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Mathematical Background

This is a brief review of some mathematical tools, and especially
probability theory, that we will use in this course. See also the math-
ematical background and probability lectures in my Notes on Intro-
duction to Theoretical Computer Science, which share much of the
following text.

At Harvard, much of this material (and more) is taught in Stat
110 “Introduction to Probability”, CS20 “Discrete Mathematics”, and
AM107 “Graph Theory and Combinatorics”. Some good sources for
this material are the lecture notes by Papadimitriou and Vazirani (see
home page of Umesh Vaziarani), Lehman, Leighton and Meyer from
MIT Course 6.042 “Mathematics For Computer Science” (Chapters
1-2 and 14 to 19 are particularly relevant), and the Berkeley course CS
70. The mathematical tool we use most often is discrete probability.
The “Probabilistic Method” book by Alon and Spencer is a great re-
source in this area. Also, the books of Mitzenmacher and Upfal and
Prabhakar and Raghavan cover probability from a more algorithmic
perspective. For an excellent popular discussion of some of the math-
ematical concepts we’ll talk about see the book “How Not to Be Wrong”
by Jordan Ellenberg.

Although knowledge of algorithms is not strictly necessary, it
would be quite useful. Students who did not take an algorithms class
such as CS 124 might want to look at (1) Corman, Leiserson, Rivest
and Smith, (2) Dasgupte, Papadimitriou and Vaziarni, or (3) Klein-
berg and Tardos. We do not require prior knowledge of complexity
or computability but some basic familiarity could be useful. Students
who did not take a theory of computation class such as CS 121 might
want to look at my lecture notes or the first 2 chapters of my book with
Arora.

0.1 A QUICK OVERVIEW OF MATHEMATICAL PREREQUISITES

The main notions we will use in this course are the following:
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• Proofs: First and foremost, this course will involve a heavy dose
of formal mathematical reasoning, which includes mathematical
definitions, statements, and proofs.

• Sets and functions: We will assume familiarity with basic notions
of sets and operations on sets such as union (denoted ∪), intersec-
tion (denoted ∩), and set subtraction (denoted ⧵). We denote by |𝐴|
the size of the set 𝐴. We also assume familiarity with functions, and
notions such as one-to-one (injective) functions and onto (surjec-
tive) functions. If 𝑓 is a function from a set 𝐴 to a set 𝐵, we denote
this by 𝑓 ∶ 𝐴 → 𝐵. If 𝑓 is one-to-one then this implies that |𝐴| ≤ |𝐵|.
If 𝑓 is onto then |𝐴| ≥ |𝐵|. If 𝑓 is a permutation/bijection (e.g.,
one-to-one and onto) then this implies that |𝐴| = |𝐵|.

• Big Oh notation: If 𝑓, 𝑔 are two functions from ℕ to ℕ, then (1)
𝑓 = 𝑂(𝑔) if there exists a constant 𝑐 such that 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛) for
every sufficiently large 𝑛, (2) 𝑓 = Ω(𝑔) if 𝑔 = 𝑂(𝑓), (3) 𝑓 = Θ(𝑔) is
𝑓 = 𝑂(𝑔) and 𝑔 = 𝑂(𝑓), (4) 𝑓 = 𝑜(𝑔) if for every 𝜖 > 0, 𝑓(𝑛) ≤ 𝜖⋅𝑔(𝑛)
for every sufficiently large 𝑛, and (5) 𝑓 = 𝜔(𝑔) if 𝑔 = 𝑜(𝑓). To
emphasize the input parameter, we often write 𝑓(𝑛) = 𝑂(𝑔(𝑛))
instead of 𝑓 = 𝑂(𝑔), and use similar notation for 𝑜, Ω, 𝜔,Θ. While
this is only an imprecise heuristic, when you see a statement of the
form 𝑓(𝑛) = 𝑂(𝑔(𝑛)) you can often replace it in your mind by the
statement 𝑓(𝑛) ≤ 1000𝑔(𝑛) while the statement 𝑓(𝑛) = Ω(𝑔(𝑛)) can
often be thought of as 𝑓(𝑛) ≥ 0.001𝑔(𝑛) .

• Logical operations: The operations AND, OR, and NOT (∧,∨, ¬)
and the quantifiers “exists” and “forall” (∃,∀).

• Tuples and strings: The notation Σ𝑘 and Σ∗ where Σ is some finite
set which is called the alphabet (quite often Σ = {0, 1}).

• Graphs: Undirected and directed graphs, connectivity, paths, and
cycles.

• Basic combinatorics: Notions such as (𝑛𝑘) (the number of 𝑘-sized
subset of a set of size 𝑛).

• Discrete probability: We will extensively use probability theory, and
specifically probability over finite samples spaces such as tossing 𝑛
coins, including notions such as random variables, expectation, and
concentration.

• Modular arithmetic: We will use modular arithmetic (i.e., addition
and multiplication modulo some number 𝑚), and in particular
talk about operations on vectors and matrices whose elements are
taken modulo 𝑚. If 𝑛 is an integer, then we denote by 𝑎 (mod 𝑛)
the remainder of 𝑎 when divided by 𝑛. 𝑎 (mod 𝑛) is the number
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𝑟 ∈ {0,… , 𝑛 − 1} such that 𝑎 = 𝑘𝑛 + 𝑟 for some integer 𝑘. It will
be very useful that 𝑎 (mod 𝑛) + 𝑏 (mod 𝑛) = (𝑎 + 𝑏) (mod 𝑛)
and 𝑎 (mod 𝑛) ⋅ 𝑏 (mod 𝑛) = (𝑎 ⋅ 𝑏) (mod 𝑛) and so modular
arithmetic inherits all the rules (associativity, commutativity etc..)
of integer arithmetic. If 𝑎, 𝑏 are positive integers then 𝑔𝑐𝑑(𝑎, 𝑏) is the
largest integer that divides both 𝑎 and 𝑏. It is known that for every
𝑎, 𝑏 there exist (not necessarily positive) integers 𝑥, 𝑦 such that
𝑎𝑥 + 𝑏𝑦 = 𝑔𝑐𝑑(𝑎, 𝑏) (it’s a good exercise to prove this on your own).
In particular, if 𝑔𝑐𝑑(𝑎, 𝑛) = 1 then there exists a modular inverse for 𝑎
which is a number 𝑏 such that 𝑎𝑏 = 1 (mod 𝑛). We sometimes write
𝑏 as 𝑎−1 (mod 𝑛).

• Group theory, linear algebra: In later parts of the course we will
need the notions of matrices, vectors, matrix multiplication and
inverse, determinant, eigenvalues, and eigenvectors. These can
be picked up in any basic text on linear algebra. In some parts we
might also use some basic facts of group theory (finite groups only,
and mostly only commutative ones). These also can be picked up as
we go along, and a prior course on group theory is not necessary.

• Discrete probability: Probability theory, and specifically probability
over finite samples spaces such as tossing 𝑛 coins is a crucial part
of cryptography, since (as we’ll see) there is no secrecy without
randomness.

0.2 MATHEMATICAL PROOFS

Arguably the mathematical prerequisite needed for this course is a
certain level of comfort with mathematical proofs. Many students
tend to think of mathematical proofs as a very formal object, like
the proofs studied in school in geometry, consisting of a sequence of
axioms and statements derived from them by very specific rules. In
fact,

a proof is a piece of writing meant to convince human
readers that a particular statement is true.

(In this class, the particular humans you are trying to convince are
me and the teaching fellows.)

To write a proof of some statement X you need to follow three steps:

1. Make sure that you completely understand the statement X.

2. Think about X until you are able to convince yourself that X is true.

3. Think how to present the argument in the clearest possible way so
you can convince the reader as well.
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Like any good piece of writing, a proof should be concise and not
be overly formal or cumbersome. In fact, overuse of formalism can of-
ten be detrimental to the argument since it can mask weaknesses in the
argument from both the writer and the reader. Sometimes students
try to “throw the kitchen sink” at an answer trying to list all possi-
bly relevant facts in the hope of getting partial credit. But a proof is a
piece of writing, and a badly written proof will not get credit even if
it contains some correct elements. It is better to write a clear proof of
a partial statement. In particular, if you haven’t been able to convince
yourself that the statement is true, you should be honest about it and
explain which parts of the statement you have been able to verify and
which parts you haven’t.

0.2.1 Example: The existence of infinitely many primes.
In the spirit of “do what I say and not what I do”, I will now demon-
strate the importance of conciseness by belaboring the point and
spending several paragraphs on a simple proof, written by Euclid
around 300 BC. Recall that a prime number is an integer 𝑝 > 1 whose
only divisors are 𝑝 and 1. Euclid’s Theorem is the following:

Theorem 0.1 — Infinitude of primes. There exist infinitely many primes.

Instead of simply writing down the proof, let us try to understand
how we might figure this proof out. (If you haven’t seen this proof
before, or you don’t remember it, you might want to stop reading at
this point and try to come up with it on your own before continuing.)
The first (and often most important) step is to understand what the
statement means. Saying that the number of primes is infinite means
that it is not finite. More precisely, this means that for every natural
number 𝑘, there are more than 𝑘 primes.

