4
Pseudorandom functions

Reading: Rosulek Chapter 6 has a good description of pseudorandom
functions. Katz-Lindell cover pseudorandom functions in a different
order than us. The topics of this lecture and the next ones are covered
in KL sections 3.4-3.5 (PRFs and CPA security), 4.1-4.3 (MACs), and
8.5 (construction of PRFs from PRG).

In the last lecture we saw the notion of pseudorandom generators, and
introduced the PRG conjecture, which stated that there exists a pseu-
dorandom generator mapping n bits to n + 1 bits. We have seen the
length extension theorem, which states that given such a pseudoran-
dom generator, there exists a generator mapping n bits to m bits for an
arbitrarily large polynomial m(n). But can we extend it even further?
Say, to 2" bits? Does this question even make sense? And why would
we want to do that? This is the topic of this lecture.

At a first look, the notion of extending the output length of a pseu-
dorandom generator to 2" bits seems nonsensical. After all, we want
our generator to be efficient and just writing down the output will take
exponential time. However, there is a way around this conundrum.
While we can't efficiently write down the full output, we can require
that it would be possible, given an index i € {0, ..., 2" — 1}, to compute) , o . .

. We will often identify the strings of length n with
the i*” bit of the output in polynomial time.! That is, we require that the numbers between 0 and 271, and switch freely

the function ¢ -+ G(s); is efficiently computable and (by security of between the two representations, and hence can think
of 4 also as a string in {0, 1}". We will also switch
between indexing strings starting from 0 and starting
maps each index i to an independent random bit in {0, 1}. This is the from 1 based on convenience.

the pseudorandom generator) indistinguishable from a function that

notion of a pseudorandom function generator which is a bit subtle to de-
fine and construct, but turns out to have a great many applications in

cryptography.

Definition 4.1 — Pseudorandom Function Generator. An efficiently com-
putable function F taking two inputs s € {0,1}* and i € {0, ..., 2/*|—
1} and outputting a single bit F'(s, ¢) is a pseudorandom function

Compiled on 11.17.2021 22:35

https://web.engr.oregonstate.edu/~rosulekm/crypto/chap6.pdf

112 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

(PRF) generator if for every polynomial time adversary A out-
putting a single bit and polynomial p(n), if n is large enough then:

E [AFEI (1) — E AH(1n 1 .
56{071}"[)] HeR[Q"]A{O,l}[(I)]fi< 1/p(n)

Some notes on notation are in order. The input 1" is simply a string
of n ones, and it is a typical cryptography convention to assume that
such an input is always given to the adversary. This is simply be-
cause by “polynomial time adversary” we really mean polynomial in
n (which is our key size or security parameter)2. The notation A”(*")
means that A has black box (also known as oracle) access to the func-
tion that maps ¢ to F'(s,). That is, A can choose an index i, query the
box and get F'(s,), then choose a new index i’, query the box to get
F(s,i"), and so on for a polynomial number of queries. The notation
H +5 [2"] — {0,1} means that H is a completely random function
that maps every index i to an independent and random different bit.

Remark 4.2 — Completely Random Functions. This no-
tion of a randomly chosen function can be difficult to
wrap your mind around. Try to imagine a table of all
of the strings in {0, 1}". We now go to each possible
input, randomly generate a bit to be its output, and
write down the result in the table. When we're done,
we have a length 2" lookup table that maps each input
to an output that was generated uniformly at random
and independently of all other outputs. This lookup
table is now our random function H.

In practice it’s too cumbersome to actually generate

all 2™ bits, and sometimes in theory it’s convenient to
think of each output as generated only after a query is
made. This leads to adopting the lazy evaluation model.
In the lazy evaluation model, we imagine that a lazy
person is sitting in a room with the same lookup table
as before, but with all entries blank. If someone makes
some query H(s), the lazy person checks if the entry
for s in the lookup table is blank. If so, the lazy evalu-
ator generates a random bit, writes down the result for
s, and returns it. Otherwise, if an output has already
been generated for s previously (because s has been
queried before), the lazy evaluator simply returns this
value. Can you see why this model is more convenient
in some ways?

One last way to think about how a completely random
function is determined is to first observe that there
exist a total of 22" functions from {0, 1}" to {0,1} (can
you see why? It may be easier to think of them as
functions from [2"] to {0, 1}). We choose one of them

2 This also allows us to be consistent with the notion
of “polynomial in the size of the input.”

uniformly at random to be H, and it’s still the case
that for any given input s the result H(s) is 0 or 1 with
equal probability independent of any other input.

