
1 The PRG conjecture is the name we use in this
course. In the literature this is known as the conjec-
ture of the existence of pseudorandom generators,
and through the work of Håstad, Impagliazzo, Levin
and Luby (HILL) it is known to be equivalent to the
existence of one way functions, see Vadhan, Chapter 7.

2 This was done by Goldreich, Goldwasser and Micali.

6
Chosen Ciphertext Security

6.1 SHORT RECAP

Let’s start by reviewing what we have learned so far:

• We can mathematically define security for encryption schemes.
A natural definition is perfect secrecy: no matter what Eve does,
she can’t learn anything about the plaintext that she didn’t know
before. Unfortunately this requires the key to be as long as the
message, thus placing a severe limitation on the usability of it.

• To get around this, we need to consider computational consid-
erations. A basic object is a pseudorandom generator and we con-
sidered the PRG Conjecture which stipulates the existence of an
efficiently computable function 𝐺 ∶ {0, 1}𝑛 → {0, 1}𝑛+1 such that
𝐺(𝑈𝑛) ≈ 𝑈𝑛+1 (where 𝑈𝑚 denotes the uniform distribution on
{0, 1}𝑚 and ≈ denotes computational indistinguishability).1

• We showed that the PRG conjecture implies a pseudorandom gen-
erator of any polynomial output length which in particular via the
stream cipher construction implies a computationally secure en-
cryption with plaintext arbitrarily larger than the key. (The only re-
striction is that the plaintext is of polynomial size which is needed
anyway if we want to actually be able to read and write it.)

• We then showed that the PRG conjecture actually implies a stronger
object known as a pseudorandom function (PRF) function collection:
this is a collection {𝑓𝑠} of functions such that if we choose 𝑠 at
random and fix it, and give an adversary a black box computing
𝑖 ↦ 𝑓𝑠(𝑖) then she can’t tell the difference between this and a black-
box computing a random function.2

• Pseudorandom functions turn out to be useful for identification pro-
tocols, message authentication codes and this strong notion of security

Compiled on 11.17.2021 22:35

https://www.csc.kth.se/~johanh/prgfromowf.pdf
https://www.csc.kth.se/~johanh/prgfromowf.pdf
https://people.seas.harvard.edu/~salil/pseudorandomness/
https://www.wisdom.weizmann.ac.il/~oded/X/ggm.pdf


146 an intensive introduction to cryptography

of encryption known as chosen plaintext attack (CPA) security where
we are allowed to encrypt many messages of Eve’s choice and still re-
quire that the next message hides all information except for what
Eve already knew before.

6.2 GOING BEYOND CPA

It may seem that we have finally nailed down the security definition
for encryption. After all, what could be stronger than allowing Eve
unfettered access to the encryption function? Clearly an encryption
satisfying this property will hide the contents of the message in all
practical circumstances. Or will it?

P
Please stop and play an ominous sound track at this
point.

6.2.1 Example: The Wired Equivalence Privacy (WEP)
The Wired Equivalence Privacy (WEP) protocol is perhaps one of the
most inaccurately named protocols of all times. It was invented in
1999 for the purpose of securing Wi-Fi networks so that they would
have virtually the same level of security as wired networks, but al-
ready early on several security flaws were pointed out. In particular
in 2001, Fluhrer, Mantin, and Shamir showed how the RC4 flaws we
mentioned in prior lecture can be used to completely break WEP in
less than one minute. Yet, the protocol lingered on and for many years
after was still the most widely used WiFi encryption protocol as many
routers had it as the default option. In 2007 the WEP was blamed for
a hack stealing 45 million credit card numbers from T.J. Maxx. In 2012
(after 11 years of attacks!) it was estimated that it is still used in about
a quarter of encrypted wireless networks, and in 2014 it was still the
default option on many Verizon home routers. It is still (!) used in
some routers, see Fig. 6.1. This is a great example of how hard it is to
remove insecure protocols from practical usage (and so how impor-
tant it is to get these protocols right).

Here we will talk about a different flaw of WEP that is in fact
shared by many other protocols, including the first versions of the
secure socket layer (SSL) protocol that is used to protect all encrypted
web traffic.