Now that we understand what we need to prove, let us try to con-
vince ourselves of this fact. At first, it might seem obvious— since
there are infinitely many natural numbers, and every one of them can
be factored into primes, there must be infinitely many primes, right?

Wrong. Since we can multiply a prime many times with itself, a
finite number of primes can generate infinitely many numbers. In-
deed the single prime 3 generates the infinite set of all numbers of the
form 3𝑛. So, what we really need to show is that for every finite set
of primes {𝑝1,… , 𝑝𝑘}, there exists a number 𝑛 that has a prime factor
outside this set.

Now we need to start playing around. Suppose that we had just
two primes 𝑝 and 𝑞. How would we find a number 𝑛 that is not gen-
erated by 𝑝 and 𝑞? If you try to draw things on the number line, you
will see that there is always some gap between multiples of 𝑝 and 𝑞 in
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the sense that they are never consecutive. It is possible to prove that
(in fact, it’s not a bad exercise) but this observation already suggests a
guess for what would be a number that is divisible by neither 𝑝 nor 𝑞,
namely 𝑝𝑞 + 1. Indeed, the remainder of 𝑛 = 𝑝𝑞 + 1 when dividing by
either 𝑝 or 𝑞 would be 1 (which in particular is not zero). This obser-
vation generalizes and we can set 𝑛 = 𝑝𝑞𝑟 + 1 to be a number that is
divisible neither by 𝑝, 𝑞 nor 𝑟, and more generally 𝑛 = 𝑝1 ⋯ , 𝑝𝑘 + 1 is
not divisible by 𝑝1,… , 𝑝𝑘.

Now we have convinced ourselves of the statement and it is time
to think of how to write this down in the clearest way. One issue that
arises is that we want to prove things truly from the definition of
primes and first principles, and so not assume properties of division
and remainders or even the existence of a prime factorization, without
proving it. Here is what a proof could look like. We will prove the
following two lemmas:

Lemma 0.2 — Existence of prime divisor. For every integer 𝑛 > 1, there
exists a prime 𝑝 > 1 that divides 𝑛.
Lemma 0.3 — Existence of co-prime. For every set of integers 𝑝1,… , 𝑝𝑘 > 1,
there exists a number 𝑛 such that none of 𝑝1,… , 𝑝𝑘 divide 𝑛.

From these two lemmas it follows that there exist infinitely many
primes, since otherwise if we let 𝑝1,… , 𝑝𝑘 be the set of all primes,
then we would get a contradiction as by combining Lemma 0.2 and
Lemma 0.3 we would get a number 𝑛 with a prime factor outside this
set. We now prove the lemmas:

Proof of Lemma 0.2. Let 𝑛 > 1 be a number, and let 𝑝 be the smallest
divisor of 𝑛 that is larger than 1 (there exists such a number 𝑝 since 𝑛
divides itself). We claim that 𝑝 is a prime. Indeed suppose otherwise
there was some 1 < 𝑞 < 𝑝 that divides 𝑝. Then since 𝑛 = 𝑝𝑐 for some
integer 𝑐 and 𝑝 = 𝑞𝑐′ for some integer 𝑐′ we’ll get that 𝑛 = 𝑞𝑐𝑐′ and
hence 𝑞 divides 𝑛 in contradiction to the choice of 𝑝 as the smallest
divisor of 𝑛.

■

Proof of Lemma 0.3. Let 𝑛 = 𝑝1 ⋯𝑝𝑘 + 1 and suppose for the sake of
contradiction that there exists some 𝑖 such that 𝑛 = 𝑝𝑖 ⋅ 𝑐 for some
integer 𝑐. Then if we divide the equation 𝑛 − 𝑝1 ⋯𝑝𝑘 = 1 by 𝑝𝑖 then we
get 𝑐 minus an integer on the lefthand side, and the fraction 1/𝑝𝑖 on
the righthand side.

■

This completes the proof of Theorem 0.1
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1 Harvard’s STAT 110 class (whose lectures are avail-
able on youtube ) is a highly recommended introduc-
tion to probability. See also these lecture notes from
MIT’s “Mathematics for Computer Science” course ,as
well as notes 12-17 of Berkeley’s CS 70.

Figure 1: The probabilistic experiment of tossing
three coins corresponds to making 2 × 2 × 2 = 8
choices, each with equal probability. In this example,
the blue set corresponds to the event 𝐴 = {𝑥 ∈
{0, 1}3 | 𝑥0 = 0} where the first coin toss is equal
to 0, and the pink set corresponds to the event 𝐵 =
{𝑥 ∈ {0, 1}3 | 𝑥1 = 1} where the second coin toss is
equal to 1 (with their intersection having a purplish
color). As we can see, each of these events contains 4
elements (out of 8 total) and so has probability 1/2.
The intersection of 𝐴 and 𝐵 contains two elements,
and so the probability that both of these events occur
is 2/8 = 1/4.

0.3 PROBABILITY AND SAMPLE SPACES

Perhaps the main mathematical background needed in cryptography
is probability theory since, as we will see, there is no secrecy without
randomness. Luckily, we only need fairly basic notions of probability
theory and in particular only probability over finite sample spaces.
If you have a good understanding of what happens when we toss 𝑘
random coins, then you know most of the probability you’ll need.

The discussion below is not meant to replace a course on proba-
bility theory, and if you have not seen this material before, I highly
recommend you look at additional resources to get up to speed.1

The nature of randomness and probability is a topic of great philo-
sophical, scientific and mathematical depth. Is there actual random-
ness in the world, or does it proceed in a deterministic clockwork fash-
ion from some initial conditions set at the beginning of time? Does
probability refer to our uncertainty of beliefs, or to the frequency of
occurrences in repeated experiments? How can we define probability
over infinite sets?

These are all important questions that have been studied and de-
bated by scientists, mathematicians, statisticians, and philosophers.
Fortunately, we will not need to deal directly with these questions
here. We will be mostly interested in the setting of tossing 𝑛 random,
unbiased and independent coins. Below we define the basic proba-
bilistic objects of events and random variables when restricted to this
setting. These can be defined for much more general probabilistic ex-
periments or sample spaces, and later on we will briefly discuss how
this can be done. However, the 𝑛-coin case is sufficient for almost
everything we’ll need in this course.

If instead of “heads” and “tails” we encode the sides of each coin
by “zero” and “one”, we can encode the result of tossing 𝑛 coins as
a string in {0, 1}𝑛. Each particular outcome 𝑥 ∈ {0, 1}𝑛 is obtained
with probability 2−𝑛. For example, if we toss three coins, then we
obtain each of the 8 outcomes 000, 001, 010, 011, 100, 101, 110, 111
with probability 2−3 = 1/8 (see also Fig. 1). We can describe the
experiment of tossing 𝑛 coins as choosing a string 𝑥 uniformly at
random from {0, 1}𝑛, and hence we’ll use the shorthand 𝑥 ∼ {0, 1}𝑛
for 𝑥 that is chosen according to this experiment.

An event is simply a subset 𝐴 of {0, 1}𝑛. The probability of 𝐴, de-
noted by Pr𝑥∼{0,1}𝑛 [𝐴] (or Pr[𝐴] for short, when the sample space is
understood from the context), is the probability that an 𝑥 chosen uni-
formly at random will be contained in 𝐴. Note that this is the same as
|𝐴|/2𝑛 (where |𝐴| as usual denotes the number of elements in the set
𝐴). For example, the probability that 𝑥 has an even number of ones
is Pr[𝐴] where 𝐴 = {𝑥 ∶ ∑𝑛−1

𝑖=0 𝑥𝑖 = 0 mod 2}. In the case 𝑛 = 3,

http://projects.iq.harvard.edu/stat110/home
http://projects.iq.harvard.edu/stat110/youtube
http://www.boazbarak.org/cs121/LLM_probability.pdf
https://www.eecs70.org/
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Figure 2: The event that if we toss three coins
𝑥0, 𝑥1, 𝑥2 ∈ {0, 1} then the sum of the 𝑥𝑖’s is even
has probability 1/2 since it corresponds to exactly 4
out of the 8 possible strings of length 3.

𝐴 = {000, 011, 101, 110}, and hence Pr[𝐴] = 4
8 = 1

2 (see Fig. 2). It turns
out this is true for every 𝑛:
Lemma 0.4 For every 𝑛 > 0,

Pr
𝑥∼{0,1}𝑛

[
𝑛−1
∑
𝑖=0

𝑥𝑖 is even ] = 1/2

P
To test your intuition on probability, try to stop here
and prove the lemma on your own.

