
1 Edited and expanded by Richard Xu in Spring 2020.

2 Even lawyers grapple with this question, with a
recent example being the debate of whether fantasy
football is a game of chance or of skill.

3 In fact such a function must exist in some sense since
in the entire history of the world, presumably no
sequence of 100 fair coin tosses has ever repeated.

3
Pseudorandomness

Reading: Katz-Lindell Section 3.3, Boneh-Shoup Chapter 31
The nature of randomness has troubled philosophers, scientists,

statisticians and laypeople for many years.2 Over the years people
have given different answers to the question of what does it mean for
data to be random, and what is the nature of probability. The move-
ments of the planets initially looked random and arbitrary, but then
early astronomers managed to find order and make some predictions
on them. Similarly, we have made great advances in predicting the
weather and will probably continue to do so.

So, while these days it seems as if the event of whether or not it will
rain a week from today is random, we could imagine that in the future
we will be able to predict the weather accurately. Even the canonical
notion of a random experiment -tossing a coin - might not be as ran-
dom as you’d think: the second toss will have the same result as the
first one with about a 51% chance. (Though see also this experiment.)
It is conceivable that at some point someone would discover some
function 𝐹 that, given the first 100 coin tosses by any given person, can
predict the value of the 101𝑠𝑡.3

In all these examples, the physics underlying the event, whether it’s
the planets’ movement, the weather, or coin tosses, did not change but
only our powers to predict them. So to a large extent, randomness is a
function of the observer, or in other words

If a quantity is hard to compute, it might as well be
random.

Much of cryptography is about trying to make this intuition more
formal, and harnessing it to build secure systems. The basic object we
want is the following:

Compiled on 11.17.2021 22:35

http://statweb.stanford.edu/~susan/papers/headswithJ.pdf
http://statweb.stanford.edu/~susan/papers/headswithJ.pdf
https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html

92 an intensive introduction to cryptography

Definition 3.1 — Pseudorandom generator (concrete). A function 𝐺 ∶
{0, 1}𝑛 → {0, 1}ℓ is a (𝑇 , 𝜖) pseudorandom generator if 𝐺(𝑈𝑛) ≈𝑇,𝜖 𝑈ℓ
where 𝑈𝑡 denotes the uniform distribution on {0, 1}𝑡.

That is, 𝐺 is a (𝑇 , 𝜖) pseudorandom generator if no circuit of at most
𝑇 gates can distinguish with bias better than 𝜖 between the output of
𝐺 (on a random input) and a uniformly random string of the same
length. Spelling this out fully, this means that for every function 𝐷 ∶
{0, 1}ℓ → {0, 1} computable using at most 𝑇 operations,

∣ Pr
𝑥←𝑅{0,1}𝑛

[𝐷(𝐺(𝑥)) = 1] − Pr
𝑦←𝑅{0,1}ℓ

[𝐷(𝑦) = 1]∣ < 𝜖 .

As we did for the case of encryption, we will typically use asymp-
totic terms to describe cryptographic pseudorandom generator. We
say that 𝐺 is simply a pseudorandom generator if it is efficiently com-
putable and it is (𝑝(𝑛), 1/𝑝(𝑛))-pseudorandom generator for every
polynomial 𝑝(⋅). In other words, we define pseudorandom generators
as follows:

Definition 3.2 — Pseudorandom generator. Let 𝐺 ∶ {0, 1}∗ → {0, 1}∗ be
some function computable in polynomial time. We say that 𝐺 is
a pseudorandom generator with length function ℓ ∶ ℕ → ℕ (where
ℓ(𝑛) > 𝑛) if

• For every 𝑥 ∈ {0, 1}∗, |𝐺(𝑥)| = ℓ(|𝑥|).

• For every polynomial 𝑝(⋅) and sufficiently large 𝑛, if 𝐷 ∶
{0, 1}ℓ(𝑛) → {0, 1} is computable by at most 𝑝(𝑛) operations,
then

|Pr[𝐷(𝐺(𝑈𝑛)) = 1] − Pr[𝐷(𝑈ℓ) = 1]| < 1
𝑝(𝑛) (3.1)

Another way to say it, is that a polynomial-time computable func-
tion 𝐺 mapping 𝑛 bits strings to ℓ(𝑛) > 𝑛 bit strings is a pseudo-
random generator if the two distributions 𝐺(𝑈𝑛) and 𝑈ℓ(𝑛) are compu-
tationally indistinguishable.

P
This definition (as is often the case in cryptography)
is a bit long, but the concept of a pseudorandom gen-
erator is central to cryptography, and so you should
take your time and make sure you understand it. In-
tuitively, a function 𝐺 is a pseudorandom generator
if (1) it expands its input (mapping 𝑛 bits to 𝑛 + 1 or
more) and (2) we cannot distinguish between the out-

pseudorandomness 93

put 𝐺(𝑥) for 𝑥 a short (i.e., 𝑛 bit long) random string,
often known as the seed of the pseudorandom gen-
erator, and a truly random long (i.e., of length ℓ(𝑛))
string chosen uniformly at random from {0, 1}ℓ(𝑛).

Figure 3.1: A function 𝐺 ∶ {0, 1}𝑛 → {0, 1}ℓ(𝑛) is
a pseudorandom generator if 𝐺(𝑥) for a random short
𝑥 ←𝑅 {0, 1}𝑛 is computationally indistinguishable
from a long truly random 𝑦 ←𝑅 {0, 1}ℓ(𝑛).

Note that the requirement that ℓ > 𝑛 is crucial to make this notion
non-trivial, as for ℓ = 𝑛 the function 𝐺(𝑥) = 𝑥 clearly satisfies that
𝐺(𝑈𝑛) is identical to (and hence in particular indistinguishable from)
the distribution 𝑈𝑛. (Make sure that you understand this last state-
ment!) However, for ℓ > 𝑛 this is no longer trivial at all. In particular,
if we didn’t restrict the running time of 𝐸𝑣𝑒 then no such pseudo-
random generator would exist:

Lemma 3.3 Suppose that 𝐺 ∶ {0, 1}𝑛 → {0, 1}𝑛+1. Then there ex-
ists an (inefficient) algorithm 𝐸𝑣𝑒 ∶ {0, 1}𝑛+1 → {0, 1} such that
𝔼[𝐸𝑣𝑒(𝐺(𝑈𝑛))] = 1 but 𝔼[𝐸𝑣𝑒(𝑈𝑛+1)] ≤ 1/2.