Regardless of which model we use to think about gen-
erating H, after we’ve chosen H and put it in a black
box, the behavior of H is in some sense “determinis-
tic” because given the same query it will always return
the same result. However, before we ever make any
given query s we can only guess H (s) correctly with
probability 1, because without previously observing
H(s) it is effectively random and undecided to us (just
like in the lazy evaluator model).

Now would be a fantastic time to stop and think
deeply about the three constructions in the remark
above, and in particular why they are all equivalent. If
you don’t feel like thinking then at the very least you
should make a mental note to come back later if you're
confused, because this idea will be very useful down
the road.

Thus, the notation A in the PRF definition means A has access
to a completely random black box that returns a random bit for any
new query made, and on previously seen queries returns the same bit
as before. Finally one last note: below we will identify the set [2"] =
{0,...,2™ — 1} with the set {0, 1}" (there is a one to one mapping
between those sets using the binary representation), and so we will
treat ¢ interchangeably as a number in [2”] or a string in {0, 1}™.

Ensembles of PRFs. If F is a pseudorandom function generator, then
if we choose a random string s and consider the function f, defined
by f,(i) = F'(s,4), no efficient algorithm can distinguish between
black box access to f,(-) and black box access to a completely random
function (see Fig. 4.1). Notably, black box access implies that a priori
the adversary does not know which function it’s querying. From the
adversary’s point of view, they query some oracle O (which behind
the scenes is either f,(-) or H), and must decide if O = f,(-) or O =
H. Thus often instead of talking about a pseudorandom function
generator we will refer to a pseudorandom function ensemble { f,}c10 13-
Formally, this is defined as follows:

Definition 4.3 — PRF ensembles. Let {f,},c(0,1}- be an ensemble of
functions such that for every s € {0,1}*, f, : {0,1}*/ — {0,1}. We
say that { f,} is a pseudorandom function ensemble if the function F'

PSEUDORANDOM FUNCTIONS

113

114 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

thatoninput s € {0,1}*andi € {0,...,2!*l — 1} outputs f,(i) is a
PRF generator.

Note that the condition of Definition 4.3 corresponds to requiring
that for every polynomial p and p(n)-time adversary A4, if n is large
enough then

E ARO[< 1p(n)

where 7, , is the set of all functions mapping {0,1}" to {0,1} (i.e.,
the set {0,1}" — {0,1}).

O

It is worth while to pause and make sure you un-
derstand why Definition 4.3 and Definition 4.1 give
different ways to talk about the same object.

\"_f?((l’"
S €591y

BLACK ! B
ROX
Confuse
Ou\’(t/uu fler;”7

In the next lecture we will see the proof of following theorem (due
to Goldreich, Goldwasser, and Micali)

Theorem 4.4 — PRFs from PRGs. Assuming the PRG conjecture, there
exists a secure pseudorandom function generator.

But before we see the proof of Theorem 4.4, let us see why pseudo-
random functions could be useful.

Figure 4.1: In a pseudorandom function, an adversary
cannot tell whether they are given a black box that
computes the function i — F'(s, i) for some secret s
that was chosen at random and fixed, or whether the
black box computes a completely random function
that tosses a fresh random coin whenever it’s given a
new input 7.

4.1 ONE TIME PASSWORDS (E.G. GOOGLE AUTHENTICATOR, RSA
ID, ETC.)

Until now we have talked about the task of encryption, or protecting
the secrecy of messages. But the task of authentication, or protecting
the integrity of messages is no less important. For example, consider
the case that you receive a software update for your PC, phone, car,
pacemaker, etc. over an open channel such as an unencrypted Wi-

Fi connection. The contents of that update are not secret, but it is of
crucial importance that it was unchanged from the message sent out
by the company and that no malicious attacker had modified the
code. Similarly, when you log into your bank, you might be much
more concerned about the possibility of someone impersonating you
and cleaning out your account than you are about the secrecy of your
information.

