
5
Pseudorandom functions from pseudorandom generators and
CPA security

In this lecture we will see that the PRG conjecture implies the PRF
conjecture. We will also see how PRFs imply an encryption scheme
that is secure even when we encrypt multiple messages with the same
key.

We have seen that PRF’s (pseudorandom functions) are extremely
useful, and we’ll see some more applications of them later on. But
are they perhaps too amazing to exist? Why would someone imagine
that such a wonderful object is feasible? The answer is the following
theorem:

Theorem 5.1 — The PRF Theorem. Suppose that the PRG Conjecture is
true, then there exists a secure PRF collection {𝑓𝑠}𝑠∈{0,1}∗ such that
for every 𝑠 ∈ {0, 1}𝑛, 𝑓𝑠 maps {0, 1}𝑛 to {0, 1}𝑛.

Figure 5.1: The construction of a pseudorandom
function from a pseudorandom generator can be
illustrated by a depth 𝑛 binary tree. The root is
labeled by the seed 𝑠 and for every internal node 𝑣
labeled by a string 𝑥 ∈ {0, 1}𝑛, we use that label 𝑥
as a seed into the PRG 𝐺 to label 𝑣’s two children. In
particular, the children of 𝑣 are labeled with 𝐺0(𝑥)
and 𝐺1(𝑥) respectively. The output of the function 𝑓𝑠
on input 𝑖 is the label of the 𝑖𝑡ℎ leaf counting from left
to right. Note that the numbering of leaf 𝑖 is related to
the bitstring representation of 𝑖 and the path leaf 𝑖 in
the following way: we traverse to leaf 𝑖 from the root
by reading off the 𝑛 bits of 𝑖 left to right and descend
into the left child of the current node for every 0 we
encounter and traverse right for every 1.

Compiled on 11.17.2021 22:35

126 an intensive introduction to cryptography

Figure 5.2: In the “lazy evaluation” implementation
of the black box to the adversary, we label every
node in the tree only when we need it. Subsequent
traversals do not reevaluate the PRG, leading to reuse
of the intermediate seeds. Thus for example, two
sibling leaves will correspond to a single call to 𝐺(𝑥),
where 𝑥 is their parent’s label, but with the left child
receiving the first 𝑛 bits and the right child receiving
the second 𝑛 bits of 𝐺(𝑥). In this figure check marks
correspond to nodes that have been labeled and
question marks to nodes that are still unlabeled.

Proof. We describe the proof, see also Chapter 6 of Rosulek or Section
8.5 of Katz-Lindell (section 7.5 in 2nd edition) for alternative exposi-
tions.

If the PRG Conjecture is true then in particular by the length exten-
sion theorem there exists a PRG 𝐺 ∶ {0, 1}𝑛 → {0, 1}2𝑛 that maps 𝑛
bits into 2𝑛 bits. Let’s denote 𝐺(𝑠) = 𝐺0(𝑠) ∘ 𝐺1(𝑠) where ∘ denotes
concatenation. That is, 𝐺0(𝑠) denotes the first 𝑛 bits and 𝐺1(𝑠) denotes
the last 𝑛 bits of 𝐺(𝑠).

For 𝑖 ∈ {0, 1}𝑛, we define 𝑓𝑠(𝑖) as

𝐺𝑖𝑛(𝐺𝑖𝑛−1
(⋯𝐺𝑖1(𝑠))).

This corresponds to 𝑛 composed applications of 𝐺𝑏 for 𝑏 ∈ {0, 1}. If
the 𝑗𝑡ℎ bit of 𝑖’s binary string is 0 then the 𝑗𝑡ℎ application of the PRG is
𝐺0 otherwise it is 𝐺1. This series of successive applications starts with
the initial seed 𝑠.

This definition directly corresponds to the depiction in Fig. 5.1,
where the successive applications of 𝐺𝑏 correspond to the recursive
labeling procedure.

By the definition above we can see that to evaluate 𝑓𝑠(𝑖) we need to
evaluate the pseudorandom generator 𝑛 times on inputs of length 𝑛,
and so if the pseudorandom generator is efficiently computable then
so is the pseudorandom function. Thus, “all” that’s left is to prove that
the construction is secure and this is the heart of this proof.

I’ve mentioned before that the first step of writing a proof is con-
vincing yourself that the statement is true, but there is actually an
often more important zeroth step which is understanding what the
statement actually means. In this case what we need to prove is the
following:

We need to show that the security of the PRG 𝐺 implies the security
of the PRF ensemble {𝑓𝑠}. Via the contrapositive, this means that
we assume that there is an adversary 𝐴 that can distinguish in time
𝑇 a black box for 𝑓𝑠(⋅) from a black-box for a random function with
advantage 𝜖. We need to use 𝐴 come up with an adversary 𝐷 that
can distinguish in time 𝑝𝑜𝑙𝑦(𝑇) an input of the form 𝐺(𝑠) (where 𝑠 is
random in {0, 1}𝑛) from an input of the form 𝑦 where 𝑦 is random in
{0, 1}2𝑛 with bias at least 𝜖/𝑝𝑜𝑙𝑦(𝑇).

Assume that 𝐴 as above is a 𝑇 -time adversary that wins in the “PRF
game” with advantage 𝜖. Let us consider the “lazy evaluation” imple-
mentation of the black box for 𝐴 illustrated in Fig. 5.2. That is, at every
point in time there are nodes in the full binary tree that are labeled
and nodes which we haven’t yet labeled. When 𝐴 makes a query 𝑖,
this query corresponds to the path 𝑖1 …𝑖𝑛 in the tree. We look at the
lowest (furthest away from the root) node 𝑣 on this path which has
been labeled by some value 𝑦, and then we continue labelling the path

https://web.engr.oregonstate.edu/~rosulekm/crypto/chap6.pdf

pseudorandom functions from pseudorandom generators and cpa security 127

from 𝑣 downwards until we reach 𝑖. In other words, we label the two
children of 𝑣 by 𝐺0(𝑦) and 𝐺1(𝑦), and then if the path 𝑖 involves the
first child then we label its children by 𝐺0(𝐺0(𝑦)) and 𝐺1(𝐺0(𝑦)), and
so on and so forth (see Fig. 5.3). Note that because 𝐺0(𝑦) and 𝐺1(𝑦)
correspond to a single call to 𝐺, regardless of whether the traversals
continues left or right (i.e. whether the current level corresponds to a
value 0 or 1 in 𝑖) we label both children at the same time.

Figure 5.3: When the adversary queries 𝑖, the oracle
takes the path from 𝑖 to the root and computes the
generator on the minimum number of internal nodes
that is needed to obtain the label of the 𝑖𝑡ℎ leaf.