Proof. On input 𝑦 ∈ {0, 1}𝑛+1, consider the algorithm 𝐸𝑣𝑒 that goes
over all possible 𝑥 ∈ {0, 1}𝑛 and will output 1 if and only if 𝑦 = 𝐺(𝑥)
for some 𝑥. Clearly 𝔼[𝐸𝑣𝑒(𝐺(𝑈𝑛))] = 1. However, the set 𝑆 = {𝐺(𝑥) ∶
𝑥 ∈ {0, 1}𝑛} on which Eve outputs 1 has size at most 2𝑛, and hence a
random 𝑦←𝑅𝑈𝑛+1 will fall in 𝑆 with probability at most 1/2.

■

It is not hard to show that if 𝑃 = NP then the above algorithm Eve
can be made efficient. In particular, at the moment we do not know
how to prove the existence of pseudorandom generators. Nevertheless
we believe that pseudorandom generators exist and hence we make
the following conjecture:

Conjecture (The PRG conjecture): For every 𝑛,
there exists a pseudorandom generator 𝐺 mapping
𝑛 bits to 𝑛 + 1 bits. 4

94 an intensive introduction to cryptography

5 Because we use a small input to grow a large pseu-
dorandom string, the input to a pseudorandom
generator is often known as its seed.

As was the case for the cipher conjecture, and any other conjecture,
there are two natural questions regarding the PRG conjecture: why
should we believe it and why should we care. Fortunately, the answer
to the first question is simple: it is known that the cipher conjecture
implies the PRG conjecture, and hence if we believe the former we
should believe the latter. (The proof is highly non-trivial and we may
not get to see it in this course.) As for the second question, we will
see that the PRG conjecture implies a great number of useful crypto-
graphic tools, including the cipher conjecture (i.e., the two conjectures
are in fact equivalent). We start by showing that once we can get to an
output that is one bit longer than the input, we can in fact obtain any
polynomial number of bits.

Theorem 3.4 — Length Extension for PRG’s. Suppose that the PRG con-
jecture is true. Then for every polynomial 𝑡(𝑛), there exists a pseu-
dorandom generator mapping 𝑛 bits to 𝑡(𝑛) bits.

Figure 3.2: Length extension for pseudorandom
generators

Proof. The proof of this theorem is very similar to the length extension
theorem for ciphers, and in fact this theorem can be used to give an
alternative proof for the former theorem.

The construction is illustrated in Fig. 3.2. We are given a pseu-
dorandom generator 𝐺′ mapping 𝑛 bits into 𝑛 + 1 bits and need to
construct a pseudorandom generator 𝐺 mapping 𝑛 bits to 𝑡 = 𝑡(𝑛) bits
for some polynomial 𝑡(⋅). The idea is that we maintain a state of 𝑛 bits,
which are originally our input seed5 𝑠0, and at the 𝑖𝑡ℎ step we use 𝐺′

to map 𝑠𝑖−1 to the 𝑛 + 1-long bit string (𝑠𝑖, 𝑦𝑖), output 𝑦𝑖 and keep 𝑠𝑖
as our new state. To prove the security of this construction we need
to show that the distribution 𝐺(𝑈𝑛) = (𝑦1,… , 𝑦𝑡) is computationally
indistinguishable from the uniform distribution 𝑈𝑡. As usual, we will
use the hybrid argument. For 𝑖 ∈ {0,… , 𝑡} we define 𝐻𝑖 to be the dis-
tribution where the first 𝑖 bits chosen uniformly at random, whereas
the last 𝑡 − 𝑖 bits are computed as above. Namely, we choose 𝑠𝑖 at ran-

pseudorandomness 95

dom in {0, 1}𝑛 and continue the computation of 𝑦𝑖+1,… , 𝑦𝑡 from the
state 𝑠𝑖. Clearly 𝐻0 = 𝐺(𝑈𝑛) and 𝐻𝑡 = 𝑈𝑡 and hence by the triangle
inequality it suffices to prove that 𝐻𝑖 ≈ 𝐻𝑖+1 for all 𝑖 ∈ {0,… , 𝑡 − 1}.
We illustrate these two hybrids in Fig. 3.3.

Figure 3.3: Hybrids 𝐻𝑖 and 𝐻𝑖+1— dotted boxes
refer to values that are chosen independently and
uniformly at random

Now suppose otherwise that there exists some adversary 𝐸𝑣𝑒 such
that |𝔼[𝐸𝑣𝑒(𝐻𝑖)] − 𝔼[𝐸𝑣𝑒(𝐻𝑖+1)]| ≥ 𝜖 for some non-negligible 𝜖. From
𝐸𝑣𝑒, we will design an adversary 𝐸𝑣𝑒′ breaking the security of the
pseudorandom generator 𝐺′ (see Fig. 3.4).

Figure 3.4: Building an adversary 𝐸𝑣𝑒′ for 𝐺′ from
an adversary 𝐸𝑣𝑒 distinguishing 𝐻𝑖 and 𝐻𝑖+1. The
boxes marked with questions marks are those that
are random or pseudorandom depending on whether
we are in 𝐻𝑖 or 𝐻𝑖+1. Everything inside the dashed
red lines is simulated by 𝐸𝑣𝑒′ that gets as input the
𝑛+ 1-bit string (𝑠𝑖+1, 𝑦𝑖+1).

On input a string 𝑦 of length 𝑛 + 1, 𝐸𝑣𝑒′ will interpret 𝑦 as
(𝑠𝑖+1, 𝑦𝑖+1) where 𝑠𝑖+1 ∈ {0, 1}𝑛. She then chooses 𝑦1,… , 𝑦𝑖 randomly
and compute 𝑦𝑖+2,… , 𝑦𝑡 as in our pseudorandom generator’s construc-
tion. 𝐸𝑣𝑒′ will then feed (𝑦1,… , 𝑦𝑡) to 𝐸𝑣𝑒 and output whatever 𝐸𝑣𝑒

96 an intensive introduction to cryptography

does. Clearly, 𝐸𝑣𝑒′ is efficient if 𝐸𝑣𝑒 is. Moreover, one can see that
if 𝑦 was random then 𝐸𝑣𝑒′ is feeding 𝐸𝑣𝑒 with an input distributed
according to 𝐻𝑖+1 while if 𝑦 was of the form 𝐺(𝑠) for a random 𝑠 then
𝐸𝑣𝑒′ will feed 𝐸𝑣𝑒 with an input distributed according to 𝐻𝑖. Hence
we get that | 𝔼[𝐸𝑣𝑒′(𝐺′(𝑈𝑛))] − 𝔼[𝐸𝑣𝑒′(𝑈𝑛+1)]| ≥ 𝜖 contradicting the
security of 𝐺′.