Let’s start with a very simple scenario which we’ll call the login
problem. Alice and Bob share a key as before, but now Alice wants to
simply prove her identity to Bob. What makes this challenging is that
this time they need to contend with not the passive eavesdropping
Eve but the active adversary Mallory, who completely controls the
communication channel between them and can modify (or mall) any
message that they send. Specifically for the identity proving case, we
think of the following scenario. Each instance of such an identifica-
tion protocol consists of some interaction between Alice and Bob that
ends with Bob deciding whether to accept it as authentic or reject as
an impersonation attempt. Mallory’s goal is to fool Bob into accepting
her as Alice.

The most basic way to try to solve the login problem is by simply
using a password. That is, if we assume that Alice and Bob can share
a key, we can treat this key as some secret password p that was se-
lected at random from {0, 1}" (and hence can only be guessed with
probability 27™). Why doesn’t Alice simply send p to Bob to prove
to him her identity? A moment’s thought shows that this would be a
very bad idea. Since Mallory is controlling the communication line,
she would learn p after the first identification attempt and could then
easily impersonate Alice in future interactions. However, we seem to
have just the tool to protect the secrecy of p— encryption. Suppose that
Alice and Bob share a secret key k and an additional secret password
p. Wouldn't a simple way to solve the login problem be for Alice to
send Bob an encryption of the password p? After all, the security of
the encryption should guarantee that Mallory can’t learn p, right?

®

PSEUDORANDOM FUNCTIONS

115

116 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

This would be a good time to stop reading and try to
think for yourself whether using a secure encryption
to encrypt p would guarantee security for the login
problem. (No really, stop and think about it.)

The problem is that Mallory does not have to learn the password
p in order to impersonate Alice. For example, she can simply record
the message Alice ¢, sends to Bob in the first session and then replay
it to Bob in the next session. Since the message is a valid encryption
of p, then Bob would accept it from Mallory! (This is known as a
replay attack and is a common attack one needs to protect against in
cryptographic protocols.) One can try to put in countermeasures to
defend against this particular attack, but its existence demonstrates
that secrecy of the password does not guarantee security of the login
protocol.

4.1.1 How do pseudorandom functions help in the login problem?
The idea is that they create what’s known as a one time password. Alice
and Bob will share an index s € {0,1}" for the pseudorandom func-
tion generator { f,}. When Alice wants to prove her identity to Bob,
Bob will choose a random i + {0,1}", send i to Alice, and then Alice
will send f, (i), f;(i+1),..., f;(i+¢—1) to Bob where ¢ is some param-
eter (you can think of ¢ = n for simplicity). Bob will check that indeed
y = f,(i) and if so accept the session as authentic.

The formal protocol is as follows:

Protocol PRF-Login:

e Shared input: s € {0,1}". Alice and Bob treat it as a seed for a
pseudorandom function generator { f,}.
e In every session Alice and Bob do the following:

1. Bob chooses a random i <5 [2"] and sends ¢ to Alice.

2. Alice sends yy, ..., y, to Bob where y; = f,(i +j —1).

3. Bob checks that for every j € {1,..., ¢}, y; = f.(i +j— 1) and if
so accepts the session; otherwise he rejects it.

As we will see it’s not really crucial that the input ¢ (which is
known in crypto parlance as a nonce) is random. What is crucial is that
it never repeats itself, to foil a replay attack. For this reason in many
applications Alice and Bob compute i as a function of the current time
(for example, the index of the current minute based on some agreed-
upon starting point), and hence we can make it into a one message
protocol. Also the parameter / is sometimes chosen to be deliberately
short so that it will be easy for people to type the values y, ..., y,.

Why is this secure? The key to understanding schemes using pseu-
dorandom functions is to imagine what would happen if f, was be

|

/-
(\ﬁ SI:cir/I\Dv 59 S 9 >

— ey

Figure 4.2: The Google Authenticator app is one
popular example of a one-time password scheme
using pseudorandom functions. Another example is
RSA’s SecurID token.

an actual random function instead of a pseudo random function. In a
truly random function, every one of the values f,(0), ..., f,(2" — 1)
is chosen independently and uniformly at random from {0,1}. One
useful way to imagine this is using the concept of “lazy evaluation”.
We can think of fg as determined by tossing 2™ different coins for
the values f(0), ..., f(2™ — 1). Now consider the case where we don't
actually toss the i'" coin until we need it. The crucial point is that

if we have queried the functionin 7' « 2" places, then when Bob
chooses a random ¢ € [2"] it is extremely unlikely that any one of the
set {i,i + 1,...,7 + ¢ — 1} will be one of those locations that we pre-
viously queried. Thus, if the function was truly random, Mallory has
no information on the value of the function in these coordinates, and
would be able to predict (or rather, guess) it in all these locations with
probability at most 2.