A moment’s thought shows that this is just another (arguably cum-
bersome) way to describe the oracle that simply computes the map
𝑖 ↦ 𝑓𝑠(𝑖). And so the experiment of running 𝐴 with this oracle pro-
duces precisely the same result as running 𝐴 with access to 𝑓𝑠(⋅). Note
that since 𝐴 has running time at most 𝑇 , the number of times our or-
acle will need to label an internal node is at most 𝑇 ′ ≤ 2𝑛𝑇 (since we
label at most 2𝑛 nodes for every query 𝑖).

We now define the following 𝑇 ′ hybrids: in the 𝑗𝑡ℎ hybrid, we
run this experiment but in the first 𝑗 times the oracle needs to label
internal nodes then it uses independent random labels. That is, for the
first 𝑗 times we label a node 𝑣, instead of letting the label of 𝑣 be 𝐺𝑏(𝑢)
(where 𝑢 is the parent of 𝑣, and 𝑏 ∈ {0, 1} corresponds to whether 𝑣 is
the left or right child of 𝑢), we label 𝑣 by a random string in {0, 1}𝑛.

Note that the 0𝑡ℎ hybrid corresponds to the case where the oracle
implements the function 𝑖 ↦ 𝑓𝑠(𝑖), while in the 𝑇 ′𝑡ℎ hybrid all labels
are random and hence implements a random function. By the hybrid
argument, if 𝐴 can distinguish between the 0𝑡ℎ hybrid and the 𝑇 ′𝑡ℎ

hybrid with bias 𝜖 then there must exists some 𝑗 such that it distin-
guishes between the 𝑗𝑡ℎ hybrid (pictured in Fig. 5.4) and the 𝑗 + 1𝑠𝑡
hybrid (pictured in Fig. 5.5) with bias at least 𝜖/𝑇 ′. We will use this 𝑗
and 𝐴 to break the pseudorandom generator.

We can now describe our distinguisher 𝐷 (see Fig. 5.6) for the
pseudorandom generator. On input a string 𝑦 ∈ {0, 1}2𝑛 𝐷 will run

128 an intensive introduction to cryptography

Figure 5.4: In the 𝑗𝑡ℎ hybrid the first 𝑗 internal labels
are drawn uniformly at random from 𝑈𝑛. All sub-
sequent children’s labels are produced in the usual
way by seeding 𝐺 with the label 𝑧 of the parent and
assigning the first 𝑛 bits (𝐺0(𝑧)) to the left child and
the last 𝑛 bits (𝐺1(𝑧)) to the right child. For exam-
ple, for some node 𝑣𝐿

𝑗−1 at the 𝑗𝑡ℎ level, we generate
pseudorandom string 𝐺(𝑣𝐿

𝑗−1) and label the left child
𝑣𝐿
𝑗 = 𝐺0(𝑣𝐿

𝑗−1) and the right child 𝑣𝑅
𝑗 = 𝐺1(𝑣𝐿

𝑗−1).
Note that the labeling scheme for this diagram is dif-
ferent from that in the previous figures. This is simply
for ease of exposition, we could still index our nodes
via the path reaching them from the root.

Figure 5.5: The 𝑗 + 1𝑠𝑡 hybrid differs from the 𝑗𝑡ℎ
in that the process of assigning random labels con-
tinues until the 𝑗 + 1𝑠𝑡 step as opposed to the 𝑗𝑡ℎ.
The hybrids are otherwise completely identically
constructed.

pseudorandom functions from pseudorandom generators and cpa security 129

Figure 5.6: Distinguisher D is similar to hybrid 𝑗,
in that the nodes in the first 𝑗 layers are assigned
completely random labels. When evaluating along
a particular path through 𝑣𝐿

𝑗−1, rather than labeling
the two children by applying 𝐺 to its label, it simply
splits the input 𝑦 into two strings 𝑦0...𝑛,𝑦𝑛+1...2𝑛. If
𝑦 is truly random, 𝐷 is identical to hybrid 𝑗 + 1. If
𝑦 = 𝐺(𝑠) for some random seed 𝑠, then 𝐷 simulates
hybrid 𝑗.

𝐴 and the 𝑗𝑡ℎ oracle inside its belly with one difference- when the
time comes to label the 𝑗𝑡ℎ node, instead of doing this by applying the
pseudorandom generator to the label of its parent 𝑣 (which is what
should happen in the 𝑗𝑡ℎ oracle) it uses its input 𝑦 to label the two
children of 𝑣.

Now, if 𝑦 was completely random then we get exactly the distribu-
tion of the 𝑗 + 1𝑠𝑡 oracle, and hence in this case 𝐷 simulates internally
the 𝑗 + 1𝑠𝑡 hybrid. However, if 𝑦 = 𝐺(𝑠) for some randomly sampled
𝑠 ∈ {0, 1}𝑛, though it may not be obvious at first, we actually get the
distribution of the 𝑗𝑡ℎ oracle.

The equivalence between hybrid 𝑗 and distinguisher 𝐷 under the
condition that 𝑦 = 𝐺(𝑠) is non obvious, because in hybrid 𝑗, the label
for the children of 𝑣𝐿𝑗−1 was supposed to be the result of applying the
pseudorandom generator to the label of 𝑣𝐿𝑗−1 and not to some other
random string (see Fig. 5.6). However, because 𝑣 was labeled before the
𝑗𝑡ℎ step then we know that it was actually labeled by a random string.
Moreover, since we use lazy evaluation we know that step 𝑗 is the first
time where we actually use the value of the label of 𝑣. Hence, if at
this point we resampled this label and used a completely independent
random string 𝑠 then the distribution of 𝑣𝐿𝑗−1 and 𝑠 would be identical.

The key observations here are:

1. The output of 𝐴 does not directly depend on the internal labels,
but only on the labels of the leaves (since those are the only values
returned by the oracle).

2. The label for an internal vertex 𝑣 is only used once, and that is for
generating the labels for its children.

130 an intensive introduction to cryptography

Hence the distribution of 𝑦 = 𝐺(𝑠), for 𝑠 drawn from 𝑈𝑛, is iden-
tical to the distribution, 𝐺(𝑣𝐿𝑗−1), of the 𝑗𝑡ℎ hybrid, and thus if 𝐴 had
advantage 𝜖 in breaking the PRF {𝑓𝑠} then 𝐷 will have advantage 𝜖/𝑇 ′

in breaking the PRG 𝐺 thus obtaining a contradiction.
■

R
Remark 5.2 — PRF’s in practice. While this construc-
tion reassures us that we can rely on the existence of
pseudorandom functions even on days where we re-
member to take our meds, this is not the construction
people use when they need a PRF in practice because
it is still somewhat inefficient, making 𝑛 calls to the
underlying pseudorandom generators. There are
constructions (e.g., HMAC) based on hash functions
that require stronger assumptions but can use as few
as two calls to the underlying function. We will cover
these constructions when we talk about hash functions
and the random oracle model. One can also obtain
practical constructions of PRFs from block ciphers,
which we’ll see later in this lecture.

