦′ = −𝑦. Hence (𝑥, 𝑦) − (𝑥′, 𝑦′) = (0, 2𝑦). In other
words, if 𝑐 = 𝜑−1(𝑥 − 𝑥′, 𝑦 − 𝑦′) then 𝑐 = 0 (mod 𝑝) but 𝑐 ≠ 0 (mod 𝑞)
which in particular means that the greatest common divisor of 𝑐 and
𝑚 is 𝑞. So, by taking 𝑔𝑐𝑑(𝐴(𝜑−1(𝑥, 𝑦)),𝑚) we will find 𝑞, from which
we can find 𝑝 = 𝑚/𝑞.

This almost works, but there is a question of how can we find
𝜑−1(𝑥, 𝑦), given that we don’t know 𝑝 and 𝑞? The crucial observa-
tion is that we don’t need to. We can simply pick a value 𝑎 at random
in {1,… ,𝑚}. With very high probability (namely (𝑝 − 1 + 𝑞 − 1)/𝑝𝑞)
𝑎 will be in ℤ∗

𝑚, and so we can imagine this process as equivalent to
the process of taking a random 𝑥 ∈ ℤ∗

𝑝, a random 𝑦 ∈ ℤ∗
𝑞 and then

flipping the signs of 𝑥 and 𝑦 randomly and taking 𝑎 = 𝜑(𝑥, 𝑦). By
the arguments above with probability at least 1/4, it will hold that
𝑔𝑐𝑑(𝑎 − 𝐴(𝑎2),𝑚) will equal 𝑞.

■

Note that this argument generalizes to work even if the algorithm 𝐴
is an average case algorithm that only succeeds in finding a square root
for a significant fraction of the inputs. This observation is crucial for
cryptographic applications.

10.1.4 The RSA and Rabin functions
We are now ready to describe the RSA and Rabin trapdoor functions:

Definition 10.9 — RSA function. Given a number 𝑚 = 𝑝𝑞 and 𝑒 such that
𝑔𝑐𝑑((𝑝 − 1)(𝑞 − 1), 𝑒) = 1, the RSA function w.r.t 𝑚 and 𝑒 is the map
𝑓𝑚,𝑒 ∶ ℤ∗

𝑚 → ℤ∗
𝑚 such that RSA𝑚,𝑒(𝑥) = 𝑥𝑒 (mod 𝑚).

Definition 10.10 — Rabin function. Given a number 𝑚 = 𝑝𝑞, the Ra-
bin function w.r.t. 𝑚, is the map 𝑅𝑎𝑏𝑖𝑛𝑚 ∶ ℤ∗

𝑚 → ℤ∗
𝑚 such that

𝑅𝑎𝑏𝑖𝑛𝑚(𝑥) = 𝑥2 (mod 𝑚).

224 an intensive introduction to cryptography

1 Using Theorem 10.6 to invert the function requires
𝑒 to be not too large. However, as we will see below
it turns out that using the factorization we can invert
the RSA function for every 𝑒. Also, in practice people
often use a small value for 𝑒 (sometimes as small as
𝑒 = 3) for reasons of efficiency.

Note that both maps can be computed in polynomial time. Using
the Chinese Remainder Theorem and Theorem 10.6, we know that
both functions can be inverted efficiently if we know the factorization.1

However Theorem 10.6 is a much too big of a Hammer to invert the
RSA and Rabin functions, and there are direct and simple inversion
algorithms (see homework exercises). By Theorem 10.8, inverting the
Rabin function amounts to factoring 𝑚. No such result is known for
the RSA function, but there is no better algorithm known to attack
it than proceeding via factorization of 𝑚. The RSA function has the
advantage that it is a permutation over ℤ∗

𝑚:

Lemma 10.11 RSA𝑚,𝑒 is one to one over ℤ∗
𝑚.

Proof. Suppose that RSA𝑚,𝑒(𝑎) = RSA𝑚,𝑒(𝑎′). By the CRT, it means
that there is (𝑥, 𝑦) ≠ (𝑥′, 𝑦′) ∈ ℤ∗

𝑝 × ℤ∗
𝑞 such that 𝑥𝑒 = 𝑥′𝑒 (mod 𝑝)

and 𝑦𝑒 = 𝑦′𝑒 (mod 𝑞). But if that’s the case we get that (𝑥𝑥′−1)𝑒 = 1
(mod 𝑝) and (𝑦𝑦′−1)𝑒 = 1 (mod 𝑞). But this means that 𝑒 has to be
a multiple of the order of 𝑥𝑥′−1 and 𝑦𝑦′−1 (at least one of which is not
1 and hence has order > 1). But since the order always divides the
group size, this implies that 𝑒 has to have non-trivial gcd with either
|𝑍∗

𝑝| or |ℤ∗
𝑞| and hence with (𝑝 − 1)(𝑞 − 1).