To avoid superfluous details we will consider a highly abstract (and
somewhat inaccurate) version of WEP that still demonstrates our
main point. In this protocol Alice (the user) sends to Bob (the access
point) an IP packet that she wants routed somewhere on the internet.



chosen ciphertext security 147

Figure 6.1: WEP usage over time according to
Wigle.net. Despite having documented security
issues since 2001 and being officially deprecated since
2004, WEP continued to be the most popular WiFi
encryption protocol up to 2012, and at the time of
writing, it is still used by a non-trivial number of
devices (though see this stackoverflow answer for
more).

Thus we can think of the message Alice sends to Bob as a string
𝑚 ∈ {0, 1}ℓ of the form 𝑚 = 𝑚1‖𝑚2 where 𝑚1 is the IP address this
packet needs to be routed to and 𝑚2 is the actual message that needs
to be delivered. In the WEP protocol, the message that Alice sends
to Bob has the form 𝐸𝑘(𝑚‖CRC(𝑚)) (where ‖ denotes concatenation
and CRC(𝑚) is some cyclic redundancy check). A CRC is some func-
tion mapping {0, 1}𝑛 to {0, 1}𝑡 which is meant to enable detection of
errors in typing or communication. The idea is that if a message 𝑚 is
mistyped into 𝑚′, then it is very likely that CRC(𝑚) ≠ CRC(𝑚′). It is
similar to the checksum digits used in credit card numbers and many
other cases. Unlike a message authentication code, a CRC does not
have a secret key and is not secure against adversarial perturbations.

The actual encryption WEP used was RC4, but for us it doesn’t
really matter. What does matter is that the encryption has the form
𝐸𝑘(𝑚′) = 𝑝𝑎𝑑 ⊕ 𝑚′ where 𝑝𝑎𝑑 is computed as some function of the
key. In particular the attack we will describe works even if we use our
stronger CPA secure PRF-based scheme where 𝑝𝑎𝑑 = 𝑓𝑘(𝑟) for some
random (or counter) 𝑟 that is sent out separately.

Now the security of the encryption means that an adversary seeing
the ciphertext 𝑐 = 𝐸𝑘(𝑚‖CRC(𝑚)) will not be able to know 𝑚, but
since this is traveling over the air, the adversary could “spoof” the
signal and send a different ciphertext 𝑐′ to Bob. In particular, if the
adversary knows the IP address 𝑚1 that Alice was using (e.g., for
example, the adversary can guess that Alice is probably one of the
billions of people that visit the website boazbarak.org on a regular
basis) then she can XOR the ciphertext with a string of her choosing
and hence convert the ciphertext 𝑐 = 𝑝𝑎𝑑 ⊕ (𝑚1‖𝑚2‖CRC(𝑚1,𝑚2))
into the ciphertext 𝑐′ = 𝑐 ⊕ 𝑥 where 𝑥 = 𝑥1‖𝑥2‖𝑥3 is computed so that
𝑥1 ⊕𝑚1 is equal to the adversary’s own IP address!

So, the adversary doesn’t need to decrypt the message- by spoof-
ing the ciphertext she can ensure that Bob (who is an access point,

https://wigle.net/stats
https://security.stackexchange.com/a/191076
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Luhn_algorithm


148 an intensive introduction to cryptography

and whose job is to decrypt and then deliver packets) simply delivers
it unencrypted straight into her hands. One issue is that Eve modi-
fies 𝑚1 then it is unlikely that the CRC code will still check out, and
hence Bob would reject the packet. However, CRC 32 - the CRC al-
gorithm used by WEP - is linear modulo 2, that is CRC(𝑥 ⊕ 𝑥′) =
CRC(𝑥) ⊕ CRC(𝑥′). This means that if the original ciphertext 𝑐
was an encryption of the message 𝑚 = 𝑚1‖𝑚2‖CRC(𝑚1,𝑚2) then
𝑐′ = 𝑐 ⊕ (𝑥1‖0𝑡‖CRC(𝑥1‖0𝑡)) will be an encryption of the message
𝑚′ = (𝑚1 ⊕ 𝑥1)‖𝑚2‖CRC((𝑥1 ⊕𝑚1)‖𝑚2) (where 0𝑡 denotes a string of
zeroes of the same length 𝑡 as 𝑚2, and hence 𝑚2 ⊕ 0𝑡 = 𝑚2). There-
fore by XOR’ing 𝑐 with 𝑥1‖0𝑡‖CRC(𝑥1‖0𝑡), the adversary Mallory can
ensure that Bob will deliver the message 𝑚2 to the IP address 𝑚1 ⊕ 𝑥1
of her choice (see Fig. 6.2).