■

R
Remark 3.5 — Pseudorandom generators in practice. The
proof of Theorem 3.4 is indicative of many practical
constructions of pseudorandom generators. In many
operating systems and programming environments,
pseudorandom generators work as follows:

1. Upon initialization, the system obtains an initial
seed of randomness 𝑥0 ∈ {0, 1}𝑛 (where often 𝑛 is
something like 128 or 256).

2. At the 𝑡-th call to a function such as ‘rand’ to obtain
new randomness, the system uses some underlying
pseudorandom generator 𝐺′ ∶ {0, 1}𝑛 → {0, 1}𝑛+𝑚

to let 𝑥′‖𝑦 = 𝐺′(𝑥𝑡−1), updates 𝑥𝑡 = 𝑥′ and outputs
𝑦.

There are often some additional complications on
how to obtain this seed from some “unpredictable”
or “high entropy” observations (which can some-
times include network latency, user typing and mouse
patterns, and more), and whether the state of the
system is periodically “refreshed” using additional
observations.

3.0.1 Unpredictability: an alternative approach for proving the length
extension theorem

The notion that being random is the same as being “unpredictable”,
as discussed at the beginning of this chapter, can be formalized as
follows.

Definition 3.6 — Unpredictable function. An efficiently computable func-
tion 𝐺 ∶ {0, 1}∗ → {0, 1}∗ is unpredictable if, for any 𝑛, 1 ≤ 𝑖 < ℓ(𝑛)
and polynomially-sized circuit 𝑃 ,

Pr
𝑦←𝐺(𝑈𝑛)

[𝑃 (𝑦1,… , 𝑦𝑖−1) = 𝑦𝑖] ≤
1
2 + 𝑛𝑒𝑔𝑙(𝑛).

Here, ℓ(𝑛) is the length function of 𝐺 and 𝑦 ← 𝐺(𝑈𝑛) denotes that
𝑦 is a random output of 𝐺. In other words, no polynomial-sized cir-

pseudorandomness 97

cuit can predict the next bit of the output of 𝐺 given the previous
bits significantly better than guessing.

We now show that the condition for a function 𝐺 to be unpre-
dictable is equivalent to the condition for it to be a secure PRG. Please
make sure you follow the proof, because it is an important theorem,
and because it is another example of a canonical cryptographic proof.

Lemma 3.7 Let 𝐺 ∶ {0, 1}∗ → {0, 1}∗ be a function with length function
ℓ(𝑛), then 𝐺 is a secure PRG iff it is unpredictable.

Proof. For the forward direction, suppose for contradiction that there
exists some 𝑖 and some circuit 𝑃 can predict 𝑦𝑖 given 𝑦1,… , 𝑦𝑖−1 with
probability 𝑝 ≥ 1

2 + 𝜖(𝑛) for non-negligible 𝜖. Consider the adversary
𝐸𝑣𝑒 that, given a string 𝑦, runs the circuit 𝑃 on 𝑦1,… , 𝑦𝑖−1, checks if
the output is equal to 𝑦𝑖 and if so output 1.

If 𝑦 = 𝐺(𝑥) for a uniform 𝑥, then 𝑃 succeeds with probability
𝑝. If 𝑦 is uniformly random, then we can imagine that the bit 𝑦𝑖 is
generated after 𝑃 finished its calculation. The bit 𝑦𝑖 is 0 or 1 with equal
probability, so 𝑃 succeeds with probability 1

2 . Since 𝐸𝑣𝑒 outputs 1
when 𝑃 succeeds,

|Pr[𝐸𝑣𝑒(𝐺(𝑈𝑛)) = 1] − Pr[𝐸𝑣𝑒(𝑈ℓ) = 1]| = |𝑝 − 1
2| ≥ 𝜖(𝑛),

a contradiction.
For the backward direction, let 𝐺 be an unpredictable function. Let

𝐻𝑖 be the distribution where the first 𝑖 bits come from 𝐺(𝑈𝑛) while the
last ℓ − 𝑖 bits are all random. Notice that 𝐻0 = 𝑈ℓ and 𝐻ℓ = 𝐺(𝑈𝑛), so
it suffices to show that 𝐻𝑖−1 ≈ 𝐻𝑖 for all 𝑖.

Suppose 𝐻𝑖−1 ≉ 𝐻𝑖 for some 𝑖, i.e. there exists some 𝐸𝑣𝑒 and non-
negligible 𝜖 such that

Pr[𝐸𝑣𝑒(𝐻𝑖) = 1] − Pr[𝐸𝑣𝑒(𝐻𝑖−1) = 1] > 𝜖(𝑛).

Consider the program 𝑃 that, on input (𝑦1,… , 𝑦𝑖−1), picks the bits
̂𝑦𝑖,… , ̂𝑦ℓ uniformly at random. Then, 𝑃 calls 𝐸𝑣𝑒 on the generated

input. If 𝐸𝑣𝑒 outputs 1 then 𝑃 outputs ̂𝑦𝑖, and otherwise it outputs
1 − ̂𝑦𝑖.

The string (𝑦1,… , 𝑦𝑖−1, ̂𝑦𝑖,… , ̂𝑦ℓ) has the same distribution as 𝐻𝑖−1.
However, conditioned on ̂𝑦𝑖 = 𝑦𝑖, the string has distribution equal to
𝐻𝑖. Let 𝑝 be the probability that 𝐸𝑣𝑒 outputs 1 if ̂𝑦𝑖 = 𝑦𝑖 and 𝑞 be the
same probability when ̂𝑦𝑖 ≠ 𝑦𝑖, then we get

𝑝 − 1
2(𝑝 + 𝑞) = Pr[𝐸𝑣𝑒(𝐻𝑖) = 1] − Pr[𝐸𝑣𝑒(𝐻𝑖−1) = 1] > 𝜖(𝑛).

Therefore, the probability 𝑃 outputs the correct value is equal to 1
2𝑝 +

1
2 (1 − 𝑞) = 1

2 + 𝜖(𝑛), a contradiction.
■

98 an intensive introduction to cryptography

The definition of unpredictability is useful because many of our
candidates for pseudorandom generators appeal to the unpredictabil-
ity definition in their proofs. For example, the Blum-Blum-Shub gen-
erator we will see later in the chapter is proved to be unpredictable
if the “quadratic residuosity problem” is hard. It is also nice to know
that our intuition at the beginning of the chapter can be formalized.

