
2
Computational Security

Additional reading: Sections 2.2 and 2.3 in Boneh-Shoup book. Chapter
3 up to and including Section 3.3 in Katz-Lindell book.

Recall our cast of characters- Alice and Bob want to communicate
securely over a channel that is monitored by the nosy Eve. In the last
lecture, we have seen the definition of perfect secrecy that guarantees
that Eve cannot learn anything about their communication beyond
what she already knew. However, this security came at a price. For
every bit of communication, Alice and Bob have to exchange in ad-
vance a bit of a secret key. In fact, the proof of this result gives rise to
the following simple Python program that can break every encryption
scheme that uses, say, a 128 bit key, with a 129 bit message:

from itertools import product # Import an iterator for

cartesian products↪

from random import choice # choose random element of list

Gets ciphertext as input and two potential plaintexts

Returns most likely plaintext

We assume we have access to the function

Encrypt(key,plaintext)↪

def Distinguish(ciphertext,plaintext1,plaintext2):

for key in product([0,1], repeat = 128): # Iterate

over all possible keys of length 128↪

if Encrypt(key, plaintext1)==ciphertext:

return plaintext1

if Encrypt(key, plaintext2)==ciphertext:

return plaintext2

return choice([plaintext1,plaintext2])

The program Distinguish will break any 128-bit key and 129-bit
message encryption Encrypt, in the sense that there exist a pair of
messages 𝑚0,𝑚1 such that Distinguish(Encrypt(𝑘,𝑚𝑏),𝑚0,𝑚1) =
𝑚𝑏 with probability at least 0.75 over 𝑘 ←𝑅 {0, 1}𝑛 and 𝑏 ←𝑅 {0, 1}.

Compiled on 11.17.2021 22:35

70 an intensive introduction to cryptography

Now, generating, distributing, and protecting huge keys causes
immense logistical problems, which is why almost all encryption
schemes used in practice do in fact utilize short keys (e.g., 128 bits
long) with messages that can be much longer (sometimes even ter-
abytes or more of data).

So, why can’t we use the above Python program to break all en-
cryptions in the Internet and win infamy and fortune? We can in fact,
but we’ll have to wait a really long time, since the loop in Distinguish

will run 2128 times, which will take much more than the lifetime of the
universe to complete, even if we used all the computers on the planet.

However, the fact that this particular program is not a feasible at-
tack, does not mean there does not exist a different attack. But this
still suggests a tantalizing possibility: if we consider a relaxed version
of perfect secrecy that restricts Eve to performing computations that
can be done in this universe (e.g., less than 2256 steps should be safe
not just for human but for all potential alien civilizations) then can we
bypass the impossibility result and allow the key to be much shorter
than the message?

This in fact does seem to be the case, but as we’ve seen, defining
security is a subtle task, and will take some care. As before, the way
we avoid (at least some of) the pitfalls of so many cryptosystems in
history is that we insist on very precisely defining what it means for a
scheme to be secure.

Let us defer the discussion how one defines a function being com-
putable in “less than 𝑇 operations” and just say that there is a way
to formally do so. We will want to say that a scheme has “256 bits of
security” if it is not possible to break it using less than 2256 operations,
and more generally that it has 𝑡 bits of security if it can’t be broken
using less than 2𝑡 operations. Given the perfect secrecy definition we
saw last time, a natural attempt for defining computational secrecy
would be the following:

Definition 2.1 — Computational secrecy (first attempt). An encryption
scheme (𝐸,𝐷) has 𝑡 bits of computational secrecy if for every two dis-
tinct plaintexts {𝑚0,𝑚1} ⊆ {0, 1}ℓ and every strategy of Eve using
at most 2𝑡 computational steps, if we choose at random 𝑏 ∈ {0, 1}
and a random key 𝑘 ∈ {0, 1}𝑛, then the probability that Eve guesses
𝑚𝑏 after seeing 𝐸𝑘(𝑚𝑏) is at most 1/2.

Note: It is important to keep track of what is known and unknown to
the adversary Eve. The adversary knows the set {𝑚0,𝑚1} of potential
messages, and the ciphertext 𝑦 = 𝐸𝑘(𝑚𝑏). The only things she doesn’t
know are whether 𝑏 = 0 or 𝑏 = 1, and the value of the secret key 𝑘.
In particular, because 𝑚0 and 𝑚1 are known to Eve, it does not matter

computational security 71

1 Another version of “𝑡 bits of security” is that a
scheme has 𝑡 bits of security if for every 𝑡1 + 𝑡2 ≤ 𝑡,
an attacker running in 2𝑡1 time can’t get success
probability advantage more than 2−𝑡2 . However
these two definitions only differ from one another
by at most a factor of two. This may be important for
practical applications (where the difference between
64 and 32 bits of security could be crucial) but won’t
matter for our concerns.

whether we define Eve’s goal in this “security game” as outputting 𝑚𝑏
or as outputting 𝑏.

Definition 2.1 seems very natural, but is in fact impossible to achieve
if the key is shorter than the message.

P
Before reading further, you might want to stop and
think if you can prove that there is no, say, encryption
scheme with √𝑛 bits of computational security satisfy-
ing Definition 2.1 with ℓ = 𝑛 + 1 and where the time to
compute the encryption is polynomial.

The reason Definition 2.1 can’t be achieved is that if the message is
even one bit longer than the key, we can always have a very efficient
procedure that achieves success probability of about 1/2 + 2−𝑛−1

by guessing the key. This is because we can replace the loop in the
Python program Distinguish by choosing the key at random. Since
we have some small chance of guessing correctly, we will get a small
advantage over half.

Of course an advantage of 2−256 in guessing the message is not
really something we would worry about. For example, since the earth
is about 5 billion years old, we can estimate the chance that an asteroid
of the magnitude that caused the dinosaurs’ extinction will hit us
this very second to be about 2−60. Hence we want to relax the notion
of computational security so it would not consider guessing with
such a tiny advantage as a “true break” of the scheme. The resulting
definition is the following:

Definition 2.2 — Computational secrecy (concrete). An encryption scheme
(𝐸,𝐷) has 𝑡 bits of computational secrecy 1 if for every two distinct
plaintexts {𝑚0,𝑚1} ⊆ {0, 1}ℓ and every strategy of Eve using at
most 2𝑡 computational steps, if we choose at random 𝑏 ∈ {0, 1} and
a random key 𝑘 ∈ {0, 1}𝑛, then the probability that Eve guesses 𝑚𝑏
after seeing 𝐸𝑘(𝑚𝑏) is at most 1/2 + 2−𝑡.

Having learned our lesson, let’s try to see that this strategy does
give us the kind of conditions we desired. In particular, let’s verify
that this definition implies the analogous condition to perfect secrecy.

Theorem 2.3 — Guessing game for computational secrecy. If (𝐸,𝐷) has
𝑡 bits of computational secrecy as per Definition 2.2 then for ev-
ery subset 𝑀 ⊆ {0, 1}ℓ and every strategy of Eve using at most
2𝑡 − (100ℓ + 100) computational steps, if we choose at random
𝑚 ∈ 𝑀 and a random key 𝑘 ∈ {0, 1}𝑛, then the probability that Eve
guesses 𝑚 after seeing 𝐸𝑘(𝑚) is at most 1/|𝑀| + 2−𝑡+1.

72 an intensive introduction to cryptography

2 The latter property is known as “semantic security”,
see also section 3.2.2 of Katz Lindell on “semantic se-
curity” and Section 2 of Boneh-Shoup “computational
ciphers and semantic security”.

Before proving this theorem note that it gives us a pretty strong
guarantee. In the exercises we will strengthen it even further showing
that no matter what prior information Eve had on the message before,
she will never get any non-negligible new information on it.2 One way
to phrase it is that if the sender used a 256-bit secure encryption to en-
crypt a message, then your chances of getting to learn any additional
information about it before the universe collapses are more or less the
same as the chances that a fairy will materialize and whisper it in your
ear.