Proof of Lemma 0.4. We prove the lemma by induction on 𝑛. For the
case 𝑛 = 1 it is clear since 𝑥 = 0 is even and 𝑥 = 1 is odd, and hence
the probability that 𝑥 ∈ {0, 1} is even is 1/2. Let 𝑛 > 1. We assume
by induction that the lemma is true for 𝑛 − 1 and we will prove it
for 𝑛. We split the set {0, 1}𝑛 into four disjoint sets 𝐸0, 𝐸1, 𝑂0, 𝑂1,
where for 𝑏 ∈ {0, 1}, 𝐸𝑏 is defined as the set of 𝑥 ∈ {0, 1}𝑛 such that
𝑥0 ⋯𝑥𝑛−2 has even number of ones and 𝑥𝑛−1 = 𝑏 and similarly 𝑂𝑏 is
the set of 𝑥 ∈ {0, 1}𝑛 such that 𝑥0 ⋯𝑥𝑛−2 has odd number of ones and
𝑥𝑛−1 = 𝑏. Since 𝐸0 is obtained by simply extending 𝑛 − 1-length string
with even number of ones by the digit 0, the size of 𝐸0 is simply the
number of such 𝑛−1-length strings which by the induction hypothesis
is 2𝑛−1/2 = 2𝑛−2. The same reasoning applies for 𝐸1, 𝑂0, and 𝑂1.
Hence each one of the four sets 𝐸0, 𝐸1, 𝑂0, 𝑂1 is of size 2𝑛−2. Since
𝑥 ∈ {0, 1}𝑛 has an even number of ones if and only if 𝑥 ∈ 𝐸0 ∪ 𝑂1
(i.e., either the first 𝑛 − 1 coordinates sum up to an even number and
the final coordinate is 0 or the first 𝑛 − 1 coordinates sum up to an odd
number and the final coordinate is 1), we get that the probability that
𝑥 satisfies this property is

|𝐸0∪𝑂1|
2𝑛 = 2𝑛−2 + 2𝑛−2

2𝑛 = 1
2 ,

using the fact that 𝐸0 and 𝑂1 are disjoint and hence |𝐸0 ∪ 𝑂1| =
|𝐸0| + |𝑂1|.

■

We can also use the intersection (∩) and union (∪) operators to
talk about the probability of both event 𝐴 and event 𝐵 happening, or
the probability of event 𝐴 or event 𝐵 happening. For example, the
probability 𝑝 that 𝑥 has an even number of ones and 𝑥0 = 1 is the same
as Pr[𝐴 ∩ 𝐵] where 𝐴 = {𝑥 ∈ {0, 1}𝑛 ∶ ∑𝑛−1

𝑖=0 𝑥𝑖 = 0 mod 2} and
𝐵 = {𝑥 ∈ {0, 1}𝑛 ∶ 𝑥0 = 1}. This probability is equal to 1/4 for
𝑛 > 1. (It is a great exercise for you to pause here and verify that you
understand why this is the case.)
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Because intersection corresponds to considering the logical AND
of the conditions that two events happen, while union corresponds
to considering the logical OR, we will sometimes use the ∧ and ∨
operators instead of ∩ and ∪, and so write this probability 𝑝 = Pr[𝐴 ∩
𝐵] defined above also as

Pr
𝑥∼{0,1}𝑛

[∑
𝑖

𝑥𝑖 = 0 mod 2 ∧ 𝑥0 = 1] .

If 𝐴 ⊆ {0, 1}𝑛 is an event, then 𝐴 = {0, 1}𝑛 ⧵ 𝐴 corresponds to the
event that 𝐴 does not happen. Since |𝐴| = 2𝑛 − |𝐴|, we get that

Pr[𝐴] = |𝐴|
2𝑛 = 2𝑛−|𝐴|

2𝑛 = 1 − |𝐴|
2𝑛 = 1 − Pr[𝐴]

This makes sense: since 𝐴 happens if and only if 𝐴 does not happen,
the probability of 𝐴 should be one minus the probability of 𝐴.

R
Remark 0.5 — Remember the sample space. While the
above definition might seem very simple and almost
trivial, the human mind seems not to have evolved for
probabilistic reasoning, and it is surprising how often
people can get even the simplest settings of probability
wrong. One way to make sure you don’t get confused
when trying to calculate probability statements is
to always ask yourself the following two questions:
(1) Do I understand what is the sample space that
this probability is taken over?, and (2) Do I under-
stand what is the definition of the event that we are
analyzing?.
For example, suppose that I were to randomize seating
in my course, and then it turned out that students
sitting in row 7 performed better on the final: how
surprising should we find this? If we started out with
the hypothesis that there is something special about
the number 7 and chose it ahead of time, then the
event that we are discussing is the event 𝐴 that stu-
dents sitting in number 7 had better performance on
the final, and we might find it surprising. However, if
we first looked at the results and then chose the row
whose average performance is best, then the event
we are discussing is the event 𝐵 that there exists some
row where the performance is higher than the over-
all average. 𝐵 is a superset of 𝐴, and its probability
(even if there is no correlation between sitting and
performance) can be quite significant.

0.3.1 Random variables
Events correspond to Yes/No questions, but often we want to analyze
finer questions. For example, if we make a bet at the roulette wheel,
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we don’t want to just analyze whether we won or lost, but also how
much we’ve gained. A (real valued) random variable is simply a way
to associate a number with the result of a probabilistic experiment.
Formally, a random variable is a function 𝑋 ∶ {0, 1}𝑛 → ℝ that maps
every outcome 𝑥 ∈ {0, 1}𝑛 to an element 𝑋(𝑥) ∈ ℝ. For example, the
function 𝑠𝑢𝑚 ∶ {0, 1}𝑛 → ℝ that maps 𝑥 to the sum of its coordinates
(i.e., to ∑𝑛−1

𝑖=0 𝑥𝑖) is a random variable.
The expectation of a random variable 𝑋, denoted by 𝔼[𝑋], is the

average value that that this number takes, taken over all draws from
the probabilistic experiment. In other words, the expectation of 𝑋 is
defined as follows:

𝔼[𝑋] = ∑
𝑥∈{0,1}𝑛

2−𝑛𝑋(𝑥) .

If 𝑋 and 𝑌 are random variables, then we can define 𝑋 + 𝑌 as
simply the random variable that maps a point 𝑥 ∈ {0, 1}𝑛 to 𝑋(𝑥) +
𝑌 (𝑥). One basic and very useful property of the expectation is that it
is linear:

Lemma 0.6 — Linearity of expectation.

𝔼[𝑋 + 𝑌 ] = 𝔼[𝑋] + 𝔼[𝑌 ]

Proof.
𝔼[𝑋 + 𝑌 ] = ∑

𝑥∈{0,1}𝑛
2−𝑛 (𝑋(𝑥) + 𝑌 (𝑥)) =

∑
𝑥∈{0,1}𝑏

2−𝑛𝑋(𝑥) + ∑
𝑥∈{0,1}𝑏

2−𝑛𝑌 (𝑥) =

𝔼[𝑋] + 𝔼[𝑌 ]
■

Similarly, 𝔼[𝑘𝑋] = 𝑘 𝔼[𝑋] for every 𝑘 ∈ ℝ. For example, using the
linearity of expectation, it is very easy to show that the expectation of
the sum of the 𝑥𝑖’s for 𝑥 ∼ {0, 1}𝑛 is equal to 𝑛/2. Indeed, if we write
𝑋 = ∑𝑛−1

𝑖=0 𝑥𝑖 then 𝑋 = 𝑋0 + ⋯ + 𝑋𝑛−1 where 𝑋𝑖 is the random
variable 𝑥𝑖. Since for every 𝑖, Pr[𝑋𝑖 = 0] = 1/2 and Pr[𝑋𝑖 = 1] = 1/2,
we get that 𝔼[𝑋𝑖] = (1/2) ⋅ 0 + (1/2) ⋅ 1 = 1/2 and hence 𝔼[𝑋] =
∑𝑛−1

𝑖=0 𝔼[𝑋𝑖] = 𝑛 ⋅ (1/2) = 𝑛/2.

P
If you have not seen discrete probability before, please
go over this argument again until you are sure you
follow it; it is a prototypical simple example of the
type of reasoning we will employ again and again in
this course.
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Figure 3: The union bound tells us that the probability
of 𝐴 or 𝐵 happening is at most the sum of the indi-
vidual probabilities. We can see it by noting that for
every two sets |𝐴 ∪𝐵| ≤ |𝐴| + |𝐵| (with equality only
if 𝐴 and 𝐵 have no intersection).

If 𝐴 is an event, then 1𝐴 is the random variable such that 1𝐴(𝑥)
equals 1 if 𝑥 ∈ 𝐴, and 1𝐴(𝑥) = 0 otherwise. Note that Pr[𝐴] = 𝔼[1𝐴]
(can you see why?). Using this and the linearity of expectation, we
can show one of the most useful bounds in probability theory:

Lemma 0.7 — Union bound. For every two events 𝐴,𝐵, Pr[𝐴∪𝐵] ≤ Pr[𝐴]+
Pr[𝐵]

P
Before looking at the proof, try to see why the union
bound makes intuitive sense. We can also prove
it directly from the definition of probabilities and
the cardinality of sets, together with the equation
|𝐴 ∪ 𝐵| ≤ |𝐴| + |𝐵|. Can you see why the latter
equation is true? (See also Fig. 3.)