®)

Please make sure you understand the informal rea-
soning above, since we will now translate this into a
formal theorem and proof.

Theorem 4.5 — Login protocol via PRF. Suppose that { f} is a secure
pseudorandom function generator and Alice and Bob interact us-
ing Protocol PRF - Login for some polynomial number T of sessions
(over a channel controlled by Mallory). After observing these in-
teractions, Mallory then interacts with Bob, where Bob follows the
protocol’s instructions but Mallory has access to arbitrary efficient
computation. Then, the probability that Bob accepts the interaction
is at most 27 + (n) where p(-) is some negligible function.

Proof. This proof, as so many others in this course, uses an argument
via contradiction. We assume, towards the sake of contradiction, that
there exists an adversary M (for Mallory) that can break the identifi-
cation scheme PRF -Login with probability 27* + € after T interactions.
We then construct an attacker A that can distinguish access to { f, }
from access to a random function in poly(T') time and with bias at
least €/2.

How do we construct this adversary A? The idea is as follows. First,
we prove that if we ran the protocol PRF -Login using an actual random
function, then M would not be able to succeed in impersonating with
probability better than 27¢ + negligible. Therefore, if M does do better,
then we can use that to distinguish f, from a random function. The
adversary A gets some black box O(-) (for oracle) and will use it while
internally simulating all the parties— Alice, Bob and Mallory (using
M) in the T' + 1 interactions of the PRF -Login protocol. Whenever any

PSEUDORANDOM FUNCTIONS

117

118 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

of the parties needs to evaluate f, (i), A will forward i to its black box
O(-) and return the value O(4). It will then output 1 if and only if M
succeeds in impersonation in this internal simulation. The argument
above showed that if O() is a truly random function, then the proba-
bility that A outputs 1 is at most 27 + negligible (and so in particular
less than 2% + ¢/2). On the other hand, if O(-) is the function i — f, (i)
for some fixed and random s, then this probability is at least 27* + e.
Thus A will distinguish between the two cases with bias at least €/2.
We now turn to the formal proof:

Claim 1: Let PRF -Login* be the hypothetical variant of the protocol
PRF-Login where Alice and Bob share a completely random function
H : [2"] — {0, 1}. Then, no matter what Mallory does, the probability
she can impersonate Alice after observing 71" interactions is at most
27¢ + (8¢T) /2™

(If PRF -Login* is easier to prove secure than PRF-Login, you might
wonder why we bother with PRF -Login in the first place and not sim-
ply use PRF -Login*. The reason is that specifying a random function
H requires specifying 2" bits, and so that would be a huge shared key.
So PRF-Login# is not a protocol we can actually run but rather a hy-
pothetical “mental experiment” that helps us in arguing about the
security of PRF-Login.)

Proof of Claim 1: Let 4, ..., i, be the nonces chosen by Bob and
recieved by Alice in the first T iterations. That is, 4, is the nonce cho-
sen by Bob in the first iteration while i, is the nonce that Alice re-
ceived in the first iteration (if Mallory doesn’t modify it then i; = 4,).
Similarly, i, is the nonce chosen by Bob in the second iteration while
i, is the nonce received by Alice and so on and so forth. Let ¢ be the
nonce chosen in the 7' + 1% iteration in which Mallory tries to im-
personate Alice. We claim that the probability that there exists some
J €{1,...,2T} such that [i —i,| < 2{is at most 8/7'/2". Indeed, let S
be the union of all the intervals of the form {i; —2¢+1,... i, +2{ — 1}
forl1 < j < 27T. Since it’s a union of 27" intervals each of length
less than 44, S contains at most 87/ elements, so the probability that
i € Sis|S|/2™ < (8T%)/2™. Now, if there does not exists a j such that
li—i;| < 2 then it means in particular that all the queries to [(-) made
by either Alice or Bob during the first T iterations are disjoint from the
interval {4,% + 1,...,4 + ¢ — 1}. Since H(-) is a completely random
function, the values H (i), ..., H(i + ¢ — 1) are chosen uniformly and
independently from all the rest of the values of this function. Since
Mallory’s message y to Bob in the T' + 1°* iteration depends only on
what she observed in the past, the values H(i), ..., H(i+{—1) are inde-
pendent from y, and hence under the condition that there is no overlap
between this interval and prior queries, the probability that they equal
yis 27¢. QED (Claim 1).