P
Before reading the proof, try to again review the
proof of Theorem 1.8, and see if you can generalize it
yourself to the computational setting.

Proof of Theorem 2.3. The proof is rather similar to the equivalence of
guessing one of two messages vs. one of many messages for perfect
secrecy (i.e., Theorem 1.8). However, in the computational context we
need to be careful in keeping track of Eve’s running time. In the proof
of Theorem 1.8 we showed that if there exists:

• A subset 𝑀 ⊆ {0, 1}ℓ of messages

and

• An adversary 𝐸𝑣𝑒 ∶ {0, 1}𝑜 → {0, 1}ℓ such that

Pr
𝑚←𝑅𝑀,𝑘←𝑅{0,1}𝑛

[𝐸𝑣𝑒(𝐸𝑘(𝑚)) = 𝑚] > 1/|𝑀|

Then there exist two messages 𝑚0,𝑚1 and an adversary 𝐸𝑣𝑒′ ∶
{0, 1}𝑜 → {0, 1}ℓ such that Pr𝑏←𝑅{0,1},𝑘←𝑅{0,1}𝑛 [𝐸𝑣𝑒′(𝐸𝑘(𝑚𝑏)) = 𝑚𝑏] >
1/2.

To adapt this proof to the computational setting and complete the
proof of the current theorem it suffices to show that:

• If the probability of 𝐸𝑣𝑒 succeeding was 1
|𝑀| +𝜖 then the probability

of 𝐸𝑣𝑒′ succeeding is at least 1
2 + 𝜖/2.

• If 𝐸𝑣𝑒 can be computed in 𝑇 operations, then 𝐸𝑣𝑒′ can be com-
puted in 𝑇 + 100ℓ + 100 operations.

This will imply that if 𝐸𝑣𝑒 ran in polynomial time and had poly-
nomial advantage over 1/|𝑀| in guessing a plaintext chosen from 𝑀 ,
then 𝐸𝑣𝑒′ would run in polynomial time and have polynomial advan-
tage over 1/2 in guessing a plaintext chosen from {𝑚0,𝑚1}.

computational security 73

The first item can be shown by simply doing the same proof more
carefully, keeping track how the advantage over 1

|𝑀| for 𝐸𝑣𝑒 translates
into an advantage over 1

2 for 𝐸𝑣𝑒′. As the world’s most annoying
saying goes, doing this is an excellent exercise for the reader.

The second item is obtained by looking at the definition of 𝐸𝑣𝑒′
from that proof. On input 𝑐, 𝐸𝑣𝑒′ computed 𝑚 = 𝐸𝑣𝑒(𝑐) (which
costs 𝑇 operations), checked if 𝑚 = 𝑚0 (which costs, say, at most 5ℓ
operations), and then outputted either 1 or a random bit (which is a
constant, say at most 100 operations).

■

2.0.1 Proof by reduction
The proof of Theorem 2.3 is a model to how a great many of the re-
sults in this course will look like. Generally we will have many theo-
rems of the form:

“If there is a scheme 𝑆′ satisfying security defini-
tion 𝑋′ then there is a scheme 𝑆 satisfying security
definition 𝑋”

In the context of Theorem 2.3, 𝑋′ was “having 𝑡 bits of security” (in
the context distinguishing between encryptions of two ciphertexts)
and 𝑋 was the more general notion of hardness of getting a non-trivial
advantage over guessing for an encryption of a random 𝑚 ∈ 𝑀 .
While in Theorem 2.3 the encryption scheme 𝑆 was the same as 𝑆′,
this need not always be the case. However, all of the proofs of such
statements will have the same global structure— we will assume
towards a contradiction, that there is an efficient adversary strategy
𝐸𝑣𝑒 demonstrating that the scheme 𝑆 violates the security notion 𝑋,
and build from 𝐸𝑣𝑒 a strategy 𝐸𝑣𝑒′ demonstrating that 𝑆′ violates 𝑋′.
This is such an important point that it deserves repeating:

The way you show that if 𝑆′ is secure then 𝑆 is secure is
by giving a transformation from an adversary that breaks
𝑆 into an adversary that breaks 𝑆′

For computational secrecy, we will always want that 𝐸𝑣𝑒′ will
be efficient if 𝐸𝑣𝑒 is, and that will usually be the case because 𝐸𝑣𝑒′
will simply use 𝐸𝑣𝑒 as a black box, which it will not invoke too many
times, and addition will use some polynomial time preprocessing
and postprocessing. The more challenging parts of such proofs are
typically:

• Coming up with the strategy 𝐸𝑣𝑒′.

• Analyzing the probability of success and in particular showing that
if 𝐸𝑣𝑒 had non-negligible advantage then so will 𝐸𝑣𝑒′.

74 an intensive introduction to cryptography

3 Some texts reserve the term exponential to functions
of the form 2𝜖𝑛 for some 𝜖 > 0 and call a function
such as, say, 2

√𝑛 subexponential . However, we will
generally not make this distinction in this course.

Note that, just like in the context of NP completeness or uncom-
putability reductions, security reductions work backwards. That is, we
construct the scheme 𝑆 based on the scheme 𝑆′, but then prove that
we can transform an algorithm breaking 𝑆 into an algorithm breaking
𝑆′. Just like in computational complexity, it can sometimes be hard to
keep track of the direction of the reduction. In fact, cryptographic re-
ductions can be even subtler, since they involve an interplay of several
entities (for example, sender, receiver, and adversary) and probabilis-
tic choices (e.g., over the message to be sent and the key).

2.1 THE ASYMPTOTIC APPROACH

For practical security, often every bit of security matters. We want
our keys to be as short as possible and our schemes to be as fast as
possible while satisfying a particular level of security. In practice we
would usually like to ensure that when we use a smallish security
parameter such as 𝑛 in the few hundreds or thousands then:

• The honest parties (the parties running the encryption and decryp-
tion algorithms) are extremely efficient, something like 100-1000
cycles per byte of data processed. In theory terms we would want
them be using an 𝑂(𝑛) or at worst 𝑂(𝑛2) time algorithms with not-
too-big hidden constants.

• We want to protect against adversaries (the parties trying to break
the encryption) that have much vaster computational capabilities.
A typical modern encryption is built so that using standard key
sizes it can withstand the combined computational powers of all
computers on earth for several decades. In theory terms we would
want the time to break the scheme to be 2Ω(𝑛) (or if not, at least
2Ω(√𝑛) or 2Ω(𝑛1/3)) with not too small hidden constants.

For implementing cryptography in practice, the tradeoff between
security and efficiency can be crucial. However, for understanding the
principles behind cryptography, keeping track of concrete security can
be a distraction, and so just like we do in algorithms courses, we will
use asymptotic analysis (also known as big Oh notation) to sweep many
of those details under the carpet.

To a first approximation, there will be only two types of running
times we will encounter in this course:

• Polynomial running time of the form 𝑑⋅𝑛𝑐 for some constants 𝑑, 𝑐 > 0
(or 𝑝𝑜𝑙𝑦(𝑛) = 𝑛𝑂(1) for short), which we will consider as efficient.

• Exponential running time of the form 2𝑑⋅𝑛𝜖 for some constants 𝑑, 𝜖 >
0 (or 2𝑛Ω(1) for short) which we will consider as infeasible.3

computational security 75

4 Negligible functions are sometimes defined with
image equalling [0, 1] as opposed to the set [0,∞) of
non-negative real numbers, since they are typically
used to bound probabilities. However, this does not
make much difference since if 𝜇 is negligible then for
large enough 𝑛, 𝜇(𝑛) will be smaller than one.

Another way to say it is that in this course, if a scheme has any
security at all, it will have at least 𝑛𝜖 bits of security where 𝑛 is the
length of the key and 𝜖 > 0 is some absolute constant such as 𝜖 = 1/3.
Hence in this course, whenever you hear the term “super polyno-
mial”, you can equate it in your mind with “exponential” and you
won’t be far off the truth.