■

R
Remark 10.12 — Plain/Textbook RSA. The RSA trap-
door function is known also as “plain” or “textbook”
RSA encryption. This is because initially Diffie and
Hellman (and following them, RSA) thought of an
encryption scheme as a deterministic procedure and
so considered simply encrypting a message 𝑥 by ap-
plying ESA𝑚,𝑒(𝑥). Today however we know that it is
insecure to use a trapdoor function directly as an en-
cryption scheme without adding some randomization.

10.1.5 Abstraction: trapdoor permutations
We can abstract away the particular construction of the RSA and Rabin
functions to talk about a general trapdoor permutation family. We make
the following definition

Definition 10.13 — Trapdoor permutation. A trapdoor permutation family
(TDP) is a family of functions {𝑝𝑘} such that for every 𝑘 ∈ {0, 1}𝑛,
the function 𝑝𝑘 is a permutation on {0, 1}𝑛 and:

* There is a key generation algorithm 𝐺 such that on input 1𝑛
it outputs a pair (𝑘, 𝜏) such that the maps 𝑘, 𝑥 ↦ 𝑝𝑘(𝑥) and
𝜏, 𝑦 ↦ 𝑝−1

𝑘 (𝑦) are efficiently computable.

concrete candidates for public key crypto 225

2 Another, more minor issue is that the description
of the key might not have the same length as log𝑚; I
defined them to be the same for simplicity of notation,
and this can be ensured via some padding and
concatenation tricks.

• For every efficient adversary 𝐴, Pr(𝑘,𝜏)←𝑅𝐺(1𝑛),𝑦∈{0,1}𝑛 [𝐴(𝑘, 𝑦) =
𝑝−1
𝑘 (𝑦)] < 𝑛𝑒𝑔𝑙(𝑛).

R
Remark 10.14 — Domain of permutations. The RSA func-
tion is not a permutation over the set of strings but
rather over ℤ∗

𝑚 for some 𝑚 = 𝑝𝑞. However, if we find
primes 𝑝, 𝑞 in the interval [2𝑛/2(1 − 𝑛𝑒𝑔𝑙(𝑛)), 2𝑛/2], then
𝑚 will be in the interval [2𝑛(1−𝑛𝑒𝑔𝑙(𝑛)), 2𝑛] and hence
ℤ∗

𝑚 (which has size 𝑝𝑞 − 𝑝 − 𝑞 + 1 = 2𝑛(1 − 𝑛𝑒𝑔𝑙(𝑛)))
can be thought of as essentially identical to {0, 1}𝑛,
since we will always pick elements from {0, 1}𝑛 at
random and hence they will be in ℤ∗

𝑚 with prob-
ability 1 − 𝑛𝑒𝑔𝑙(𝑛). It is widely believed that for
every sufficiently large 𝑛 there is a prime in the
interval [2𝑛 − 𝑝𝑜𝑙𝑦(𝑛), 2𝑛] (this follows from the
Extended Reimann Hypothesis) and Baker, Harman
and Pintz proved that there is a prime in the interval
[2𝑛 − 20.6𝑛, 2𝑛]. 2

10.1.6 Public key encryption from trapdoor permutations
Here is how we can get a public key encryption from a trapdoor per-
mutation scheme {𝑝𝑘}.

TDP-based public key encryption (TDPENC):

• Key generation: Run the key generation algorithm
of the TDP to get (𝑘, 𝜏). 𝑘 is the public encryption
key and 𝜏 is the secret decryption key.

• Encryption: To encrypt a message 𝑚 with key
𝑘 ∈ {0, 1}𝑛, choose 𝑥 ∈ {0, 1}𝑛 and output
(𝑝𝑘(𝑥),𝐻(𝑥) ⊕ 𝑚) where 𝐻 ∶ {0, 1}𝑛 → {0, 1}ℓ is
a hash function we model as a random oracle.

• Decryption: To decrypt the ciphertext (𝑦, 𝑧) with
key 𝜏 , output 𝑚 = 𝐻(𝑝−1

𝑘 (𝑦)) ⊕ 𝑧.

P
Please verify that you understand why TDPENC is a
valid encryption scheme, in the sense that decryption
of an encryption of 𝑚 yields 𝑚.

226 an intensive introduction to cryptography

Theorem 10.15 — Public key encryption from trapdoor permutations. If {𝑝𝑘}
is a secure TDP and 𝐻 is a random oracle then TDPENC is a CPA
secure public key encryption scheme.

Proof. Suppose, towards the sake of contradiction, that there is a
polynomial-size adversary 𝐴 that succeeds in the CPA game of TD-
PENC (with access to a random oracle 𝐻) with non-negligible advan-
tage 𝜖 over half. We will use 𝐴 to design an algorithm 𝐼 that inverts
the trapdoor permutation.

Recall that the CPA game works as follows:

• The adversary 𝐴 gets as input a key 𝑘 ∈ {0, 1}𝑛.

• The algorithm 𝐴 makes some polynomial amount of computation
and 𝑇1 = 𝑝𝑜𝑙𝑦(𝑛) queries to the random oracle 𝐻 and produces a
pair of messages 𝑚0,𝑚1 ∈ {0, 1}ℓ.