5.1 SECURELY ENCRYPTING MANY MESSAGES - CHOSEN PLAIN-
TEXT SECURITY

Let’s get back to our favorite task of encryption. We seemed to have
nailed down the definition of secure encryption, or did we?

P
Try to think what kind of security guarantees are not
provided by the notion of computational secrecy we
saw in Definition 2.6

Definition 2.6 talks about encrypting a single message, but this is
not how we use encryption in the real world. Typically, Alice and Bob
(or Amazon and Boaz) setup a shared key and then engage in many
back and forth messages between one another. At first, we might
think that this issue of a single long message vs. many short ones
is merely a technicality. After all, if Alice wants to send a sequence
of messages (𝑚1,𝑚2,… ,𝑚𝑡) to Bob, she can simply treat them as a
single long message. Moreover, the way that stream ciphers work, Alice
can compute the encryption for the first few bits of the message she
decides what will be the next bits and so she can send the encryption
of 𝑚1 to Bob and later the encryption of 𝑚2. There is some truth to
this sentiment, but there are issues with using stream ciphers for
multiple messages. For Alice and Bob to encrypt messages in this

pseudorandom functions from pseudorandom generators and cpa security 131

1 Giving Eve the key as a sequence of 𝑛 1′s as op-
posed to in binary representation is a common no-
tational convention in cryptography. It makes no
difference except that it makes the input length for
Eve of length 𝑛, which makes sense since we want to
allow Eve to run in 𝑝𝑜𝑙𝑦(𝑛) time.

Figure 5.7: In the CPA game, Eve interacts with the
encryption oracle and at the end chooses 𝑚0,𝑚1, gets
an encryption 𝑐∗ = 𝐸𝑘(𝑚𝑏) and outputs 𝑏′. She wins
if 𝑏′ = 𝑏

way, they must maintain a synchronized shared state. If the message 𝑚1
was dropped by the network, then Bob would not be able to decrypt
correctly the encryption of 𝑚2.

There is another way in which treating many messages as a single
tuple is unsatisfactory. In real life, Eve might be able to have some im-
pact on what messages Alice encrypts. For example, the Katz-Lindell
book describes several instances in World War II where Allied forces
made particular military maneuver for the sole purpose of causing the
Axis forces to send encryptions of messages of the Allies’ choosing.
To consider a more modern example, today Google uses encryption
for all of its search traffic including (for the most part) the ads that
are displayed on the page. But this means that an attacker, by pay-
ing Google, can cause it to encrypt arbitrary text of their choosing.
This kind of attack, where Eve chooses the message she wants to be
encrypted is called a chosen plaintext attack. You might think that we
are already covering this with our current definition that requires se-
curity for every pair of messages and so in particular this pair could be
chosen by Eve. However, in the case of multiple messages, we would
want to allow Eve to be able to choose 𝑚2 after she saw the encryption
of 𝑚1.

All that leads us to the following definition, which is a strengthen-
ing of our definition of computational security:

Definition 5.3 — Chosen Plaintext Attack (CPA) secure encryption. An en-
cryption scheme (𝐸,𝐷) is secure against chosen plaintext attack (CPA
secure) if for every polynomial time 𝐸𝑣𝑒, Eve wins with probability
at most 1/2 + 𝑛𝑒𝑔𝑙(𝑛) in the game defined below:

1. The key 𝑘 is chosen at random in {0, 1}𝑛 and fixed.
2. Eve gets the length of the key 1𝑛 as input. 1

3. Eve interacts with 𝐸 for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) rounds as follows: in the 𝑖𝑡ℎ
round, Eve chooses a message 𝑚𝑖 and obtains 𝑐𝑖 = 𝐸𝑘(𝑚𝑖).

4. Then Eve chooses two messages 𝑚0,𝑚1, and gets 𝑐∗ = 𝐸𝑘(𝑚𝑏)
for 𝑏 ←𝑅 {0, 1}.

5. Eve continues to interact with 𝐸 for another 𝑝𝑜𝑙𝑦(𝑛) rounds, as
in Step 3.

6. Eve wins if she outputs 𝑏.

Definition 5.3 is illustrated in Fig. 5.7. Our previous notion of com-
putational secrecy (i.e., Definition 2.6) corresponds to the case that
we skip Steps 3 and 5 above. Since Steps 3 and 5 only give the ad-
versary more power (and hence is only more likely to win), CPA
security (Definition 5.3) is stronger than computational secrecy (Def-
inition 2.6), in the sense that every CPA secure encryption (𝐸,𝐷) is

132 an intensive introduction to cryptography

Figure 5.8: Insecurity of deterministic encryption
2 If the messages are guaranteed to have high entropy
which roughly means that the probability that a
message repeats itself is negligible, then it is possible
to have a secure deterministic private-key encryption,
and this is sometimes used in practice. (Though often
some sort of randomization or padding is added
to ensure this property, hence in effect creating a
randomized encryption.) Deterministic encryptions
can sometimes be useful for applications such as
efficient queries on encrypted databases. See this
lecture in Dan Boneh’s coursera course.

also computationally secure. It turns out that CPA security is strictly
stronger, in the sense that without modification, our stream ciphers
cannot be CPA secure. In fact, we have a stronger, and intially some-
what surprising theorem:

Theorem 5.4 — CPA security requires randomization. There is no CPA
secure (𝐸,𝐷) where 𝐸 is deterministic.

Proof. The proof is very simple: Eve will only use a single round of
interacting with 𝐸 where she will ask for the encryption 𝑐1 of 0ℓ. In
the second round, Eve will choose 𝑚0 = 0ℓ and 𝑚1 = 1ℓ, and get
𝑐∗ = 𝐸𝑘(𝑚𝑏) she will then output 0 if and only if 𝑐∗ = 𝑐1.

■

This proof is so simple that you might think it shows a problem
with the definition, but it is actually a real problem with security. If
you encrypt many messages and some of them repeat themselves, it is
possible to get significant information by seeing the repetition pattern
(cue the XKCD cartoon again, see Fig. 5.8). To avoid this issue we
need to use a randomized (or probabilistic) encryption, such that if we
encrypt the same message twice we won’t see two copies of the same
ciphertext.2 But how do we do that? Here pseudorandom functions
come to the rescue:

Theorem 5.5 — CPA security from PRFs. Suppose that {𝑓𝑠} is a PRF
collection where 𝑓𝑠 ∶ {0, 1}𝑛 → {0, 1}ℓ, then the following is a
CPA secure encryption scheme: 𝐸𝑠(𝑚) = (𝑟, 𝑓𝑠(𝑟) ⊕ 𝑚) where
𝑟 ←𝑅 {0, 1}𝑛, and 𝐷𝑠(𝑟, 𝑧) = 𝑓𝑠(𝑟) ⊕ 𝑧.