Figure 6.2: The attack on the WEP protocol allowing
the adversary Mallory to read encrypted messages
even when Alice uses a CPA secure encryption.

6.2.2 Chosen ciphertext security
This is not an isolated example but in fact an instance of a general
pattern of many breaks in practical protocols. Some examples of pro-
tocols broken through similar means include XML encryption, IPSec
(see also here) as well as JavaServer Faces, Ruby on Rails, ASP.NET,
and the Steam gaming client (see the Wikipedia page on Padding
Oracle Attacks).

The point is that often our adversaries can be active and modify the
communication between sender and receiver, which in effect gives
them access not just to choose plaintexts of their choice to encrypt but
even to have some impact on the ciphertexts that are decrypted. This
motivates the following notion of security (see also Fig. 6.3):

https://goo.gl/5aqEHB
http://www.nds.rub.de/media/nds/veroeffentlichungen/2011/10/22/HowToBreakXMLenc.pdf
https://www.cs.columbia.edu/~smb/papers/badesp.pdf
https://eprint.iacr.org/2005/416
https://goo.gl/b5aKYg
https://goo.gl/b5aKYg


chosen ciphertext security 149

Definition 6.1 — CCA security. An encryption scheme (𝐸,𝐷) is chosen
ciphertext attack (CCA) secure if every efficient adversary Mallory
wins in the following game with probability at most 1/2 + 𝑛𝑒𝑔𝑙(𝑛):

• Mallory gets 1𝑛 where 𝑛 is the length of the key

• For 𝑝𝑜𝑙𝑦(𝑛) rounds, Mallory gets access to the functions 𝑚 ↦
𝐸𝑘(𝑚) and 𝑐 ↦ 𝐷𝑘(𝑐).

• Mallory chooses a pair of messages {𝑚0,𝑚1}, a secret 𝑏 is cho-
sen at random in {0, 1}, and Mallory gets 𝑐∗ = 𝐸𝑘(𝑚𝑏).

• Mallory now gets another 𝑝𝑜𝑙𝑦(𝑛) rounds of access to the func-
tions 𝑚 ↦ 𝐸𝑘(𝑚) and 𝑐 ↦ 𝐷𝑘(𝑐) except that she is not allowed
to query 𝑐∗ to her second oracle.

• Mallory outputs 𝑏′ and wins if 𝑏′ = 𝑏.

Figure 6.3: The CCA security game.

This might seems a rather strange definition so let’s try to digest it
slowly. Most people, once they understand what the definition says,
don’t like it that much. There are two natural objections to it:

• This definition seems to be too strong: There is no way we would
let Mallory play with a decryption box - that basically amounts to
letting her break the encryption scheme. Sure, she could have some
impact on the ciphertexts that Bob decrypts and observe some
resulting side effects, but there is a long way from that to giving her
oracle access to the decryption algorithm.



150 an intensive introduction to cryptography

The response to this is that it is very hard to model what is the
“realistic” information Mallory might get about the ciphertexts she
might cause Bob to decrypt. The goal of a security definition is not to
capture exactly the attack scenarios that occur in real life but rather
to be sufficiently conservative so that these real life attacks could be
modeled in our game. Therefore, having a too strong definition is
not a bad thing (as long as it can be achieved!). The WEP example
shows that the definition does capture a practical issue in security and
similar attacks on practical protocols have been shown time and again
(see for example the discussion of “padding attacks” in Section 3.7.2
of the Katz Lindell book.)

• This definition seems to be too weak: What justification do we
have for not allowing Mallory to make the query 𝑐∗ to the decryp-
tion box? After all she is an adversary so she could do whatever she
wants. The answer is that the definition would be clearly impossi-
ble to achieve if Mallory could simply get the decryption of 𝑐∗ and
learn whether it was an encryption of 𝑚0 or 𝑚1. So this restriction
is the absolutely minimal one we could make without causing the
notion to be obviously impossible. Perhaps surprisingly, it turns
out that once we make this minimal restriction, we can in fact con-
struct CCA-secure encryptions.