Proof of Lemma 0.7. For every 𝑥, the variable 1𝐴∪𝐵(𝑥) ≤ 1𝐴(𝑥) + 1𝐵(𝑥).
Hence, Pr[𝐴∪𝐵] = 𝔼[1𝐴∪𝐵] ≤ 𝔼[1𝐴+1𝐵] = 𝔼[1𝐴]+𝔼[1𝐵] = Pr[𝐴]+Pr[𝐵].

■

The way we often use this in theoretical computer science is to
argue that, for example, if there is a list of 100 bad events that can hap-
pen, and each one of them happens with probability at most 1/10000,
then with probability at least 1 − 100/10000 = 0.99, no bad event
happens.

0.3.2 Distributions over strings
While most of the time we think of random variables as having
as output a real number, we sometimes consider random vari-
ables whose output is a string. That is, we can think of a map
𝑌 ∶ {0, 1}𝑛 → {0, 1}∗ and consider the “random variable” 𝑌 such
that for every 𝑦 ∈ {0, 1}∗, the probability that 𝑌 outputs 𝑦 is equal
to 1

2𝑛 |{𝑥 ∈ {0, 1}𝑛 | 𝑌 (𝑥) = 𝑦}|. To avoid confusion, we will typically
refer to such string-valued random variables as distributions over
strings. So, a distribution 𝑌 over strings {0, 1}∗ can be thought of as
a finite collection of strings 𝑦0,… , 𝑦𝑀−1 ∈ {0, 1}∗ and probabilities
𝑝0,… , 𝑝𝑀−1 (which are non-negative numbers summing up to one),
so that Pr[𝑌 = 𝑦𝑖] = 𝑝𝑖.

Two distributions 𝑌 and 𝑌 ′ are identical if they assign the same
probability to every string. For example, consider the following two
functions 𝑌 , 𝑌 ′ ∶ {0, 1}2 → {0, 1}2. For every 𝑥 ∈ {0, 1}2, we define
𝑌 (𝑥) = 𝑥 and 𝑌 ′(𝑥) = 𝑥0(𝑥0 ⊕ 𝑥1) where ⊕ is the XOR operations. Al-
though these are two different functions, they induce the same distri-
bution over {0, 1}2 when invoked on a uniform input. The distribution
𝑌 (𝑥) for 𝑥 ∼ {0, 1}2 is of course the uniform distribution over {0, 1}2.
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Figure 4: Two events 𝐴 and 𝐵 are independent if
Pr[𝐴 ∩ 𝐵] = Pr[𝐴] ⋅ Pr[𝐵]. In the two figures above,
the empty 𝑥 × 𝑥 square is the sample space, and 𝐴
and 𝐵 are two events in this sample space. In the left
figure, 𝐴 and 𝐵 are independent, while in the right
figure they are negatively correlated, since 𝐵 is less
likely to occur if we condition on 𝐴 (and vice versa).
Mathematically, one can see this by noticing that in
the left figure the areas of 𝐴 and 𝐵 respectively are
𝑎 ⋅ 𝑥 and 𝑏 ⋅ 𝑥, and so their probabilities are 𝑎⋅𝑥

𝑥2 = 𝑎
𝑥

and 𝑏⋅𝑥
𝑥2 = 𝑏

𝑥 respectively, while the area of 𝐴 ∩ 𝐵 is
𝑎 ⋅ 𝑏 which corresponds to the probability 𝑎⋅𝑏

𝑥2 . In the
right figure, the area of the triangle 𝐵 is 𝑏⋅𝑥

2 which
corresponds to a probability of 𝑏

2𝑥 , but the area of
𝐴 ∩ 𝐵 is 𝑏′⋅𝑎

2 for some 𝑏′ < 𝑏. This means that the
probability of 𝐴∩𝐵 is 𝑏′⋅𝑎

2𝑥2 < 𝑏
2𝑥 ⋅ 𝑎

𝑥 , or in other words
Pr[𝐴 ∩𝐵] < Pr[𝐴] ⋅ Pr[𝐵].

On the other hand 𝑌 ′ is simply the map 00 ↦ 00, 01 ↦ 01, 10 ↦ 11,
11 ↦ 10 which is a permutation over the map 𝐹 ∶ {0, 1}2 → {0, 1}2
defined as 𝐹(𝑥0𝑥1) = 𝑥0𝑥1 and the map 𝐺 ∶ {0, 1}2 → {0, 1}2 defined
as 𝐺(𝑥0𝑥1) = 𝑥0(𝑥0 ⊕ 𝑥1)

0.3.3 More general sample spaces.
While in this chapter we assume that the underlying probabilistic
experiment corresponds to tossing 𝑛 independent coins, everything
we say easily generalizes to sampling 𝑥 from a more general finite or
countable set 𝑆 (and not-so-easily generalizes to uncountable sets 𝑆 as
well). A probability distribution over a finite set 𝑆 is simply a function
𝜇 ∶ 𝑆 → [0, 1] such that ∑𝑥∈𝑆 𝜇(𝑠) = 1. We think of this as the
experiment where we obtain every 𝑥 ∈ 𝑆 with probability 𝜇(𝑠), and
sometimes denote this as 𝑥 ∼ 𝜇. An event 𝐴 is a subset of 𝑆, and the
probability of 𝐴, which we denote by Pr𝜇[𝐴], is ∑𝑥∈𝐴 𝜇(𝑥). A random
variable is a function 𝑋 ∶ 𝑆 → ℝ, where the probability that 𝑋 = 𝑦 is
equal to ∑𝑥∈𝑆 s.t. 𝑋(𝑥)=𝑦 𝜇(𝑥).

0.4 CORRELATIONS AND INDEPENDENCE

One of the most delicate but important concepts in probability is the
notion of independence (and the opposing notion of correlations). Subtle
correlations are often behind surprises and errors in probability and
statistical analysis, and several mistaken predictions have been blamed
on miscalculating the correlations between, say, housing prices in
Florida and Arizona, or voter preferences in Ohio and Michigan. See
also Joe Blitzstein’s aptly named talk “Conditioning is the Soul of
Statistics”. (Another thorny issue is of course the difference between
correlation and causation. Luckily, this is another point we don’t need to
worry about in our clean setting of tossing 𝑛 coins.)

Two events 𝐴 and 𝐵 are independent if the fact that 𝐴 happens
makes 𝐵 neither more nor less likely to happen. For example, if we
think of the experiment of tossing 3 random coins 𝑥 ∈ {0, 1}3, and we
let 𝐴 be the event that 𝑥0 = 1 and 𝐵 the event that 𝑥0 + 𝑥1 + 𝑥2 ≥ 2,
then if 𝐴 happens it is more likely that 𝐵 happens, and hence these
events are not independent. On the other hand, if we let 𝐶 be the event
that 𝑥1 = 1, then because the second coin toss is not affected by the
result of the first one, the events 𝐴 and 𝐶 are independent.

The formal definition is that events 𝐴 and 𝐵 are independent if
Pr[𝐴 ∩ 𝐵] = Pr[𝐴] ⋅ Pr[𝐵]. If Pr[𝐴 ∩ 𝐵] > Pr[𝐴] ⋅ Pr[𝐵] then we say
that 𝐴 and 𝐵 are positively correlated, while if Pr[𝐴 ∩ 𝐵] < Pr[𝐴] ⋅ Pr[𝐵]
then we say that 𝐴 and 𝐵 are negatively correlated (see Fig. 1).

If we consider the above examples on the experiment of choosing
𝑥 ∈ {0, 1}3 then we can see that

https://youtu.be/dzFf3r1yph8
https://youtu.be/dzFf3r1yph8
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Figure 5: Consider the sample space {0, 1}𝑛 and the
events 𝐴,𝐵,𝐶,𝐷,𝐸 corresponding to 𝐴: 𝑥0 = 1, 𝐵:
𝑥1 = 1, 𝐶: 𝑥0+𝑥1+𝑥2 ≥ 2, 𝐷: 𝑥0+𝑥1+𝑥2 = 0𝑚𝑜𝑑2
and 𝐷: 𝑥0 + 𝑥1 = 0𝑚𝑜𝑑2. We can see that 𝐴
and 𝐵 are independent, 𝐶 is positively correlated
with 𝐴 and positively correlated with 𝐵, the three
events 𝐴,𝐵,𝐷 are mutually independent, and while
every pair out of 𝐴,𝐵,𝐸 is independent, the three
events 𝐴,𝐵,𝐸 are not mutually independent since
their intersection has probability 2

8 = 1
4 instead of

1
2 ⋅ 1

2 ⋅ 1
2 = 1

8 .