• The “challenger” chooses 𝑏∗ ←𝑅 {0, 1}, chooses 𝑥∗ ←𝑅 {0, 1}𝑛 and
computes the ciphertext (𝑦∗ = 𝑝𝑘(𝑥∗), 𝑧∗ = 𝐻(𝑥∗) ⊕𝑚𝑏∗) which is an
encryption of 𝑚𝑏∗ .

• The adversary 𝐴 gets (𝑦∗, 𝑧∗) as input, makes some additional poly-
nomial amount of computation and 𝑇2 = 𝑝𝑜𝑙𝑦(𝑛) queries to 𝐻 , and
then outputs 𝑏.

• The adversary wins if 𝑏 = 𝑏∗.

We make the following claim:
CLAIM: With probability at least 𝜖, the adversary 𝐴 will make the

query 𝑥∗ to the random oracle.
PROOF: Suppose otherwise. We will prove the claim using the

“forgetful gnome” technique as used in the Boneh Shoup book. By
the “lazy evaluation” paradigm, we can imagine that queries to 𝐻 are
answered by a “faithful gnome” that whenever presented with a new
query 𝑥, chooses a uniform and independent value 𝑤 ←𝑅 {0, 1}ℓ as a
response, and then records that 𝐻(𝑥) = 𝑤 to use that as answers for
future queries.

Now consider the experiment where in the challenge part we use
a “forgetful gnome” that answers 𝐻(𝑥∗) by a uniform and indepen-
dent string 𝑤∗ ←𝑅 {0, 1}ℓ and does not record the answer for future
queries. In the “forgetful experiment”, the second component of the
ciphertext 𝑧∗ = 𝑤∗ ⊕ 𝑚𝑏∗ is distributed uniformly in {0, 1}ℓ and inde-
pendently from all other random choices, regardless of whether 𝑏∗ = 0
or 𝑏∗ = 1. Hence in this “forgetful experiment” the adversary gets
no information about 𝑏∗ and its probability of winning is at most 1/2.
But the forgetful experiment is identical to the actual experiment if the

concrete candidates for public key crypto 227

3 It would have been equivalent to answer the adver-
sary with a uniformly chosen 𝑧∗ in {0, 1}ℓ, can you
see why?

Figure 10.1: In the proof of security of TDPENC, we
show that if the assumption of the claim is violated,
the “forgetful experiment” is identical to the real
experiment with probability larger 1 − 𝜖. In such
a case, even if all that probability mass was on the
points in the sample space where the adversary in
the forgetful experiment will lose and the adversary
of the real experiment will win, the probability of
winning in the latter experiment would still be less
than 1/2 + 𝜖.

value 𝑥∗ is only queried to 𝐻 once. Apart from the query of 𝑥∗ by the
challenger, all other queries to 𝐻 are made by the adversary. Under
our assumption, the adversary makes the query 𝑥∗ with probability at
most 𝜖, and conditioned on this not happening the two experiments
are identical. Since the probability of winning in the forgetful exper-
iment is at most 1/2, the probability of winning in the overall experi-
ment is less than 1/2+𝜖, thus yielding a contradiction and establishing
the claim. (These kind of analyses on sample spaces can be confusing;
See Fig. 10.1 for a graphical illustration of this argument.)

Given the claim, we can now construct our inverter algorithm 𝐼 as
follows:

• The input to 𝐼 is the key 𝑘 to the trapdoor permutation and 𝑦∗ =
𝑝𝑘(𝑥∗). The goal of 𝐼 is to output 𝑥∗.

• The inverter simulates the adversary in a CPA attack, answering all
its queries to the oracle 𝐻 by random values if they are new or the
previously supplied answers if they were asked before. Whenever
the adversary makes a query 𝑥 to 𝐻 , 𝐼 checks if 𝑝ℎ(𝑥) = 𝑦∗ and if so
halts and outputs 𝑥.

• When the time comes to produce the challenge, the inverter 𝐼
chooses 𝑧∗ at random and provides the adversary with (𝑦∗, 𝑧∗)
where 𝑧∗ = 𝑤∗ ⊕𝑚𝑏∗ .3

• The inverter continues the simulation again halting an outputting 𝑥
if the adversary makes the query 𝑥 such that 𝑝𝑘(𝑥) = 𝑦∗ to 𝐻 .

We claim that up to the point we halt, the experiment is identical
to the actual attack. Indeed, since 𝑝𝑘 is a permutation, we know that
if the time came to produce the challenge and we have not halted,
then the query 𝑥∗ has not been made yet to 𝐻 . Therefore we are free
to choose an independent random value 𝑤∗ as the value 𝐻(𝑥∗). (Our
inverter does not know what the value 𝑥∗ is, but this does not matter
for this argument: can you see why?) Therefore, since by the claim the
adversary will make the query 𝑥∗ to 𝐻 with probability at least 𝜖, our
inverter will succeed with the same probability.

■

P
This proof of Theorem 10.15 is not very long but it
is somewhat subtle. Please re-read it and make sure
you understand it. I also recommend you look at the
version of the same proof in Boneh Shoup: Theorem
11.2 in Section 11.4 (“Encryption based on a trapdoor
function scheme”).