What does CCA have to do with WEP? The CCA security game is some-
what strange, and it might not be immediately clear whether it has
anything to do with the attack we described on the WEP protocol.
However, it turns out that using a CCA secure encryption would have
prevented that attack. The key is the following claim:

Lemma 6.2 Suppose that (𝐸,𝐷) is a CCA secure encryption. Then,
there is no efficient algorithm that given an encryption 𝑐 of the plain-
text (𝑚1,𝑚2) outputs a ciphertext 𝑐′ that decrypts to (𝑚′

1,𝑚2) where
𝑚′

1 ≠ 𝑚1.

In particular Lemma 6.2 rules out the attack of transforming 𝑐 that
encrypts a message starting with a some address IP to a ciphertext
that starts with a different address IP′. Let us now sketch its proof.

Proof. We’ll show that such if we had an adversary 𝑀 ′ that violates
the conclusion of the claim, then there is an adversary 𝑀 that can win
in the CCA game.

The proof is simple and relies on the crucial fact that the CCA game
allows 𝑀 to query the decryption box on any ciphertext of her choice,
as long as it’s not exactly identical to the challenge cipertext 𝑐∗. In par-
ticular, if 𝑀 ′ is able to morph an encryption 𝑐 of 𝑚 to some encryption
𝑐′ of some different 𝑚′ that agrees with 𝑚 on some set of bits, then 𝑀
can do the following: in the security game, use 𝑚0 to be some random



chosen ciphertext security 151

3 I also like the part where Green says about a block
cipher mode that “if OCB was your kid, he’d play
three sports and be on his way to Harvard.” We
will have an exercise about a simplified version of
the GCM mode (which perhaps only plays a single
sport and is on its way to …). You can read about
OCB in Exercise 9.14 in the Boneh-Shoup book;
it uses the notion of a “tweakable block cipher”
which simply means that given a single key 𝑘, you
actually get a set {𝑝𝑘,1,… , 𝑝𝑘,𝑡} of permutations that
are indistinguishable from 𝑡 independent random
permutation (the set {1,… , 𝑡} is called the set of
“tweaks” and we sometimes index it using strings
instead of numbers).

message and 𝑚1 to be this plaintext 𝑚. Then, when receiving 𝑐∗, apply
𝑀 ′ to it to obtain a ciphertext 𝑐′ (note that if the plaintext differs then
the ciphertext must differ also; can you see why?) ask the decryption
box to decrypt it and output 1 if the resulting message agrees with 𝑚
in the corresponding set of bits (otherwise output a random bit). If
𝑀 ′ was successful with probability 𝜖, then 𝑀 would win in the CCA
game with probability at least 1/2 + 𝜖/10 or so.

■

P
The proof above is rather sketchy. However it is not
very difficult and proving Lemma 6.2 on your own
is an excellent way to ensure familiarity with the
definition of CCA security.

6.3 CONSTRUCTING CCA SECURE ENCRYPTION

The definition of CCA seems extremely strong, so perhaps it is not
surprising that it is useful, but can we actually construct it? The WEP
attack shows that the CPA secure encryption we saw before (i.e.,
𝐸𝑘(𝑚) = (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚)) is not CCA secure. We will see other ex-
amples of non CCA secure encryptions in the exercises. So, how do
we construct such a scheme? The WEP attack actually already hints
of the crux of CCA security. We want to ensure that Mallory is not
able to modify the challenge ciphertext 𝑐∗ to some related 𝑐′. Another
way to say it is that we need to ensure the integrity of messages to
achieve their confidentiality if we want to handle active adversaries that
might modify messages on the channel. Since in a great many practi-
cal scenarios, an adversary might be able to do so, this is an important
message that deserves to be repeated:

To ensure confidentiality, you need integrity.

This is a lesson that has been time and again been shown and many
protocols have been broken due to the mistaken belief that if we only
care about secrecy, it is enough to use only encryption (and one that
is only CPA secure) and there is no need for authentication. Matthew
Green writes this more provocatively as

Nearly all of the symmetric encryption modes you learned
about in school, textbooks, and Wikipedia are (poten-
tially) insecure. 3

exactly because these basic modes only ensure security for pas-
sive eavesdropping adversaries and do not ensure chosen ciphertext
security which is the “gold standard” for online applications. (For

http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html


152 an intensive introduction to cryptography

symmetric encryption people often use the name “authenticated en-
cryption” in practice rather than CCA security; those are not identical
but are extremely related notions.)