Proof. I leave to you to verify that 𝐷𝑠(𝐸𝑠(𝑚)) = 𝑚. We need to show
the CPA security property. As is usual in PRF-based constructions, we
first show that this scheme will be secure if 𝑓𝑠 was an actually random
function, and then use that to derive security.

Consider the game above when played with a completely random
function and let 𝑟𝑖 be the random string chosen by 𝐸 in the 𝑖𝑡ℎ round
and 𝑟∗ the string chosen in the last round. We start with the following
simple but crucial claim:

Claim: The probability that 𝑟∗ = 𝑟𝑖 for some 𝑖 is at most 𝑇/2𝑛.
Proof of claim: For any particular 𝑖, since 𝑟∗ is chosen indepen-

dently of 𝑟𝑖, the probability that 𝑟∗ = 𝑟𝑖 is 2−𝑛. Hence the claim fol-
lows from the union bound. QED

Given this claim we know that with probability 1 − 𝑇/2𝑛 (which is
1 − 𝑛𝑒𝑔𝑙(𝑛)), the string 𝑟∗ is distinct from any string that was chosen
before. This means that by the lazy evaluation principle, if 𝑓𝑠(⋅) is
a completely random function then the value 𝑓𝑠(𝑟∗) can be thought

https://goo.gl/GWJLFd
https://goo.gl/GWJLFd

pseudorandom functions from pseudorandom generators and cpa security 133

of as being chosen at random in the final round independently of
anything that happened before. But then 𝑓𝑠(𝑟∗) ⊕ 𝑚𝑏 amounts to
simply using the one-time pad to encrypt 𝑚𝑏. That is, the distributions
𝑓𝑠(𝑟∗) ⊕𝑚0 and 𝑓𝑠(𝑟∗) ⊕𝑚1 (where we think of 𝑟∗,𝑚0,𝑚1 as fixed and
the randomness comes from the choice of the random function 𝑓𝑠(⋅))
are both equal to the uniform distribution 𝑈𝑛 over {0, 1}𝑛 and hence
Eve gets absolutely no information about 𝑏.

This shows that if 𝑓𝑠(⋅) was a random function then Eve would win
the game with probability at most 1/2. Now if we have some efficient
Eve that wins the game with probability at least 1/2 + 𝜖 then we can
build an adversary 𝐴 for the PRF that will run this entire game with
black box access to 𝑓𝑠(⋅) and will output 1 if and only if Eve wins. By
the argument above, there would be a difference of at least 𝜖 in the
probability it outputs 1 when 𝑓𝑠(⋅) is random vs when it is pseudoran-
dom, hence contradicting the security property of the PRF.

■

5.2 PSEUDORANDOM PERMUTATIONS / BLOCK CIPHERS

Now that we have pseudorandom functions, we might get greedy and
want such functions with even more magical properties. This is where
the notion of pseudorandom permutations comes in.

::: {.definition title=“Pseudorandom permutations” #PRPdef} Let
ℓ ∶ ℕ → ℕ be some function that is polynomially bounded (i.e., there
are some 0 < 𝑐 < 𝐶 such that 𝑛𝑐 < ℓ(𝑛) < 𝑛𝐶 for every 𝑛). A
collection of functions {𝑓𝑠} where 𝑓𝑠 ∶ {0, 1}ℓ → {0, 1}ℓ for ℓ = ℓ(|𝑠|) is
called a pseudorandom permutation (PRP) collection if:

1. It is a pseudorandom function collection (i.e., the map 𝑠, 𝑥 ↦ 𝑓𝑠(𝑥)
is efficiently computable and there is no efficient distinguisher
between 𝑓𝑠(⋅) with a random 𝑠 and a random function).

2. Every function 𝑓𝑠 is a permutation of {0, 1}ℓ (i.e., a one to one and
onto map).

3. There is an efficient algorithm that on input 𝑠, 𝑦 returns 𝑓−1
𝑠 (𝑦).

The parameter 𝑛 is known as the key length of the pseudorandom
permutation collection and the parameter ℓ = ℓ(𝑛) is known as the
input length or block length. Often, ℓ = 𝑛 and so in most cases you
can safely ignore this distinction.

P
At first look ?? might seem not to make sense, since on
one hand it requires the map 𝑥 ↦ 𝑓𝑠(𝑥) to be a permu-
tation, but on the other hand it can be shown that with
high probability a random map 𝐻 ∶ {0, 1}ℓ → {0, 1}ℓ
will not be a permutation. How can then such a collec-
tion be pseudorandom? The key insight is that while

134 an intensive introduction to cryptography

a random map might not be a permutation, it is not
possible to distinguish with a polynomial number of
queries between a black box that computes a random
function and a black box that computes a random
permutation. Understanding why this is the case,
and why this means that ?? is reasonable, is crucial
to getting intuition to this notion, and so I suggest
you pause now and make sure you understand these
points.

As usual with a new concept, we want to know whether it is possi-
ble to achieve it and whether it is useful. The former is established by
the following theorem:

Theorem 5.6 — PRP’s from PRFs. If the PRF conjecture holds (and
hence by Theorem 5.1 also if the PRG conjecture holds) then there
exists a pseudorandom permutation collection.

Figure 5.9: We build a PRP 𝑝 on 2𝑛 bits from
three PRFs 𝑓𝑠1 , 𝑓𝑠2 , 𝑓𝑠3 on 𝑛 bits by letting
𝑝𝑠1,𝑠2,𝑠3 (𝑥1, 𝑥2) = (𝑧1, 𝑦2) where 𝑦1 = 𝑥1 ⊕ 𝑓𝑠1 (𝑥2),
𝑦2 = 𝑥2 ⊕ 𝑓𝑠2 (𝑦1) and 𝑧1 = 𝑓𝑠3 (𝑦2) ⊕ 𝑦1.

Proof. Fig. 5.9 illustrates the construction of a pseudorandom permu-
tation from a pseudorandom function. The construction (known as
the Luby-Rackoff construction) uses several rounds of what is known
as the Feistel Transformation that maps a function 𝑓 ∶ {0, 1}𝑛 →
{0, 1}𝑛 into a permutation 𝑔 ∶ {0, 1}2𝑛 → {0, 1}2𝑛 using the map
(𝑥, 𝑦) ↦ (𝑥, 𝑓(𝑥) ⊕ 𝑦).