228 an intensive introduction to cryptography

R
Remark 10.16 — Security without random oracles. We
do not need to use a random oracle to get security in
this scheme, especially if ℓ is sufficiently short. We can
replace 𝐻() with a hash function of specific properties
known as a hard core construction; this was first shown
by Goldreich and Levin.

10.1.7 Digital signatures from trapdoor permutations
Here is how we can get digital signatures from trapdoor permutations
{𝑝𝑘}. This is known as the “full domain hash” signatures.

Full domain hash signatures (FDHSIG):

• Key generation: Run the key generation algorithm
of the TDP to get (𝑘, 𝜏). 𝑘 is the public verification
key and 𝜏 is the secret signing key.

• Signing: To sign a message 𝑚 with key 𝜏 , we
output 𝑝−1

𝑘 (𝐻(𝑚)) where 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is
a hash function modeled as a random oracle.

• Verification: To verify a message-signature pair
(𝑚, 𝑥) we check that 𝑝𝑘(𝑥) = 𝐻(𝑚).

We now prove the security of full domain hash:

Theorem 10.17 — Full domain hash security. If {𝑝𝑘} is a secure TDP and
𝐻 is a random oracle then FDHSIG is chosen message attack secure
digital signature scheme.

Proof. Suppose towards the sake of contradiction that there is a
polynomial-sized adversary 𝐴 that succeeds in a chosen message
attack with non-negligible probability 𝜖 > 0. We will construct an
inverter 𝐼 for the trapdoor permutation collection that succeeds with
non-negligible probability as well.

Recall that in a chosen message attack the adversary makes 𝑇
queries 𝑚1,… ,𝑚𝑇 to its signing box which are interspersed with 𝑇 ′

queries 𝑚′
1,… ,𝑚′

𝑇 ′ to the random oracle 𝐻 . We can assume without
loss of generality (by modifying the adversary and at most doubling
the number of queries) that the adversary always queries the message
𝑚𝑖 to the random oracle before it queries it to the signing box, though
it can also make additional queries to the random oracle (and hence
in particular 𝑇 ′ ≥ 𝑇). At the end of the attack the adversary outputs
with probability 𝜖 a pair (𝑥∗,𝑚∗) such that 𝑚∗ was not queried to the
signing box and 𝑝𝑘(𝑥∗) = 𝐻(𝑚∗).

Our inverter 𝐼 works as follows:

concrete candidates for public key crypto 229

• Input: 𝑘 and 𝑦∗ = 𝑝𝑘(𝑦∗). Goal is to output 𝑥∗.

• 𝐼 will guess at random 𝑡∗ which is the step in which the adversary
will query to 𝐻 the message 𝑚∗ that it is eventually going to forge
in. With probability 1/𝑇 ′ the guess will be correct.

• 𝐼 simulates the execution of 𝐴. Except for step 𝑡∗, whenever 𝐴
makes a new query 𝑚 to the random oracle, 𝐼 will choose a random
𝑥 ← {0, 1}𝑛, compute 𝑦 = 𝑝𝑘(𝑥) and designate 𝐻(𝑚) = 𝑦. In step 𝑡∗,
when the adversary makes the query 𝑚∗, the inverter 𝐼 will return
𝐻(𝑚∗) = 𝑦∗. 𝐼 will record the values (𝑥, 𝑦) and so in particular will
always know 𝑝−1

𝑘 (𝐻(𝑚)) for every 𝐻(𝑚) ≠ 𝑦∗ that it returned as
answer from its oracle on query 𝑚.

• When 𝐴 makes the query 𝑚 to the signature box, then since 𝑚 was
queried before to 𝐻 , if 𝑚 ≠ 𝑚∗ then 𝐼 returns 𝑥 = 𝑝−1

𝑘 (𝐻(𝑚)) using
its records. If 𝑚 = 𝑚∗ then 𝐼 halts and outputs “failure”.

• At the end of the game, the adversary outputs (𝑚∗, 𝑥∗). If 𝑝𝑘(𝑥∗) =
𝑦∗ then 𝐼 outputs 𝑥∗.

We claim that, conditioned on the probability ≥ 𝜖/𝑇 ′ event that the
adversary is successful and the final message 𝑚∗ is the one queried
in step 𝑡∗, we provide a perfect simulation of the actual game. In-
deed, while in an actual game, the value 𝑦 = 𝐻(𝑚) will be chosen
independently at random in {0, 1}𝑛, this is equivalent to choosing
𝑥 ←𝑅 {0, 1}𝑛 and letting 𝑦 = 𝑝𝑘(𝑥). After all, a permutation applied to
the uniform distribution is uniform.

Therefore with probability at least 𝜖/𝑇 ′ the inverter 𝐼 will output 𝑥∗

such that 𝑝𝑘(𝑥∗) = 𝑦∗ hence succeeding in the inverter.
■

P
Once again, this proof is somewhat subtle. I recom-
mend you also read the version of this proof in Section
13.4 of Boneh-Shoup.