3.1 STREAM CIPHERS

We now show a connection between pseudorandom generators and
encryption schemes:

Theorem 3.8 — PRG conjecture implies Cipher conjectures. If the PRG
conjecture is true then so is the cipher conjecture.

It turns out that the converse direction is also true, and hence these
two conjectures are equivalent. We will probably not show the (quite
non-trivial) proof of this fact in this course. (We might show a weaker
version though.)

Proof. Recall that the one time pad is a perfectly secure cipher but its
only problem was that to encrypt an 𝑛 + 1 long message it needed
an 𝑛 + 1 long bit key. Now using a pseudorandom generator, we can
map an 𝑛-bit long key into an 𝑛 + 1-bit long string that looks random
enough that we could use it as a key for the one-time pad. That is, our
cipher will look as follows:

𝐸𝑘(𝑚) = 𝐺(𝑘) ⊕𝑚

and

𝐷𝑘(𝑐) = 𝐺(𝑘) ⊕ 𝑐

Just like in the one time pad, 𝐷𝑘(𝐸𝑘(𝑚)) = 𝐺(𝑘) ⊕ 𝐺(𝑘) ⊕ 𝑚 =
𝑚. Moreover, the encryption and decryption algorithms are clearly
efficient. We will prove security of this encryption by showing the
stronger claim that 𝐸𝑈𝑛

(𝑚) ≈ 𝑈𝑛+1 for any 𝑚.
Notice that 𝑈𝑛+1 = 𝑈𝑛+1 ⊕ 𝑚, as we showed in the security of the

one-time pad. Suppose that for some non-negligible 𝜖 = 𝜖(𝑛) > 0 there
is an efficient adversary 𝐸𝑣𝑒′ such that

|𝔼[𝐸𝑣𝑒′(𝐺(𝑈𝑛) ⊕ 𝑚)] − 𝔼[𝐸𝑣𝑒′(𝑈𝑛+1 ⊕𝑚)]| ≥ 𝜖.

Then the adversary 𝐸𝑣𝑒 defined as 𝐸𝑣𝑒(𝑦) = 𝐸𝑣𝑒′(𝑦 ⊕ 𝑚) would
be also efficient. Furthermore, if 𝑦 is pseudorandom then 𝐸𝑣𝑒(𝑦) =
𝐸𝑣𝑒′(𝐺(𝑈𝑛) ⊕ 𝑚) and if 𝑦 is uniformly random then 𝐸𝑣𝑒(𝑦) =

pseudorandomness 99

𝐸𝑣𝑒′(𝑈𝑛+1 ⊕ 𝑚). Then, 𝐸𝑣𝑒 can distinguish the two distributions
with advantage 𝜖, a contradiction.

■

If the PRG outputs 𝑡(𝑛) bits instead of 𝑛 + 1 then we automatically
get an encryption scheme with 𝑡(𝑛) long message length. In fact, in
practice if we use the length extension for PRG’s, we don’t need to
decide on the length of messages in advance. Every time we need to
encrypt another bit (or another block) 𝑚𝑖 of the message, we run the
basic PRG to update our state and obtain some new randomness 𝑦𝑖
that we can XOR with the message and output. Such constructions
are known as stream ciphers in the literature. In much of the practical
literature, the name stream cipher is used both for the pseudorandom
generator itself as well as for the encryption scheme that is obtained
by combining it with the one-time pad.

R
Remark 3.9 — Using pseudorandom generators for coin
tossing over the phone. The following is a cute appli-
cation of pseudorandom generators. Alice and Bob
want to toss a fair coin over the phone. They use a
pseudorandom generator 𝐺 ∶ {0, 1}𝑛 → {0, 1}3𝑛.
1. Alice will send 𝑧 ←𝑅 {0, 1}3𝑛 to Bob
2. Bob picks 𝑠 ←𝑅 {0, 1}𝑛 and 𝑏 ←𝑅 {0, 1}. If 𝑏 = 0

then Bob sends 𝑦 = 𝐺(𝑠) and if 𝑏 = 1 he sends 𝑦 =
𝐺(𝑠) ⊕ 𝑧. In other words, 𝑦 = 𝐺(𝑠) ⊕ 𝑏 ⋅ 𝑧 where 𝑏 ⋅ 𝑧
is the vector (𝑏 ⋅ 𝑧1,… , 𝑏 ⋅ 𝑧3𝑛).

3. Alice then picks a random 𝑏′ ←𝑅 {0, 1} and sends
it to Bob.

4. Bob sends to Alice the string 𝑠 and 𝑏. Alice verifies
that indeed 𝑦 = 𝐺(𝑠)⊕ 𝑏 ⋅ 𝑧. Otherwise Alice aborts.

5. The output of the protocol is 𝑏 ⊕ 𝑏′.
It can be shown that (assuming the protocol is com-
pleted) the output is a random coin, which neither
Alice or Bob can control or predict with more than
negligible advantage over half. Trying to formalize
this and prove it is an excellent exercise. Two main
components in the proofs are:

• With probability 1 − 𝑛𝑒𝑔𝑙(𝑛) over 𝑧 ←𝑅 {0, 1}3𝑛,
the sets 𝑆0 = {𝐺(𝑥)|𝑥 ∈ {0, 1}𝑛} and
𝑆1 = {𝐺(𝑥) ⊕ 𝑧|𝑥 ∈ {0, 1}𝑛} will be disjoint.
Hence by choosing 𝑧 at random, Alice can ensure
that Bob is committed to the choice of 𝑏 after sending
𝑦.

• For every 𝑧, both the distribution 𝐺(𝑈𝑛) and
𝐺(𝑈𝑛) ⊕ 𝑧 are pseudorandom. This can be shown
to imply that no matter what string 𝑧 Alice chooses,
she cannot predict 𝑏 from the string 𝑦 sent by Bob
with probability better than 1/2 + 𝑛𝑒𝑔𝑙(𝑛). Hence
her choice of 𝑏′ will be essentially independent of 𝑏.

100 an intensive introduction to cryptography

6 CRC are often used to generate a “control digit” to
detect mistypes of credit card or social security card
number. This has very different goals than its use for
pseudorandom generators, though there are some
common intuitions behind the two usages.