These are not all the theoretically possible running times. One can
have intermediate functions such as 𝑛log𝑛 though we will generally
not encounter those. To make things clean (and to correspond to
standard terminology), we will generally associate “efficient computa-
tion” with polynomial time in 𝑛 where 𝑛 is either its input length or the
key size (the key size and input length will always be polynomially
related, and so this choice won’t matter). We want our algorithms (en-
cryption, decryption, etc.) to be computable in polynomial time, but
to require super polynomial time to break.

Negligible probabilities. In cryptography, we care not just about the
running time of the adversary but also about their probability of suc-
cess (which should be as small as possible). If 𝜇 ∶ ℕ → [0,∞) is a
function (which we’ll often think of as corresponding to the adver-
sary’s probability of success or advantage over the trivial probability,
as a function of the key size 𝑛) then we say that 𝜇(𝑛) is negligible if it’s
smaller than the inverse of every (positive) polynomial. Our security
definitions will have the following form:

”Scheme 𝑆 is secure if for every polynomial 𝑝(⋅) and 𝑝(𝑛)
time adversary 𝐸𝑣𝑒, there is some negligible function
𝜇 such that the probability that 𝐸𝑣𝑒 succeeds in the
security game for 𝑆 is at most 𝑡𝑟𝑖𝑣𝑖𝑎𝑙 + 𝜇(𝑛)”

We now make these notions more formal.

Definition 2.4 — Negligible function. A function 𝜇 ∶ ℕ → [0,∞) is negligi-
ble if for every polynomial 𝑝 ∶ ℕ → ℕ there exists 𝑁 ∈ ℕ such that
𝜇(𝑛) < 1

𝑝(𝑛) for every 𝑛 > 𝑁 . 4

The following exercise provides a good way to get some comfort
with this definition:

Exercise 2.1 — Negligible functions properties. 1. Let 𝜇 ∶ ℕ → [0,∞) be a
negligible function. Prove that for every polynomials 𝑝, 𝑞 ∶ ℝ → ℝ
with non-negative coefficients such that 𝑝(0) = 0, the function
𝜇′ ∶ ℕ → [0,∞) defined as 𝜇′(𝑛) = 𝑝(𝜇(𝑞(𝑛))) is negligible.

2. Let 𝜇 ∶ ℕ → [0,∞). Prove that 𝜇 is negligible if and only if for every
constant 𝑐, lim𝑛→∞ 𝑛𝑐𝜇(𝑛) = 0.

■

76 an intensive introduction to cryptography

5 Note that there is a subtle issue here with the or-
der of quantifiers. For a scheme to be efficient, the
algorithms such as encryption and decryption need
to run in some fixed polynomial time such as 𝑛2 or
𝑛3. In contrast we allow the adversary to run in any
polynomial time. That is, for every 𝑐, if 𝑛 is large
enough, then the scheme should be secure against
an adversary that runs in time 𝑛𝑐. This is in line
with the general principle in cryptography that we
always allow the adversary potentially much more
resources than those used by the honest users. In
practical security we often assume that the gap be-
tween the honest use and the adversary resources can
be exponential. For example, a low power embedded
device can encrypt messages that, as far as we know,
are undecipherable even by a nation-state using
super-computers and massive data centers.

R
Remark 2.5 — Asymptotic analysis. The above defini-
tions could be confusing if you haven’t encountered
asymptotic analysis before. Reading the beginning of
Chapter 3 (pages 43-51) in the KL book, as well as the
mathematical background lecture in my intro to TCS
notes can be extremely useful. As a rule of thumb, if
every time you see the word “polynomial” you imag-
ine the function 𝑛10 and every time you see the word
“negligible” you imagine the function 2−

√𝑛 then you
will get the right intuition.
What you need to remember is that negligible is much
smaller than any inverse polynomial, while polynomi-
als are closed under multiplication, and so we have the
“equations”

𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒
and

𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
As mentioned, in practice people really want to get as
close as possible to 𝑛 bits of security with an 𝑛 bit key,
but we would be happy as long as the security grows
with the key, so when we say a scheme is “secure” you
can think of it having √𝑛 bits of security (though any
function growing faster than log𝑛 would be fine as
well).

From now on, we will require all of our encryption schemes to be
efficient which means that the encryption and decryption algorithms
should run in polynomial time. Security will mean that any efficient
adversary can make at most a negligible gain in the probability of
guessing the message over its a priori probability.5

We can now formally define computational secrecy in asymptotic
terms:

Definition 2.6 — Computational secrecy (asymptotic). An encryption
scheme (𝐸,𝐷) is computationally secret if for every two distinct
plaintexts {𝑚0,𝑚1} ⊆ {0, 1}ℓ and every efficient (i.e., polynomial
time) strategy of Eve, if we choose at random 𝑏 ∈ {0, 1} and a ran-
dom key 𝑘 ∈ {0, 1}𝑛, then the probability that Eve guesses 𝑚𝑏 after
seeing 𝐸𝑘(𝑚𝑏) is at most 1/2 + 𝜇(𝑛) for some negligible function
𝜇(⋅).

2.1.1 Counting number of operations.
One more detail that we’ve so far ignored is what does it mean exactly
for a function to be computable using at most 𝑇 operations. Fortu-
nately, when we don’t really care about the difference between 𝑇 and,

http://www.introtcs.org/public/index.html
http://www.introtcs.org/public/index.html

computational security 77

6 With some caveats that need to be added due to
quantum computers: we’ll get to those later in the
course, though they won’t change most of our theory.
See also this discussion in my intro TCS textbook
and this presentation of Aaronson on the “extended
Church Turing thesis”.

say, 𝑇 2, then essentially every reasonable definition gives the same an-
swer.6 Formally, we can use the notions of Turing machines, Boolean
circuits, or straightline programs to define complexity. For concrete-
ness, let’s define that a function 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 has complexity
at most 𝑇 if there is a Boolean circuit that computes 𝐹 using at most
𝑇 Boolean gates (say AND/OR/NOT or NAND; alternatively you can
choose your favorite universal gate sets.) We will often also consider
probabilistic functions in which case we allow the circuit a RAND gate
that outputs a single random bit (though this in general does not give
extra power). The fact that we only care about asymptotics means
you don’t really need to think of gates when arguing in cryptogra-
phy. However, it is comforting to know that this notion has a precise
mathematical formulation.

Uniform vs non-uniform models. While many computational texts fo-
cus on models such as Turing machines, in cryptography it is more
convenient to use Boolean circuits which are a non uniform model of
computation in the sense that we allow a different circuit for every
given input length. The reasons are the following:

1. Circuits can express finite computation, while Turing machines only
make sense for computing on arbitrarily large input lengths, and
so we can make sense of notions such as “𝑡 bits of computational
security”.

2. Circuits allow the notion of “hardwiring” whereby if we can com-
pute a certain function 𝐹 ∶ {0, 1}𝑛+𝑠 → {0, 1}𝑚 using a circuit
of 𝑇 gates and have a string 𝑤 ∈ {0, 1}𝑠 then we can compute the
function 𝑥 ↦ 𝐹(𝑥𝑤) using 𝑇 gates as well. This is useful in many
cryptograhic proofs.

One can build the theory of cryptography using Turing machines as
well, but it is more cumbersome.

R
Remark 2.7 — Computing beyond functions. Later on
in the course, both our cryptographic schemes and
the adversaries will extend beyond simple functions
that map an input to an output, and we will consider
interactive algorithms that exchange messages with one
another. Such an algorithm can be implemented us-
ing circuits or Turing machines that take as input the
prior state and the history of messages up to a certain
point in the interaction, and output the next message
in the interaction. The number of operations used in
such a strategy is the total number of gates used in
computing all the messages.

https://introtcs.org/public/lec_04_code_and_data.html#PECTTsec
https://www.scottaaronson.com/talks/bernays2.ppt
https://introtcs.org/public/lec_11_running_time.html#nonuniformcompsec

78 an intensive introduction to cryptography

7 As will be the case for other conjectures we talk
about, the name “The Cipher Conjecture” is not
a standard name, but rather one we’ll use in this
course. In the literature this conjecture is mostly
referred to as the conjecture of existence of one way
functions, a notion we will learn about later. These two
conjectures a priori seem quite different but have been
shown to be equivalent.