Pr[𝑥0 = 1] = 1
2

Pr[𝑥0 + 𝑥1 + 𝑥2 ≥ 2] = Pr[{011, 101, 110, 111}] = 4
8 = 1

2

but

Pr[𝑥0 = 1 ∧ 𝑥0 + 𝑥1 + 𝑥2 ≥ 2] = Pr[{101, 110, 111}] = 3
8 > 1

2 ⋅ 1
2

and hence, as we already observed, the events {𝑥0 = 1} and {𝑥0 +
𝑥1 + 𝑥2 ≥ 2} are not independent and in fact are positively correlated.
On the other hand, Pr[𝑥0 = 1 ∧ 𝑥1 = 1] = Pr[{110, 111}] = 2

8 = 1
2 ⋅ 1

2
and hence the events {𝑥0 = 1} and {𝑥1 = 1} are indeed independent.

R
Remark 0.8 — Disjointness vs independence. People
sometimes confuse the notion of disjointness and in-
dependence, but these are actually quite different. Two
events 𝐴 and 𝐵 are disjoint if 𝐴 ∩ 𝐵 = ∅, which means
that if 𝐴 happens then 𝐵 definitely does not happen.
They are independent if Pr[𝐴 ∩ 𝐵] = Pr[𝐴]Pr[𝐵] which
means that knowing that 𝐴 happens gives us no infor-
mation about whether 𝐵 happened or not. If 𝐴 and 𝐵
have nonzero probability, then being disjoint implies
that they are not independent, since in particular it
means that they are negatively correlated.

Conditional probability: If 𝐴 and 𝐵 are events, and 𝐴 happens with
nonzero probability then we define the probability that 𝐵 happens
conditioned on 𝐴 to be Pr[𝐵|𝐴] = Pr[𝐴 ∩ 𝐵]/Pr[𝐴]. This corresponds
to calculating the probability that 𝐵 happens if we already know
that 𝐴 happened. Note that 𝐴 and 𝐵 are independent if and only if
Pr[𝐵|𝐴] = Pr[𝐵].

More than two events: We can generalize this definition to more than
two events. We say that events 𝐴1,… ,𝐴𝑘 are mutually independent
if knowing that any set of them occurred or didn’t occur does not
change the probability that an event outside the set occurs. Formally,
the condition is that for every subset 𝐼 ⊆ [𝑘],

Pr[∧𝑖∈𝐼𝐴𝑖] = ∏
𝑖∈𝐼

Pr[𝐴𝑖].

For example, if 𝑥 ∼ {0, 1}3, then the events {𝑥0 = 1}, {𝑥1 = 1} and
{𝑥2 = 1} are mutually independent. On the other hand, the events
{𝑥0 = 1}, {𝑥1 = 1} and {𝑥0 + 𝑥1 = 0 mod 2} are not mutually
independent, even though every pair of these events is independent
(can you see why? see also Fig. 5).
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0.4.1 Independent random variables
We say that two random variables 𝑋 ∶ {0, 1}𝑛 → ℝ and 𝑌 ∶ {0, 1}𝑛 → ℝ
are independent if for every 𝑢, 𝑣 ∈ ℝ, the events {𝑋 = 𝑢} and {𝑌 = 𝑣}
are independent. (We use {𝑋 = 𝑢} as shorthand for {𝑥 | 𝑋(𝑥) = 𝑢}.)
In other words, 𝑋 and 𝑌 are independent if Pr[𝑋 = 𝑢 ∧ 𝑌 = 𝑣] =
Pr[𝑋 = 𝑢]Pr[𝑌 = 𝑣] for every 𝑢, 𝑣 ∈ ℝ. For example, if two random
variables depend on the result of tossing different coins then they are
independent:

Lemma 0.9 Suppose that 𝑆 = {𝑠0,… , 𝑠𝑘−1} and 𝑇 = {𝑡0,… , 𝑡𝑚−1} are
disjoint subsets of {0,… , 𝑛 − 1} and let 𝑋,𝑌 ∶ {0, 1}𝑛 → ℝ be random
variables such that 𝑋 = 𝐹(𝑥𝑠0 ,… , 𝑥𝑠𝑘−1

) and 𝑌 = 𝐺(𝑥𝑡0 ,… , 𝑥𝑡𝑚−1
) for

some functions 𝐹 ∶ {0, 1}𝑘 → ℝ and 𝐺 ∶ {0, 1}𝑚 → ℝ. Then 𝑋 and 𝑌
are independent.

P
The notation in the lemma’s statement is a bit cum-
bersome, but at the end of the day, it simply says that
if 𝑋 and 𝑌 are random variables that depend on two
disjoint sets 𝑆 and 𝑇 of coins (for example, 𝑋 might
be the sum of the first 𝑛/2 coins, and 𝑌 might be the
largest consecutive stretch of zeroes in the second 𝑛/2
coins), then they are independent.

Proof of Lemma 0.9. Let 𝑎, 𝑏 ∈ ℝ, and let 𝐴 = {𝑥 ∈ {0, 1}𝑘 ∶ 𝐹 (𝑥) = 𝑎}
and 𝐵 = {𝑥 ∈ {0, 1}𝑚 ∶ 𝐺(𝑥) = 𝑏}. Since 𝑆 and 𝑇 are disjoint, we can
reorder the indices so that 𝑆 = {0,… , 𝑘 − 1} and 𝑇 = {𝑘,… , 𝑘 +𝑚−1}
without affecting any of the probabilities. Hence we can write Pr[𝑋 =
𝑎 ∧ 𝑌 = 𝑏] = |𝐶|/2𝑛 where 𝐶 = {𝑥0,… , 𝑥𝑛−1 ∶ (𝑥0,… , 𝑥𝑘−1) ∈
𝐴 ∧ (𝑥𝑘,… , 𝑥𝑘+𝑚−1) ∈ 𝐵}. Another way to write this using string
concatenation is that 𝐶 = {𝑥𝑦𝑧 ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ {0, 1}𝑛−𝑘−𝑚}, and
hence |𝐶| = |𝐴||𝐵|2𝑛−𝑘−𝑚, which means that

|𝐶|
2𝑛 = |𝐴|

2𝑘
|𝐵|
2𝑚

2𝑛−𝑘−𝑚
2𝑛−𝑘−𝑚 = Pr[𝑋 = 𝑎]Pr[𝑌 = 𝑏].

■

Note that if 𝑋 and 𝑌 are independent random variables then (if
we let 𝑆𝑋, 𝑆𝑌 denote all the numbers that have positive probability of
being the output of 𝑋 and 𝑌 , respectively) it holds that:

𝔼[XY] = ∑
𝑎∈𝑆𝑋,𝑏∈𝑆𝑌

Pr[𝑋 = 𝑎 ∧ 𝑌 = 𝑏] ⋅ 𝑎𝑏 =(1) ∑
𝑎∈𝑆𝑋,𝑏∈𝑆𝑌

Pr[𝑋 = 𝑎]Pr[𝑌 = 𝑏] ⋅ 𝑎𝑏 =(2)

( ∑
𝑎∈𝑆𝑋

Pr[𝑋 = 𝑎] ⋅ 𝑎)(∑
𝑏∈𝑆𝑌

Pr[𝑌 = 𝑏]𝑏) =(3)

𝔼[𝑋] 𝔼[𝑌 ]
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where the first equality (=(1)) follows from the independence of 𝑋
and 𝑌 , the second equality (=(2)) follows by “opening the parenthe-
ses” of the righthand side, and the third inequality (=(3)) follows
from the definition of expectation. (This is not an “if and only if”; see
Exercise 0.8.)

Another useful fact is that if 𝑋 and 𝑌 are independent random
variables, then so are 𝐹(𝑋) and 𝐺(𝑌 ) for all functions 𝐹,𝐺 ∶ ℝ → 𝑅.
This is intuitively true since learning 𝐹(𝑋) can only provide us with
less information than does learning 𝑋 itself. Hence, if learning 𝑋
does not teach us anything about 𝑌 (and so also about 𝐹(𝑌 )) then
neither will learning 𝐹(𝑋). Indeed, to prove this we can write for
every 𝑎, 𝑏 ∈ ℝ:

Pr[𝐹 (𝑋) = 𝑎 ∧ 𝐺(𝑌 ) = 𝑏] = ∑
𝑥 s.t.𝐹(𝑥)=𝑎,𝑦 s.t. 𝐺(𝑦)=𝑏

Pr[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] =

∑
𝑥 s.t.𝐹(𝑥)=𝑎,𝑦 s.t. 𝐺(𝑦)=𝑏

Pr[𝑋 = 𝑥]Pr[𝑌 = 𝑦] =

⎛⎜
⎝

∑
𝑥 s.t.𝐹(𝑥)=𝑎

Pr[𝑋 = 𝑥]⎞⎟
⎠

⋅ ⎛⎜
⎝

∑
𝑦 s.t.𝐺(𝑦)=𝑏

Pr[𝑌 = 𝑦]⎞⎟
⎠

=

Pr[𝐹 (𝑋) = 𝑎]Pr[𝐺(𝑌 ) = 𝑏].