3.2 WHAT DO PSEUDORANDOM GENERATORS ACTUALLY LOOK
LIKE?

So far we have made the conjectures that objects such as ciphers and
pseudorandom generators exist, without giving any hint as to how
they would actually look like. (Though we have examples such as
the Caesar cipher, Vigenere, and Enigma of what secure ciphers don’t
look like.) As mentioned above, we do not know how to prove that
any particular function is a pseudorandom generator. However, there
are quite simple candidates (i.e., functions that are conjectured to be
secure pseudorandom generators), though care must be taken in
constructing them. We now consider candidates for functions that
maps 𝑛 bits to 𝑛 + 1 bits (or more generally 𝑛 + 𝑐 for some constant
𝑐) and look at least somewhat “randomish”. As these constructions
are typically used as a basic component for obtaining a longer length
PRG via the length extension theorem (Theorem 3.4), we will think
of these pseudorandom generators as mapping a string 𝑠 ∈ {0, 1}𝑛
representing the current state into a string 𝑠’ ∈ {0, 1}𝑛 representing
the new state as well as a string 𝑏 ∈ {0, 1}𝑐 representing the current
output. See also Section 6.1 in Katz-Lindell and (for greater depth)
Sections 3.6-3.9 in the Boneh-Shoup book.

3.2.1 Attempt 0: The counter generator
To get started, let’s look at an example of an obviously bogus pseudo-
random generator. We define the “counter pseudorandom generator”
𝐺 ∶ {0, 1}𝑛 → {0, 1}𝑛+1 as follows. 𝐺(𝑠) = (𝑠′, 𝑏) where 𝑠′ = 𝑠 + 1
mod 2𝑛 (treating 𝑠 and 𝑠′ as numbers in {0,… , 2𝑛 − 1}) and 𝑏 is the
least significant digit of 𝑠′. It’s a great exercise to work out why this is
not a secure pseudorandom generator.

P
You should really pause here and make sure you see
why the “counter pseudorandom generator” is not
a secure pseudorandom generator. Show that this is
true even if we replace the least significant digit by the
𝑘-th digit for every 0 ≤ 𝑘 < 𝑛.

3.2.2 Attempt 1: The linear checksum / linear feedback shift register
(LFSR)

LFSR can be thought of as the “mother” (or maybe more like the sick
great-uncle) of all pseudorandom generators. One of the simplest
ways to generate a “randomish” extra digit given an 𝑛 digit number
is to use a checksum - some linear combination of the digits, with a
canonical example being the cyclic redundancy check or CRC.6 This
motivates the notion of a linear feedback shift register generator (LFSR):

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

pseudorandomness 101

7 A ring is a set of elements where addition and
multiplication are defined and obey the natural rules
of associativity and commutativity (though without
necessarily having a multiplicative inverse for every
element). For every integer 𝑞 we define ℤ𝑞 (known as
the ring of integers modulo 𝑞) to be the set {0,… , 𝑞 − 1}
where addition and multiplication is done modulo 𝑞.

8 Despite the name, the algorithm goes at least as far
back as the Chinese Jiuzhang Suanshu manuscript,
circa 150 B.C.

if the current state is 𝑠 ∈ {0, 1}𝑛 then the output is 𝑓(𝑠) where 𝑓 is
a linear function (modulo 2) and the new state is obtained by right
shifting the previous state and putting 𝑓(𝑠) at the leftmost location.
That is, 𝑠′1 = 𝑓(𝑠) and 𝑠′𝑖 = 𝑠𝑖−1 for 𝑖 ∈ {2,… , 𝑛}.

LFSR’s have several good properties- if the function 𝑓(⋅) is chosen
properly then they can have very long periods (i.e., it can take an ex-
ponential number of steps until the state repeats itself), though that
also holds for the simple “counter” generator we saw above. They
also have the property that every individual bit is equal to 0 or 1 with
probability exactly half (the counter generator also shares this prop-
erty).

A more interesting property is that (if the function is selected prop-
erly) every two coordinates are independent from one another. That
is, there is some super-polynomial function 𝑡(𝑛) (in fact 𝑡(𝑛) can be
exponential in 𝑛) such that if ℓ ≠ ℓ′ ∈ {0,… , 𝑡(𝑛)}, then if we look at
the two random variables corresponding to the ℓ-th and ℓ′-th output
of the generator (where randomness is the initial state) then they are
distributed like two independent random coins. (This is non-trivial to
show, and depends on the choice of 𝑓 - it is a challenging but useful
exercise to work this out.) The counter generator fails badly at this
condition: the least significant bits between two consecutive states
always flip.

There is a more general notion of a linear generator where the new
state can be any invertible linear transformation of the previous state.
That is, we interpret the state 𝑠 as an element of ℤ𝑡

𝑞 for some integers
𝑞, 𝑡,7 and let 𝑠’ = 𝐹(𝑠) and the output 𝑏 = 𝐺(𝑠) where 𝐹 ∶ ℤ𝑡

𝑞 → ℤ𝑡
𝑞

and 𝐺 ∶ ℤ𝑡
𝑞 → ℤ𝑞 are invertible linear transformations (modulo 𝑞).

This includes as a special case the linear congruential generator where
𝑡 = 1 and the map 𝐹(𝑠) corresponds to taking 𝑎𝑠 (mod 𝑞) where 𝑎 is
number co-prime to 𝑞.

All these generators are unfortunately insecure due to the great
bane of cryptography- the Gaussian elimination algorithm which stu-
dents typically encounter in any linear algebra class.8

Theorem 3.10 — The unfortunate theorem for cryptography. There is a poly-
nomial time algorithm to solve 𝑚 linear equations in 𝑛 variables
(or to certify no solution exists) over any ring.

Despite its seeming simplicity and ubiquity, Gaussian elimination
(and some generalizations and related algorithms such as Euclid’s
extended g.c.d algorithm and the LLL lattice reduction algorithm)
has been used time and again to break candidate cryptographic con-
structions. In particular, if we look at the first 𝑛 outputs of a linear
generator 𝑏1,… , 𝑏𝑛 then we can write linear equations in the unknown

102 an intensive introduction to cryptography

9 That number is obtained by applying an algorithm
of Hans Peter Luhn which applies a simple map to
each digit of the card and then sums them up modulo
10.

initial state of the form 𝑓1(𝑠) = 𝑏1,… , 𝑓𝑛(𝑠) = 𝑏𝑛 where the 𝑓𝑖’s are
known linear functions. Either those functions are linearly independent,
in which case we can solve the equations to get the unique solution for
the original state 𝑠 and from which point we can predict all outputs of
the generator, or they are dependent, which means that we can predict
some of the outputs even without recovering the original state. Either
way, the generator is ∗♯!’ed (where ∗♯! refers to whatever verb you
prefer to use when your system is broken). See also this 1977 paper of
James Reed.