2.2 OUR FIRST CONJECTURE

We are now ready to make our first conjecture:

The Cipher Conjecture: 7 There exists a compu-
tationally secret encryption scheme (𝐸,𝐷) (where
𝐸,𝐷 are efficient) with length function ℓ(𝑛) = 𝑛+ 1.

A conjecture is a well defined mathematical statement which (1)
we believe is true but (2) don’t know yet how to prove. Proving the
cipher conjecture will be a great achievement and would in particular
settle the P vs NP question, which is arguably the fundamental ques-
tion of computer science. That is, the following theorem is known:

Theorem 2.8 — Breaking crypto if P=NP. If 𝑃 = NP then there does not
exist a computationally secret encryption with efficient 𝐸 and 𝐷
and where the message is longer than the key.

Proof. We just sketch the proof, as this is not the focus of this course.
If 𝑃 = NP then whenever we have a loop that searches through some
domain to find some string that satisfies a particular property (like the
loop in the Distinguish subroutine above that searches over all keys)
then this loop can be sped up exponentially .

■

While it is very widely believed that 𝑃 ≠ NP, at the moment we
do not know how to prove this, and so have to settle for accepting the
cipher conjecture as essentially an axiom, though we will see later in
this course that we can show it follows from some seemingly weaker
conjectures.

There are several reasons to believe the cipher conjecture. We now
briefly mention some of them:

• Intuition: If the cipher conjecture is false then it means that for every
possible cipher we can make the exponential time attack described
above become efficient. It seems “too good to be true” in a similar
way that the assumption that P=NP seems too good to be true.

• Concrete candidates: As we will see in the next lecture, there are sev-
eral concrete candidate ciphers using keys shorter than messages
for which despite tons of effort, no one knows how to break them.
Some of them are widely used and hence governments and other
benign or not so benign organizations have every reason to invest
huge resources in trying to break them. Despite that as far as we
know (and we know a little more after Edward Snowden’s reve-
lations) there is no significant break known for the most popular
ciphers. Moreover, there are other ciphers that can be based on

computational security 79

canonical mathematical problems such as factoring large integers
or decoding random linear codes that are immensely interesting in
their own right, independently of their cryptographic applications.

• Minimalism: Clearly if the cipher conjecture is false then we also
don’t have a secure encryption with a message, say, twice as long
as the key. But it turns out the cipher conjecture is in fact necessary
for essentially every cryptographic primitive, including not just
private key and public key encryptions but also digital signatures,
hash functions, pseudorandom generators, and more. That is, if the
cipher conjecture is false then to a large extent cryptography does
not exist, and so we essentially have to assume this conjecture if we
want to do any kind of cryptography.

2.3 WHY CARE ABOUT THE CIPHER CONJECTURE?

“Give me a place to stand, and I shall move the world”
Archimedes, circa 250 BC

Every perfectly secure encryption scheme is clearly also compu-
tationally secret, and so if we required a message of size 𝑛 instead
𝑛 + 1, then the conjecture would have been trivially satisfied by the
one-time pad. However, having a message longer than the key by just
a single bit does not seem that impressive. Sure, if we used such a
scheme with 128-bit long keys, our communication will be smaller by
a factor of 128/129 (or a saving of about 0.8%) over the one-time pad,
but this doesn’t seem worth the risk of using an unproven conjecture.
However, it turns out that if we assume this rather weak condition,
we can actually get a computationally secret encryption scheme with
a message of size 𝑝(𝑛) for every polynomial 𝑝(⋅). In essence, we can fix
a single 𝑛-bit long key and communicate securely as many bits as we
want!

Moreover, this is just the beginning. There is a huge range of other
useful cryptographic tools that we can obtain from this seemingly
innocent conjecture: (We will see what all these names and some of
these reductions mean later in the course.)

We will soon see the first of the many reductions we’ll learn in this
course. Together this “web of reductions” forms the scientific core of
cryptography, connecting many of the core concepts and enabling us
to construct increasingly sophisticated tools based on relatively simple
“axioms” such as the cipher conjecture.

2.4 PRELUDE: COMPUTATIONAL INDISTINGUISHABILITY

The task of Eve in breaking an encryption scheme is to distinguish
between an encryption of 𝑚0 and an encryption of 𝑚1. It turns out

80 an intensive introduction to cryptography

Figure 2.2: Web of reductions between notions equiva-
lent to ciphers with larger than key messages

to be useful to consider this question of when two distributions are
computationally indistinguishable more broadly:

Definition 2.9 — Computational Indistinguishability (concrete definition). Let
𝑋 and 𝑌 be two distributions over {0, 1}𝑚. We say that 𝑋 and 𝑌
are (𝑇 , 𝜖)-computationally indistinguishable, denoted by 𝑋 ≈𝑇,𝜖 𝑌 , if
for every function 𝐷 ∶ {0, 1}𝑚 → {0, 1} computable with at most 𝑇
operations,

|Pr[𝐷(𝑋) = 1] − Pr[𝐷(𝑌) = 1]| ≤ 𝜖 .

Solved Exercise 2.1 — Computational Indistinguishability game. Prove that
for every 𝑋,𝑌 and 𝑇 , 𝜖 as above 𝑋 ≈𝑇,𝜖 𝑌 if and only if for every
≤ 𝑇 -operation computable 𝐸𝑣𝑒, the probability that 𝐸𝑣𝑒 wins in the
following game is at most 1/2 + 𝜖/2:

1. We pick 𝑏 ←𝑅 {0, 1}.

2. If 𝑏 = 0, we let 𝑤 ←𝑅 𝑋. If 𝑏 = 1, we let 𝑤 ←𝑅 𝑌 .

3. We give 𝐸𝑣𝑒 the input 𝑤, and 𝐸𝑣𝑒 outputs 𝑏′ ∈ {0, 1}.

4. 𝐸𝑣𝑒 wins if 𝑏 = 𝑏′.

■

P
Working out this exercise on your own is a great way
to get comfortable with computational indistinguisha-
bility, which is a fundamental notion.

computational security 81

Solution:

For every function 𝐸𝑣𝑒 ∶ {0, 1}𝑚 → {0, 1}, let 𝑝𝑋 = Pr[𝐸𝑣𝑒(𝑋) =
1] and 𝑝𝑌 = Pr[𝐸𝑣𝑒(𝑌) = 1].

Then the probability that 𝐸𝑣𝑒 wins the game is:

Pr[𝑏 = 0](1 − 𝑝𝑋) + Pr[𝑏 = 1]𝑝𝑌
and since Pr[𝑏 = 0] = Pr[𝑏 = 1] = 1/2 this is

1
2 − 1

2𝑝𝑋 + 1
2𝑝𝑌 = 1

2 + 1
2 (𝑝𝑌 − 𝑝𝑋)

We see that 𝐸𝑣𝑒 wins the game with success 1/2+𝜖/2 if and only
if

Pr[𝐸𝑣𝑒(𝑌) = 1] − Pr[𝐸𝑣𝑒(𝑋) = 1] = 𝜖 .
Since Pr[𝐸𝑣𝑒(𝑌) = 1]−Pr[𝐸𝑣𝑒(𝑋) = 1] ≤ |Pr[𝐸𝑣𝑒(𝑋) = 1] − Pr[𝐸𝑣𝑒(𝑌) = 1]|,
this already shows that if 𝑋 and 𝑌 are (𝑇 , 𝜖)-indistinguishable then
𝐸𝑣𝑒 will win the game with probability at most 𝜖/2.