0.4.2 Collections of independent random variables.
We can extend the notions of independence to more than two random
variables: we say that the random variables 𝑋0,… ,𝑋𝑛−1 are mutually
independent if for every 𝑎0,… , 𝑎𝑛−1 ∈ ℝ,

Pr [𝑋0 = 𝑎0 ∧ ⋯ ∧𝑋𝑛−1 = 𝑎𝑛−1] = Pr[𝑋0 = 𝑎0] ⋯Pr[𝑋𝑛−1 = 𝑎𝑛−1].

And similarly, we have that

Lemma 0.10 — Expectation of product of independent random variables. If
𝑋0,… ,𝑋𝑛−1 are mutually independent then

𝔼[
𝑛−1
∏
𝑖=0

𝑋𝑖] =
𝑛−1
∏
𝑖=0

𝔼[𝑋𝑖].

Lemma 0.11 — Functions preserve independence. If 𝑋0,… ,𝑋𝑛−1 are mu-
tually independent, and 𝑌0,… , 𝑌𝑛−1 are defined as 𝑌𝑖 = 𝐹𝑖(𝑋𝑖) for
some functions 𝐹0,… , 𝐹𝑛−1 ∶ ℝ → ℝ, then 𝑌0,… , 𝑌𝑛−1 are mutually
independent as well.

P
We leave proving Lemma 0.10 and Lemma 0.11 as
Exercise 0.9 Exercise 0.10. It is good idea for you stop
now and do these exercises to make sure you are com-
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Figure 6: The probabilities that we obtain a particular
sum when we toss 𝑛 = 10, 20, 100, 1000 coins
converge quickly to the Gaussian/normal distribution.

fortable with the notion of independence, as we will
use it heavily later on in this course.

0.5 CONCENTRATION AND TAIL BOUNDS

The name “expectation” is somewhat misleading. For example, sup-
pose that you and I place a bet on the outcome of 10 coin tosses, where
if they all come out to be 1’s then I pay you 100,000 dollars and other-
wise you pay me 10 dollars. If we let 𝑋 ∶ {0, 1}10 → ℝ be the random
variable denoting your gain, then we see that

𝔼[𝑋] = 2−10 ⋅ 100000 − (1 − 2−10)10 ∼ 90.
But we don’t really “expect” the result of this experiment to be for

you to gain 90 dollars. Rather, 99.9% of the time you will pay me 10
dollars, and you will hit the jackpot 0.01% of the times.

However, if we repeat this experiment again and again (with fresh
and hence independent coins), then in the long run we do expect your
average earning to be close to 90 dollars, which is the reason why
casinos can make money in a predictable way even though every
individual bet is random. For example, if we toss 𝑛 independent and
unbiased coins, then as 𝑛 grows, the number of coins that come up
ones will be more and more concentrated around 𝑛/2 according to the
famous “bell curve” (see Fig. 6).

Much of probability theory is concerned with so called concentration
or tail bounds, which are upper bounds on the probability that a ran-
dom variable 𝑋 deviates too much from its expectation. The first and
simplest one of them is Markov’s inequality:

Theorem 0.12 — Markov’s inequality. If 𝑋 is a non-negative random
variable then Pr[𝑋 ≥ 𝑘 𝔼[𝑋]] ≤ 1/𝑘.

P
Markov’s Inequality is actually a very natural state-
ment (see also Fig. 7). For example, if you know that
the average (not the median!) household income in
the US is 70,000 dollars, then in particular you can
deduce that at most 25 percent of households make
more than 280,000 dollars, since otherwise, even if
the remaining 75 percent had zero income, the top
25 percent alone would cause the average income to
be larger than 70,000 dollars. From this example you
can already see that in many situations, Markov’s
inequality will not be tight and the probability of devi-
ating from expectation will be much smaller: see the
Chebyshev and Chernoff inequalities below.
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Figure 7: Markov’s Inequality tells us that a non-
negative random variable 𝑋 cannot be much larger
than its expectation, with high probability. For exam-
ple, if the expectation of 𝑋 is 𝜇, then the probability
that 𝑋 > 4𝜇 must be at most 1/4, as otherwise just
the contribution from this part of the sample space
will be too large.

Proof of Theorem 0.12. Let 𝜇 = 𝔼[𝑋] and define 𝑌 = 1𝑋≥𝑘𝜇. That
is, 𝑌 (𝑥) = 1 if 𝑋(𝑥) ≥ 𝑘𝜇 and 𝑌 (𝑥) = 0 otherwise. Note that by
definition, for every 𝑥, 𝑌 (𝑥) ≤ 𝑋/(𝑘𝜇). We need to show 𝔼[𝑌 ] ≤ 1/𝑘.
But this follows since 𝔼[𝑌 ] ≤ 𝔼[𝑋/𝑘(𝜇)] = 𝔼[𝑋]/(𝑘𝜇) = 𝜇/(𝑘𝜇) = 1/𝑘.

■

Going beyond Markov’s Inequality: Markov’s inequality says that a (non-
negative) random variable 𝑋 can’t go too crazy and be, say, a million
times its expectation, with significant probability. But ideally we
would like to say that with high probability, 𝑋 should be very close to
its expectation, e.g., in the range [0.99𝜇, 1.01𝜇] where 𝜇 = 𝔼[𝑋]. This
is not generally true, but does turn out to hold when 𝑋 is obtained
by combining (e.g., adding) many independent random variables.
This phenomenon, variants of which are known as “law of large num-
bers”, “central limit theorem”, “invariance principles” and “Chernoff
bounds”, is one of the most fundamental in probability and statistics,
and is one that we heavily use in computer science as well.

0.5.1 Chebyshev’s Inequality
A standard way to measure the deviation of a random variable from
its expectation is by using its standard deviation. For a random variable
𝑋, we define the variance of 𝑋 as Var[𝑋] = 𝔼[(𝑋 − 𝜇)2] where 𝜇 =
𝔼[𝑋]; i.e., the variance is the average squared distance of 𝑋 from its
expectation. The standard deviation of 𝑋 is defined as 𝜎[𝑋] = √Var[𝑋].
(This is well-defined since the variance, being an average of a square,
is always a non-negative number.)

Using Chebyshev’s inequality, we can control the probability that
a random variable is too many standard deviations away from its
expectation.

Theorem 0.13 — Chebyshev’s inequality. Suppose that 𝜇 = 𝔼[𝑋] and
𝜎2 = Var[𝑋]. Then for every 𝑘 > 0, Pr[|𝑋 − 𝜇| ≥ 𝑘𝜎] ≤ 1/𝑘2.

Proof. The proof follows from Markov’s inequality. We define the
random variable 𝑌 = (𝑋 − 𝜇)2. Then 𝔼[𝑌 ] = Var[𝑋] = 𝜎2, and hence
by Markov the probability that 𝑌 > 𝑘2𝜎2 is at most 1/𝑘2. But clearly
(𝑋 − 𝜇)2 ≥ 𝑘2𝜎2 if and only if |𝑋 − 𝜇| ≥ 𝑘𝜎.

■

One example of how to use Chebyshev’s inequality is the setting
when 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 where 𝑋𝑖’s are independent and identically
distributed (i.i.d for short) variables with values in [0, 1] where each
has expectation 1/2. Since 𝔼[𝑋] = ∑𝑖 𝔼[𝑋𝑖] = 𝑛/2, we would like to
say that 𝑋 is very likely to be in, say, the interval [0.499𝑛, 0.501𝑛]. Us-
ing Markov’s inequality directly will not help us, since it will only tell



mathematical background 39

Figure 8: In the normal distribution or the Bell curve,
the probability of deviating 𝑘 standard deviations
from the expectation shrinks exponentially in 𝑘2, and
specifically with probability at least 1 − 2𝑒−𝑘2/2, a
random variable 𝑋 of expectation 𝜇 and standard
deviation 𝜎 satisfies 𝜇−𝑘𝜎 ≤ 𝑋 ≤ 𝜇+𝑘𝜎. This figure
gives more precise bounds for 𝑘 = 1, 2, 3, 4, 5, 6.
(Image credit:Imran Baghirov)

us that 𝑋 is very likely to be at most 100𝑛 (which we already knew,
since it always lies between 0 and 𝑛). However, since 𝑋1,… ,𝑋𝑛 are
independent,

Var[𝑋1 +⋯+𝑋𝑛] = Var[𝑋1] + ⋯ + Var[𝑋𝑛] . (1)

(We leave showing this to the reader as Exercise 0.11.)
For every random variable 𝑋𝑖 in [0, 1], Var[𝑋𝑖] ≤ 1 (if the variable

is always in [0, 1], it can’t be more than 1 away from its expectation),
and hence (1) implies that Var[𝑋] ≤ 𝑛 and hence 𝜎[𝑋] ≤ √𝑛. For
large 𝑛, √𝑛 ≪ 0.001𝑛, and in particular if √𝑛 ≤ 0.001𝑛/𝑘, we can
use Chebyshev’s inequality to bound the probability that 𝑋 is not in
[0.499𝑛, 0.501𝑛] by 1/𝑘2.