All of this suggests that Message Authentication Codes might help
us get CCA security. This turns out to be the case. But one needs to
take some care exactly how to use MAC’s to get CCA security. At this
point, you might want to stop and think how you would do this…

P
You should stop here and try to think how you would
implement a CCA secure encryption by combining
MAC’s with a CPA secure encryption.



chosen ciphertext security 153

P
If you didn’t stop before, then you should really stop
and think now.



154 an intensive introduction to cryptography

4 By a canonical verification algorithm we mean that
𝑉𝑘(𝑚,𝜎) = 1 iff 𝑆𝑘(𝑚) = 𝜎.

5 Since we use a MAC with canonical verification,
access to the signature algorithm implies access to the
verification algorithm.

OK, so now that you had a chance to think about this on your own,
we will describe one way that works to achieve CCA security from
MACs. We will explore other approaches that may or may not work in
the exercises.

Theorem 6.3 — CCA from CPA and MAC (encrypt-then-sign). Let (𝐸,𝐷) be
CPA-secure encryption scheme and (𝑆, 𝑉 ) be a CMA-secure MAC
with 𝑛 bit keys and a canonical verification algorithm. 4 Then the
following encryption (𝐸′, 𝐷′) with keys 2𝑛 bits is CCA secure:

• 𝐸′
𝑘1,𝑘2

(𝑚) is obtained by computing 𝑐 = 𝐸𝑘1
(𝑚) , 𝜎 = 𝑆𝑘2

(𝑐) and
outputting (𝑐, 𝜎).

• 𝐷′
𝑘1,𝑘2

(𝑐, 𝜎) outputs nothing (e.g., an error message) if 𝑉𝑘2
(𝑐, 𝜎) ≠

1, and otherwise outputs 𝐷𝑘1
(𝑐).

Proof. Suppose, for the sake of contradiction, that there exists an ad-
versary 𝑀 ′ that wins the CCA game for the scheme (𝐸′, 𝐷′) with
probability at least 1/2 + 𝜖. We consider the following two cases:

Case I: With probability at least 𝜖/10, at some point during the
CCA game, 𝑀 ′ sends to its decryption box a ciphertext (𝑐, 𝜎) that is
not identical to one of the ciphertexts it previously obtained from its
encryption box, and obtains from it a non-error response.

Case II: The event above happens with probability smaller than
𝜖/10.

We will derive a contradiction in either case. In the first case, we
will use 𝑀 ′ to obtain an adversary that breaks the MAC (𝑆, 𝑉 ), while
in the second case, we will use 𝑀 ′ to obtain an adversary that breaks
the CPA-security of (𝐸,𝐷).

Let’s start with Case I: When this case holds, we will build an ad-
versary 𝐹 (for “forger”) for the MAC (𝑆, 𝑉 ), we can assume the ad-
versary 𝐹 has access to the both signing and verification algorithms
as black boxes for some unknown key 𝑘2 that is chosen at random and
fixed.5 𝐹 will choose 𝑘1 on its own, and will also choose at random
a number 𝑖0 from 1 to 𝑇 , where 𝑇 is the total number of queries that
𝑀 ′ makes to the decryption box. 𝐹 will run the entire CCA game
with 𝑀 ′, using 𝑘1 and its access to the black boxes to execute the de-
cryption and decryption boxes, all the way until just before 𝑀 ′ makes
the 𝑖𝑡ℎ0 query (𝑐, 𝜎) to its decryption box. At that point, 𝐹 will output
(𝑐, 𝜎). We claim that with probability at least 𝜖/(10𝑇 ), our forger will
succeed in the CMA game in the sense that (i) the query (𝑐, 𝜎) will
pass verification, and (ii) the message 𝑐 was not previously queried
before to the signing oracle.