For the other direction, assume that 𝑋 and 𝑌 are not compu-
tationally indistinguishable and let 𝐸𝑣𝑒 be a 𝑇 time operation
function such that

|Pr[𝐸𝑣𝑒(𝑋) = 1] − Pr[𝐸𝑣𝑒(𝑌) = 1]| ≥ 𝜖 .

Then by definition of absolute value, there are two options.
Either Pr[𝐸𝑣𝑒(𝑋) = 1] − Pr[𝐸𝑣𝑒(𝑌) = 1] ≥ 𝜖 in which case
𝐸𝑣𝑒 wins the game with probability at least 1/2 + 𝜖/2. Otherwise
Pr[𝐸𝑣𝑒(𝑋) = 1] − Pr[𝐸𝑣𝑒(𝑌) = 1] ≤ −𝜖, in which case the function
𝐸𝑣𝑒′(𝑤) = 1 − 𝐸𝑣𝑒(𝑤) (which is just as easy to compute) wins the
game with probability at least 1/2 + 𝜖/2.

Note that above we assume that the class of “functions com-
putable in at most 𝑇 operations” is closed under negation, in the
sense that if 𝐹 is in this class, then 1 − 𝐹 is also. For standard
Boolean circuits, this can be done if we don’t count negation gates
(which can change the total circuit size by at most a factor of two),
or we can allow for 𝐸𝑣𝑒′ to require a constant additional number of
operations, in which case the exercise is still essentially true but is
slightly more cumbersome to state.

■

As we did with computational secrecy, we can also define an
asymptotic definition of computational indistinguishability.

Definition 2.10 — Computational indistt. Let 𝑚 ∶ ℕ → ℕ be some function
and let {𝑋𝑛}𝑛∈ℕ and {𝑌𝑛}𝑛∈ℕ be two sequences of distributions
such that 𝑋𝑛 and 𝑌𝑛 are distributions over {0, 1}𝑚(𝑛).

82 an intensive introduction to cryptography

We say that {𝑋𝑛}𝑛∈ℕ and {𝑌𝑛}𝑛∈ℕ are computationally indistin-
guishable, denoted by {𝑋𝑛}𝑛∈ℕ ≈ {𝑌𝑛}𝑛∈ℕ, if for every polynomial
𝑝 ∶ ℕ → ℕ and sufficiently large 𝑛, 𝑋𝑛 ≈𝑝(𝑛),1/𝑝(𝑛) 𝑌𝑛.

Solving the following asymptotic analog of Solved Exercise 2.1
is a good way to get comfortable with the asymptotic definition of
computational indistinguishability:

Exercise 2.2 — Computational Indistinguishability game (asymptotic). Let
{𝑋𝑛}𝑛∈ℕ, {𝑌𝑛}𝑛∈ℕ and 𝑚 ∶ ℕ → ℕ be as above. Then {𝑋𝑛}𝑛∈ℕ ≈
{𝑌𝑛}𝑛∈ℕ if and only if for every polynomial-time 𝐸𝑣𝑒, there is some
negligible function 𝜇 such that 𝐸𝑣𝑒 wins the following game with
probability at most 1/2 + 𝜇(𝑛):

1. We pick 𝑏 ←𝑅 {0, 1}.

2. If 𝑏 = 0, we let 𝑤 ←𝑅 𝑋𝑛. If 𝑏 = 1, we let 𝑤 ←𝑅 𝑌𝑛.

3. We give 𝐸𝑣𝑒 the input 𝑤, and 𝐸𝑣𝑒 outputs 𝑏′ ∈ {0, 1}.

4. 𝐸𝑣𝑒 wins if 𝑏 = 𝑏′.

■

Dropping the index n. Since the index 𝑛 of our distributions would
often be clear from context (indeed in most cases it will be the length
of the key), we will sometimes drop it from our notation. So if 𝑋 and
𝑌 are two random variables that depend on some index 𝑛, we will say
that 𝑋 is computationally indistinguishable from 𝑌 (denoted as 𝑋 ≈
𝑌) when the sequences {𝑋𝑛}𝑛∈ℕ and {𝑌𝑛}𝑛∈ℕ are computationally
indistinguishable.

We can use computational indistinguishability to phrase the defini-
tion of computational secrecy more succinctly:

Theorem 2.11 — Computational Indistinguishability phrasing of security. Let
(𝐸,𝐷) be a valid encryption scheme. Then (𝐸,𝐷) is computation-
ally secret if and only if for every two messages 𝑚0,𝑚1 ∈ {0, 1}ℓ,

{𝐸𝑘(𝑚0)}𝑛∈ℕ ≈ {𝐸𝑘(𝑚1)}𝑛∈ℕ

where each of these two distributions is obtained by sampling a
random 𝑘←𝑅{0, 1}

𝑛.

Working out the proof is an excellent way to make sure you under-
stand both the definition of computational secrecy and computational
indistinguishability, and hence we leave it as an exercise.

One intuition for computational indistinguishability is that it is
related to some notion of distance. If two distributions are computa-
tionally indistinguishable, then we can think of them as “very close”

computational security 83

8 Results of this form are known as “triangle inequal-
ities” since they can be viewed as generalizations of
the statement that for every three points on the plane
𝑥, 𝑦, 𝑧, the distance from 𝑥 to 𝑧 is not larger than the
distance from 𝑥 to 𝑦 plus the distance from 𝑦 to 𝑧. In
other words, the edge 𝑥, 𝑧 of the triangle (𝑥, 𝑦, 𝑧) is
not longer than the sum of the lengths of the other
two edges 𝑥, 𝑦 and 𝑦, 𝑧.

to one another, at least as far as efficient observers are concerned. In-
tuitively, if 𝑋 is close to 𝑌 and 𝑌 is close to 𝑍 then 𝑋 should be close
to 𝑍.8 Similarly if four distributions 𝑋,𝑋′, 𝑌 , 𝑌 ′ satisfy that 𝑋 is close
to 𝑌 and 𝑋′ is close to 𝑌 ′, then you might expect that the distribu-
tion (𝑋,𝑋′) where we take two independent samples from 𝑋 and 𝑋′

respectively, is close to the distribution (𝑌 , 𝑌 ′) where we take two
independent samples from 𝑌 and 𝑌 ′ respectively. We will now verify
that these intuitions are in fact correct:

Theorem 2.12 — Triangle Inequality for Computational Indistinguishability.

Suppose 𝑋1 ≈𝑇,𝜖 𝑋2 ≈𝑇,𝜖 ⋯ ≈𝑇,𝜖 𝑋𝑚. Then 𝑋1 ≈𝑇,(𝑚−1)𝜖 𝑋𝑚.

Proof. Suppose that there exists a 𝑇 time 𝐸𝑣𝑒 such that

|Pr[𝐸𝑣𝑒(𝑋1) = 1] − Pr[𝐸𝑣𝑒(𝑋𝑚) = 1]| > (𝑚 − 1)𝜖 .

Write

Pr[𝐸𝑣𝑒(𝑋1) = 1]−Pr[𝐸𝑣𝑒(𝑋𝑚) = 1] =
𝑚−1
∑
𝑖=1

(Pr[𝐸𝑣𝑒(𝑋𝑖) = 1] − Pr[𝐸𝑣𝑒(𝑋𝑖+1) = 1]) .

Thus,

𝑚−1
∑
𝑖=1

|Pr[𝐸𝑣𝑒(𝑋𝑖) = 1] − Pr[𝐸𝑣𝑒(𝑋𝑖+1) = 1]| > (𝑚 − 1)𝜖

and hence in particular there must exist some 𝑖 ∈ {1,… ,𝑚 − 1} such
that

|Pr[𝐸𝑣𝑒(𝑋𝑖) = 1] − Pr[𝐸𝑣𝑒(𝑋𝑖+1) = 1]| > 𝜖

contradicting the assumption that {𝑋𝑖} ≈𝑇,𝜖 {𝑋𝑖+1} for all 𝑖 ∈
{1,… ,𝑚 − 1}.