R
Remark 10.18 — Hash and sign. There is another reason
to use hash functions with signatures. By combining a
collision-resistant hash function ℎ ∶ {0, 1}∗ → {0, 1}ℓ
with a signature scheme (𝑆, 𝑉) for ℓ-length mes-
sages, we can obtain a signature for arbitrary length
messages by defining 𝑆′

𝑠(𝑚) = 𝑆𝑠(ℎ(𝑚)) and
𝑉 ′
𝑣 (𝑚, 𝜎) = 𝑉𝑣(ℎ(𝑚), 𝜎).

230 an intensive introduction to cryptography

10.2 HARDCORE BITS AND SECURITY WITHOUT RANDOM ORA-
CLES

The main problem with using trapdoor functions as the basis of public
key encryption is twofold: > * The fact that 𝑓 is a trapdoor function
does not rule out the possibility of computing 𝑥 from 𝑓(𝑥) when 𝑥 is
of some special form. Recall that the security of a one-way function
is given over a uniformly random input. Usually messages to be sent
are not drawn from a uniform distribution, and it’s possible that for
some certain values of 𝑥 it is easy to invert 𝑓(𝑥), and those values of
𝑥 also happen to be commonly sent messages. > * The fact that 𝑓 is a
trapdoor function does not rule out the possiblity of easily computing
some partial information about 𝑥 from 𝑓(𝑥). Suppose we wished to
play poker over a channel of bits. If even the suit or color of a card can
be revealed from the encryption of that card, then it doesn’t matter if
the entire encryption cannot be inverted; being able to compute even a
single bit of the plaintext makes the entire game invalid. The RSA and
Rabin functions have not been successfully reversed, but nobody has
been able to prove that they give semantic security. > The solution to
these issues is to use a hardcore predicate of a one-way function 𝑓 . We
first define the security of a hardcore predicate, then show how it can
be used to construct semantically secure encryption.

Definition 10.19 — Hardcore predicate. Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a one-
way function (we assume 𝑓 is length preserving for simplicity),
ℓ(𝑛) be a length function, and ℎ ∶ {0, 1}𝑛 → {0, 1}ℓ(𝑛) be polynomial
time computable. We say ℎ is a hardcore predicate of 𝑓 if for every
efficient adversary 𝐴, every polynomial 𝑝, and all sufficiently large
𝑛,

∣Pr[𝐴(𝑓(𝑋𝑛), 𝑏(𝑋𝑛)) = 1] − Pr[𝐴(𝑓(𝑋𝑛), 𝑅ℓ(𝑛)) = 1]∣ < 1
𝑝(𝑛)

where 𝑋𝑛 and 𝑅ℓ(𝑛) are independently and uniformly distributed
over {0, 1}𝑛 and {0, 1}ℓ(𝑛), respectively.

That is, given an input 𝑥 ←𝑅 {0, 1}𝑛 chosen uniformly at random,
no efficient adversary can distingusih between a random string 𝑟
and 𝑏(𝑥) given 𝑓(𝑥) with non negligible advantage. This allows us to
construct semantically secure public key encryption:

Hardcore predicate-based public key encryption:

• Key generation: Run the standard key genera-
tion algorithm for the one-way function 𝑓 to get
(𝑒, 𝑑), where 𝑒 is a public key used to compute

concrete candidates for public key crypto 231

the function 𝑓 and 𝑑 is a corresponding secret
trapdoor key that makes it easy to invert 𝑓 .

• Encryption: To encrypt a message 𝑚 of length 𝑛
with public key 𝑒, pick 𝑥 ←𝑅 {0, 1}𝑛 uniformly at
random and compute (𝑓𝑒(𝑥), 𝑏(𝑥) ⊕ 𝑚).

• Decryption: To decrypt the ciphertext (𝑐, 𝑐′) we first use the secret
trapdoor key 𝑑 to compute 𝐷𝑑(𝑐) = 𝐷𝑑(𝑓𝑒(𝑥)) = 𝑥, then compute
𝑏(𝑥) and 𝑏(𝑥) ⊕ 𝑐′ = 𝑚

P
Please stop to verify that this is a valid public key
encryption scheme.

Note that in this construction of public key encryp-
tion, the input to 𝑓 is 𝑥 drawn uniformly at random
from {0, 1}𝑛, so the defininition of the one-wayness
of 𝑓 can be applied directly. Furthermore, since 𝑏(𝑥)
is indistinguishable from a random string 𝑟 even
given 𝑓(𝑥), the output 𝑏(𝑥) ⊕ 𝑚 is essentially a one-
time pad encryption of 𝑚, where the key can only
be retrieved by someone who can invert 𝑓 . Proving
the security formally is left as an exercise.

This is all fine and good, but how do we actually
construct a hardcore predicate? Blum and Micali
were the first to construct a hardcore predicate
based on the discrete logarithm problem, but the
first construction for general one-way functions was
given by Goldreich and Levin. Their idea is that if 𝑓
is one-way, then it’s hard to guess the exclusive or of
a random subset of the input to 𝑓 when given 𝑓(𝑥)
and the subset itself.