chosen ciphertext security 155

Indeed, because we are in Case I, with probability 𝜖/10, in this
game some query that 𝑀 ′ makes will be one that was not asked before
and hence was not queried by 𝐹 to its signing oracle, and moreover,
the returned message is not an error message, and hence the signature
passes verification. Since 𝑖0 is random, with probability 𝜖/(10𝑇 ) this
query will be at the 𝑖𝑡ℎ0 round. Let us assume that this above event
GOOD happened in which the 𝑖0-th query to the decryption box is
a pair (𝑐, 𝜎) that both passes verification and the pair (𝑐, 𝜎) was not
returned before by the encryption oracle. Since we pass (canonical)
verification, we know that 𝜎 = 𝑆𝑘2

(𝑐), and because all encryption
queries return pairs of the form (𝑐′, 𝑆𝑘2

(𝑐′)), this means that no such
query returned 𝑐 as its first element either. In other words, when the
event GOOD happens the 𝑖𝑡ℎ0 query contains a pair (𝑐, 𝜎) such that 𝑐
was not queried before to the signature box, but (𝑐, 𝜎) passes verifi-
cation. This is the definition of breaking (𝑆, 𝑉 ) in a chosen message
attack, and hence we obtain a contradiction to the CMA security of
(𝑆, 𝑉 ).

Now for Case II: In this case, we will build an adversary 𝐸𝑣𝑒 for
CPA-game in the original scheme (𝐸,𝐷). As you might expect, the
adversary 𝐸𝑣𝑒 will choose by herself the key 𝑘2 for the MAC scheme,
and attempt to play the CCA security game with 𝑀 ′. When 𝑀 ′ makes
encryption queries this should not be a problem- 𝐸𝑣𝑒 can forward the
plaintext 𝑚 to its encryption oracle to get 𝑐 = 𝐸𝑘1

(𝑚) and then com-
pute 𝜎 = 𝑆𝑘2

(𝑐) since she knows the signing key 𝑘2.
However, what does 𝐸𝑣𝑒 do when 𝑀 ′ makes decryption queries?

That is, suppose that 𝑀 ′ sends a query of the form (𝑐, 𝜎) to its de-
cryption box. To simulate the algorithm 𝐷′, 𝐸𝑣𝑒 will need access to a
decryption box for 𝐷, but she doesn’t get such a box in the CPA game
(This is a subtle point- please pause here and reflect on it until you are
sure you understand it!)

To handle this issue 𝐸𝑣𝑒 will follow the common approach of
“winging it and hoping for the best”. When 𝑀 ′ sends a query of the
form (𝑐, 𝜎), 𝐸𝑣𝑒 will first check if it happens to be the case that (𝑐, 𝜎)
was returned before as an answer to an encryption query 𝑚. In this
case 𝐸𝑣𝑒 will breathe a sigh of relief and simply return 𝑚 to 𝑀 ′ as
the answer. (This is obviously correct: if (𝑐, 𝜎) is the encryption of 𝑚
then 𝑚 is the decryption of (𝑐, 𝜎).) However, if the query (𝑐, 𝜎) has not
been returned before as an answer, then 𝐸𝑣𝑒 is in a bit of a pickle. The
way out of it is for her to simply return “error” and hope that every-
thing will work out. The crucial observation is that because we are in
case II things will work out. After all, the only way 𝐸𝑣𝑒 makes a mis-
take is if she returns an error message where the original decryption
box would not have done so, but this happens with probability at most
𝜖/10. Hence, if 𝑀 ′ has success 1/2 + 𝜖 in the CCA game, then even



156 an intensive introduction to cryptography

6 In 𝜖-almost universal hash functions we require that
for every 𝑦, 𝑦′ ∈ {0, 1}𝑛, and 𝑥 ≠ 𝑥′ ∈ {0, 1}ℓ,
the probability that ℎ(𝑥) = ℎ(𝑥′) is at most 𝜖. It
can be easily shown that the analysis below extends
to 𝜖 almost universal hash functions as long as 𝜖 is
negligible, but we will leave verifying this to the
reader.
7 In practice the key ℎ is derived from the key 𝑘 by
applying the PRP to some particular input.

if it’s the case that 𝑀 ′ always outputs the wrong answer when 𝐸𝑣𝑒
makes this mistake, we will still get success at least 1/2 + 0.9𝜖. Since
𝜖 is non negligible, this would contradict the CPA security of (𝐸,𝐷)
thereby concluding the proof of the theorem.