0.5.2 The Chernoff bound
Chebyshev’s inequality already shows a connection between inde-
pendence and concentration, but in many cases we can hope for
a quantitatively much stronger result. If, as in the example above,
𝑋 = 𝑋1 + … + 𝑋𝑛 where the 𝑋𝑖’s are bounded i.i.d random variables
of mean 1/2, then as 𝑛 grows, the distribution of 𝑋 would be roughly
the normal or Gaussian distribution− that is, distributed according to
the bell curve (see Fig. 6 and Fig. 8). This distribution has the property
of being very concentrated in the sense that the probability of devi-
ating 𝑘 standard deviations from the mean is not merely 1/𝑘2 as is
guaranteed by Chebyshev, but rather is roughly 𝑒−𝑘2 . Specifically, for
a normal random variable 𝑋 of expectation 𝜇 and standard deviation
𝜎, the probability that |𝑋 − 𝜇| ≥ 𝑘𝜎 is at most 2𝑒−𝑘2/2. That is, we have
an exponential decay of the probability of deviation.

The following extremely useful theorem shows that such expo-
nential decay occurs every time we have a sum of independent and
bounded variables. This theorem is known under many names in dif-
ferent communities, though it is mostly called the Chernoff bound in
the computer science literature:

Theorem 0.14 — Chernoff/Hoeffding bound. If 𝑋1,… ,𝑋𝑛 are i.i.d random
variables such that 𝑋𝑖 ∈ [0, 1] and 𝔼[𝑋𝑖] = 𝑝 for every 𝑖, then for
every 𝜖 > 0

Pr[∣
𝑛−1
∑
𝑖=0

𝑋𝑖 − 𝑝𝑛∣ > 𝜖𝑛] ≤ 2 ⋅ 𝑒−2𝜖2𝑛.

We omit the proof, which appears in many texts, and uses Markov’s
inequality on i.i.d random variables 𝑌0,… , 𝑌𝑛 that are of the form
𝑌𝑖 = 𝑒𝜆𝑋𝑖 for some carefully chosen parameter 𝜆. See Exercise 0.14
for a proof of the simple (but highly useful and representative) case
where each 𝑋𝑖 is {0, 1} valued and 𝑝 = 1/2. (See also Exercise 0.15 for
a generalization.)

https://en.wikipedia.org/wiki/Chernoff_bound
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2 one way to do this is to use Stirling’s approximation
for the factorial function..

0.6 EXERCISES

Exercise 0.1 Prove that for every finite 𝑆, 𝑇 , there are (|𝑇 | + 1)|𝑆| partial
functions from 𝑆 to 𝑇 .

■

Exercise 0.2 — 𝑂-notation. For every pair of functions 𝐹,𝐺 below, deter-
mine which of the following relations holds: 𝐹 = 𝑂(𝐺), 𝐹 = Ω(𝐺),
𝐹 = 𝑜(𝐺) or 𝐹 = 𝜔(𝐺).

a. 𝐹(𝑛) = 𝑛, 𝐺(𝑛) = 100𝑛.

b. 𝐹(𝑛) = 𝑛, 𝐺(𝑛) = √𝑛.

c. 𝐹(𝑛) = 𝑛 log𝑛, 𝐺(𝑛) = 2(log(𝑛))2 .

d. 𝐹(𝑛) = √𝑛, 𝐺(𝑛) = 2√log𝑛

e. 𝐹(𝑛) = ( 𝑛
⌈0.2𝑛⌉) , 𝐺(𝑛) = 20.1𝑛 (where (𝑛𝑘) is the number of 𝑘-sized

subsets of a set of size 𝑛) and 𝑔(𝑛) = 20.1𝑛. See footnote for hint.2

■

Exercise 0.3 Give an example of a pair of functions 𝐹,𝐺 ∶ ℕ → ℕ such
that neither 𝐹 = 𝑂(𝐺) nor 𝐺 = 𝑂(𝐹) holds.

■

Exercise 0.4 — Properties of expectation and variance. In the follow-
ing exercise 𝑋,𝑌 denote random variables over some sample
space 𝑆. You can assume that the probability on 𝑆 is the uniform
distribution— every point 𝑠 is output with probability 1/|𝑆|. Thus
𝔼[𝑋] = (1/|𝑆|)∑𝑠∈𝑆 𝑋(𝑠). We define the variance and standard
deviation of 𝑋 and 𝑌 as above (e.g., 𝑉 𝑎𝑟[𝑋] = 𝔼[(𝑋 − 𝔼[𝑋])2] and the
standard deviation is the square root of the variance). You can reuse
your answers to prior questions in the later ones.

1. Prove that 𝑉 𝑎𝑟[𝑋] is always non-negative.

2. Prove that 𝑉 𝑎𝑟[𝑋] = 𝔼[𝑋2] − 𝔼[𝑋]2.

3. Prove that always 𝔼[𝑋2] ≥ 𝔼[𝑋]2.

4. Give an example for a random variable 𝑋 such that 𝔼[𝑋2] > 𝔼[𝑋]2.

5. Give an example for a random variable 𝑋 such that its standard
deviation is not equal to 𝔼[|𝑋 − 𝔼[𝑋]|].

6. Give an example for a random variable 𝑋 such that its standard
deviation is equal to to 𝔼[|𝑋 − 𝔼[𝑋]|].

7. Give an example for two random variables 𝑋,𝑌 such that 𝔼[XY] =
𝔼[𝑋]𝔼[𝑌 ].

https://goo.gl/cqEmS2
https://goo.gl/cqEmS2
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8. Give an example for two random variables 𝑋,𝑌 such that 𝔼[XY] ≠
𝔼[𝑋]𝔼[𝑌 ].

9. Prove that if 𝑋 and 𝑌 are independent random variables (i.e., for
every 𝑥, 𝑦, Pr[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] = Pr[𝑋 = 𝑥]Pr[𝑌 = 𝑦]) then
𝔼[XY] = 𝔼[𝑋]𝔼[𝑌 ] and 𝑉 𝑎𝑟[𝑋 + 𝑌 ] = 𝑉 𝑎𝑟[𝑋] + 𝑉 𝑎𝑟[𝑌 ].

■

Exercise 0.5 — Random hash function. Suppose that 𝐻 is chosen to be a
random function mapping the numbers {1,… , 𝑛} to the numbers
{1, ..,𝑚}. That is, for every 𝑖 ∈ {1,… , 𝑛}, 𝐻(𝑖) is chosen to be a ran-
dom number in {1,… ,𝑚} and that choice is done independently for
every 𝑖. For every 𝑖 < 𝑗 ∈ {1,… , 𝑛}, define the random variable 𝑋𝑖,𝑗 to
equal 1 if there was a collision between 𝐻(𝑖) and 𝐻(𝑗) in the sense that
𝐻(𝑖) = 𝐻(𝑗) and to equal 0 otherwise.

1. For every 𝑖 < 𝑗, compute 𝔼[𝑋𝑖,𝑗].

2. Define 𝑌 = ∑𝑖<𝑗 𝑋𝑖,𝑗 to be the total number of collisions. Compute
𝔼[𝑌 ] as a function of 𝑛 and 𝑚. In particular your answer should
imply that if 𝑚 < 𝑛2/1000 then 𝔼[𝑌 ] > 1 and hence in expectation
there should be at least one collision and so the function 𝐻 will not
be one to one.

3. Prove that if 𝑚 > 1000 ⋅ 𝑛2 then the probability that 𝐻 is one to one
is at least 0.9.

4. Give an example of a random variable 𝑍 (unrelated to the function
𝐻) that is always equal to a non-negative integer, and such that
𝔼[𝑍] ≥ 1000 but Pr[𝑍 > 0] < 0.001.

5. Prove that if 𝑚 < 𝑛2/1000 then the probability that 𝐻 is one to one
is at most 0.1.

■

0.7 EXERCISES

Exercise 0.6 Suppose that we toss three independent fair coins 𝑎, 𝑏, 𝑐 ∈
{0, 1}. What is the probability that the XOR of 𝑎,𝑏, and 𝑐 is equal to 1?
What is the probability that the AND of these three values is equal to
1? Are these two events independent?

■

Exercise 0.7 Give an example of random variables 𝑋,𝑌 ∶ {0, 1}3 → ℝ
such that 𝔼[XY] ≠ 𝔼[𝑋] 𝔼[𝑌 ].

■
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3 While you don’t need this to solve this exercise, this
is the function that maps 𝑝 to the entropy (as defined
in Exercise 0.12) of the 𝑝-biased coin distribution over
{0, 1}, which is the function 𝜇 ∶ {0, 1} → [0, 1] s.y.
𝜇(0) = 1 − 𝑝 and 𝜇(1) = 𝑝.
4 Hint: Use Stirling’s formula for approximating the
factorial function.

Exercise 0.8 Give an example of random variables 𝑋,𝑌 ∶ {0, 1}3 → ℝ
such that 𝑋 and 𝑌 are not independent but 𝔼[XY] = 𝔼[𝑋] 𝔼[𝑌 ].