Theorem 10.20 — A hardcore predicate for arbitrary one-way functions. Let 𝑓
be a one-way function, and let 𝑔 be defined as 𝑔(𝑥, 𝑟) = (𝑓(𝑥), 𝑟),
where |𝑥| = |𝑟|. Let 𝑏(𝑥, 𝑟) = ⊕𝑖∈[𝑛]𝑥𝑖𝑟𝑖 be the inner product
mod 2 of 𝑥 and 𝑟. Then 𝑏 is a hard core predicate of the function 𝑔.

The proof of this theorem follows the classic proof
by reduction method, where we assume the exis-
tence of an adversary that can predict 𝑏(𝑥, 𝑟) given
𝑔(𝑥, 𝑟) with non negligible advantage and construct
an adversary that inverts 𝑓 with non negligible
probability. Let 𝐴 be a (possibly randomized) pro-

232 an intensive introduction to cryptography

gram and 𝜖𝐴(𝑛) > 1
𝑝(𝑛) for some polynomial 𝑛 such

that

Pr[𝐴(𝑔(𝑋𝑛, 𝑅𝑛)) = 𝑏(𝑋𝑛, 𝑅𝑛)] = 1
2 + 𝜖𝐴(𝑛)

Where 𝑋𝑛 and 𝑅𝑛 are uniform and independent distributions over
{0, 1}𝑛. We observe that 𝑏 being insecure and having an output of a
single bit implies that such a program 𝐴 exists. First, we show that on
at least 𝜖𝐴(𝑛) fraction of the possible inputs, program 𝐴 has a 𝜖𝐴(𝑛)

2
advantage in predicting the output of 𝑏.
Lemma 10.21 There exists a set 𝑆 ⊆ {0, 1}𝑛 where |𝑆| > 𝜖𝐴(𝑛)(2𝑛) such
that for all 𝑥 ∈ 𝑆,

𝑠(𝑥) = Pr[𝐴(𝑔(𝑥,𝑅𝑛)) = 𝑏(𝑥,𝑅𝑛)] ≥
1
2 + 𝜖𝐴(𝑛)

2
Proof. The result follows from an averaging argument. Let 𝑘 = |𝑆|

2𝑛 ,
𝛼 = 1

𝑘 ∑
𝑥∈𝑆

𝑠(𝑥) and 𝛽 = 1
1 − 𝑘 ∑

𝑥∉𝑆
𝑠(𝑥) be the averages of 𝑠(𝑥) over

values in and not in 𝑆, respectively, so 𝑘𝛼 + (1 − 𝑘)𝛽 = 1
2 + 𝜖. For

notational convenience we set 𝜖 = 𝜖𝐴(𝑛). By definition 𝔼[𝑠(𝑋𝑛)] = 1
2 +

𝜖, so the fact that 𝛼 ≤ 1 and 𝛽 < 1
2 + 𝜖

2 gives 𝑘+ (1−𝑘) (1
2 + 𝜖

2) > 1
2 +𝜖,

and solving finds that 𝑘 > 𝜖.
■

Now we observe that for any 𝑟 ∈ {0, 1}𝑛, we have

𝑥𝑖 = 𝑏(𝑥, 𝑟) ⊕ 𝑏(𝑥, 𝑟 ⊕ 𝑒𝑖)
where 𝑒𝑖 is the vector with all 0s except a 1 in the 𝑖th location. This

observation follows from the definition of 𝑏, and it motivates the main
idea of the reduction: Guess 𝑏(𝑥, 𝑟) and use 𝐴 to compute 𝑏(𝑥, 𝑟 ⊕ 𝑒𝑖),
then put it together to find 𝑥𝑖 for all 𝑖. The reason guessing works
will become clear later, but intuitively the reason we cannot simply
use 𝐴 to compute both 𝑏(𝑥, 𝑟) and 𝑏(𝑥, 𝑟 ⊕ 𝑒𝑖) is that the probability
𝐴 guesses both correctly is only (standard union) bounded below
by 1 − 2 (1

2 − 𝜖𝐴(𝑛)) = 2𝜖𝐴(𝑛). However, if we can guess 𝑏(𝑥, 𝑟)
correctly, then we only need to invoke 𝐴 one time to get a better than
half probability of correctly determining 𝑥𝑖. It is then a simple matter
of taking a majority vote over several such 𝑟 to determine each 𝑥𝑖.