R
Remark 3.11 — Non-cryptographic PRGs. The above
means that it is a bad idea to use a linear checksum as
a pseudorandom generator in a cryptographic appli-
cation, and in fact in any adversarial setting (e.g., one
shouldn’t hope that an attacker would not be able to
reverse engineer the algorithm 9 that computes the
control digit of a credit card number). However, that
does not mean that there are no legitimate cases where
linear generators can be used . In a setting where the
application is not adversarial and you have an ability
to test if the generator is actually successful, it might
be reasonable to use such insecure non-cryptographic
generators. They tend to be more efficient (though
often not by much) and hence are often the default
option in many programming environments such as
the C rand() command. (In fact, the real bottleneck
in using cryptographic pseudorandom generators
is often the generation of entropy for their seed, as
discussed in the previous lecture, and not their actual
running time.)

3.2.3 From insecurity to security
It is often the case that we want to “fix” a broken cryptographic prim-
itive, such as a pseudorandom generator, to make it secure. At the
moment this is still more of an art than a science, but there are some
principles that cryptographers have used to try to make this more
principled. The main intuition is that there are certain properties of
computational problems that make them more amenable to algo-
rithms (i.e., “easier”) and when we want to make the problems useful
for cryptography (i.e., “hard”) we often seek variants that don’t pos-
sess these properties. The following table illustrates some examples
of such properties. (These are not formal statements, but rather is
intended to give some intuition)

Easy Hard

Continuous Discrete

https://goo.gl/SL8ahM
http://alumni.cs.ucr.edu/~jsun/random-number.pdf

pseudorandomness 103

Easy Hard

Convex Non-convex
Linear Non-linear (degree ≥ 2)
Noiseless Noisy
Local Global
Shallow Deep
Low degree High degree

Many cryptographic constructions can be thought of as trying to
transform an easy problem into a hard one by moving from the left to
the right column of this table.

The discrete logarithm problem is the discrete version of the con-
tinuous real logarithm problem. The learning with errors problem
can be thought of as the noisy version of the linear equations problem
(or the discrete version of least squares minimization). When con-
structing block ciphers we often have mixing transformation to ensure
that the dependency structure between different bits is global, S-boxes
to ensure non-linearity, and many rounds to ensure deep structure and
large algebraic degree.

This also works in the other direction. Many algorithmic and ma-
chine learning advances work by embedding a discrete problem in a
continuous convex one. Some attacks on cryptographic objects can be
thought of as trying to recover some of the structure (e.g., by embed-
ding modular arithmetic in the real line or “linearizing” non linear
equations).

3.2.4 Attempt 2: Linear Congruential Generators with dropped bits
One approach that is widely used in implementations of pseudoran-
dom generators is to take a linear generator such as the linear congru-
ential generators described above, and use for the output a “chopped”
version of the linear function and drop some of the least significant
bits. The operation of dropping these bits is non-linear and hence the
attack above does not immediately apply. Nevertheless, it turns out
this attack can be generalized to handle this case, and hence even with
dropped bits Linear Congruential Generators are completely insecure
and should be used (if at all) only in applications such as simulations
where there is no adversary. Section 3.7.1 in the Boneh-Shoup book
describes one attack against such generators that uses the notion of
lattice algorithms that we will encounter later in this course in very
different contexts.

104 an intensive introduction to cryptography

10 Actually modern computers will be able to break
this generator via brute force, but if the length and
number of the constants were doubled (or perhaps
quadrupled) this should be sufficiently secure,
though longer to write down.

3.3 SUCCESSFUL EXAMPLES

Let’s now describe some successful (at least per current knowledge)
pseudorandom generators:

3.3.1 Case Study 1: Subset Sum Generator
Here is an extremely simple generator that is yet still secure10 as far as
we know.

seed is a list of 40 zero/one values

output is a 48 bit integer

def subset_sum_gen(seed):

modulo = 0x1000000

constants = [

0x3D6EA1, 0x1E2795, 0xC802C6, 0xBF742A, 0x45FF31,

0x53A9D4, 0x927F9F, 0x70E09D, 0x56F00A, 0x78B494,

0x9122E7, 0xAFB10C, 0x18C2C8, 0x8FF050, 0x0239A3,

0x02E4E0, 0x779B76, 0x1C4FC2, 0x7C5150, 0x81E05E,

0x154647, 0xB80E68, 0xA042E5, 0xE20269, 0xD3B7F3,

0xCC5FB9, 0x0BFC55, 0x847AE0, 0x8CFDF8, 0xE304B7,

0x869ACE, 0xB4CDAB, 0xC8E31F, 0x00EDC7, 0xC50541,

0x0D6DDD, 0x695A2F, 0xA81062, 0x0123CA, 0xC6C5C3]

return the modular sum of the constants

corresponding to ones in the seed

return reduce(lambda x,y: (x+y) % modulo,

map(lambda a,b: a*b, constants,seed))

The seed to this generator is an array seed of 40 bits, with 40 hard-
wired constants each 48 bits long (these constants were generated at
random, but are fixed once and for all, and are not kept secret and
hence are not considered part of the secret random seed). The output
is simply

40
∑
𝑖=1

seed[𝑖]constants[𝑖] (mod 248)

and hence expands the 40 bit input into a 48 bit output.
This generator is loosely motivated by the “subset sum” computa-

tional problem, which is NP hard. However, since NP hardness is a
worst case notion of complexity, it does not imply security for pseudo-
random generators, which requires hardness of an average case variant.
To get some intuition for its security, we can work out why (given that
it seems to be linear) we cannot break it by simply using Gaussian
elimination.

pseudorandomness 105

P
This is an excellent point for you to stop and try to
answer this question on your own.

Given the known constants and known output, figuring out the set
of potential seeds can be thought of as solving a single equation in 40
variables. However, this equation is clearly overdetermined, and will
have a solution regardless of whether the observed value is indeed an
output of the generator, or it is chosen uniformly at random.

More concretely, we can use linear-equation solving to compute
(given the known constants 𝑐1,… , 𝑐40 ∈ ℤ248 and the output 𝑦 ∈ ℤ248)
the linear subspace 𝑉 of all vectors (𝑠1,… , 𝑠40) ∈ (ℤ248)40 such that
∑𝑠𝑖𝑐𝑖 = 𝑦 (mod 248). But, regardless of whether 𝑦 was generated at
random from ℤ248 , or 𝑦 was generated as an output of the generator,
the subspace 𝑉 will always have the same dimension (specifically,
since it is formed by a single linear equation over 40 variables, the
dimension will be 39.) To break the generator we seem to need to be
able to decide whether this linear subspace 𝑉 ⊆ (ℤ248)40 contains
a Boolean vector (i.e., a vector 𝑠 ∈ {0, 1}𝑛). Since the condition that
a vector is Boolean is not defined by linear equations, we cannot use
Gaussian elimination to break the generator. Generally, the task of
finding a vector with small coefficients inside a discrete linear sub-
space is closely related to a classical problem known as finding the
shortest vector in a lattice. (See also the short integer solution (SIS)
problem.)