■

Exercise 0.9 — Product of expectations. Prove Lemma 0.10
■

Exercise 0.10 — Transformations preserve independence. Prove Lemma 0.11
■

Exercise 0.11 — Variance of independent random variables. Prove that if
𝑋0,… ,𝑋𝑛−1 are independent random variables then Var[𝑋0 + ⋯ +
𝑋𝑛−1] = ∑𝑛−1

𝑖=0 Var[𝑋𝑖].
■

Exercise 0.12 — Entropy (challenge). Recall the definition of a distribution
𝜇 over some finite set 𝑆. Shannon defined the entropy of a distribution
𝜇, denoted by 𝐻(𝜇), to be ∑𝑥∈𝑆 𝜇(𝑥) log(1/𝜇(𝑥)). The idea is that if 𝜇
is a distribution of entropy 𝑘, then encoding members of 𝜇 will require
𝑘 bits, in an amortized sense. In this exercise we justify this definition.
Let 𝜇 be such that 𝐻(𝜇) = 𝑘.

1. Prove that for every one to one function 𝐹 ∶ 𝑆 → {0, 1}∗,
𝔼𝑥∼𝜇 |𝐹 (𝑥)| ≥ 𝑘.

2. Prove that for every 𝜖, there is some 𝑛 and a one-to-one function
𝐹 ∶ 𝑆𝑛 → {0, 1}∗, such that 𝔼𝑥∼𝜇𝑛 |𝐹 (𝑥)| ≤ 𝑛(𝑘 + 𝜖), where 𝑥 ∼ 𝜇
denotes the experiments of choosing 𝑥0,… , 𝑥𝑛−1 each independently
from 𝑆 using the distribution 𝜇.

■

Exercise 0.13 — Entropy approximation to binomial. Let 𝐻(𝑝) = 𝑝 log(1/𝑝) +
(1 − 𝑝) log(1/(1 − 𝑝)).3

Prove that for every 𝑝 ∈ (0, 1) and 𝜖 > 0, if 𝑛 is large enough then4

2(𝐻(𝑝)−𝜖)𝑛( 𝑛
𝑝𝑛) ≤ 2(𝐻(𝑝)+𝜖)𝑛

where (𝑛𝑘) is the binomial coefficient 𝑛!
𝑘!(𝑛−𝑘)! which is equal to the

number of 𝑘-size subsets of {0,… , 𝑛 − 1}.
■

Exercise 0.14 — Chernoff using Stirling. 1. Prove that Pr𝑥∼{0,1}𝑛 [∑𝑥𝑖 =
𝑘] = (𝑛𝑘)2−𝑛.

2. Use this and Exercise 0.13 to prove (an approximate version of)
the Chernoff bound for the case that 𝑋0,… ,𝑋𝑛−1 are i.i.d. random
variables over {0, 1} each equaling 0 and 1 with probability 1/2.
That is, prove that for every 𝜖 > 0, and 𝑋0,… ,𝑋𝑛−1 as above,
Pr[|∑𝑛−1

𝑖=0 −𝑛/2
| > 𝜖𝑛] < 20.1⋅𝜖2𝑛.

■
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5 Hint: Bound the number of tuples 𝑗0,… , 𝑗𝑛−1 such
that every 𝑗𝑖 is even and ∑𝑗𝑖 = 𝑘 using the Binomial
coefficient and the fact that in any such tuple there are
at most 𝑘/2 distinct indices.
6 Hint: Set 𝑘 = 2⌈𝜖2𝑛/1000⌉ and then show that if the
event |∑𝑌𝑖| ≥ 𝜖𝑛 happens then the random variable
(∑𝑌𝑖)𝑘 is a factor of 𝜖−𝑘 larger than its expectation.

Exercise 0.15 — Poor man’s Chernoff. Exercise 0.14 establishes the Chernoff
bound for the case that 𝑋0,… ,𝑋𝑛−1 are i.i.d variables over {0, 1} with
expectation 1/2. In this exercise we use a slightly different method
(bounding the moments of the random variables) to establish a version
of Chernoff where the random variables range over [0, 1] and their
expectation is some number 𝑝 ∈ [0, 1] that may be different than
1/2. Let 𝑋0,… ,𝑋𝑛−1 be i.i.d random variables with 𝔼𝑋𝑖 = 𝑝 and
Pr[0 ≤ 𝑋𝑖 ≤ 1] = 1. Define 𝑌𝑖 = 𝑋𝑖 − 𝑝.

1. Prove that for every 𝑗0,… , 𝑗𝑛−1 ∈ ℕ, if there exists one 𝑖 such that 𝑗𝑖
is odd then 𝔼[∏𝑛−1

𝑖=0 𝑌 𝑗𝑖
𝑖 ] = 0.

2. Prove that for every 𝑘, 𝔼[(∑𝑛−1
𝑖=0 𝑌𝑖)𝑘] ≤ (10𝑘𝑛)𝑘/2.5

3. Prove that for every 𝜖 > 0, Pr[|∑𝑖 𝑌𝑖| ≥ 𝜖𝑛] ≥ 2−𝜖2𝑛/(10000 log1/𝜖).6

■

Exercise 0.16 — Lower bound for distinguishing coins. The Chernoff bound
can be used to show that if you were given a coin of bias at least 𝜖,
you should only need 𝑂(1/𝜖2) samples to be able to reject the “null
hypothesis” that the coin is completely unbiased with extremely high
confidence. In the following somewhat more challenging question, we
try to show a converse to this, proving that distinguishing between a
fair every coin and a coin that outputs “heads” with probability 1/2+𝜖
requires at least Ω(1/𝜖2) samples.

Let 𝑃 be the uniform distribution over {0, 1}𝑛 and 𝑄 be the 1/2 + 𝜖-
biased distribution corresponding to tossing 𝑛 coins in which each one
has a probability of 1/2 + 𝜖 of equaling 1 and probability 1/2 − 𝜖 of
equaling 0. Namely the probability of 𝑥 ∈ {0, 1}𝑛 according to 𝑄 is
equal to ∏𝑛

𝑖=1(1/2 − 𝜖 + 2𝜖𝑥𝑖).

1. Prove that for every threshold 𝜃 between 0 and 𝑛, if 𝑛 < 1/(100𝜖)2
then the probabilities that ∑𝑥𝑖 ≤ 𝜃 under 𝑃 and 𝑄 respectively
differ by at most 0.1. Therefore, one cannot use the test whether
the number of heads is above or below some threshold to reliably
distinguish between these two possibilities unless the number of
samples 𝑛 of the coins is at least some constant times 1/𝜖2.

2. Prove that for every function 𝐹 mapping {0, 1}𝑛 to {0, 1}, if 𝑛 <
1/(100𝜖)2 then the probabilities that 𝐹(𝑥) = 1 under 𝑃 and 𝑄 re-
spectively differ by at most 0.1. Therefore, if the number of samples
is smaller than a constant times 1/𝜖2 then there is simply no test that
can reliably distinguish between these two possibilities.

■
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7 Hint: Think of 𝑥 ∈ {0, 1}𝑛 as choosing 𝑘 numbers
𝑦1,… , 𝑦𝑘 ∈ {0,… , 2⌈log𝑀⌉ − 1}. Output the first such
number that is in {0,… ,𝑀 − 1}.

Exercise 0.17 — Simulating distributions using coins. Our model for proba-
bility involves tossing 𝑛 coins, but sometimes algorithms require sam-
pling from other distributions, such as selecting a uniform number in
{0,… ,𝑀 − 1} for some 𝑀 . Fortunately, we can simulate this with an
exponentially small probability of error: prove that for every 𝑀 , if 𝑛 >
𝑘⌈log𝑀⌉, then there is a function 𝐹 ∶ {0, 1}𝑛 → {0,… ,𝑀 − 1} ∪ {⊥}
such that (1) The probability that 𝐹(𝑥) = ⊥ is at most 2−𝑘 and (2) the
distribution of 𝐹(𝑥) conditioned on 𝐹(𝑥) ≠ ⊥ is equal to the uniform
distribution over {0,… ,𝑀 − 1}.7

■

Exercise 0.18 — Sampling. Suppose that a country has 300,000,000 citi-
zens, 52 percent of which prefer the color “green” and 48 percent of
which prefer the color “orange”. Suppose we sample 𝑛 random citi-
zens and ask them their favorite color (assume they will answer truth-
fully). What is the smallest value 𝑛 among the following choices so
that the probability that the majority of the sample answers “green” is
at most 0.05?

a. 1,000

b. 10,000

c. 100,000

d. 1,000,000

■

Exercise 0.19 Would the answer to Exercise 0.18 change if the country
had 300,000,000,000 citizens?

■

Exercise 0.20 — Sampling (2). Under the same assumptions as Exer-
cise 0.18, what is the smallest value 𝑛 among the following choices so
that the probability that the majority of the sample answers “green” is
at most 2−100?

a. 1,000

b. 10,000

c. 100,000

d. 1,000,000

e. It is impossible to get such low probability since there are fewer
than 2100 citizens.

■