Specifically, given a PRF family {𝑓𝑠} with 𝑛-bit keys, inputs, and
outputs, our candidate PRP family will be called {𝑝𝑠1,𝑠2,𝑠3}. Here,
𝑝𝑠1,𝑠2,𝑠3 ∶ {0, 1}2𝑛 → {0, 1}2𝑛 is calculated on input (𝑥1, 𝑥2) ∈ {0, 1}2𝑛
as follows (see Fig. 5.9):

• First, map (𝑥1, 𝑥2) ↦ (𝑦1, 𝑥2), where 𝑦1 = 𝑥1 ⊕ 𝑓𝑠1(𝑥2).

https://en.wikipedia.org/wiki/Feistel_cipher

pseudorandom functions from pseudorandom generators and cpa security 135

• Next, map (𝑦1, 𝑥2) ↦ (𝑦1, 𝑦2), where 𝑦2 = 𝑥2 ⊕ 𝑓𝑠2(𝑦1).
• Next, map (𝑦1, 𝑦2) ↦ (𝑧1, 𝑦2), where 𝑧1 = 𝑦1 ⊕ 𝑓𝑠3(𝑦2).
• Finally, output 𝑝𝑠1,𝑠2,𝑠3(𝑥1, 𝑥2) = (𝑧1, 𝑦2).

Each of the first three steps above corresponds to a single round of
the Feistel transformation, which is easily seen to be both efficiently
computable and efficiently invertible. In fact, we can efficiently calcu-
late 𝑝−1

𝑠1,𝑠2,𝑠3(𝑧1, 𝑦2) for an arbitrary string (𝑧1, 𝑦2) ∈ {0, 1}2𝑛 by running
the above three rounds of Feistel transformations in reverse order.

Thus, the real challenge in proving Theorem 5.6 is not showing
that {𝑝𝑠1,𝑠2,𝑠3} is a valid permutation, but rather showing that it is
pseudorandom. The details of remainder of this proof are a bit technical,
and can be safely skipped on a first reading.

Intuitively, the argument goes like this. Consider an oracle 𝒪 for
𝑝𝑠1,𝑠2,𝑠3 that answers an adversary’s query (𝑥1, 𝑥2) by carrying out the
three Feistel transformations outlined above and outputting (𝑧1, 𝑦2).
First, we’ll show that with high probability, 𝒪 will never encounter
the same intermediate string 𝑦1 twice, over the course of all queries
(unless the adversary makes a duplicate query). Since the string 𝑦1,
calculated in Step 1, determines the input on which 𝑓𝑠2 is evaluated
in Step 2, it follows that the strings 𝑦2 calculated in Step 2 will appear
to be chosen independently and at random. In particular, they too
will be pairwise distinct with high probability. Since the string 𝑦2
is in turn passed as input to 𝑓𝑠3 in Step 3, it follows that the strings
𝑧1 encountered over the course of all queries will also appear to be
chosen independently and at random. Ultimately, this means that the
oracle’s outputs (𝑧1, 𝑦2) will look like freshly independent, random
strings.

To make this reasoning precise, notice first that it suffices to estab-
lish the security of a variant of 𝑝𝑠1,𝑠2,𝑠3 in which the pseudorandom
functions 𝑓𝑠1 , 𝑓𝑠2 , and 𝑓𝑠3 used in the construction are replaced by
truly random functions ℎ1, ℎ2, ℎ3 ∶ {0, 1}𝑛 → {0, 1}𝑛. Call this vari-
ant 𝑝ℎ1,ℎ2,ℎ3

. Indeed, the assumption that {𝑓𝑠} is a PRF collection
tells us that making this change has only a negligible effect on the
output of an adversary with oracle access to 𝑝. With this in mind,
our job is to show that for every efficient adversary 𝐴, the difference
|Pr[𝐴𝑝ℎ1,ℎ2,ℎ3 (⋅)(1𝑛) = 1] − Pr[𝐴𝐻(⋅)(1𝑛) = 1]| is negligible. In this
expression, the first probability is taken over the choice of the random
functions ℎ1, ℎ2, ℎ3 ∶ {0, 1}𝑛 → {0, 1}𝑛 used in the Feistel transfor-
mation, and the second probability is taken over the random function
𝐻 ∶ {0, 1}2𝑛 → {0, 1}2𝑛. To simplify matters, suppose without loss of
generality that 𝐴 always makes 𝑞(𝑛) distinct queries to its oracle, de-
noted (𝑥(1)

1 , 𝑥(1)
2),… , (𝑥(𝑞(𝑛))

1 , 𝑥(𝑞(𝑛))
2) in order. Similarly, let 𝑦(𝑖)1 , 𝑦(𝑖)2 , 𝑧(𝑖)1

136 an intensive introduction to cryptography

denote the intermediate strings calculated in the three rounds of the
Feistel transformation. Here, 𝑞 is a polynomial in 𝑛.

Consider the case in which the adversary 𝐴 is interacting with the
oracle for 𝑝ℎ1,ℎ2,ℎ3

, as opposed to the random oracle. Let us say that
a collision occurs at 𝑦1 if for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑞(𝑛), the string 𝑦(𝑖)1
computed while answering 𝐴’s 𝑖th query coincides with the string 𝑦(𝑗)1
computed while answering 𝐴’s 𝑗th query. We claim the probability
that a collision occurs at 𝑦1 is negligibly small. Indeed, if a collision
occurs at 𝑦1, then 𝑦(𝑖)1 = 𝑦(𝑗)1 for some 𝑖 ≠ 𝑗. By the construction of
𝑝ℎ1,ℎ2,ℎ3

, this means that 𝑥(𝑖)
1 ⊕ ℎ1(𝑥(𝑖)

2) = 𝑥(𝑗)
1 ⊕ ℎ1(𝑥(𝑗)

2). In particular,
it cannot be the case that 𝑥(𝑖)

1 ≠ 𝑥(𝑗)
1 and 𝑥(𝑖)

2 = 𝑥(𝑗)
2 . Since we assumed

that 𝐴 makes distinct queries to its oracle, it follows that 𝑥(𝑖)
2 ≠ 𝑥(𝑗)

2 and
hence that ℎ1(𝑥(𝑖)

2) and ℎ1(𝑥(𝑗)
2) are uniform and independent. In other

words, Pr[𝑦(𝑖)1 = 𝑦(𝑗)1] = Pr[𝑥(𝑖)
1 ⊕𝑓1(𝑥(𝑖)

2) = 𝑥(𝑗)
1 ⊕𝑓1(𝑥(𝑗)

2)] = 2−𝑛. Taking
a union bound over all choices of 𝑖 and 𝑗, we see that the probability of
a collision at 𝑦1 is at most 𝑞(𝑛)2/2𝑛, which is negligible.