■

Theorem 2.13 — Computational Indistinguishability is preserved under repeti-

tion. Suppose that 𝑋1,… ,𝑋ℓ, 𝑌1,… , 𝑌ℓ are distributions over {0, 1}𝑛
such that 𝑋𝑖 ≈𝑇,𝜖 𝑌𝑖. Then (𝑋1,… ,𝑋ℓ) ≈𝑇−10ℓ𝑛,ℓ𝜖 (𝑌1,… , 𝑌ℓ).

Proof. For every 𝑖 ∈ {0,… , ℓ} we define 𝐻𝑖 to be the distribu-
tion (𝑋1,… ,𝑋𝑖, 𝑌𝑖+1,… , 𝑌ℓ). Clearly 𝐻ℓ = (𝑋1,… ,𝑋ℓ) and
𝐻0 = (𝑌1,… , 𝑌ℓ). We will prove that for every 𝑖, 𝐻𝑖−1 ≈𝑇−10ℓ𝑛,𝜖 𝐻𝑖,
and the proof will then follow from the triangle inequality (can
you see why?). Indeed, suppose towards the sake of contradic-
tion that there was some 𝑖 ∈ {1,… , ℓ} and some 𝑇 − 10ℓ𝑛-time
𝐸𝑣𝑒′ ∶ {0, 1}𝑛ℓ → {0, 1} such that

|𝔼[𝐸𝑣𝑒′(𝐻𝑖−1)] − 𝔼[𝐸𝑣𝑒′(𝐻𝑖)]| > 𝜖 .

84 an intensive introduction to cryptography

9 This is the principle that if the average grade in an
exam was at least 𝛼 then someone must have gotten at
least 𝛼, or in other words that if a real-valued random
variable 𝑍 satisfies 𝔼[𝑍] ≥ 𝛼 then Pr[𝑍 ≥ 𝛼] > 0.

10 The cost 10ℓ𝑛 is for the operations of feeding the
“hardwired” strings 𝑥1,… ,𝑥𝑖−1, 𝑦𝑖+1,… , 𝑦ℓ into
𝐸𝑣𝑒′. These take up at most ℓ𝑛 bits, and depending
on the computational model, storing and feeding
them into 𝐸𝑣𝑒′ may take 𝑐ℓ𝑛 steps for some small
constant 𝑐 < 10. In the future, we will usually ignore
such minor details and simply say that if 𝐸𝑣𝑒′ runs in
polynomial time then so will 𝐸𝑣𝑒.

In other words

∣𝔼𝑋1,…,𝑋𝑖−1,𝑌𝑖,…,𝑌ℓ
[𝐸𝑣𝑒′(𝑋1,… ,𝑋𝑖−1, 𝑌𝑖,… , 𝑌ℓ)] − 𝔼𝑋1,…,𝑋𝑖,𝑌𝑖+1,…,𝑌ℓ

[𝐸𝑣𝑒′(𝑋1,… ,𝑋𝑖, 𝑌𝑖+1,… , 𝑌ℓ)]∣ > 𝜖 .

By linearity of expectation we can write the difference of these two
expectations as

𝔼𝑋1,…,𝑋𝑖−1,𝑋𝑖,𝑌𝑖,𝑌𝑖+1,…,𝑌ℓ
[𝐸𝑣𝑒′(𝑋1,… ,𝑋𝑖−1, 𝑌𝑖, 𝑌𝑖+1,… , 𝑌ℓ) − 𝐸𝑣𝑒′(𝑋1,… ,𝑋𝑖−1, 𝑋𝑖, 𝑌𝑖+1,… , 𝑌ℓ)]

By the averaging principle9 this means that there exist some values
𝑥1,… , 𝑥𝑖−1, 𝑦𝑖+1,… , 𝑦ℓ such that

∣𝔼𝑋𝑖,𝑌𝑖
[𝐸𝑣𝑒′(𝑥1,… , 𝑥𝑖−1, 𝑌𝑖, 𝑦𝑖+1,… , 𝑦ℓ) − 𝐸𝑣𝑒′(𝑥1,… , 𝑥𝑖−1, 𝑋𝑖, 𝑦𝑖+1,… , 𝑦ℓ)]∣ > 𝜖

Now 𝑋𝑖 and 𝑌𝑖 are simply independent draws from the
distributions 𝑋 and 𝑌 respectively, and so if we define
𝐸𝑣𝑒(𝑧) = 𝐸𝑣𝑒′(𝑥1,… , 𝑥𝑖−1, 𝑧, 𝑦𝑖+1,… , 𝑦ℓ) then 𝐸𝑣𝑒 runs in time
at most the running time of 𝐸𝑣𝑒′ plus 10ℓ𝑛10 and it satisfies

∣𝔼𝑋𝑖
[𝐸𝑣𝑒(𝑋𝑖)] − 𝔼𝑌𝑖

[𝐸𝑣𝑒(𝑌𝑖)]∣ > 𝜖

contradicting the assumption that 𝑋𝑖 ≈𝑇,𝜖 𝑌𝑖.
■

R
Remark 2.14 — The hybrid argument. The above proof
illustrates a powerful technique known as the hybrid
argument whereby we show that two distribution
𝐶0 and 𝐶1 are close to each other by coming up
with a sequence of distributions 𝐻0,… ,𝐻𝑡 such that
𝐻𝑡 = 𝐶1,𝐻0 = 𝐶0, and we can argue that 𝐻𝑖 is close to
𝐻𝑖+1 for all 𝑖. This type of argument repeats itself time
and again in cryptography, and so it is important to
get comfortable with it.

2.5 THE LENGTH EXTENSION THEOREM OR STREAM CIPHERS

We now turn to show the length extension theorem, stating that if we
have an encryption for 𝑛 + 1-length messages with 𝑛-length keys,
then we can obtain an encryption with 𝑝(𝑛)-length messages for every
polynomial 𝑝(𝑛). For a warm-up, let’s show the easier fact that we
can transform an encryption such as above, into one that has keys of
length 𝑡𝑛 and messages of length 𝑡(𝑛 + 1) for every integer 𝑡:

Theorem 2.15 — Security of repetition. Suppose that (𝐸′, 𝐷′) is a com-
putationally secret encryption scheme with 𝑛 bit keys and 𝑛 + 1 bit
messages. Then the scheme (𝐸,𝐷) where 𝐸𝑘1,…,𝑘𝑡

(𝑚1,… ,𝑚𝑡) =
(𝐸′

𝑘1
(𝑚1),… ,𝐸′

𝑘𝑡
(𝑚𝑡)) and 𝐷𝑘1,…,𝑘𝑡

(𝑐1,… , 𝑐𝑡) = (𝐷′
𝑘1
(𝑐1),… ,𝐷′

𝑘𝑡
(𝑐𝑡))

computational security 85

is a computationally secret scheme with 𝑡𝑛 bit keys and 𝑡(𝑛 + 1) bit
messages.