The proof of Claim 1 is not hard but it is somewhat subtle, so it’s
good to go over it again and make sure you understand it.

Now that we have Claim 1, the proof of the theorem follows as
outlined above. We build an adversary A to the pseudorandom func-
tion generator from M by having A simulate “inside its belly” all the
parties Alice, Bob and Mallory and output 1 if Mallory succeeds in
impersonating. Since we assumed e is non-negligible and 7" is polyno-
mial, we can assume that (8¢7) /2" < ¢/2 and hence by Claim 1, if the
black box is a random function, then we are in the PRF -Login* setting
and Mallory’s success will be at most 2¢ + ¢/2. If the black box is
fs(+), then we get exactly the PRF -Login setting and hence under our
assumption the success will be at least 27¢ + ¢. We conclude that the
difference in probability of A outputting 1 between the random and
pseudorandom case is at least ¢/2 thus contradicting the security of
the pseudorandom function generator.

4.1.2 Modifying input and output lengths of PRFs

In the course of constructing this one-time-password scheme from a
PRF, we have actually proven a general statement that is useful on its
own: that we can transform standard PRF which is a collection {f,}
of functions mapping {0, 1}" to {0, 1}, into a PRF where the functions
have a longer output ¢. Specifically, we can make the following defini-
tion:

Definition 4.6 — PRF ensemble (varying inputs and outputs). Let ¢, ., ¢,
N — N. An ensemble of functions { f,}c(o,1}- is @ PRF ensemble with
input length ¢;, and output length ¢, if:

1. Foreveryn € Nand s € {0,1}", f, : {0, 1} — {0, 1}fou.

2. For every polynomial p and p(n)-time adversary A4, if n is large
enough then

E [Af0Oam) — E Ah(m)| < 1 .
SE{O,]_}”[()] hFR{O,l}einﬁ{O,l}[om[()] /p(n)

Standard PRFs as we defined in Definition 4.3 correspond to gener-
alized PRFs where ¢, (n) = nand ¢, (n) = 1 foralln € N. Itis a good
exercise (which we will leave to the reader) to prove the following
theorem:

PSEUDORANDOM FUNCTIONS

119

120 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

Theorem 4.7 — PRF length extension. Suppose that PRFs exist. Then
for every constant ¢ and polynomial-time computable functions
lins bout + N — Nwith £ (n), £,,:(n) < n¢ there exist a PRF ensem-

ble with input length ¢,, and output length /.

Thus from now on whenever we are given a PRF, we will allow
ourselves to assume that it has any polynomial output size that is
convenient for us.

4.2 MESSAGE AUTHENTICATION CODES

One time passwords are a tool allowing you to prove your identity to,
say, your email server. But even after you did so, how can the server
trust that future communication comes from you and not from some
attacker that can interfere with the communication channel between
you and the server (so called “man in the middle” attack)? Similarly,
one time passwords may allow a software company to prove their
identity before they send you a software update, but how do you
know that an attacker does not change some bits of this software
update on route between their servers and your device?

This is where Message Authentication Codes (MACs) come into play-
their role is to authenticate not only the identity of the parties but
also their communication. Once again we have Alice and Bob, and the
adversary Mallory who can actively modify messages (in contrast
to the passive eavesdropper Eve). Similar to the case to encryption,
Alice has a message m she wants to send to Bob, but now we are not
concerned with Mallory learning the contents of the message. Rather,
we want to make sure that Bob gets precisely the message m sent by
Alice. Actually this is too much to ask for, since Mallory can always
decide to block all communication, but we can ask that either Bob gets
precisely m or he detects failure and accepts no message at all. Since
we are in the private key setting, we assume that Alice and Bob share a
key k that is unknown to Mallory.