Next, define a collision at 𝑦2, by a pair of queries 1 ≤ 𝑖 < 𝑗 ≤ 𝑞(𝑛)
such that 𝑦(𝑖)2 = 𝑦(𝑗)2 . We argue that the probability of a collision at
𝑦2 is also negligible, provided that we condition on the overwhelm-
ingly likely event that no collision occurs at 𝑦1. Indeed, if 𝑦(𝑖)1 ≠ 𝑦(𝑗)1
for all 𝑖 ≠ 𝑗, then ℎ2(𝑦(1)1),… , ℎ2(𝑦(𝑞(𝑛))1) are distribued independently
and uniformly at random. In particular, we have Pr[𝑦(𝑖)2 = 𝑦(𝑗)2 ∣
no collision at 𝑦1] = 2−𝑛, which is negligible even after taking a union
bound over all 𝑖 and 𝑗. The same argument applied to the third round
of the Feistel transformation similarly shows that, conditioned on the
overwhelmingly likely event that no collision occurs at 𝑦1 or 𝑦2, the
strings 𝑧(1)1 ,… , 𝑧(𝑖)1 for 1 ≤ 𝑖 ≤ 𝑞(𝑛) are also distributed as fresh,
independent, random strings. At this point, we’ve shown that the ad-
versary cannot distinguish the outputs (𝑧(1)1 , 𝑦(1)2),… , (𝑧(𝑞(𝑛))1 , 𝑦(𝑞(𝑛))2) of
the oracle for 𝑝ℎ1,ℎ2,ℎ3

from the outputs of a random oracle unless an
event with negligibly small probability occurs. We conclude that the
collection {𝑝ℎ1,ℎ2,ℎ3

}, and hence our original collection {𝑝𝑠1,𝑠2,𝑠3}, is a
secure PRP collection.

For more details regarding this proof, see Section 4.5 in Boneh
Shoup or Section 8.6 (7.6 in 2nd ed) in Katz-Lindell, whose proof was
used as a model for ours.

■

R
Remark 5.7 — How many Feistel rounds?. The construc-
tion in the proof of Theorem 5.6 constructed a PRP 𝑝
by performing 3 rounds of the Feistel transformation
with a known PRF 𝑓 . It is an interesting exercise to
try to show that doing just 1 or 2 rounds of the Feis-

pseudorandom functions from pseudorandom generators and cpa security 137

Figure 5.10: A typical round of a block cipher, 𝑘𝑖 is the
𝑖𝑡ℎ round key, 𝑥𝑖 is the block before the 𝑖𝑡ℎ round and
𝑥𝑖+1 is the block at the end of this round.

tel transformation does not suffice to achieve a PRP.
Hint: consider an adversary that makes queries of the form
(𝑥1, 𝑥2) where 𝑥2 is held fixed and 𝑥1 is varied.

The more common name for a pseudorandom permutation is block
cipher (though typically block ciphers are expected to meet additional
security properties on top of being PRPs). The constructions for block
ciphers used in practice don’t follow the construction of Theorem 5.6
(though they use some of the ideas) but have a more ad-hoc nature.

One of the first modern block ciphers was the Data Encryption
Standard (DES) constructed by IBM in the 1970’s. It is a fairly good
cipher- to this day, as far as we know, it provides a pretty good num-
ber of security bits compared to its key length. The trouble is that its
key is only 56 bits long, which is no longer outside the reach of mod-
ern computing power. (It turns out that subtle variants of DES are far
less secure and fall prey to a technique known as differential crypt-
analysis; the IBM designers of DES were aware of this technique but
kept it secret at the behest of the NSA.)

Between 1997 and 2001, the U.S. National Institute of Standards and
Technology (NIST) ran a competition to replace DES which resulted
in the adoption of the block cipher Rijndael as the new advanced
encryption standard (AES). It has a block size (i.e., input length) of
128 bits and a key size (i.e., seed length) of 128, 196, or 256 bits.

The actual construction of AES (or DES for that matter) is not ex-
tremely illuminating, but let us say a few words about the general
principle behind many block ciphers. They are typically constructed
by repeating one after the other a number of very simple permuta-
tions (see Fig. 5.10). Each such iteration is called a round. If there are
𝑡 rounds, then the key 𝑘 is typically expanded into a longer string,
which we think of as a 𝑡 tuple of strings (𝑘1,… , 𝑘𝑡) via some pseu-
dorandom generator known as the key scheduling algorithm. The 𝑖-th
string in the tuple is known as the round key and is used in the 𝑖𝑡ℎ
round. Each round is typically composed of several components:
there is a “key mixing component” that performs some simple permu-
tation based on the key (often as simply as XOR’ing the key), there is
a “mixing component” that mixes the bits of the block so that bits that
were initially nearby don’t stay close to one another, and then there is
some non-linear component (often obtained by applying some simple
non-linear functions known as “S boxes” to each small block of the
input) that ensures that the overall cipher will not be an affine func-
tion. Each one of these operations is an easily reversible operations,
and hence decrypting the cipher simply involves running the rounds
backwards.

https://goo.gl/XiCvjs
https://goo.gl/XiCvjs
https://goo.gl/GAvbh8
https://goo.gl/GAvbh8
https://goo.gl/1HnqFb
https://goo.gl/1HnqFb

138 an intensive introduction to cryptography

3 Partially this is because in the above construction we
had to encode a plaintext of length 𝑛 with a ciphertext
of length 2𝑛 meaning an overhead of 100 percent in
the communication.

Figure 5.11: In the Electronic Codebook (ECB) mode,
every message is encrypted deterministically and
independently

Figure 5.12: An encryption of the Linux penguin (left
image) using ECB mode (middle image) vs CBC
mode (right image). The ECB encryption is insecure
as it reveals much structure about the original image.
Image taken from Wikipedia.

Figure 5.13: In the Cypher-Block-Chaining (CBC) the
encryption of the previous message is XOR’ed into
the current message prior to encrypting. The first
message is XOR’ed with an initialization vector (IV)
that if chosen randomly, ensures CPA security.

5.3 ENCRYPTION MODES

How do we use a block cipher to actually encrypt traffic? Well we
could use it as a PRF in the construction above, but in practice people
use other ways.3

The most natural approach would be that to encrypt a message
𝑚, we simply use 𝑝𝑠(𝑚) where {𝑝𝑠} is the PRP/block cipher. This is
known as the electronic code book (ECB) mode of a block cipher (see
Fig. 5.11). Note that we can easily decrypt since we can compute
𝑝−1
𝑠 (𝑚). If the PRP {𝑝𝑠} only accepts inputs of a fixed length ℓ, we can

use ECB mode to encrypt a message 𝑚 whose length is a multiple of
ℓ by writing 𝑚 = (𝑚1,𝑚2,… ,𝑚𝑡), where each block 𝑚𝑖 has length ℓ,
and then encrypting each block 𝑚𝑖 separately. The ciphertext output
by this encryption scheme is (𝑝𝑠(𝑚1),… , 𝑝𝑠(𝑚𝑡)). A major drawback
of ECB mode is that it is a deterministic encryption scheme and hence
cannot be CPA secure. Moreover, this is actually a real problem of se-
curity on realistic inputs (see Fig. 5.12), so ECB mode should never be
used.