Proof. This might seem “obvious” but in cryptography, even obvious
facts are sometimes wrong, so it’s important to prove this formally.
Luckily, this is a fairly straightforward implication of the fact that
computational indisinguishability is preserved under many samples.
That is, by the security of (𝐸′, 𝐷′) we know that for every two mes-
sages 𝑚,𝑚′ ∈ {0, 1}𝑛+1, 𝐸′

𝑘(𝑚) ≈ 𝐸′
𝑘(𝑚′) where 𝑘 is chosen from

the distribution 𝑈𝑛. Therefore by the indistinguishability of many
samples lemma, for every two tuples 𝑚1,… ,𝑚𝑡 ∈ {0, 1}𝑛+1 and
𝑚′

1,… ,𝑚′
𝑡 ∈ {0, 1}𝑛+1,

(𝐸′
𝑘1
(𝑚1),… ,𝐸′

𝑘𝑡
(𝑚𝑡)) ≈ (𝐸′

𝑘1
(𝑚′

1),… ,𝐸′
𝑘𝑡
(𝑚′

𝑡))
for random 𝑘1,… , 𝑘𝑡 chosen independently from 𝑈𝑛 which is ex-

actly the condition that (𝐸,𝐷) is computationally secret.
■

Randomized encryption scheme. We can now prove the full length exten-
sion theorem. Before doing so, we will need to generalize the notion
of an encryption scheme to allow a randomized encryption scheme. That
is, we will consider encryption schemes where the encryption algo-
rithm can “toss coins” in its computation. There is a crucial difference
between key material and such “as hoc” (sometimes also known as
“ephemeral”) randomness. Keys need to be not only chosen at ran-
dom, but also shared in advance between the sender and receiver, and
stored securely throughout their lifetime. The “coin tosses” used by
a randomized encryption scheme are generated “on the fly” and are
not known to the receiver, nor do they need to be stored long term by
the sender. So, allowing such randomized encryption does not make
a difference for most applications of encryption schemes. In fact, as
we will see later in this course, randomized encryption is necessary for
security against more sophisticated attacks such as chosen plaintext
and chosen ciphertext attacks, as well as for obtaining secure public key
encryptions. We will use the notation 𝐸𝑘(𝑚; 𝑟) to denote the output of
the encryption algorithm on key 𝑘, message 𝑚 and using internal ran-
domness 𝑟. We often suppress the notation for the randomness, and
hence use 𝐸𝑘(𝑚) to denote the random variable obtained by sampling
a random 𝑟 and outputting 𝐸𝑘(𝑚; 𝑟).

We can now show that given an encryption scheme with messages
one bit longer than the key, we can obtain a (randomized) encryption
scheme with arbitrarily long messages:

86 an intensive introduction to cryptography

11 The keys 𝑘1,… , 𝑘𝑡 are sometimes known as
ephemeral keys in the crypto literature, since they
are created only for the purposes of this particular
interaction.
12 The astute reader might note that the key 𝑘𝑡 is
actually not used anywhere in the encryption nor
decryption and hence we could encrypt 𝑛 more bits
of the message instead in this final round. We used
the current description for the sake of symmetry and
simplicity of exposition.

Theorem 2.16 — Length extension of ciphers. Suppose that there exists a
computationally secret encryption scheme (𝐸′, 𝐷′) with key length
𝑛 and message length 𝑛 + 1. Then for every polynomial 𝑡(𝑛) there
exists a (randomized) computationally secret encryption scheme
(𝐸,𝐷) with key length 𝑛 and message length 𝑡(𝑛).

Figure 2.3: Constructing a cipher with 𝑡 bit long
messages from one with 𝑛+ 1 long messages

P
This is perhaps our first example of a non trivial cryp-
tographic theorem, and the blueprint for this proof
will be one that we will follow time and again during
this course. Please make sure you read this proof
carefully and follow the argument.

Proof of Theorem 2.16. The construction, depicted in Fig. 2.3, is actually
quite natural and variants of it are used in practice for stream ciphers,
which are ways to encrypt arbitrarily long messages using a fixed size
key. The idea is that we use a key 𝑘0 of size 𝑛 to encrypt (1) a fresh
key 𝑘1 of size 𝑛 and (2) one bit of the message. Now we can encrypt
𝑘2 using 𝑘1 and so on and so forth. We now describe the construction
and analysis in detail.

Let 𝑡 = 𝑡(𝑛). We are given a cipher 𝐸′ which can encrypt 𝑛 + 1-
bit long messages with an 𝑛-bit long key and we need to encrypt a
𝑡-bit long message 𝑚 = (𝑚1,… ,𝑚𝑡) ∈ {0, 1}𝑡. Our idea is simple (at
least in hindsight). Let 𝑘0←𝑅{0, 1}

𝑛 be our key (which is chosen at
random). To encrypt 𝑚 using 𝑘0, the encryption function will choose
𝑡 random strings 𝑘1,… , 𝑘𝑡←𝑅{0, 1}

𝑛. We will then encrypt the 𝑛 + 1-
bit long message (𝑘1,𝑚1) with the key 𝑘0 to obtain the ciphertext 𝑐1,
then encrypt the 𝑛 + 1-bit long message (𝑘2,𝑚2) with the key 𝑘1 to
obtain the ciphertext 𝑐2, and so on and so forth until we encrypt the
message (𝑘𝑡,𝑚𝑡) with the key 𝑘𝑡−1.11 We output (𝑐1,… , 𝑐𝑡) as the final
ciphertext.12

computational security 87

To decrypt (𝑐1,… , 𝑐𝑡) using the key 𝑘0, first decrypt 𝑐1 to learn
(𝑘1,𝑚1), then use 𝑘1 to decrypt 𝑐2 to learn (𝑘2,𝑚2), and so on until we
use 𝑘𝑡−1 to decrypt 𝑐𝑡 and learn (𝑘𝑡,𝑚𝑡). Finally we can simply output
(𝑚1,… ,𝑚𝑡).

The above are clearly valid encryption and decryption algorithms,
and hence the real question becomes is it secure??. The intuition is that
𝑐1 hides all information about (𝑘1,𝑚1) and so in particular the first bit
of the message is encrypted securely, and 𝑘1 still can be treated as an
unknown random string even to an adversary that saw 𝑐1. Thus, we
can think of 𝑘1 as a random secret key for the encryption 𝑐2, and hence
the second bit of the message is encrypted securely, and so on and so
forth.

Our discussion above looks like a reasonable intuitive argument,
but to make sure it’s true we need to give an actual proof. Let 𝑚,𝑚′ ∈
{0, 1}𝑡 be two messages. We need to show that 𝐸𝑈𝑛

(𝑚) ≈ 𝐸𝑈𝑛
(𝑚′).

The heart of the proof will be the following claim:
Claim: Let ̂𝐸 be the algorithm that on input a message 𝑚 and key

𝑘0 works like 𝐸 except that its 𝑖𝑡ℎ block contains 𝐸′
𝑘𝑖−1

(𝑘′
𝑖,𝑚𝑖) where 𝑘′

𝑖
is a random string in {0, 1}𝑛, that is chosen independently of everything
else including the key 𝑘𝑖. Then, for every message 𝑚 ∈ {0, 1}𝑡

𝐸𝑈𝑛
(𝑚) ≈ ̂𝐸𝑈𝑛

(𝑚) . (2.1)

Note that ̂𝐸 is not a valid encryption scheme since it’s not at all
clear there is a decryption algorithm for it. It is just an hypothetical
tool we use for the proof. Since both 𝐸 and ̂𝐸 are randomized en-
cryption schemes (with 𝐸 using (𝑡 − 1)𝑛 bits of randomness for the
ephemeral keys 𝑘1,… , 𝑘𝑡−1 and ̂𝐸 using (2𝑡 − 1)𝑛 bits of randomness
for the ephemeral keys 𝑘1,… , 𝑘𝑡, 𝑘′

2,… , 𝑘′
𝑡), we can also write (2.1) as

𝐸𝑈𝑛
(𝑚;𝑈 ′

𝑡𝑛) ≈ ̂𝐸𝑈𝑛
(𝑚;𝑈 ′

(2𝑡−1)𝑛)

where we use 𝑈 ′
ℓ to denote a random variable that is chosen uni-

formly at random from {0, 1}ℓ and independently from the choice
of 𝑈𝑛 (which is chosen uniformly at random from {0, 1}𝑛).

Once we prove the claim then we are done since we know that for
every pair of messages 𝑚,𝑚′, 𝐸𝑈𝑛

(𝑚) ≈ ̂𝐸𝑈𝑛
(𝑚) and 𝐸𝑈𝑛

(𝑚′) ≈
̂𝐸𝑈𝑛

(𝑚′) but ̂𝐸𝑈𝑛
(𝑚) ≈ ̂𝐸𝑈𝑛

(𝑚′) since ̂𝐸 is essentially the same as
the 𝑡-times repetition scheme we analyzed above. Thus by the triangle
inequality we can conclude that 𝐸𝑈𝑛

(𝑚) ≈ 𝐸𝑈𝑛
(𝑚′) as we desired.