What kind of security would we want? We clearly want Mallory
not to be able to cause Bob to accept a message m’ # m. But, like
in the encryption setting, we want more than that. We would like
Alice and Bob to be able to use the same key for many messages. So,
Mallory might observe the interactions of Alice and Bob on messages
my, ..., mp before trying to cause Bob to accept a message m7.,; #
myp,. In fact, to make our notion of security more robust, we will
even allow Mallory to choose the messages my, ..., m (this is known
as a chosen message or chosen plaintext attack). The resulting formal
definition is below:

Definition 4.8 — Message Authentication Codes (MAC). Let (S, V') (for sign
and verify) be a pair of efficiently computable algorithms where

S takes as input a key k and a message m, and produces a tag

7 € {0,1}*, while V takes as input a key k, a message m, and a tag
7,and produces abitb € {0,1}. We say that (S, V) is a Message
Authentication Code (MAC) if:

e For every key k and message m, V,(m, S, (m)) = 1.

e For every polynomial-time adversary A and polynomial p(n),
it is with less than 1/p(n) probability over the choice of & <3
{0,1}" that AS+()(1™) = (m’,7’) such that m’ is not one of the
messages A queries and Vi (m’,7/) = 1. 3

If Alice and Bob share the key k, then to send a message m to Bob,
Alice will simply send over the pair (m, 7) where 7 = S, (m). If
Bob receives a message (m’, 7’), then he will accept m” if and only
if V,(m’,7") = 1. Mallory now observes ¢t rounds of communication
of the form (m,, S (m;)) for messages my, ..., m, of her choice, and her
goal is to try to create a new message m’ that was not sent by Alice,
but for which she can forge a valid tag 7’ that will pass verification.
Our notion of security guarantees that she’ll only be able to do so with
negligible probability, in which case the MAC is CMA-secure.*

Remark 4.9 — Why can Mallory choose the messages?.
The notion of a “chosen message attack” might seem
a little “over the top”. After all, Alice is going to send
to Bob the messages of her choice, rather than those
chosen by her adversary Mallory. However, as cryp-
tographers have learned time and again the hard way,
it is better to be conservative in our security defini-
tions and think of an attacker that has as much power
as possible. First of all, we want a message authentica-
tion code that will work for any sequence of messages,
and so it’s better to consider this “worst case” setting
of allowing Mallory to choose them. Second, in many
realistic settings an adversary could have some effect
on the messages that are being sent by the parties.
This has occurred time and again in cases ranging
from web servers to German submarines in World
War II, and we’ll return to this point when we talk
about chosen plaintext and chosen ciphertext attacks on
encryption schemes.

PSEUDORANDOM FUNCTIONS 121

3 Clearly if the adversary outputs a pair (m, 7) that

it did query from its oracle then that pair will pass
verification. This suggests the possibility of a replay
attack whereby Mallory resends to Bob a message that
Alice sent him in the past. As above, one can thwart
this by insisting the every message m begins with a
fresh nonce or a value derived from the current time.

* A priori you might ask if we should not also give
Mallory an oracle to Vj,(-) as well. After all, in the
course of those many interactions, Mallory could
also send Bob many messages (m/, 7’) of her choice,
and observe from his behavior whether or not these
passed verification. It is a good exercise to show that
adding such an oracle does not change the power of
the definition, though we note that this is decidedly
not the case in the analogous question for encryption.

122 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

Remark 4.10 — Strong unforgability. Some texts (such as
Boneh Shoup) define a stronger notion of unforgabil-
ity where the adversary cannot even produce new sig-
natures for messages it has queried in the attack. That
is, the adversary cannot produce a valid message-
signature pair that it has not seen before. This stronger
definition can be useful for some applications. It is
fairly easy to transform MACs satisfying Definition 4.8
into MACs satisfying strong unforgability. In partic-
ular, if the signing function is deterministic, and we
use a canonical verifier algorithm where V, (m,0) = 1
iff S;,(m) = o then weak unforgability automatically
implies strong unforgability since every message has a
single signature that would pass verification (can you
see why?).

4.3 MACS FROM PRFS

We now show how pseudorandom function generators yield mes-
sage authentication codes. In fact, the construction is so immediate
that much of the more applied cryptographic literature does not dis-
tinguish between these two concepts, and uses the name “Message
Authentication Codes” to refer to both MAC’s and PRF’s. However,
since this is not applied cryptographic literature, the distinction is
rather important.

Theorem 4.11 — MAC Theorem. Under the PRF Conjecture, there exists
a secure MAC.