A more secure way to use a block cipher to encrypt is the cipher
block chaining (CBC) mode. The idea of cipher block chaining is to
encrypt the blocks of a message 𝑚 = (𝑚1,… ,𝑚𝑡) sequentially. To
encrypt the first block 𝑚1, we XOR 𝑚1 with a random string known
as the initialization vector, or IV, before applying the block cipher 𝑝𝑠.
To encrypt one of the later blocks 𝑚𝑖, where 𝑖 > 1, we XOR 𝑚𝑖 with
the encryption of 𝑚𝑖−1 before applying the block cipher 𝑝𝑠. Formally,
the ciphertext consists of the tuple (IV, 𝑐1,… , 𝑐𝑡), where IV is chosen
uniformly at random and 𝑐𝑖 = 𝑝𝑠(𝑐𝑖−1 ⊕ 𝑚𝑖) for 1 ≤ 𝑖 ≤ 𝑡 (we use
the convention that 𝑐0 = IV). This encryption process is depicted
in Fig. 5.13. In order to decrypt (IV, 𝑐1,… , 𝑐𝑡), we simply calculate
𝑚𝑖 = 𝑝−1

𝑠 (𝑐𝑖) ⊕ 𝑐𝑖−1 for 1 ≤ 𝑖 ≤ 𝑡. Note that if we lose the block 𝑐𝑖 to
traffic in the CBC mode, then we are unable to decrypt the next block
𝑐𝑖+1, but we can recover from that point onwards.

On the one hand, CBC mode is vastly superior to a simple elec-
tronic codebook since CBC mode with a random IV is CPA secure
(proving this is an excellent exercise). On the other hand, CBC mode
suffers from the drawback that the encryption process cannot be par-
allelized: the ciphertext block 𝑐𝑖 must be computed before 𝑐𝑖+1.

In the output feedback (OFB) mode we first encrypt the all zero string
using CBC mode to get a sequence (𝑦1, 𝑦2,…) of pseudorandom
outputs that we can use as a stream cipher. To transmit a message
𝑚 ∈ {0, 1}∗, we send the XOR of 𝑚 with the bits output by this stream
cipher, along with the IV used to generate the sequence. The receiver
can decrypt a ciphertext (IV, 𝑐) by first using IV to recover (𝑦1, 𝑦2,…),
and then taking the XOR of 𝑐 with the appropriate number of bits

pseudorandom functions from pseudorandom generators and cpa security 139

from this sequence. Like CBC mode, OFB mode is CPA secure when
IV is chosen at random. Some advantages of OFB mode over CBC
mode include the ability for the sender to precompute the sequence
(𝑦1, 𝑦2,…) well before the message to be encrypted is known, as well
as the fact that the underlying function 𝑝𝑠 used to generate (𝑦1, 𝑦2,…)
only needs to be a PRF (not necessarily a PRP).

Perhaps the simplest mode of operation is counter (CTR) mode
where we convert a block cipher to a stream cipher by using the
stream 𝑝𝑠(IV), 𝑝𝑠(IV + 1), 𝑝𝑠(IV + 2),… where IV is a random string
in {0, 1}𝑛 which we identify with [2𝑛] (and perform addition modulo
2𝑛). That is, to encrypt a message 𝑚 = (𝑚1,… ,𝑚𝑡), we choose IV at
random, and output (IV, 𝑐1,… , 𝑐𝑡), where 𝑐𝑖 = 𝑝𝑠(IV + 𝑖) ⊕ 𝑚𝑖 for
1 ≤ 𝑖 ≤ 𝑡. Decryption is performed similarly. For a modern block
cipher, CTR mode is no less secure than CBC or OFB, and in fact of-
fers several advantages. For example, CTR mode can easily encrypt
and decrypt blocks in parallel, unlike CBC mode. In addition, CTR
mode only needs to evaluate 𝑝𝑠 once to decrypt any single block of the
ciphertext, unlike OFB mode.

A fairly comprehensive study of the different modes of block ci-
phers is in this document by Rogaway. His conclusion is that if we
simply consider CPA security (as opposed to the stronger notions
of chosen ciphertext security we’ll see in the next lecture) then counter
mode is the best choice, but CBC, OFB and CFB are widely imple-
mented due to legacy reasons. ECB should not be used (except as a
building block as part of a construction achieving stronger security).

5.4 OPTIONAL, ASIDE: BROADCAST ENCRYPTION

At the beginning of this chapter, we saw the proof of Theorem 5.1,
which states that the PRG Conjecture implies the existence of a secure
PRF collection. At the heart of this proof was a rather clever construc-
tion based on a binary tree. As it turns out, similar tree constructions
have been used time and again to solve many other problems in cryp-
tography. In this section, we will discuss just one such application of
these tree constructions, namely broadcast encryption.

Let’s put ourselves in the shoes of Hollywood executives facing
the following problem: we’ve just released a new movie for sale (in
the form of a download or a Blu-ray disc), and we’d like to prevent it
from being pirated. On the one hand, consumers who’ve purchased
a copy of the movie should be able to watch it on certain approved,
standalone devices such as TVs and Blu-ray players without needing
an external internet connection. On the other hand, to minimize the
risk of piracy, these consumers should not have access to the movie
data itself.

http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

140 an intensive introduction to cryptography

One way to protect the movie data, which we model as a string 𝑥,
is to provide consumers with a secure encryption 𝐸𝑘(𝑥) of the data.
Although the secret key 𝑘 used to encrypt the data is hidden from
consumers, it is provided to device manufacturers so that they can
embed it in their TVs and Blu-ray players in some secure, tamper-
resistant manner. As long as the key 𝑘 is never leaked to the public,
this system ensures that only approved devices can decrypt and play
a consumer’s copy of the movie. For this reason, we will sometimes
refer to 𝑘 as the device key. This setup is depicted in Fig. 5.14.

Figure 5.14: The problem setup for broadcast encryp-
tion.

Unfortunately, if we were to implement this scheme exactly as
written, it would almost certainly be broken in a matter of days. After
all, as soon as even a single device is hacked, the device key 𝑘 would
be revealed. This would allow the public to access our movie’s data, as
well as the data for all future movies we release for these devices! This
latter consequence is one that we would certainly want to avoid, and
doing so requires the notion of distinct, revocable keys:

Definition 5.8 — Broadcast Encryption Scheme. For our purposes, a broad-
cast encryption scheme consists of:

• A set of 𝑚 distinct devices (or device manufacturers), each of
which has access to one of the 𝑛-bit device keys 𝑘1,… , 𝑘𝑚.

• A decryption algorithm 𝐷 that receives as input a ciphertext 𝑦
and a key 𝑘𝑖.

pseudorandom functions from pseudorandom generators and cpa security 141

• An encryption algorithm 𝐸 that receives as input a plaintext 𝑥,
a key 𝑘𝑚𝑎𝑠𝑡𝑒𝑟, and a revocation set 𝑅 ⊆ [𝑚] of devices (or device
manufacturers) that are no longer to be trusted.