Proof of claim: We prove the claim by the hybrid method. For
𝑗 ∈ {0,… , 𝑡}, let 𝐻𝑗 be the distribution of ciphertexts where in the first
𝑗 blocks we act like ̂𝐸 and in the last 𝑡 − 𝑗 blocks we act like 𝐸. That
is, we choose 𝑘0,… , 𝑘𝑡, 𝑘′

1,… , 𝑘′
𝑡 independently at random from 𝑈𝑛

and the 𝑖𝑡ℎ block of 𝐻𝑗 is equal to 𝐸′
𝑘𝑖−1

(𝑘𝑖,𝑚𝑖) if 𝑖 > 𝑗 and is equal to

88 an intensive introduction to cryptography

𝐸′
𝑘𝑖−1

(𝑘′
𝑖,𝑚𝑖) if 𝑖 ≤ 𝑗. Clearly, 𝐻𝑡 = ̂𝐸𝑈𝑛

(𝑚) and 𝐻0 = 𝐸𝑈𝑛
(𝑚) and so

it suffices to prove that for every 𝑗, 𝐻𝑗−1 ≈ 𝐻𝑗. Indeed, let 𝑗 ∈ {1,… , 𝑡}
and suppose towards the sake of contradiction that there exists an
efficient 𝐸𝑣𝑒′ such that

∣𝔼[𝐸𝑣𝑒′(𝐻𝑗−1)] − 𝔼[𝐸𝑣𝑒′(𝐻𝑗)]∣ ≥ 𝜖 (∗)

where 𝜖 = 𝜖(𝑛) is noticeable. By the averaging principle, there
exists some fixed choice for 𝑘′

1,… , 𝑘′
𝑡, 𝑘0,… , 𝑘𝑗−2, 𝑘𝑗,… , 𝑘𝑡 such that (∗)

still holds. Note that in this case the only randomness is the choice of
𝑘𝑗−1←𝑅𝑈𝑛 and moreover the first 𝑗 − 1 blocks and the last 𝑡 − 𝑗 blocks
of 𝐻𝑗−1 and 𝐻𝑗 would be identical and we can denote them by 𝛼 and 𝛽
respectively and hence write (∗) as

∣𝔼𝑘𝑗−1
[𝐸𝑣𝑒′(𝛼,𝐸′

𝑘𝑗−1
(𝑘𝑗,𝑚𝑗), 𝛽) − 𝐸𝑣𝑒′(𝛼,𝐸′

𝑘𝑗−1
(𝑘′

𝑗,𝑚𝑗), 𝛽)]∣ ≥ 𝜖 (∗∗)

But now consider the adversary 𝐸𝑣𝑒 that is defined as 𝐸𝑣𝑒(𝑐) =
𝐸𝑣𝑒′(𝛼, 𝑐, 𝛽). Then 𝐸𝑣𝑒 is also efficient and by (∗∗) it can distinguish
between 𝐸′

𝑈𝑛
(𝑘𝑗,𝑚𝑗) and 𝐸′

𝑈𝑛
(𝑘′

𝑗,𝑚𝑗) thus contradicting the secu-
rity of (𝐸′, 𝐷′). This concludes the proof of the claim and hence the
theorem.

■

2.5.1 Appendix: The computational model
For concreteness sake let us give a precise definition of what it means
for a function or probabilistic process 𝑓 mapping {0, 1}𝑛 to {0, 1}𝑚 to
be computable using 𝑇 operations.

• If you have taken any course on computational complexity (such as
Harvard CS 121), then this is the model of Boolean circuits, except
that we also allow randomization.

• If you have not taken such a course, you might simply take it on
faith that it is possible to model what it means for an algorithm to
be able to map an input 𝑥 into an output 𝑓(𝑥) using 𝑇 “elementary
operations”.

In both cases you might want to skip this appendix and only return
to it if you find something confusing.

The model we use is a Boolean circuit that also has a RAND gate
that outputs a random bit. We could use as the basic set of gates
the standard AND, OR and NOT but for simplicity we use the one-
element set NAND. We represent the circuit as a straightline program,
but this is of course just a matter of convenience. As shown (for exam-
ple) in the CS 121 textbook, these two representations are identical.

http://introtcs.org

computational security 89

Definition 2.17 — Probabilistic straightline program. A probabilistic straight-
line program consists of a sequence of lines, each one of them one of
the following forms:

• foo = NAND(bar, baz) where foo,bar,baz are variable identi-
fiers.

• foo = RAND() where foo is a variable identifier.

Given a program 𝜋, we say that its size is the number of lines it
contains. Variables of the form X[𝑖] or Y[𝑗] are considered input and
output variables respectively. If the input variables range from 0 to
𝑛 − 1 and the output variables range from 0 to 𝑚− 1 then the program
computes the probabilistic process that maps {0, 1}𝑛 to {0, 1}𝑚 in the
natural way. If 𝐹 is a (probabilistic or deterministic) map of {0, 1}𝑛 to
{0, 1}𝑚, the complexity of 𝐹 is the size of the smallest program 𝑃 that
computes it.

If you haven’t taken a class such as CS121 before, you might won-
der how such a simple model captures complicated programs that use
loops, conditionals, and more complex data types than simply a bit in
{0, 1}, not to mention some special purpose crypto-breaking devices
that might involve tailor-made hardware. It turns out that it does (for
the same reason we can compile complicated programming languages
to run on silicon chips with a very limited instruction set). In fact, as
far as we know, this model can capture even computations that hap-
pen in nature, whether it’s in a bee colony or the human brain (which
contains about 1010 neurons, so should in principle be simulatable
by a program that has up to a few order of magnitudes of the same
number of lines). Crucially, for cryptography, we care about such pro-
grams not because we want to actually run them, but because we want
to argue about their non existence. If we have a process that cannot be
computed by a straightline program of length shorter than 2128 > 1038
then it seems safe to say that a computer the size of the human brain
(or even all the human and nonhuman brains on this planet) will not
be able to perform it either.

Advanced note: non uniformity. The computational model we use in this
class is non uniform (corresponding to Boolean circuits) as opposed
to uniform (corresponding to Turing machines). If this distinction
doesn’t mean anything to you, you can ignore it as it won’t play a sig-
nificant role in what we do next. It basically means that we do allow
our programs to have hardwired constants of 𝑝𝑜𝑙𝑦(𝑛) bits where 𝑛 is
the input/key length. In fact, to be precise, we will hold ourselves to a
higher standard than our adversary, in the sense that we require our

https://introtcs.org/public/lec_11_running_time.html#nonuniformcompsec

90 an intensive introduction to cryptography

algorithms to be efficient in the stronger sense of being computable
in uniform probabilistic polynomial time (for some fixed polynomial,
often 𝑂(𝑛) or 𝑂(𝑛2)), while the adversary is allowed to use non uni-
formity.

Quantum computing. An interesting potential exception to this princi-
ple that every natural process should be simulatable by a straightline
program of comparable complexity are processes where the quantum
mechanical notions of interference and entanglement play a significant
role. We will talk about this notion of quantum computing towards the
end of the course, though note that much of what we say does not
really change when we add quantum into the picture. As discussed
in the CS 121 text, we can still capture these processes by straightline
programs (that now have somewhat more complex form), and so
most of what we’ll do just carries over in the same way to the quantum
realm as long as we are fine with conjecturing the strong form of the
cipher conjecture, namely that the cipher is infeasible to break even for
quantum computers. All current evidence points toward this strong
form being true as well. The field of constructing encryption schemes
that are potentially secure against quantum computers is known as
post quantum cryptography and we will return to this later in the
course.

https://introtcs.org/public/lec_26_quantum_computing.html
https://en.wikipedia.org/wiki/Post-quantum_cryptography