Proof. Let F(-,-) be a secure pseudorandom function generator with
n/2 bits output (which we can obtain using Theorem 4.7). We define
Si(m) = F(k,m) and V,(m, T) to output 1 iff F(k, m) = 7. Suppose to-
wards the sake of contradiction that there exists an adversary A breaks
the security of this construction of a MAC. That is, A queries S (+)
poly(n) many times and with probability 1/p(n) for some polynomial
p outputs (m’, 77) that she did not ask for such that F'(k,m’) = 7’.

We use A to construct an adversary A’ that can distinguish between
oracle access to a PRF and a random function by simulating the MAC
security game inside A’. Every time A requests the signature of some
message m, A’ returns O(m). When A returns (m’, 7") at the end
of the MAC game, A’ returns 1 if O(m’) = 7', and 0 otherwise. If
O(-) = H(-) for some completely random function H(-), then the value
H(m’) would be completely random in {0, 1}"/? and independent of
all prior queries. Hence the probability that this value would equal 7’
is at most 27"/2. If instead O(-) = F(k, -), then by the fact that A wins
the MAC security game with probability 1/p(n), the adversary A" will

output 1 with probability 1/p(n). That means that such an adversary
A’ can distinguish between an oracle to F'(k, -) and an oracle to a
random function H, which gives us a contradiction.

|

4.4 ARBITRARY INPUT LENGTH EXTENSION FOR MACS AND PRFS

So far we required the message to be signed m to be no longer than
the key k (i.e., both n bits long). However, it is not hard to see that
this requirement is not really needed. If our message is longer, we
can divide it into blocks my, ..., m, and sign each message (i, m;)
individually. The disadvantage here is that the size of the tag (i.e.,
MAC output) will grow with the size of the message. However, even
this is not really needed. Because the tag has length n/2 for length n
messages, we can sign the tags 7, ..., 7, and only output those. The
verifier can repeat this computation to verify this. We can continue
this way and so get tags of O(n) length for arbitrarily long messages.
Hence in the future, whenever we need to, we can assume that our
PRFs and MACs can get inputs in {0, 1}* — i.e., arbitrarily length
strings.

We note that this issue of length extension is actually quite a thorny
and important one in practice. The above approach is not the most
efficient way to achieve this, and there are several more practical vari-
ants in the literature (see Boneh-Shoup Sections 6.4-6.8). Also, one
needs to be very careful on the exact way one chops the message into
blocks and pads it to an integer multiple of the block size. Several at-
tacks have been mounted on schemes that performed this incorrectly.

4.5 ASIDE: NATURAL PROOFS

Pseudorandom functions play an important role in computational
complexity, where they have been used as a way to give “barrier re-
sults” for proving results such as P # NP.% Specifically, the Natural
Proofs barrier for proving circuit lower bounds says that if strong
enough pseudorandom functions exist, then certain types of argu-
ments are bound to fail. These are arguments which come up with a
property EASY of a Boolean function f : {0,1}" — {0, 1} such that:

e If f can be computed by a polynomial sized circuit, then it has the
property EASY.

o The property EASY fails to hold for a random function with high
probability.

o Checking whether EASY holds can be done in time polynomial in
the truth table size of f. That is, in 2°™) time.

PSEUDORANDOM FUNCTIONS 123

5 This discussion has more to do with computational
complexity than cryptography, and so can be safely
skipped without harming understanding of future
material in this course.

https://goo.gl/fiH3Pe
https://goo.gl/fiH3Pe

124 AN INTENSIVE INTRODUCTION TO CRYPTOGRAPHY

A priori these technical conditions might not seem very “natu-
ral” but it turns out that many approaches for proving circuit lower
bounds (for restricted families of circuits) have this form. The idea
is that such approaches find a “non generic” property of easily com-
putable function, such as finding some interesting correlations be-
tween the some input bits and the output. These are correlations that
are unlikely to occur in random functions. The lower bound typically
follows by exhibiting a function f, that does not have this property,
and then using that to derive that f;, cannot be efficiently computed by
this particular restricted family of circuits.

The existence of strong enough pseudorandom functions can be
shown to contradict the existence of such a property EASY, since a
pseudorandom function can be computed by a polynomial sized cir-
cuit, but it cannot be distinguished from a random function. While a
priori a pseudorandom function is only secure for polynomial time
distinguishers, under certain assumptions it might be possible to cre-
ate a pseudorandom function with a seed of size, say, n°, that would

. . . : : 2
be secure with respect to adversaries running in time 20(n%),