3.3.2 Case Study 2: RC4
The following is another example of an extremely simple generator
known as RC4 (this stands for Rivest Cipher 4, as Ron Rivest invented
this in 1987) and is still fairly widely used today.

def RC4(P,i,j):

i = (i + 1) % 256

j = (j + P[i]) % 256

P[i], P[j] = P[j], P[i]

return (P,i,j,P[(P[i]+P[j]) % 256])

The function RC4 takes as input the current state P,i,j of the gen-
erator and returns the new state together with a single output byte.
The state of the generator consists of an array P of 256 bytes, which can
be thought of as a permutation of the numbers 0,… , 255 in the sense
that we maintain the invariant that P[𝑖] ≠ P[𝑗] for every 𝑖 ≠ 𝑗, and two
indices 𝑖, 𝑗 ∈ {0,… , 255}. We can consider the initial state as the case
where P is a completely random permutation and 𝑖 and 𝑗 are initial-

https://goo.gl/WRNT9S
https://goo.gl/KwZWhV
https://goo.gl/KwZWhV

106 an intensive introduction to cryptography

11 I typically do not include references in these lecture
notes, and leave them to the texts, but I make here an
exception because Itsik Mantin was a close friend of
mine in grad school.

ized to zero, although to save on initial seed size, typically RC4 uses
some “pseudorandom” way to generate P from a shorter seed as well.

RC4 has extremely efficient software implementations and hence
has been widely implemented. However, it has several issues with its
security. In particular it was shown by Mantin11 and Shamir that the
second bit of RC4 is not random, even if the initialization vector was
random. This and other issues led to a practical attack on the 802.11b
WiFi protocol, see Section 9.9 in Boneh-Shoup. The initial response to
those attacks was to suggest to drop the first 1024 bytes of the output,
but by now the attacks have been sufficiently extended that RC4 is
simply not considered a secure cipher anymore. The ciphers Salsa and
ChaCha, designed by Dan Bernstein, have a similar design to RC4, and
are considered secure and deployed in several standard protocols such
as TLS, SSH and QUIC, see Section 3.6 in Boneh-Shoup.

3.3.3 Case Study 3: Blum, Blum and Shub
B.B.S., which stands for the authors Blum, Blum and Shub, is a simple
generator constructed from a potentially hard problem in number
theory.

Let 𝑁 = 𝑃 ⋅ 𝑄, where 𝑃 ,𝑄 are primes. (We will generally use
𝑃 ,𝑄 of size roughly 𝑛, where 𝑛 is our security parameter, and so use
capital letters to emphasize that the magnitude of these numbers is
exponential in the security parameter.)

We define QR𝑁 to be the set of quadratic residues modulo 𝑁 , which
are the numbers that have a modular square root. Formally,

QR𝑁 = {𝑋2 mod 𝑁 ∣ gcd(𝑋,𝑁) = 1}.
This definition extends the concept of “perfect squares” when

we are working with standard integers. Notice that each number in
𝑌 ∈ QR𝑁 has at least one square root (number 𝑋 such that 𝑌 = 𝑋2

mod 𝑁). We will see later in the course that if 𝑁 = 𝑃 ⋅ 𝑄 for primes
𝑃 ,𝑄 then each 𝑌 ∈ QR𝑁 has exactly 4 square roots. The B.B.S. genera-
tor chooses 𝑁 = 𝑃 ⋅ 𝑄, where 𝑃 ,𝑄 are prime and 𝑃 ,𝑄 ≡ 3 (mod 4).
The second condition guarantees that for each 𝑌 ∈ QR𝑁 , exactly one
of its square roots fall in QR𝑁 , and hence the map 𝑋 ↦ 𝑋2 mod 𝑁 is
one-to-one and onto map from QR𝑁 to itself.

It is defined as follows:

def BBS(X):

return (X * X % N, N % 2)

In other words, on input 𝑋, BBS(𝑋) outputs 𝑋2 mod 𝑁 and the
least significant bit of 𝑋. We can think of BBS as a map BBS ∶ 𝑄𝑅𝑁 →
QR𝑁 × {0, 1} and so it maps a domain into a larger domain. We can
also extend it to output 𝑡 additional bits, by repeatedly squaring the

pseudorandomness 107

12 There is a whole (highly recommended) book by
Alon and Spencer devoted to this method.

input, letting 𝑋0 = 𝑋, 𝑋𝑖+1 = 𝑋2
𝑖 mod 𝑁 , for 𝑖 = 0,… , 𝑡 − 1, and

outputting 𝑋𝑡 together with the least significant bits of 𝑋0,… ,𝑋𝑡−1.
It turns out that assuming that there is no polynomial-time algorithm
(where “polynomial-time” means polynomial in the number of bits
to represent 𝑁 , i.e., polynomial in log𝑁) to factor randomly chosen
integers 𝑁 = 𝑃 ⋅ 𝑄, for every 𝑡 that is polynomial in the number of bits
in 𝑁 , the output of the 𝑡-step BBS generator will be computationally
indistinguishable from 𝑈𝑄𝑅𝑁

× 𝑈𝑡 where 𝑈𝑄𝑅𝑁
denotes the uniform

distribution over QR𝑁 .
The number theory required to show takes a while to develop.

However, it is interesting and I recommend the reader to search up
this particular generator, see for example this survey by Junod.

3.4 NON-CONSTRUCTIVE EXISTENCE OF PSEUDORANDOM GEN-
ERATORS

We now show that, if we don’t insist on constructivity of pseudoran-
dom generators, then there exists pseudorandom generators with
output that are exponentially larger than the input length.

Lemma 3.12 — Existence of inefficient pseudorandom generators. There is some
absolute constant 𝐶 such that for every 𝜖, 𝑇 , if ℓ > 𝐶(log𝑇 + log(1/𝜖))
and 𝑚 ≤ 𝑇 , then there is an (𝑇 , 𝜖) pseudorandom generator 𝐺 ∶
{0, 1}ℓ → {0, 1}𝑚.