Now the natural question is how can we possibly
guess (and here we literally mean randomly guess)
each value of 𝑏(𝑥, 𝑟)? The key is that the values of
𝑟 only need to be pairwise independent, since down
the line we plan to use Chebyshev’s inequality on

concrete candidates for public key crypto 233

4 This has to do with the fact that Chebyshev’s in-
equality is based on the variances of random vari-
ables. If we had to use the Chernoff bound we would
be in trouble, since that requires full independence.
For more on these and other concentration bounds,
we recommend referring to the text Probability and
Computing, by Eli Upfal.

the accuracy of our guesses 4 . This means that
while we need 𝑝𝑜𝑙𝑦(𝑛) many values of 𝑟, we can
get away with guessing log(𝑛) values of 𝑏(𝑥, 𝑟) and
combining them with some trickery to get more
while preserving pairwise independence. Since
2− log𝑛 = 1

𝑛 , with non negligible probability we can
correctly guess all of our 𝑏(𝑥, 𝑟) for polynomially
many 𝑟. We then use 𝐴 to compute 𝑏(𝑥, 𝑟 ⊕ 𝑒𝑖) for all
𝑟 and 𝑖, and since 𝐴 has a non negligible advantage
by majority vote we can retrieve each value of 𝑥𝑖 to
invert 𝑓 , thus contradicting the one-wayness of 𝑓 .

P
It is important that you understand why we can-
not rely on invoking 𝐴 twice, on both 𝑏(𝑥, 𝑟) and
𝑏(𝑥, 𝑟 ⊕ 𝑒𝑖). It is also important that you understand
why, with non neligible probability, we can correctly
guess 𝑏(𝑥, 𝑟1),… 𝑏(𝑥, 𝑟ℓ) for 𝑟1,… 𝑟ℓ chosen indepen-
dently and uniformly at random and ℓ = 𝑂(log𝑛). At
the moment, it is not important what trickery is used
to combine our guesses, but it will reduce confusion
down the line if you understand why we can get away
with pairwise independence in our inputs instead of
complete mutual independence.

Before moving on to the formal proof of our theorem, please stop
to convince yourself that, given that some trickery exists, this strategy
works for inverting 𝑓 .

Proof of Theorem 10.20. ■

We use the assumed existence of 𝐴 to construct 𝐵, a program that
inverts 𝑓 (which we assume is length preserving for notational conve-
nience). Pick 𝑛 = |𝑥| and 𝑙 = ⌈log(2𝑛 ⋅ 𝑝(𝑛)2 + 1)⌉, where 𝜖𝐴(𝑛) > 1

𝑝(𝑛) .
Next, choose 𝑠1,… 𝑠𝑙 ∈ {0, 1}𝑛 and 𝜎1,…𝜎𝑙 ∈ {0, 1} all independently
and uniformly at random. Here we set 𝜎𝑖 to be the guess for the value
of 𝑏(𝑥, 𝑠𝑖). For each non-empty subset 𝐽 of {1, 2,… 𝑙} let 𝑟𝐽 = ⊕𝑗∈𝐽𝑠𝑗.
We can observe that

𝑏(𝑥, 𝑟𝐽) = 𝑏(𝑥,⊕𝑗∈𝐽𝑠𝑗) = ⊕𝑗∈𝐽𝑏(𝑥, 𝑠𝑗)

by the properties of addition modulo 2, so we can say 𝜌𝐽 = ⊕𝑗∈𝐽𝜎𝑗

is the correct guess for 𝑏(𝑥, 𝑟𝐽) as long as each of 𝜎𝑗 for 𝑗 ∈ 𝐽 are cor-
rect. We can easily verify that the values 𝑟𝐽 are pairwise independent
and uniform, so this construction gives us 𝑝𝑜𝑙𝑦(𝑛) many correct pairs
(𝑏(𝑥, 𝑟𝐽), 𝜌𝐽) with probability 1

𝑝𝑜𝑙𝑦(𝑛) , exactly as needed.
Define 𝐺(𝐽, 𝑖) = 𝜌𝐽 ⊕ 𝐴(𝑓(𝑥), 𝑟𝐽 ⊕ 𝑒𝑖) to be the guess for 𝑥𝑖 com-

puted using input 𝑟𝐽 . From here, 𝐵 simply needs to set 𝑥𝑖 to the ma-

234 an intensive introduction to cryptography

jority value of our guesses 𝐺(𝐽, 𝑖) over the possible choices of 𝐽 and
output 𝑥.

Now we prove that given that our guesses 𝜌𝐽 are all correct, for all
𝑥 ∈ 𝑆 and for every 1 ≤ 𝑖 ≤ 𝑛, we have

Pr [|{𝐽|𝐺(𝐽, 𝑖) = 𝑥𝑖}| >
1
2(2

𝑙 − 1)] > 1 − 1
2𝑛

That is, with probability at least 1 − 𝑂(1
𝑛), more than half of our

(2𝑙 − 1) guesses for 𝑥𝑖 are correct, where 2𝑙 − 1 is the number of non
empty subsets 𝐽 of {1, 2,… 𝑙}.