■

P
This proof is emblematic of a general principle for
proving CCA security. The idea is to show that the de-
cryption box is completely “useless” for the adversary,
since the only way to get a non error response from it
is to feed it with a ciphertext that was received from
the encryption box.

6.4 (SIMPLIFIED) GCM ENCRYPTION

The construction above works as a generic construction, but it is some-
what costly in the sense that we need to evaluate both the block cipher
and the MAC. In particular, if messages have 𝑡 blocks, then we would
need to invoke two cryptographic operations (a block cipher encryp-
tion and a MAC computation) per block. The GCM (Galois Counter
Mode) is a way around this. We are going to describe a simplified ver-
sion of this mode. For simplicity, assume that the number of blocks 𝑡
is fixed and known (though many of the annoying but important de-
tails in block cipher modes of operations involve dealing with padding
to multiple of blocks and dealing with variable block size).

A universal hash function collection is a family of functions {ℎ ∶
{0, 1}ℓ → {0, 1}𝑛} such that for every 𝑥 ≠ 𝑥′ ∈ {0, 1}ℓ, the random
variables ℎ(𝑥) and ℎ(𝑥′) (taken over the choice of a random ℎ from
this family) are pairwise independent in {0, 1}2𝑛. That is, for every
two potential outputs 𝑦, 𝑦′ ∈ {0, 1}𝑛,

Pr
ℎ
[ℎ(𝑥) = 𝑦 ∧ ℎ(𝑥′) = 𝑦′] = 2−2𝑛 (6.1)

Universal hash functions have rather efficient constructions, and in
particular if we relax the definition to allow almost universal hash func-
tions (where we replace the 2−2𝑛 factor in the righthand side of (6.1)
by a slightly bigger, though still negligible quantity) then the con-
structions become extremely efficient and the size of the description of
ℎ is only related to 𝑛, no matter how big ℓ is.6

Our encryption scheme is defined as follow. The key is (𝑘, ℎ) where
𝑘 is an index to a pseudorandom permutation {𝑝𝑘} and ℎ is the key for
a universal hash function.7 To encrypt a message 𝑚 = (𝑚1,… ,𝑚𝑡) ∈
{0, 1}𝑛𝑡 do the following:

• Choose IV at random in [2𝑛].

https://goo.gl/uz6WgS
https://goo.gl/uz6WgS
https://goo.gl/jLpNtU


chosen ciphertext security 157

• Let 𝑧𝑖 = 𝐸𝑘(IV+ 𝑖) for 𝑖 = 1,… , 𝑡 + 1.

• Let 𝑐𝑖 = 𝑧𝑖 ⊕𝑚𝑖.

• Let 𝑐𝑡+1 = ℎ(𝑐1,… , 𝑐𝑡) ⊕ 𝑧𝑡+1.

• Output (IV, 𝑐1,… , 𝑐𝑡+1).

The communication overhead includes one additional output block
plus the IV (whose transmission can often be avoided or reduced, de-
pending on the settings; see the notion of “nonce based encryption”).
This is fairly minimal. The additional computational cost on top of 𝑡
block-cipher evaluation is the application of ℎ(⋅). For the particular
choice of ℎ used in Galois Counter Mode, this function ℎ can be eval-
uated very efficiently- at a cost of a single multiplication in the Galois
field of size 2128 per block (one can think of it as some very particu-
lar operation that maps two 128 bit strings to a single one, and can be
carried out quite efficiently). We leave it as an (excellent!) exercise to
prove that the resulting scheme is CCA secure.

6.5 PADDING, CHOPPING, AND THEIR PITFALLS: THE “BUFFER
OVERFLOW” OF CRYPTOGRAPHY

In this course we typically focus on the simplest case where messages
have a fixed size. But in fact, in real life we often need to chop long
messages into blocks, or pad messages so that their length becomes an
integral multiple of the block size. Moreover, there are several subtle
ways to get this wrong, and these have been used in several practical
attacks.

Chopping into blocks: A block cipher a-priori provides a way to en-
crypt a message of length 𝑛, but we often have much longer messages
and need to “chop” them into blocks. This is where the block cipher
modes discussed in the previous lecture come in. However, the basic
popular modes such as CBC and OFB do not provide security against
chosen ciphertext attack, and in fact typically make it easy to extend
a ciphertext with an additional block or to remove the last block from
a ciphertext, both being operations which should not be feasible in a
CCA secure encryption.