Proof Idea:

The proof uses an extremely useful technique known as the “prob-
abilistic method” which is not too hard mathematically but can be
confusing at first.12 The idea is to give a “non constructive” proof of
existence of the pseudorandom generator 𝐺 by showing that if 𝐺 was
chosen at random, then the probability that it would be a valid (𝑇 , 𝜖)
pseudorandom generator is positive. In particular this means that
there exists a single 𝐺 that is a valid (𝑇 , 𝜖) pseudorandom generator.
The probabilistic method is just a proof technique to demonstrate the
existence of such a function. Ultimately, our goal is to show the ex-
istence of a deterministic function 𝐺 that satisfies the conditions of a
(𝑇 , 𝜖) PRG.

⋆

The above discussion might be rather abstract at this point, but
would become clearer after seeing the proof.

Proof of Lemma 3.12. Let 𝜖, 𝑇 , ℓ,𝑚 be as in the lemma’s statement. We
need to show that there exists a function 𝐺 ∶ {0, 1}ℓ → {0, 1}𝑚 that
“fools” every 𝑇 line program 𝑃 in the sense of (3.1). We will show
that this follows from the following claim:

https://www.amazon.com/Probabilistic-Method-Discrete-Mathematics-Optimization/dp/1119061954/ref=dp_ob_title_bk
https://www.amazon.com/Probabilistic-Method-Discrete-Mathematics-Optimization/dp/1119061954/ref=dp_ob_title_bk
https://www.cs.miami.edu/home/burt/learning/Csc609.062/docs/bbs.pdf

108 an intensive introduction to cryptography

Claim I: For every fixed NAND program / Boolean circuit 𝑃 , if we
pick 𝐺 ∶ {0, 1}ℓ → {0, 1}𝑚 at random then the probability that (3.1) is
violated is at most 2−𝑇2 .

Before proving Claim I, let us see why it implies Lemma 3.12. We
can identify a function 𝐺 ∶ {0, 1}ℓ → {0, 1}𝑚 with its “truth table”
or simply the list of evaluations on all its possible 2ℓ inputs. Since
each output is an 𝑚 bit string, we can also think of 𝐺 as a string in
{0, 1}𝑚⋅2ℓ . We define ℱ𝑚

ℓ to be the set of all functions from {0, 1}ℓ to
{0, 1}𝑚. As discussed above we can identify ℱ𝑚

ℓ with {0, 1}𝑚⋅2ℓ and
choosing a random function 𝐺 ∼ ℱ𝑚

ℓ corresponds to choosing a
random 𝑚 ⋅ 2ℓ-long bit string.

For every NAND program / Boolean circuit 𝑃 let 𝐵𝑃 be the event
that, if we choose 𝐺 at random from ℱ𝑚

ℓ then (3.1) is violated with
respect to the program 𝑃 . It is important to understand what is the
sample space that the event 𝐵𝑃 is defined over, namely this event
depends on the choice of 𝐺 and so 𝐵𝑃 is a subset of ℱ𝑚

ℓ . An equiva-
lent way to define the event 𝐵𝑃 is that it is the subset of all functions
mapping {0, 1}ℓ to {0, 1}𝑚 that violate (3.1), or in other words:

𝐵𝑃 =
⎧{
⎨{⎩
𝐺 ∈ ℱ𝑚

ℓ ∣ ∣ 1
2ℓ ∑

𝑠∈{0,1}ℓ
𝑃(𝐺(𝑠)) − 1

2𝑚 ∑
𝑟∈{0,1}𝑚

𝑃(𝑟)∣ > 𝜖
⎫}
⎬}⎭

.

(3.2)
(We’ve replaced here the probability statements in (3.1) with the
equivalent sums so as to reduce confusion as to what is the sample
space that 𝐵𝑃 is defined over.)

To understand this proof it is crucial that you pause here and see
how the definition of 𝐵𝑃 above corresponds to (3.2). This may well
take re-reading the above text once or twice, but it is a good exercise
at parsing probabilistic statements and learning how to identify the
sample space that these statements correspond to.

Now, the number of programs of size 𝑇 (or circuits of size 𝑇) is
at most 2𝑂(𝑇 log𝑇). Since 𝑇 log𝑇 = 𝑜(𝑇 2) this means that if Claim I
is true, then by the union bound it holds that the probability of the
union of 𝐵𝑃 over all NAND programs of at most 𝑇 lines is at most
2𝑂(𝑇 log𝑇)2−𝑇2 < 0.1 for sufficiently large 𝑇 . What is important for
us about the number 0.1 is that it is smaller than 1. In particular this
means that there exists a single 𝐺∗ ∈ ℱ𝑚

ℓ such that 𝐺∗ does not violate
(3.1) with respect to any NAND program of at most 𝑇 lines, but that
precisely means that 𝐺∗ is a (𝑇 , 𝜖) pseudorandom generator.

Hence, it suffices to prove Claim I to conclude the proof of
Lemma 3.12. Choosing a random 𝐺 ∶ {0, 1}ℓ → {0, 1}𝑚 amounts to
choosing 𝐿 = 2ℓ random strings 𝑦0,… , 𝑦𝐿−1 ∈ {0, 1}𝑚 and letting
𝐺(𝑥) = 𝑦𝑥 (identifying {0, 1}ℓ and [𝐿] via the binary representation).
Hence the claim amounts to showing that for every fixed function

pseudorandomness 109

𝑃 ∶ {0, 1}𝑚 → {0, 1}, if 𝐿 > 2𝐶(log𝑇+log(1/𝜖)) (which by setting 𝐶 > 4,
we can ensure is larger than 10𝑇 2/𝜖2) then the probability that

∣ 1𝐿
𝐿−1
∑
𝑖=0

𝑃(𝑦𝑖) − Pr
𝑠←𝑅{0,1}𝑚

[𝑃 (𝑠) = 1]∣ > 𝜖 (3.3)

is at most 2−𝑇2 . (??) follows directly from the Chernoff bound. If
we let for every 𝑖 ∈ [𝐿] the random variable 𝑋𝑖 denote 𝑃(𝑦𝑖), then
since 𝑦0,… , 𝑦𝐿−1 is chosen independently at random, these are inde-
pendently and identically distributed random variables with mean
𝔼𝑦←𝑅{0,1}𝑚 [𝑃 (𝑦)] = Pr𝑦←𝑅{0,1}𝑚 [𝑃 (𝑦) = 1] and hence the probability
that they deviate from their expectation by 𝜖 is at most 2 ⋅ 2−𝜖2𝐿/2.

■