For every 𝐽 , define 𝐼𝐽 to be the indicator that
𝐺(𝐽, 𝑖) = 𝑥𝑖, and we can observe that 𝐼𝐽 is bernoulli
with expected value 𝑠(𝑥) (again, given that our
guess for 𝑏(𝑥, 𝑟𝐽) is correct). Pairwise independence
of the 𝐼𝐽 is given by the pairwise independence of
the 𝑟𝐽 . Setting 𝑚 = 2𝑙 − 1, defining 𝑠(𝑥) = 1

2 + 1
𝑞(𝑛) ,

and using Chebyshev’s inequality, we get

Pr[∑
𝐽

𝐼𝐽 ≤ 1
2𝑚] ≤ Pr[∣∑

𝐽
𝐼𝐽 −(1

2 + 1
𝑞(𝑛))𝑚∣ ≥ 𝑚

𝑞(𝑛)𝑚]

= Pr[∣∑
𝐽

𝐼𝐽 − 𝔼[∑
𝐽

𝐼𝐽]∣ ≥
𝑚

𝑞(𝑛)]

≤ 𝑚Var(𝐼𝐽)
(𝑚
𝑞(𝑛))

2

≤
1
4

(1
𝑞(𝑛))

2 𝑚

Since 𝑥 ∈ 𝑆 we know 1
𝑞(𝑛) ≥

𝜖𝐴(𝑛)
2 ≥ 1

2𝑝(𝑛) , so

1
4

(1
𝑞(𝑛))

2 𝑚
≤

1
4

(1
2𝑝(𝑛))

2 2𝑛 ⋅ 𝑝(𝑛)2
= 1

2𝑛

Putting it all together, 𝐵 must first pick an 𝑥 ∈ 𝑆, then correctly
guess 𝜎𝑖 for all 𝑖 ∈ [1, 2,… 𝑙], then 𝐴 must correctly compute 𝑏(𝑥, 𝑟𝐽 ⊕
𝑒𝑖) on more than half of the 𝑟𝐽 . Since each of these events happens
independently, we get 𝐵’s success probability to be 𝜖𝐴(𝑛)(1

2𝑙)(1− 1
2𝑛) =

𝜖𝐴(𝑛)(1
2𝑛𝑝(𝑛)2)(1 − 1

2𝑛) > (1
𝑝(𝑛))(1

2𝑛𝑝(𝑛)2)(12) = 1
4𝑛𝑝(𝑛)3 , which is non

negligible in 𝑛. This contradicts the assumption that 𝑓 is a one way
function, so no adversary 𝐴 can predict 𝑏(𝑥, 𝑟) given (𝑓(𝑥), 𝑟) with a
non negligible advantage, and 𝑏 is a hardcore predicate of 𝑔.

10.2.1 Extending to more than one hardcore bit
By definition, 𝑏 as constructed above is only a hardcore predicate of
length 1. While it’s great that this method works for any arbitrary one-

concrete candidates for public key crypto 235

way function, in the real world messages are sometimes longer than a
single bit. Fortunately, there is hope: Goldreich and Levin’s hardcore
bit construction can be used repeatedly to get a hardcore predicate of
logarithmic length.

Theorem 10.22 — Logarithmically many hardcore bits for arbitrary one-way

functions. Let 𝑓 be a one-way function, and define 𝑔2(𝑥, 𝑠) =
(𝑓(𝑥), 𝑠), where |𝑥| = 𝑛 and |𝑠| = 2𝑛. Let 𝑐 > 0 be a constant,
and 𝑙(𝑛) = ⌈𝑐 log𝑛⌉. Let 𝑏𝑖(𝑥, 𝑠) denote the innter product mod 2 of
the binary vectors 𝑥 and (𝑠𝑖+1,… 𝑠𝑖+𝑛), where 𝑠 = (𝑠1,… 𝑠2𝑛). Then
the function ℎ(𝑥, 𝑠) = 𝑏1(𝑥, 𝑠)… 𝑏𝑙(𝑛)(𝑥, 𝑠) is a hardcore function of
𝑔2.

It’s clear that this is an imporant improvement on a single hardcore
bit, but still nowhere near useable in general; imagine encrypting a
text document with a key exponentially long in the size of the docu-
ment. A completely different approach is needed to obtain a hardcore
predicate with length polynomial in the key size. Bellare, Stepanovs,
and Tessaro manage to pull it off using indistinguishability obfusca-
tion of circuits, a cryptographic primitive which, like the existence of
PRGs, is assumed to exist.

Theorem 10.23 — Polynomially many hardcore bits for arbitrary one-way func-

tions. Let F be a one-way function family and G be a punctured
PRF with the same input length of F. Then under the assumed
existence of indistinguishability obfuscators, there exists a function
family H that is hardcore for F. Furthermore, the output length of
H is the same as the output length of G.

Since the output length of 𝐺 can be polynomial in the length of
its input, it follows that 𝐻 outputs polynomially many hardcore bits
in the length of its input. The proofs of Theorem 10.22 and Theo-
rem 10.23 require the usage of results and concepts not yet covered in
this course, but we refer interested readers to their original papers:

Goldreich, O., 1995. Three XOR-lemmas-an exposition. In Elec-
tronic Colloquium on Computational Complexity (ECCC).

Bellare, M., Stepanovs, I. and Tessaro, S., 2014, December. Poly-
many hardcore bits for any one-way function and a framework for
differing-inputs obfuscation. In International Conference on the The-
ory and Application of Cryptology and Information Security (pp. 102-
121). Springer, Berlin, Heidelberg.