Padding: Oftentimes messages are not an integer multiple of the
block size and hence need to be padded. The padding is typically a
map that takes the last partial block of the message (i.e., a string 𝑚
of length in {0,… , 𝑛 − 1}) and maps it into a full block (i.e., a string
𝑚 ∈ {0, 1}𝑛). The map needs to be invertible which in particular
means that if the message is already an integer multiple of the block
size we will need to add an extra block. (Since we have to map all the



158 an intensive introduction to cryptography

1+ 2+…+2𝑛−1 messages of length 1,… , 𝑛− 1 into the 2𝑛 messages of
length 𝑛 in a one-to-one fashion.) One approach for doing so is to pad
an 𝑛′ < 𝑛 length message with the string 10𝑛−𝑛′−1. Sometimes people
use a different padding which involves encoding the length of the pad.

6.6 CHOSEN CIPHERTEXT ATTACK AS IMPLEMENTING METAPHORS

The classical “metaphor” for an encryption is a sealed envelope, but
as we have seen in the WEP, this metaphor can lead you astray. If you
placed a message 𝑚 in a sealed envelope, you should not be able to
modify it to the message 𝑚 ⊕ 𝑚′ without opening the envelope, and
yet this is exactly what happens in the canonical CPA secure encryp-
tion 𝐸𝑘(𝑚) = (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚). CCA security comes much closer to
realizing the metaphor, and hence is considered as the “gold stan-
dard” of secure encryption. This is important even if you do not in-
tend to write poetry about encryption. Formal verification of computer
programs is an area that is growing in importance given that com-
puter programs become both more complex and more mission critical.
Cryptographic protocols can fail in subtle ways, and even published
proofs of security can turn out to have bugs in them. Hence there is
a line of research dedicated to finding ways to automatically prove se-
curity of cryptographic protocols. Much of these line of research is
based on simple models to describe protocols that are known as Dolev
Yao models, based on the first paper that proposed such models. These
models define an algebraic form of security, where rather than thinking
of messages, keys, and ciphertexts as binary string, we think of them
as abstract entities. There are certain rules for manipulating these
symbols. For example, given a key 𝑘 and a message 𝑚 you can create
the ciphertext {𝑚}𝑘, which you can decrypt back to 𝑚 using the same
key. However the assumption is that any information that cannot be
obtained by such manipulation is unknown.

Translating a proof of security in this algebra to a proof for real
world adversaries is highly non trivial. However, to have even a fight-
ing chance, the encryption scheme needs to be as strong as possible,
and in particular it turns out that security notions such as CCA play a
crucial role.

6.7 READING COMPREHENSION EXERCISES

I recommend students do the following exercises after reading the
lecture. They do not cover all material, but can be a good way to check
your understanding.

Exercise 6.1 Let (𝐸,𝐷) be the “canonical” PRF-based CPA secure en-
cryption, where 𝐸𝑘(𝑚) = (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚) and {𝑓𝑘} is a PRF collection
and 𝑟 is chosen at random. Is this scheme CCA secure?



chosen ciphertext security 159

Figure 6.4: The Dolev-Yao Algebra of what an adver-
sary or “intruder” knows. Figure taken from here.

a. No it is never CCA secure.

b. It is always CCA secure.

c. It is sometimes CCA secure and sometimes not, depending on the
properties of the PRF {𝑓𝑘}.

■

Exercise 6.2 Suppose that we allow a key to be as long as the message,
and so we can use the one time pad. Would the one-time pad be:

a. CPA secure

b. CCA secure

c. Neither CPA nor CCA secure.

■

Exercise 6.3 Which of the following statements is true about the proof
of Theorem 6.3:

a. Case I corresponds to breaking the MAC and Case II corresponds
to breaking the CPA security of the underlying encryption scheme.

b. Case I corresponds to breaking the CPA security of the underlying
encryption scheme and Case II corresponds to breaking the MAC.

c. Both cases correspond to both breaking the MAC and encryption
scheme

d. If neither Case I nor Case II happens then we obtain an adversary
breaking the security of the underlying encryption scheme.

■

https://en.wikipedia.org/wiki/Dolev%E2%80%93Yao_model
https://www.ceeol.com/search/article-detail?id=896120