Intuitively, a broadcast encryption scheme is secure if 𝐷𝑘𝑖
can suc-

cessfully recover 𝑥 from 𝐸𝑘𝑚𝑎𝑠𝑡𝑒𝑟,𝑅(𝑥) whenever 𝑖 ∉ 𝑅, but fails to
do so whenever 𝑖 ∈ 𝑅. In our example of movie piracy, such an en-
cryption scheme would allow us to revoke certain device keys 𝑘𝑖 when
we find out that they have been leaked. To revoke a key 𝑘𝑖, we would
simply include 𝑖 ∈ 𝑅 when encrypting all future movies. Doing so
prevents 𝑘𝑖 from being used to decrypt these movies. Crucially, revok-
ing the key 𝑘𝑖 of the hacked device 𝑖 doesn’t prevent a secure device
𝑗 ≠ 𝑖 from continuing to perform decryption on future movie releases;
this is exactly what we want in our system.

For the sake of brevity, we will not provide a formal definition of
security for broadcast encryption schemes, although this can and has
been done. Instead, in the remainder of this section, we will describe
a couple examples of broadcast encryption schemes, one of which
makes clever use of a tree construction, as promised.

The simplest construction of a broadcast encryption scheme in-
volves letting 𝑘𝑚𝑎𝑠𝑡𝑒𝑟 = (𝑘1,… , 𝑘𝑚) be the collection of all device keys
and letting 𝐸𝑘𝑚𝑎𝑠𝑡𝑒𝑟,𝑅(𝑥) be the concatenation over all 𝑖 ∉ 𝑅 of a secure
encryption 𝐸𝑘𝑖

(𝑥). Device 𝑖 performs decryption by looking up the
relevant substring 𝐸𝑘𝑖

(𝑥) of the ciphertext and decrypting it with 𝑘𝑖.
Intuitively, with this scheme, if 𝑥 represents our movie data and there
are 𝑚 ≈ one million devices, then 𝐸𝑘𝑚𝑎𝑠𝑡𝑒𝑟,𝑅(𝑥) is just an encryption
of one million copies of the movie (one for each device key). Revok-
ing the key 𝑘𝑖 amounts to only encrypting 999, 999 copies of all future
movies, so that device 𝑖 can no longer perform decryption.

Clearly, this simple solution to the broadcast encryption prob-
lem has two serious inefficiencies: the length of the master key is
𝑂(𝑛𝑚), and the length of each encryption is 𝑂(|𝑥|𝑚). One way to
address the former problem is to use a key derivation function. That
is, we can shorten the master key by choosing a fixed PRF collection
{𝑓𝑘}, and calculating each device key 𝑘𝑖 by the rule 𝑘𝑖 = 𝑓𝑘𝑚𝑎𝑠𝑡𝑒𝑟

(𝑖).
The latter problem can be addressed using a technique known as
hybrid encryption. In hybrid encryption, we encrypt 𝑥 by first choos-
ing an ephemeral key 𝑘̂ ←𝑅 {0, 1}𝑛, encrypting 𝑘̂ using each device
key 𝑘𝑖 where 𝑖 ∉ 𝑅, and then outputting the concatenation of these
strings 𝐸𝑘𝑖

(𝑘̂), along with a single encryption 𝐸𝑘̂(𝑥) of the movie us-
ing the ephermal key. Incorporating these two optimizations reduces
the length of 𝑘𝑚𝑎𝑠𝑡𝑒𝑟 to 𝑂(𝑛) and the length of each encryption to
𝑂(𝑛𝑚+ |𝑥|).

142 an intensive introduction to cryptography

Figure 5.15: A tree based construction of broadcast
encryption with revocable keys.

It turns out that we can construct a broadcast encryption scheme
with even shorter ciphertexts by considering a tree of keys (see
Fig. 5.15). The root of this tree is labeled 𝑘∅, its children are 𝑘0 and 𝑘1,
their children are 𝑘00, 𝑘01, 𝑘10, 𝑘11, and so on. The depth of the tree is
log2 𝑚, and the value of each key in the tree is decided uniformly at
random, or by applying a key derivation function to a string 𝑘𝑚𝑎𝑠𝑡𝑒𝑟.
Each device 𝑖 receives all the keys on the path from the root to the
𝑖th leaf. For example, if 𝑚 = 8, then device 011 receives the keys
𝑘∅, 𝑘0, 𝑘01, 𝑘011.

To encrypt a message 𝑥, we carry out the following procedure:
initially, when no keys have been revoked, we encrypt 𝑥 using an
ephermal key 𝑘̂ (as described above) and encrypt 𝑘̂ with a single
device key 𝑘∅. This is sufficient since all devices have access to 𝑘∅. In
order to add a hacked device 𝑖 to the revocation set, we discard all
log2 𝑚 keys belonging to device 𝑖, which comprise a root-to-leaf path
in the tree. Instead of using these keys, we will make sure to encrypt
all future 𝑘̂’s using the siblings of the vertices along this path. Doing
so ensures that (1) device 𝑖 can no longer decrypt secure content and
(2) every device 𝑗 ≠ 𝑖 can continue to decrypt content using at least
one of the keys along the path from the root to the 𝑗th leaf. With this
scheme, the total length of a ciphertext is only 𝑂(𝑛|𝑅| log2 𝑚+|𝑥|) bits,
where |𝑅| is the number of devices revoked so far. When |𝑅| is small,
this bound is much better than what we previously achieved without a
tree-based construction.

pseudorandom functions from pseudorandom generators and cpa security 143

5.5 READING COMPREHENSION EXERCISES

I recommend students do the following exercises after reading the
lecture. They do not cover all material, but can be a good way to check
your understanding.

Exercise 5.1 Let (𝐸,𝐷) be the encryption scheme that we saw in Lec-
ture 2 where 𝐸𝑘(𝑚) = 𝐺(𝑘) ⊕ 𝑚 where 𝐺(⋅) is a pseudorandom
generator. Is this scheme CPA secure?

a. No it is never CPA secure.
b. It is always CPA secure.
c. It is sometimes CPA secure and sometimes not, depending on the

properties of the PRG 𝐺

■

Exercise 5.2 Consider the proof constructing PRFs from PRGs. Up
to an order of magnitude, how many invocations of the underlying
pseudorandom generator does the pseudorandom function collection
make when queried on an input 𝑖 ∈ {0, 1}𝑛?

a. 𝑛
b. 𝑛2

c. 1
d. 2𝑛

■

Exercise 5.3 In the following we identify a block cipher with a pseudo-
random permutation (PRP) collection. Which of these statements is
true:

a. Every PRP collection is also a PRF collection
b. Every PRF collection is also a PRP collection
c. If {𝑓𝑠} is a PRP collection then the encryption scheme 𝐸𝑠(𝑚) =

𝑓𝑠(𝑚) is a CPA secure encryption scheme.
d. If {𝑓𝑠} is a PRF collection then the encryption scheme 𝐸𝑠(𝑚) =

𝑓𝑠(𝑚) is a CPA secure encryption scheme.

■

